US20200044163A1 - Organic electroluminescent materials and devices - Google Patents

Organic electroluminescent materials and devices Download PDF

Info

Publication number
US20200044163A1
US20200044163A1 US16/563,311 US201916563311A US2020044163A1 US 20200044163 A1 US20200044163 A1 US 20200044163A1 US 201916563311 A US201916563311 A US 201916563311A US 2020044163 A1 US2020044163 A1 US 2020044163A1
Authority
US
United States
Prior art keywords
compound
group
heteroaryl
materials
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/563,311
Inventor
Yi-Tzu HUNG
Ken-Tsung Wong
Raymond Kwong
Chuanjun Xia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Display Corp
Original Assignee
Universal Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Display Corp filed Critical Universal Display Corp
Priority to US16/563,311 priority Critical patent/US20200044163A1/en
Assigned to UNIVERSAL DISPLAY CORPORATION reassignment UNIVERSAL DISPLAY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNG, YI-TZU, KWONG, RAYMOND, WONG, KEN-TSUNG, XIA, CHUANJUN
Publication of US20200044163A1 publication Critical patent/US20200044163A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • H01L51/0072
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/0061
    • H01L51/0067
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • H01L51/5016
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light

Definitions

  • the claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.
  • the present invention relates to organic light emitting devices. More specifically, the present disclosure pertains to luminescent materials comprising donor-acceptor compounds with a nitrogen containing donor connected to the 1-position of a carbazole and triazene as the acceptor for use as emitters in organic light emitting diodes.
  • Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
  • OLEDs organic light emitting devices
  • the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
  • OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.
  • phosphorescent emissive molecules is a full color display.
  • Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors.
  • these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.
  • a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy) 3 , which has the following structure:
  • organic includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices.
  • Small molecule refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety.
  • the core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter.
  • a dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.
  • top means furthest away from the substrate, while “bottom” means closest to the substrate.
  • first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer.
  • a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.
  • solution processible means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.
  • a ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material.
  • a ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.
  • a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level.
  • IP ionization potentials
  • a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative).
  • a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative).
  • the LUMO energy level of a material is higher than the HOMO energy level of the same material.
  • a “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.
  • a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.
  • R a to R g , R 1 and R 2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.
  • Ar 1 to Ar 3 are independently substituted or unsubstituted aryl or heteroaryl and can connect to one another to form fused ring(s).
  • L is a direct bond or a linker.
  • a first device comprising a first organic light emitting device.
  • the first organic light emitting device comprising: an anode; a cathode; and an emissive layer, disposed between the anode and the cathode, wherein the emissive layer comprises a first emitting compound having a structure according to Formula 1:
  • R a to R g , R 1 and R 2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.
  • Ar 1 to Ar 3 are independently substituted or unsubstituted aryl or heteroaryl and can connect to one another to form fused ring(s).
  • L is a direct bond or a linker.
  • a formulation comprising a compound having a structure according to Formula 1 is also disclosed.
  • the compound of the present disclosure can be used in OLEDs as emitters, hosts, charge transport materials, in both single color or multiple color devices.
  • the compound can be easily utilized in fabrication of OLEDs because the compound can be vapor-evaporated or solution processed.
  • the compound is useful as emitters because it provides high efficiency OLEDs without using organometallic compounds.
  • FIG. 1 shows an organic light emitting device that can incorporate the inventive host material disclosed herein.
  • FIG. 2 shows an inverted organic light emitting device that can incorporate the inventive host material disclosed herein.
  • FIG. 3 shows Formula 1 as disclosed herein.
  • an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode.
  • the anode injects holes and the cathode injects electrons into the organic layer(s).
  • the injected holes and electrons each migrate toward the oppositely charged electrode.
  • an “exciton,” which is a localized electron-hole pair having an excited energy state is formed.
  • Light is emitted when the exciton relaxes via a photoemissive mechanism.
  • the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.
  • the initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.
  • FIG. 1 shows an organic light emitting device 100 .
  • Device 100 may include a substrate 110 , an anode 115 , a hole injection layer 120 , a hole transport layer 125 , an electron blocking layer 130 , an emissive layer 135 , a hole blocking layer 140 , an electron transport layer 145 , an electron injection layer 150 , a protective layer 155 , a cathode 160 , and a barrier layer 170 .
  • Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164 .
  • Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.
  • each of these layers are available.
  • a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety.
  • An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety.
  • host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety.
  • An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety.
  • the theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No.
  • FIG. 2 shows an inverted OLED 200 .
  • the device includes a substrate 210 , a cathode 215 , an emissive layer 220 , a hole transport layer 225 , and an anode 230 .
  • Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230 , device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200 .
  • FIG. 2 provides one example of how some layers may be omitted from the structure of device 100 .
  • FIGS. 1 and 2 The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures.
  • the specific materials and structures described are exemplary in nature, and other materials and structures may be used.
  • Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers.
  • hole transport layer 225 transports holes and injects holes into emissive layer 220 , and may be described as a hole transport layer or a hole injection layer.
  • an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2 .
  • OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety.
  • PLEDs polymeric materials
  • OLEDs having a single organic layer may be used.
  • OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al., which is incorporated by reference in its entirety.
  • the OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2 .
  • the substrate may include an angled reflective surface to improve outcoupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.
  • any of the layers of the various embodiments may be deposited by any suitable method.
  • preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety.
  • OVPD organic vapor phase deposition
  • OJP organic vapor jet printing
  • Other suitable deposition methods include spin coating and other solution based processes.
  • Solution based processes are preferably carried out in nitrogen or an inert atmosphere.
  • preferred methods include thermal evaporation.
  • Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVID. Other methods may also be used.
  • the materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing.
  • Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.
  • Devices fabricated in accordance with embodiments of the present invention may further optionally comprise a barrier layer.
  • a barrier layer One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc.
  • the barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge.
  • the barrier layer may comprise a single layer, or multiple layers.
  • the barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer.
  • the barrier layer may incorporate an inorganic or an organic compound or both.
  • the preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties.
  • the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time.
  • the weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95.
  • the polymeric material and the non-polymeric material may be created from the same precursor material.
  • the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.
  • Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, 3-D displays, vehicles, a large area wall, theater or stadium screen, or a sign.
  • PDAs personal digital assistants
  • Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.), but could be used outside this temperature range, for example, from ⁇ 40 degree C. to +80 degree C.
  • the materials and structures described herein may have applications in devices other than OLEDs.
  • other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures.
  • organic devices such as organic transistors, may employ the materials and structures.
  • halo or “halogen” as used herein includes fluorine, chlorine, bromine, and iodine.
  • alkyl as used herein contemplates both straight and branched chain alkyl radicals.
  • Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, and the like. Additionally, the alkyl group may be optionally substituted.
  • cycloalkyl as used herein contemplates cyclic alkyl radicals.
  • Preferred cycloalkyl groups are those containing 3 to 7 carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.
  • alkenyl as used herein contemplates both straight and branched chain alkene radicals.
  • Preferred alkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl group may be optionally substituted.
  • alkynyl as used herein contemplates both straight and branched chain alkyne radicals. Preferred alkyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.
  • aralkyl or “arylalkyl” as used herein are used interchangeably and contemplate an alkyl group that has as a substituent an aromatic group. Additionally, the aralkyl group may be optionally substituted.
  • heterocyclic group contemplates aromatic and non-aromatic cyclic radicals.
  • Hetero-aromatic cyclic radicals also refer to heteroaryl.
  • Preferred hetero-non-aromatic cyclic groups are those containing 3 or 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperdino, pyrrolidino, and the like, and cyclic ethers, such as tetrahydrofuran, tetrahydropyran, and the like. Additionally, the heterocyclic group may be optionally substituted.
  • aryl or “aromatic group” as used herein contemplates single-ring groups and polycyclic ring systems.
  • the polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is aromatic, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Additionally, the aryl group may be optionally substituted.
  • heteroaryl as used herein contemplates single-ring hetero-aromatic groups that may include from one to three heteroatoms, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine and pyrimidine, and the like.
  • heteroaryl also includes polycyclic hetero-aromatic systems having two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Additionally, the heteroaryl group may be optionally substituted.
  • alkyl, cycloalkyl, alkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl may be optionally substituted with one or more substituents selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, cyclic amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.
  • substituted indicates that a substituent other than H is bonded to the relevant position, such as carbon.
  • R 1 is mono-substituted
  • one R 1 must be other than H.
  • R 1 is di-substituted
  • two of R 1 must be other than H.
  • R 1 is hydrogen for all available positions.
  • aza-dibenzofuran i.e. aza-dibenzofuran, aza-dibenzonethiophene, etc.
  • azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline.
  • the phrase “electron acceptor” or “acceptor” means a fragment that can accept electron density from an aromatic system
  • the phrase “electron donor” or “donor” means a fragment that donates electron density into an aromatic system.
  • IQE internal quantum efficiency
  • E-type delayed fluorescence does not rely on the collision of two triplets, but rather on the thermal population between the triplet states and the singlet excited states.
  • Compounds that are capable of generating E-type delayed fluorescence are required to have very small singlet-triplet gaps.
  • Thermal energy can activate the transition from the triplet state back to the singlet state.
  • This type of delayed fluorescence is also known as thermally activated delayed fluorescence (TADF).
  • TADF thermally activated delayed fluorescence
  • a distinctive feature of TADF is that the delayed component increases as temperature rises due to the increased thermal energy. If the reverse intersystem crossing rate is fast enough to minimize the non-radiative decay from the triplet state, the fraction of back populated singlet excited states can potentially reach 75%. The total singlet fraction can be 100%, far exceeding the spin statistics limit for electrically generated excitons.
  • E-type delayed fluorescence characteristics can be found in an exciplex system or in a single compound. Without being bound by theory, it is believed that E-type delayed fluorescence requires the luminescent material to have a small singlet-triplet energy gap ( ⁇ E S-T ).
  • Organic, non-metal containing, donor-acceptor luminescent materials may be able to achieve this.
  • the emission in these materials is often characterized as a donor-acceptor charge-transfer (CT) type emission.
  • CT charge-transfer
  • the spatial separation of the HOMO and LUMO in these donor-acceptor type compounds often results in small ⁇ E S-T .
  • These states may involve CT states.
  • donor-acceptor luminescent materials are constructed by connecting an electron donor moiety such as amino- or carbazole-derivatives and an electron acceptor moiety such as N-containing six-membered aromatic rings.
  • the present disclosure provides compounds with multiple-nitrogen donors and triazine acceptors which may show strong CT emission.
  • donor-acceptor compounds with a nitrogen containing donor connected to the 1-position of a carbazole and triazene acceptor connected at the 9-position may be more efficient emitters with emission originated from the charge transfer (CT) state.
  • CT charge transfer
  • Substitution at the 1 position of the carbazole causes a significant steric hindrance between the substitutents at the 1 position and the 9-position. This steric hindrance was expected to result in a disruption of the through-bond conjugation of the donor and the acceptor.
  • the donor-acceptor compounds exhibited efficient emission.
  • the emission can be tuned by varying the strength of the donor-acceptor interaction and the resulting energy of the CT state.
  • the compounds may be used as emitters in OLED.
  • the donor-acceptor compound with a nitrogen containing donor connected to the 1-position of a carbazole and triazene as the acceptor has a structure according to Formula 1:
  • R a to R g , R 1 and R 2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and wherein Ar 1 to Ar 3 are independently substituted or unsubstituted aryl or heteroaryl and can connect to one another to form fused ring(s) and, wherein L is a direct bond or a linker.
  • the alkyl and cycloalkyl in Formula 1 can be selected from the group consisting of methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, cyclopentyl, cyclohexyl, partially or fully deuterated variants thereof, and combinations thereof.
  • the aryl and heteroaryl in Formula 1 can be selected from the group consisting of phenyl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, pyridine, phenyl pyridine, pyridyl phenyl, triphenylene, carbazole, fluorene, dibenzofuran, dibenzothiophene, dibenzoselenophene, aza-triphenylene, aza-carbazole, aza-fluorene, aza-dibenzofuran, aza-dibenzothiophene, aza-dibenzoselenophene and combinations thereof.
  • R a to R g in Formula 1 are H.
  • Ar 1 is
  • Ar 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • Ar 1 is
  • Ar 2 and Ar 3 are phenyl, and L is a direct bond. In one embodiment, Ar 1 and L are
  • Ar 2 and Ar 3 are phenyl.
  • the donor-acceptor compound with a nitrogen containing donor connected to the 1-position of a carbazole and triazene as the acceptor is selected from the group consisting of
  • Ar 1 and Ar 2 in Formula 1 are connected to form a carbazole moiety.
  • Ar 1 and Ar 2 are connected to form a carbazole moiety and the compound is selected from the group consisting of
  • Ar 2 and Ar 3 in Formula 1 are connected to form a carbazole moiety.
  • Ar 2 and Ar 3 are connected to form a carbazole moiety and the compound is selected from the group consisting of
  • the compound is selected from the group consisting of
  • a first device comprising a first organic light emitting device.
  • the first organic light emitting device comprises an anode; a cathode; and an emissive layer, disposed between the anode and the cathode, wherein the emissive layer comprises a first emitting compound having a structure according to Formula 1:
  • R a to R g , R 1 and R 2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and wherein Ar 1 to Ar 3 are independently substituted or unsubstituted aryl or heteroaryl and can connect to one another to form fused ring(s) and, wherein L is a direct bond or a linker.
  • the first emitting compound is selected from the group consisting of Compound 1 through Compound 53 disclosed herein.
  • the first device emits a luminescent radiation at room temperature when a voltage is applied across the organic light emitting device, wherein the luminescent radiation comprises a delayed fluorescence process.
  • the emissive layer further comprises a first phosphorescent emitting material. In another embodiment, the emissive layer further comprises a second phosphorescent emitting material. In another embodiment, the emissive layer further comprises a host material.
  • the emissive layer further comprises a first phosphorescent emitting material and the first device emits a white light at room temperature when a voltage is applied across the organic light emitting device.
  • the emissive layer further comprises a first phosphorescent emitting material and the first device emits a white light at room temperature when a voltage is applied across the organic light emitting device, and the first emitting compound emits a blue light with a peak wavelength of about 400 nm to about 500 nm.
  • the emissive layer further comprises a first phosphorescent emitting material and the first device emits a white light at room temperature when a voltage is applied across the organic light emitting device, and the first emitting compound emits a yellow light with a peak wavelength of about 530 nm to about 580 nm.
  • the first device comprises a second organic light emitting device, wherein the second organic light emitting device is stacked on the first organic light emitting device.
  • the first device is a consumer product. In another embodiment of the first device, the first device is a lighting panel.
  • a formulation comprising a compound having a structure according to Formula 1 is also disclosed.
  • Table 1 summarizes the photoluminescence (PL), photoluminescence quantum yield PLQY and solvatochromism data of Compounds 1 and 2. It can be seen that in thin films (5% of emitter by weight in PMMA, mCBP or mCP as host), PLQY's in the range of 50% were obtained. Significant red shift in PL was observed as the solvent polarity increased, indicating the charge transfer origin of the luminescence.
  • Em max PLQY Compound Host (nm) (%) Solution Em max (nm) Compound 1 PMMA 509 57 hexane 504 toluene 530 chloroform 572 Compound 2 PMMA 498 47 3- 490 methylpentane mCBP 496 55 toluene 520 mCP 499 57 2-methylTHF 552
  • the organic stack of the Device Examples in Table 2 consists of sequentially, from the ITO surface, 200 ⁇ of TAPC the hole transporting layer (HTL), 300 ⁇ of Compound A doped with 5% of the emitter Compound 1 as the emissive layer (EML) and 400 ⁇ of TmPyPB as the ETL.
  • Device Example 1 has an external quantum efficiency (EQE) of 12% at 5 cd/m 2 and 7.7% at 1000 cd/m 2 .
  • the CIE is 0.249, 0.481, with an emission peak at 502 nm
  • the photoluminescence quantum yield (PLQY) of the neat film of Compound 1 was measured to be 57% in Compound 1 in PMMA film (5% by weight).
  • the ratio of singlet excitons should be 25%.
  • the outcoupling efficiency of a bottom-emitting lambertian OLED is considered to be around 20-25%. Therefore, for a fluorescent emitter having a PLQY of 57% without additional radiative channels such as delayed fluorescence, the highest EQE should not exceed 3.6% based on the statistical ratio of 25% electrically generated singlet excitons and outcoupling efficiency of 25%.
  • devices containing compounds of Formula I as the emitter, such as Compound 1 showed EQE far exceeding the theoretic limit.
  • the organic stack of the Device Examples in Table 2 consists of sequentially, from the ITO surface, 100 ⁇ of LG101 (purchased from LG Chem, Korea) as the hole injection layer (HIL), 300 ⁇ of Compound B the hole transporting layer (HTL), 300 ⁇ of mCBP doped with 6% of the emitter Compound 2 as the emissive layer (EML), 50 ⁇ of Compound C as ETL1 and 400 ⁇ of Compound D as ETL2.
  • Device Example 2 has an EQE of 10% at 1 cd/m 2 and 7.1% at 1000 cd/m 2 .
  • the CIE is 0.240, 0.496, with an emission peak at 510 nm. Again, the device EQE far exceeded the conventional fluorescent device efficiency limit.
  • the materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device.
  • emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present.
  • the materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.
  • a hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material.
  • the material include, but not limit to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoO x ; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.
  • aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:
  • Each of Ar 1 to Ar 9 is selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrim
  • each Ar is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.
  • a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acy
  • Ar 1 to Ar g is independently selected from the group consisting of:
  • k is an integer from 1 to 20;
  • X 101 to X 108 is C (including CH) or N;
  • Z 101 is NAr 1 , O, or S;
  • Ar 1 has the same group defined above.
  • metal complexes used in HIL or HTL include, but not limit to the following general formula:
  • Met is a metal, which can have an atomic weight greater than 40;
  • (Y 101 -Y 102 ) is a bidentate ligand, Y 101 and Y 102 are independently selected from C, N, O, P, and S;
  • L 101 is an ancillary ligand;
  • k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and
  • k′+k′′ is the maximum number of ligands that may be attached to the metal.
  • (Y 101 -Y 102 ) is a 2-phenylpyridine derivative. In another aspect, (Y 101 -Y 102 ) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc + /Fc couple less than about 0.6 V.
  • the light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material.
  • the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. While the Table below categorizes host materials as preferred for devices that emit various colors, any host material may be used with any dopant so long as the triplet criteria is satisfied.
  • metal complexes used as host are preferred to have the following general formula:
  • Met is a metal
  • (Y 103 -Y 104 ) is a bidentate ligand, Y 103 and Y 104 are independently selected from C, N, O, P, and S
  • L 101 is an another ligand
  • k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal
  • k′+k′′ is the maximum number of ligands that may be attached to the metal.
  • the metal complexes are:
  • (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.
  • Met is selected from Ir and Pt.
  • (Y 103 -Y 104 ) is a carbene ligand.
  • organic compounds used as host are selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine
  • each group is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.
  • a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acy
  • host compound contains at least one of the following groups in the molecule:
  • R 101 to R 107 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.
  • X 101 to X 108 is selected from C (including CH) or N.
  • Z 101 and Z 102 is selected from NR 101 , O, or S.
  • a hole blocking layer may be used to reduce the number of holes and/or excitons that leave the emissive layer.
  • the presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer.
  • a blocking layer may be used to confine emission to a desired region of an OLED.
  • compound used in HBL contains the same molecule or the same functional groups used as host described above.
  • compound used in HBL contains at least one of the following groups in the molecule:
  • Electron transport layer may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.
  • compound used in ETL contains at least one of the following groups in the molecule:
  • R 101 is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.
  • Ar 1 to Ar 3 has the similar definition as Ar's mentioned above.
  • k is an integer from 1 to 20.
  • X 101 to X 108 is selected from C (including CH) or N.
  • the metal complexes used in ETL contains, but not limit to the following general formula:
  • (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L 101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.
  • the hydrogen atoms can be partially or fully deuterated.
  • any specifically listed substituent such as, without limitation, methyl, phenyl, pyridyl, etc. encompasses undeuterated, partially deuterated, and fully deuterated versions thereof.
  • classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also encompass undeuterated, partially deuterated, and fully deuterated versions thereof.
  • hole injection materials In addition to and/or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED.
  • Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table A below. Table A lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.
  • Metal 8- hydroxyquinolates e.g., BAlq
  • Appl. Phys. Lett. 81, 162 (2002) 5-member ring electron deficient heterocycles such as triazole, oxadiazole, imidazole, benzoimidazole Appl. Phys. Lett. 81, 162 (2002) Triphenylene compounds US20050025993 Fluorinated aromatic compounds Appl. Phys. Lett.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A luminescent materials including donor-acceptor compounds with a nitrogen containing donor connected to the 1-position of a carbazole and triazene acceptor connected at the 9-position is disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of the co-pending U.S. patent application Ser. No. 14/294,336, filed on Jun. 3, 2014, the disclosure of which is incorporated herein by reference in its entirety.
  • PARTIES TO A JOINT RESEARCH AGREEMENT
  • The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.
  • FIELD OF THE INVENTION
  • The present invention relates to organic light emitting devices. More specifically, the present disclosure pertains to luminescent materials comprising donor-acceptor compounds with a nitrogen containing donor connected to the 1-position of a carbazole and triazene as the acceptor for use as emitters in organic light emitting diodes.
  • BACKGROUND
  • Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
  • OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.
  • One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.
  • One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)3, which has the following structure:
  • Figure US20200044163A1-20200206-C00001
  • In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.
  • As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.
  • As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.
  • As used herein, “solution processible” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.
  • A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.
  • As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.
  • As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.
  • More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.
  • SUMMARY OF THE INVENTION
  • According to an embodiment of the present disclosure, a compound having a structure according to the following Formula 1 is disclosed:
  • Figure US20200044163A1-20200206-C00002
  • In Formula 1, Ra to Rg, R1 and R2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. Ar1 to Ar3 are independently substituted or unsubstituted aryl or heteroaryl and can connect to one another to form fused ring(s). L is a direct bond or a linker.
  • According to another embodiment, a first device comprising a first organic light emitting device is disclosed. The first organic light emitting device comprising: an anode; a cathode; and an emissive layer, disposed between the anode and the cathode, wherein the emissive layer comprises a first emitting compound having a structure according to Formula 1:
  • Figure US20200044163A1-20200206-C00003
  • In Formula 1, Ra to Rg, R1 and R2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. Ar1 to Ar3 are independently substituted or unsubstituted aryl or heteroaryl and can connect to one another to form fused ring(s). L is a direct bond or a linker.
  • According to yet another embodiment, a formulation comprising a compound having a structure according to Formula 1 is also disclosed.
  • The compound of the present disclosure can be used in OLEDs as emitters, hosts, charge transport materials, in both single color or multiple color devices. The compound can be easily utilized in fabrication of OLEDs because the compound can be vapor-evaporated or solution processed. The compound is useful as emitters because it provides high efficiency OLEDs without using organometallic compounds.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an organic light emitting device that can incorporate the inventive host material disclosed herein.
  • FIG. 2 shows an inverted organic light emitting device that can incorporate the inventive host material disclosed herein.
  • FIG. 3 shows Formula 1 as disclosed herein.
  • DETAILED DESCRIPTION
  • Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.
  • The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.
  • More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.
  • FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.
  • More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.
  • FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.
  • The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.
  • Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al., which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve outcoupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.
  • Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVID. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.
  • Devices fabricated in accordance with embodiments of the present invention may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.
  • Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, 3-D displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.), but could be used outside this temperature range, for example, from −40 degree C. to +80 degree C.
  • The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.
  • The term “halo” or “halogen” as used herein includes fluorine, chlorine, bromine, and iodine.
  • The term “alkyl” as used herein contemplates both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, and the like. Additionally, the alkyl group may be optionally substituted.
  • The term “cycloalkyl” as used herein contemplates cyclic alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 7 carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.
  • The term “alkenyl” as used herein contemplates both straight and branched chain alkene radicals. Preferred alkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl group may be optionally substituted.
  • The term “alkynyl” as used herein contemplates both straight and branched chain alkyne radicals. Preferred alkyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.
  • The terms “aralkyl” or “arylalkyl” as used herein are used interchangeably and contemplate an alkyl group that has as a substituent an aromatic group. Additionally, the aralkyl group may be optionally substituted.
  • The term “heterocyclic group” as used herein contemplates aromatic and non-aromatic cyclic radicals. Hetero-aromatic cyclic radicals also refer to heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 or 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperdino, pyrrolidino, and the like, and cyclic ethers, such as tetrahydrofuran, tetrahydropyran, and the like. Additionally, the heterocyclic group may be optionally substituted.
  • The term “aryl” or “aromatic group” as used herein contemplates single-ring groups and polycyclic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is aromatic, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Additionally, the aryl group may be optionally substituted.
  • The term “heteroaryl” as used herein contemplates single-ring hetero-aromatic groups that may include from one to three heteroatoms, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine and pyrimidine, and the like. The term heteroaryl also includes polycyclic hetero-aromatic systems having two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Additionally, the heteroaryl group may be optionally substituted.
  • The alkyl, cycloalkyl, alkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl may be optionally substituted with one or more substituents selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, cyclic amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.
  • As used herein, “substituted” indicates that a substituent other than H is bonded to the relevant position, such as carbon. Thus, for example, where R1 is mono-substituted, then one R1 must be other than H. Similarly, where R1 is di-substituted, then two of R1 must be other than H. Similarly, where R1 is unsubstituted, R1 is hydrogen for all available positions.
  • The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzonethiophene, etc. means that one or more of the C—H groups in the respective fragment can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.
  • It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.
  • As used herein, the phrase “electron acceptor” or “acceptor” means a fragment that can accept electron density from an aromatic system, and the phrase “electron donor” or “donor” means a fragment that donates electron density into an aromatic system.
  • It is believed that the internal quantum efficiency (IQE) of fluorescent OLEDs can exceed the 25% spin statistics limit through delayed fluorescence. As used herein, there are two types of delayed fluorescence, i.e. P-type delayed fluorescence and E-type delayed fluorescence. P-type delayed fluorescence is generated from triplet-triplet annihilation (TTA).
  • On the other hand, E-type delayed fluorescence does not rely on the collision of two triplets, but rather on the thermal population between the triplet states and the singlet excited states. Compounds that are capable of generating E-type delayed fluorescence are required to have very small singlet-triplet gaps. Thermal energy can activate the transition from the triplet state back to the singlet state. This type of delayed fluorescence is also known as thermally activated delayed fluorescence (TADF). A distinctive feature of TADF is that the delayed component increases as temperature rises due to the increased thermal energy. If the reverse intersystem crossing rate is fast enough to minimize the non-radiative decay from the triplet state, the fraction of back populated singlet excited states can potentially reach 75%. The total singlet fraction can be 100%, far exceeding the spin statistics limit for electrically generated excitons.
  • E-type delayed fluorescence characteristics can be found in an exciplex system or in a single compound. Without being bound by theory, it is believed that E-type delayed fluorescence requires the luminescent material to have a small singlet-triplet energy gap (ΔES-T). Organic, non-metal containing, donor-acceptor luminescent materials may be able to achieve this. The emission in these materials is often characterized as a donor-acceptor charge-transfer (CT) type emission. The spatial separation of the HOMO and LUMO in these donor-acceptor type compounds often results in small ΔES-T. These states may involve CT states. Often, donor-acceptor luminescent materials are constructed by connecting an electron donor moiety such as amino- or carbazole-derivatives and an electron acceptor moiety such as N-containing six-membered aromatic rings.
  • The present disclosure provides compounds with multiple-nitrogen donors and triazine acceptors which may show strong CT emission. The inventors discovered that donor-acceptor compounds with a nitrogen containing donor connected to the 1-position of a carbazole and triazene acceptor connected at the 9-position may be more efficient emitters with emission originated from the charge transfer (CT) state. Substitution at the 1 position of the carbazole causes a significant steric hindrance between the substitutents at the 1 position and the 9-position. This steric hindrance was expected to result in a disruption of the through-bond conjugation of the donor and the acceptor. Unexpectedly, however, the donor-acceptor compounds exhibited efficient emission. This appears to be the result of a through-space interaction between the donor and the acceptor enabled by the donor and acceptor being adjacent to each other. This may be an effective mechanism of charge transfer emission without lowering the emission energy due to through-bond 7 c-conjugation. The emission can be tuned by varying the strength of the donor-acceptor interaction and the resulting energy of the CT state. The compounds may be used as emitters in OLED.
  • According to an embodiment, the donor-acceptor compound with a nitrogen containing donor connected to the 1-position of a carbazole and triazene as the acceptor has a structure according to Formula 1:
  • Figure US20200044163A1-20200206-C00004
  • wherein Ra to Rg, R1 and R2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and wherein Ar1 to Ar3 are independently substituted or unsubstituted aryl or heteroaryl and can connect to one another to form fused ring(s) and, wherein L is a direct bond or a linker.
  • According to one embodiment, the alkyl and cycloalkyl in Formula 1 can be selected from the group consisting of methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, cyclopentyl, cyclohexyl, partially or fully deuterated variants thereof, and combinations thereof. The aryl and heteroaryl in Formula 1 can be selected from the group consisting of phenyl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, pyridine, phenyl pyridine, pyridyl phenyl, triphenylene, carbazole, fluorene, dibenzofuran, dibenzothiophene, dibenzoselenophene, aza-triphenylene, aza-carbazole, aza-fluorene, aza-dibenzofuran, aza-dibenzothiophene, aza-dibenzoselenophene and combinations thereof.
  • In one embodiment, Ra to Rg in Formula 1 are H. In one embodiment, Ar1 is
  • Figure US20200044163A1-20200206-C00005
  • In one embodiment, Ar1 is
  • Figure US20200044163A1-20200206-C00006
  • and Ar2 and Ar3 are phenyl. In one embodiment, Ar1 is
  • Figure US20200044163A1-20200206-C00007
  • Ar2 and Ar3 are phenyl, and L is a direct bond. In one embodiment, Ar1 and L are
  • Figure US20200044163A1-20200206-C00008
  • and Ar2 and Ar3 are phenyl.
  • In one preferred embodiment the donor-acceptor compound with a nitrogen containing donor connected to the 1-position of a carbazole and triazene as the acceptor is selected from the group consisting of
  • Figure US20200044163A1-20200206-C00009
  • In one embodiment, Ar1 and Ar2 in Formula 1 are connected to form a carbazole moiety. In another preferred embodiment, Ar1 and Ar2 are connected to form a carbazole moiety and the compound is selected from the group consisting of
  • Figure US20200044163A1-20200206-C00010
  • In one embodiment, Ar2 and Ar3 in Formula 1 are connected to form a carbazole moiety. In another preferred embodiment, Ar2 and Ar3 are connected to form a carbazole moiety and the compound is selected from the group consisting of
  • Figure US20200044163A1-20200206-C00011
  • In another preferred embodiment, the compound is selected from the group consisting of
  • Figure US20200044163A1-20200206-C00012
    Figure US20200044163A1-20200206-C00013
    Figure US20200044163A1-20200206-C00014
    Figure US20200044163A1-20200206-C00015
    Figure US20200044163A1-20200206-C00016
    Figure US20200044163A1-20200206-C00017
    Figure US20200044163A1-20200206-C00018
  • According to another aspect of the present disclosure, a first device comprising a first organic light emitting device is disclosed. The first organic light emitting device comprises an anode; a cathode; and an emissive layer, disposed between the anode and the cathode, wherein the emissive layer comprises a first emitting compound having a structure according to Formula 1:
  • Figure US20200044163A1-20200206-C00019
  • wherein Ra to Rg, R1 and R2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and wherein Ar1 to Ar3 are independently substituted or unsubstituted aryl or heteroaryl and can connect to one another to form fused ring(s) and, wherein L is a direct bond or a linker.
  • In one embodiment of the first device, the first emitting compound is selected from the group consisting of Compound 1 through Compound 53 disclosed herein.
  • In one embodiment, the first device emits a luminescent radiation at room temperature when a voltage is applied across the organic light emitting device, wherein the luminescent radiation comprises a delayed fluorescence process.
  • In one embodiment of the first device, the emissive layer further comprises a first phosphorescent emitting material. In another embodiment, the emissive layer further comprises a second phosphorescent emitting material. In another embodiment, the emissive layer further comprises a host material.
  • In one embodiment of the first device, the emissive layer further comprises a first phosphorescent emitting material and the first device emits a white light at room temperature when a voltage is applied across the organic light emitting device.
  • In another embodiment of the first device, the emissive layer further comprises a first phosphorescent emitting material and the first device emits a white light at room temperature when a voltage is applied across the organic light emitting device, and the first emitting compound emits a blue light with a peak wavelength of about 400 nm to about 500 nm.
  • In another embodiment of the first device, the emissive layer further comprises a first phosphorescent emitting material and the first device emits a white light at room temperature when a voltage is applied across the organic light emitting device, and the first emitting compound emits a yellow light with a peak wavelength of about 530 nm to about 580 nm.
  • In another embodiment of the first device, the first device comprises a second organic light emitting device, wherein the second organic light emitting device is stacked on the first organic light emitting device.
  • In one embodiment of the first device, the first device is a consumer product. In another embodiment of the first device, the first device is a lighting panel.
  • According to another aspect, a formulation comprising a compound having a structure according to Formula 1 is also disclosed.
  • Synthesis of Compound 1
  • Figure US20200044163A1-20200206-C00020
  • 1-bromo-9-(4,6-diphenyl-1,3,5-triazin-2-yl)-9H-carbazole (0.50 g, 1.05 mmol), (4-(diphenylamino)phenyl)boronic acid (0.46 g, 1.26 mmol) and Pd2(dba)3 (0.03 g) were mixed in a 25 mL two-neck flask. The whole system was evacuated and purged with argon gas. The mixture was dissolved in dry toluene (10 mL). tBu3P (2.51 mL, 0.05 M in toluene) and degassed K2CO3 (1.26 mL, 2.5 M in H2O) were added. The mixture was refluxed under argon for 14 hours. After completion of the reaction, it was cooled to room temperature and the mixture was extracted with dichloromethane. The combined organic layer was washed with brine and dried over MgSO4 after which the solvent was removed by rotary evaporation. The crude product was purified by column chromatography on silica gel using hexane:dichloromethane=5:1 and then with hexane:dichloromethane:toluene=3:1:0.1 to obtained the pure product, Compound 1, (0.60 g, 90%) as a yellow solid.
  • Synthesis of Compound 2
  • Figure US20200044163A1-20200206-C00021
  • 1-bromo-9H-carbazole (0.50 g, 2.03 mmol), 4-(diphenylamino)phenylboronic acid (0.71 g, 2.44 mmol), and Pd2(dba)3 (0.06 g) were mixed in a 25 mL two-neck bottle. The whole system was evacuated and purged with argon gas. Dry toluene (10 mL), t-Bu3P (4.88 mL of 0.05 M in toluene and degassed K2CO3 (3.66 mL, 2.5 M in H2O) were added. The system was refluxed for 14 hours under an inert atmosphere. Upon completion of the reaction, the mixture was cooled to room temperature and then extracted with ethyl ether. The combined organic layer was washed with brine, dried with MgSO4 and finally the solvent was removed by rotary evaporation. The crude product was purified by column chromatography on silica gel using hexane:dichloromethane=3:1 as the eluent to obtain the desired product, 4-(9H-carbazol-1-yl)-N,N-diphenylaniline, (0.75 g, 90%) as a white solid.
  • Figure US20200044163A1-20200206-C00022
  • 4-(9H-carbazol-1-yl)-N,N-diphenylaniline (0.50 g, 1.22 mmol), 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (0.57 g, 1.46 mmol), Pd2(dba)3 (0.03 g), and NaOtBu (0.15 g, 1.58 mmol) were mixed in a 50 mL two neck round bottom flask and the system was evacuated then purged with argon gas. The mixture was dissolved in dry toluene (20 mL). tBu3P (2.44 mL, 0.05M in toluene) was added and the mixture was refluxed under argon for 4 hour. After completion of the reaction, it was cooled to room temperature, the salts were filtered. After removal of the solvent by the rotary evaporation, about 10 mL of dichloromethane was added to the crude product and heated to dissolve of the compound. Hexane was added for crystallization to take place. The solid was filtered and washed with hexane to afford the product, Compound 2, (0.71 g, 81%) as a yellow green solid.
  • Synthesis of Compound 3
  • Figure US20200044163A1-20200206-C00023
  • 1-bromo-9-(4,6-diphenyl-1,3,5-triazin-2-yl)-9H-carbazole (0.50 g, 1.05 mmol), 9-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (0.46 g, 1.26 mmol), and Pd2(dba)3 (0.03 g) were mixed in a 25 mL two-neck flask, evacuated and then recharged with argon. The mixture was dissolved in dry toluene (10 mL) and then tBu3P (2.51 mL, 0.05 M in toluene, 12 mmol) and degassed K2CO3 (1.26 mL, 2.5 M in H2O) were added. The mixture was refluxed under argon for 14 hours. Upon completion of the reaction, the mixture was cooled to room temperature and extracted with dichloromethane. The combined organic layer was wash with brine, dried over MgSO4 and the solvent was removed by rotary evaporation. The crude product was purified by column chromatography on silica gel using hexane:dichloromethane=5:1, and then changed with hexane:dichloromethane:toluene=3:1:0.1 to obtained pure product, Compound 3, (0.60 g, 90%) as a yellow solid.
  • Synthesis of Compound 5
  • Figure US20200044163A1-20200206-C00024
  • A solution containing 9-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-9H-carbazole (0.65 g, 1.8 mmol), Pd(PPh3)4 (0.09 g, 0.08 mmol), tBu3P (3.2 mL of 0.05M in toluene), 1-bromo-9-(4,6-diphenyl-1,3,5-triazin-2-yl)-9H-carbazole (0.76 mg, 1.6 mmol) and Na2CO3 (2.9 mL, 2M in H2O) in toluene (30 mL) was refluxed with vigorous stirring for 24 hours under an argon atmosphere. The mixture was poured into water and extracted with DCM. The organic extracts were washed with brine and dried over MgSO4. The solvent was removed by rotary evaporation, and washed with hot DCM to afford the pure product, Compound 5, (0.45 g, 39%).
  • Table 1 below summarizes the photoluminescence (PL), photoluminescence quantum yield PLQY and solvatochromism data of Compounds 1 and 2. It can be seen that in thin films (5% of emitter by weight in PMMA, mCBP or mCP as host), PLQY's in the range of 50% were obtained. Significant red shift in PL was observed as the solvent polarity increased, indicating the charge transfer origin of the luminescence.
  • TABLE 1
    PL, PLQY and solvatochromism of Compound 1 and 2.
    Emmax PLQY
    Compound Host (nm) (%) Solution Emmax (nm)
    Compound 1 PMMA 509 57 hexane 504
    toluene 530
    chloroform 572
    Compound 2 PMMA 498 47 3- 490
    methylpentane
    mCBP 496 55 toluene 520
    mCP 499 57 2-methylTHF 552
  • Device Examples
  • In the OLED experiment, all device examples were fabricated by high vacuum (<10−7 Torr) thermal evaporation. The anode electrode is ˜800 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of LiF followed by 1,000 Å of Al. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) and a moisture getter was incorporated inside the package.
  • Device Example 1
  • The organic stack of the Device Examples in Table 2 consists of sequentially, from the ITO surface, 200 Å of TAPC the hole transporting layer (HTL), 300 Å of Compound A doped with 5% of the emitter Compound 1 as the emissive layer (EML) and 400 Å of TmPyPB as the ETL. Device Example 1 has an external quantum efficiency (EQE) of 12% at 5 cd/m2 and 7.7% at 1000 cd/m2. The CIE is 0.249, 0.481, with an emission peak at 502 nm
  • The photoluminescence quantum yield (PLQY) of the neat film of Compound 1 was measured to be 57% in Compound 1 in PMMA film (5% by weight). For a standard fluorescent OLED with only prompt singlet emission, the ratio of singlet excitons should be 25%. The outcoupling efficiency of a bottom-emitting lambertian OLED is considered to be around 20-25%. Therefore, for a fluorescent emitter having a PLQY of 57% without additional radiative channels such as delayed fluorescence, the highest EQE should not exceed 3.6% based on the statistical ratio of 25% electrically generated singlet excitons and outcoupling efficiency of 25%. Thus devices containing compounds of Formula I as the emitter, such as Compound 1, showed EQE far exceeding the theoretic limit.
  • Device Example 2
  • The organic stack of the Device Examples in Table 2 consists of sequentially, from the ITO surface, 100 Å of LG101 (purchased from LG Chem, Korea) as the hole injection layer (HIL), 300 Å of Compound B the hole transporting layer (HTL), 300 Å of mCBP doped with 6% of the emitter Compound 2 as the emissive layer (EML), 50 Å of Compound C as ETL1 and 400 Å of Compound D as ETL2. Device Example 2 has an EQE of 10% at 1 cd/m2 and 7.1% at 1000 cd/m2. The CIE is 0.240, 0.496, with an emission peak at 510 nm. Again, the device EQE far exceeded the conventional fluorescent device efficiency limit.
  • The chemical structure of the compounds used in the device examples are shown below:
  • Figure US20200044163A1-20200206-C00025
  • Combination with Other Materials
  • The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.
  • HIL/HTL:
  • A hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but not limit to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.
  • Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:
  • Figure US20200044163A1-20200206-C00026
  • Each of Ar1 to Ar9 is selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each Ar is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.
  • In one aspect, Ar1 to Arg is independently selected from the group consisting of:
  • Figure US20200044163A1-20200206-C00027
  • wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.
  • Examples of metal complexes used in HIL or HTL include, but not limit to the following general formula:
  • Figure US20200044163A1-20200206-C00028
  • wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.
  • In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.
  • Host:
  • The light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. While the Table below categorizes host materials as preferred for devices that emit various colors, any host material may be used with any dopant so long as the triplet criteria is satisfied.
  • Examples of metal complexes used as host are preferred to have the following general formula:
  • Figure US20200044163A1-20200206-C00029
  • wherein Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.
  • In one aspect, the metal complexes are:
  • Figure US20200044163A1-20200206-C00030
  • wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.
  • In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.
  • Examples of organic compounds used as host are selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each group is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.
  • In one aspect, host compound contains at least one of the following groups in the molecule:
  • Figure US20200044163A1-20200206-C00031
    Figure US20200044163A1-20200206-C00032
  • wherein R101 to R107 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20; k′″ is an integer from 0 to 20. X101 to X108 is selected from C (including CH) or N. Z101 and Z102 is selected from NR101, O, or S.
  • HBL:
  • A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED.
  • In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.
  • In another aspect, compound used in HBL contains at least one of the following groups in the molecule:
  • Figure US20200044163A1-20200206-C00033
  • wherein k is an integer from 1 to 20; L101 is an another ligand, k′ is an integer from 1 to 3.
  • ETL:
  • Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.
  • In one aspect, compound used in ETL contains at least one of the following groups in the molecule:
  • Figure US20200044163A1-20200206-C00034
  • wherein R101 is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.
  • In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:
  • Figure US20200044163A1-20200206-C00035
  • wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.
  • In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. encompasses undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also encompass undeuterated, partially deuterated, and fully deuterated versions thereof.
  • In addition to and/or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table A below. Table A lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.
  • TABLE A
    MATERIAL EXAMPLES OF MATERIAL PUBLICATIONS
    Hole injection materials
    Phthalocyanine and porphryin compounds
    Figure US20200044163A1-20200206-C00036
    Appl. Phys. Lett. 69, 2160 (1996)
    Starburst triarylamines
    Figure US20200044163A1-20200206-C00037
    J. Lumin. 72-74, 985 (1997)
    CFx Fluorohydrocarbon polymer
    Figure US20200044163A1-20200206-C00038
    Appl. Phys. Lett. 78, 673 (2001)
    Conducting polymers (e.g., PEDOT:PSS, polyaniline, polythiophene)
    Figure US20200044163A1-20200206-C00039
    Synth. Met. 87, 171 (1997) WO2007002683
    Phosphonic acid and sliane SAMs
    Figure US20200044163A1-20200206-C00040
    US20030162053
    Triarylamine or polythiophene polymers with conductivity dopants
    Figure US20200044163A1-20200206-C00041
    EP1725079A1
    Figure US20200044163A1-20200206-C00042
    Figure US20200044163A1-20200206-C00043
    Organic compounds with conductive inorganic compounds, such as molybdenum and tungsten oxides
    Figure US20200044163A1-20200206-C00044
    US20050123751 SID Symposium Digest, 37, 923 (2006) WO2009018009
    n-type semiconducting US20020158242
    organic complexes
    Metal organometallic US20060240279
    complexes
    Cross-linkable US20080220265
    compounds
    Polythiophene based polymers and copolymers
    Figure US20200044163A1-20200206-C00045
    WO 2011075644 EP2350216
    Hole transporting materials
    Triarylamines (e.g., TPD, α-NPD)
    Figure US20200044163A1-20200206-C00046
    Appl. Phys. Lett. 51, 913 (1987) EP650955
    Figure US20200044163A1-20200206-C00047
    U.S. Pat. No. 5,061,569
    Figure US20200044163A1-20200206-C00048
    EP650955
    Figure US20200044163A1-20200206-C00049
    J. Mater. Chem. 3, 319 (1993)
    Figure US20200044163A1-20200206-C00050
    Appl. Phys. Lett. 90, 183503 (2007)
    Figure US20200044163A1-20200206-C00051
    Appl. Phys. Lett. 90, 183503 (2007)
    Triarylamine on spirofluorene core
    Figure US20200044163A1-20200206-C00052
    Synth. Met. 91, 209 (1997)
    Arylamine carbazole compounds
    Figure US20200044163A1-20200206-C00053
    Adv. Mater. 6, 677 (1994), US20080124572
    Triarylamine with (di)benzothiophene/ (di)benzofuran
    Figure US20200044163A1-20200206-C00054
    US20070278938, US20080106190 US20110163302
    Indolocarbazoles
    Figure US20200044163A1-20200206-C00055
    Synth. Met. 111, 421 (2000)
    Isoindole compounds
    Figure US20200044163A1-20200206-C00056
    Chem. Mater. 15, 3148 (2003)
    Metal carbene complexes
    Figure US20200044163A1-20200206-C00057
    US20080018221
    Phosphorescent OLED host materials
    Red hosts
    Arylcarbazoles
    Figure US20200044163A1-20200206-C00058
    Appl. Phys. Lett. 78, 1622 (2001)
    Metal 8-hydroxyquinolates (e.g., Alq3, BAlq)
    Figure US20200044163A1-20200206-C00059
    Nature 395, 151 (1998)
    Figure US20200044163A1-20200206-C00060
    US20060202194
    Figure US20200044163A1-20200206-C00061
    WO2005014551
    Figure US20200044163A1-20200206-C00062
    WO2006072002
    Metal phenoxybenzothiazole compounds
    Figure US20200044163A1-20200206-C00063
    Appl. Phys. Lett. 90, 123509 (2007)
    Conjugated oligomers and polymers (e.g., polyfluorene)
    Figure US20200044163A1-20200206-C00064
    Org. Electron. 1, 15 (2000)
    Aromatic fused rings
    Figure US20200044163A1-20200206-C00065
    WO2009066779, WO2009066778, WO2009063833, US20090045731, US20090045730, WO2009008311, US20090008605, US20090009065
    Zinc complexes
    Figure US20200044163A1-20200206-C00066
    WO2010056066
    Chrysene based compounds
    Figure US20200044163A1-20200206-C00067
    WO2011086863
    Green hosts
    Arylcarbazoles
    Figure US20200044163A1-20200206-C00068
    Appl. Phys. Lett. 78, 1622 (2001)
    Figure US20200044163A1-20200206-C00069
    US20030175553
    Figure US20200044163A1-20200206-C00070
    WO2001039234
    Aryltriphenylene compounds
    Figure US20200044163A1-20200206-C00071
    US20060280965
    Figure US20200044163A1-20200206-C00072
    US20060280965
    Figure US20200044163A1-20200206-C00073
    WO2009021126
    Poly-fused heteroaryl compounds
    Figure US20200044163A1-20200206-C00074
    US20090309488 US20090302743 US20100012931
    Donor acceptor type molecules
    Figure US20200044163A1-20200206-C00075
    WO2008056746
    Figure US20200044163A1-20200206-C00076
    WO2010107244
    Aza- carbazole/DBT/DBF
    Figure US20200044163A1-20200206-C00077
    JP2008074939
    Figure US20200044163A1-20200206-C00078
    US20100187984
    Polymers (e.g., PVK)
    Figure US20200044163A1-20200206-C00079
    Appl. Phys. Lett. 77, 2280 (2000)
    Spirofluorene compounds
    Figure US20200044163A1-20200206-C00080
    WO2004093207
    Metal phenoxybenzooxazole compounds
    Figure US20200044163A1-20200206-C00081
    WO2005089025
    Figure US20200044163A1-20200206-C00082
    WO2006132173
    Figure US20200044163A1-20200206-C00083
    JP200511610
    Spirofluorene- carbazole compounds
    Figure US20200044163A1-20200206-C00084
    JP2007254297
    Figure US20200044163A1-20200206-C00085
    JP2007254297
    Indolocabazoles
    Figure US20200044163A1-20200206-C00086
    WO2007063796
    Figure US20200044163A1-20200206-C00087
    WO2007063754
    5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole)
    Figure US20200044163A1-20200206-C00088
    J. Appl. Phys. 90, 5048 (2001)
    Figure US20200044163A1-20200206-C00089
    WO2004107822
    Tetraphenylene complexes
    Figure US20200044163A1-20200206-C00090
    US20050112407
    Metal phenoxypyridine compounds
    Figure US20200044163A1-20200206-C00091
    WO2005030900
    Metal coordination complexes (e.g., Zn, Al with N{circumflex over ( )}N ligands)
    Figure US20200044163A1-20200206-C00092
    US20040137268, US20040137267
    Blue hosts
    Arylcarbazoles
    Figure US20200044163A1-20200206-C00093
    Appl. Phys. Lett, 82, 2422 (2003)
    Figure US20200044163A1-20200206-C00094
    US20070190359
    Dibenzothiophene/ Dibenzofuran- carbazole compounds
    Figure US20200044163A1-20200206-C00095
    WO2006114966, US20090167162
    Figure US20200044163A1-20200206-C00096
    US20090167162
    Figure US20200044163A1-20200206-C00097
    WO2009086028
    Figure US20200044163A1-20200206-C00098
    US20090030202, US20090017330
    Figure US20200044163A1-20200206-C00099
    US20100084966
    Silicon aryl compounds
    Figure US20200044163A1-20200206-C00100
    US20050238919
    Figure US20200044163A1-20200206-C00101
    WO2009003898
    Silicon/Germanium aryl compounds
    Figure US20200044163A1-20200206-C00102
    EP2034538A
    Aryl benzoyl ester
    Figure US20200044163A1-20200206-C00103
    WO2006100298
    Carbazole linked by non-conjugated groups
    Figure US20200044163A1-20200206-C00104
    US20040115476
    Aza-carbazoles
    Figure US20200044163A1-20200206-C00105
    US20060121308
    High triplet metal organometallic complex
    Figure US20200044163A1-20200206-C00106
    U.S. Pat. No. 7,154,114
    Phosphorescent dopants
    Red dopants
    Heavy metal porphyrins (e.g., PtOEP)
    Figure US20200044163A1-20200206-C00107
    Nature 395, 151 (1998)
    Iridium(III) organometallic complexes
    Figure US20200044163A1-20200206-C00108
    Appl. Phys. Lett. 78, 1622 (2001)
    Figure US20200044163A1-20200206-C00109
    US20030072964
    Figure US20200044163A1-20200206-C00110
    US20030072964
    Figure US20200044163A1-20200206-C00111
    US20060202194
    Figure US20200044163A1-20200206-C00112
    US20060202194
    Figure US20200044163A1-20200206-C00113
    US20070087321
    Figure US20200044163A1-20200206-C00114
    US20080261076 US20100090591
    Figure US20200044163A1-20200206-C00115
    US20070087321
    Figure US20200044163A1-20200206-C00116
    Adv. Mater. 19, 739 (2007)
    Figure US20200044163A1-20200206-C00117
    WO2009100991
    Figure US20200044163A1-20200206-C00118
    WO2008101842
    Figure US20200044163A1-20200206-C00119
    U.S. Pat. No. 7,232,618
    Platinum(II) organometallic complexes
    Figure US20200044163A1-20200206-C00120
    WO2003040257
    Figure US20200044163A1-20200206-C00121
    US20070103060
    Osminum(III) complexes
    Figure US20200044163A1-20200206-C00122
    Chem. Mater. 17, 3532 (2005)
    Ruthenium(II) complexes
    Figure US20200044163A1-20200206-C00123
    Adv. Mater. 17, 1059 (2005)
    Rhenium (I), (II), and (III) complexes
    Figure US20200044163A1-20200206-C00124
    US20050244673
    Green dopants
    Iridium(III) organometallic complexes
    Figure US20200044163A1-20200206-C00125
    Inorg. Chem. 40, 1704 (2001)
    and its derivatives
    Figure US20200044163A1-20200206-C00126
    US20020034656
    Figure US20200044163A1-20200206-C00127
    U.S. Pat. No. 7,332,232
    US20090108737
    WO2010028151
    EP1841834B
    Figure US20200044163A1-20200206-C00128
    US20060127696
    Figure US20200044163A1-20200206-C00129
    US20090039776
    Figure US20200044163A1-20200206-C00130
    U.S. Pat. No. 6,921,915
    Figure US20200044163A1-20200206-C00131
    US20100244004
    Figure US20200044163A1-20200206-C00132
    U.S. Pat. No. 6,687,266
    Figure US20200044163A1-20200206-C00133
    Chem. Mater. 16, 2480 (2004)
    Figure US20200044163A1-20200206-C00134
    US20070190359
    Figure US20200044163A1-20200206-C00135
    US 20060008670 JP2007123392
    Figure US20200044163A1-20200206-C00136
    WO2010086089, WO2011044988
    Figure US20200044163A1-20200206-C00137
    Adv. Mater. 16, 2003 (2004)
    Figure US20200044163A1-20200206-C00138
    Angew. Chem. Int. Ed. 2006, 45, 7800
    Figure US20200044163A1-20200206-C00139
    WO2009050290
    Figure US20200044163A1-20200206-C00140
    US20090165846
    Figure US20200044163A1-20200206-C00141
    US20080015355
    Figure US20200044163A1-20200206-C00142
    US20010015432
    Figure US20200044163A1-20200206-C00143
    US20100295032
    Monomer for polymeric metal organometallic compounds
    Figure US20200044163A1-20200206-C00144
    U.S. Pat. No. 7,250,226, U.S. Pat. No. 7,396,598
    Pt(II) organometallic complexes, including polydentated ligands
    Figure US20200044163A1-20200206-C00145
    Appl. Phys. Lett. 86, 153505 (2005)
    Figure US20200044163A1-20200206-C00146
    Appl. Phys. Lett. 86, 153505 (2005)
    Figure US20200044163A1-20200206-C00147
    Chem. Lett. 34, 592 (2005)
    Figure US20200044163A1-20200206-C00148
    WO2002015645
    Figure US20200044163A1-20200206-C00149
    US20060263635
    Figure US20200044163A1-20200206-C00150
    US20060182992 US20070103060
    Cu complexes
    Figure US20200044163A1-20200206-C00151
    WO2009000673
    Figure US20200044163A1-20200206-C00152
    US20070111026
    Gold complexes
    Figure US20200044163A1-20200206-C00153
    Chem. Commun. 2906 (2005)
    Rhenium(III) complexes
    Figure US20200044163A1-20200206-C00154
    Inorg. Chem. 42, 1248 (2003)
    Osmium(II) complexes U.S. Pat. No.
    7,279,704
    Deuterated US20030138657
    organometallic
    complexes
    Organometallic US20030152802
    complexes with two
    or more metal centers
    Figure US20200044163A1-20200206-C00155
    U.S. Pat. No. 7,090,928
    Blue dopants
    Iridium(III) organometallic complexes
    Figure US20200044163A1-20200206-C00156
    WO2002002714
    Figure US20200044163A1-20200206-C00157
    WO2006009024
    Figure US20200044163A1-20200206-C00158
    US20060251923 US20110057559 US20110204333
    Figure US20200044163A1-20200206-C00159
    U.S. Pat. No. 7,393,599, WO2006056418, US20050260441, WO2005019373
    Figure US20200044163A1-20200206-C00160
    U.S. Pat. No. 7,534,505
    Figure US20200044163A1-20200206-C00161
    WO2011051404
    Figure US20200044163A1-20200206-C00162
    U.S. Pat. No. 7,445,855
    Figure US20200044163A1-20200206-C00163
    US20070190359, US20080297033 US20100148663
    Figure US20200044163A1-20200206-C00164
    U.S. Pat. No. 7,338,722
    Figure US20200044163A1-20200206-C00165
    US20020134984
    Figure US20200044163A1-20200206-C00166
    Angew. Chem. Int. Ed. 47, 4542 (2008)
    Figure US20200044163A1-20200206-C00167
    Chem. Mater. 18, 5119 (2006)
    Figure US20200044163A1-20200206-C00168
    Inorg. Chem. 46, 4308 (2007)
    Figure US20200044163A1-20200206-C00169
    WO2005123873
    Figure US20200044163A1-20200206-C00170
    WO2005123873
    Figure US20200044163A1-20200206-C00171
    WO2007004380
    Figure US20200044163A1-20200206-C00172
    WO2006082742
    Osmium(II) complexes
    Figure US20200044163A1-20200206-C00173
    U.S. Pat. No. 7,279,704
    Figure US20200044163A1-20200206-C00174
    Organometallics 23, 3745 (2004)
    Gold complexes
    Figure US20200044163A1-20200206-C00175
    Appl. Phys. Lett. 74, 1361 (1999)
    Platinum(II) complexes
    Figure US20200044163A1-20200206-C00176
    WO2006098120, WO2006103874
    Pt tetradentate complexes with at least one metal- carbene bond
    Figure US20200044163A1-20200206-C00177
    U.S. Pat. No. 7,655,323
    Exciton/hole blocking layer materials
    Bathocuprine compounds (e.g., BCP, BPhen)
    Figure US20200044163A1-20200206-C00178
    Appl. Phys. Lett. 75, 4 (1999)
    Figure US20200044163A1-20200206-C00179
    Appl. Phys. Lett. 79, 449 (2001)
    Metal 8- hydroxyquinolates (e.g., BAlq)
    Figure US20200044163A1-20200206-C00180
    Appl. Phys. Lett. 81, 162 (2002)
    5-member ring electron deficient heterocycles such as triazole, oxadiazole, imidazole, benzoimidazole
    Figure US20200044163A1-20200206-C00181
    Appl. Phys. Lett. 81, 162 (2002)
    Triphenylene compounds
    Figure US20200044163A1-20200206-C00182
    US20050025993
    Fluorinated aromatic compounds
    Figure US20200044163A1-20200206-C00183
    Appl. Phys. Lett. 79, 156 (2001)
    Phenothiazine-S-oxide
    Figure US20200044163A1-20200206-C00184
    WO2008132085
    Silylated five- membered nitrogen, oxygen, sulfur or phosphorus dibenzoheterocycles
    Figure US20200044163A1-20200206-C00185
    WO2010079051
    Aza-carbazoles
    Figure US20200044163A1-20200206-C00186
    US20060121308
    Electron transporting materials
    Anthracene- benzoimidazole compounds
    Figure US20200044163A1-20200206-C00187
    WO2003060956 US20090179554
    Aza triphenylene derivatives
    Figure US20200044163A1-20200206-C00188
    US20090115316
    Anthracene- benzothiazole compounds
    Figure US20200044163A1-20200206-C00189
    Appl. Phys. Lett. 89, 063504 (2006)
    Metal 8- hydroxyquinolates (e.g., Alq3, Zrq4)
    Figure US20200044163A1-20200206-C00190
    Appl. Phys. Lett. 51, 913 (1987) U.S, Pat. No. 7,230,107
    Metal hydroxybenoquinolates
    Figure US20200044163A1-20200206-C00191
    Chem. Lett. 5, 905 (1993)
    Bathocuprine compounds such as BCP, BPhen, etc
    Figure US20200044163A1-20200206-C00192
    Appl. Phys. Lett. 91, 263503 (2007)
    Figure US20200044163A1-20200206-C00193
    Appl. Phys. Lett. 79, 449 (2001)
    5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole, imidazole, benzoimidazole)
    Figure US20200044163A1-20200206-C00194
    Appl. Phys. Lett. 74, 865 (1999)
    Figure US20200044163A1-20200206-C00195
    Appl. Phys. Lett. 55, 1489 (1989)
    Figure US20200044163A1-20200206-C00196
    Jpn. J. Apply. Phys. 32, L917 (1993)
    Silole compounds
    Figure US20200044163A1-20200206-C00197
    Org. Electron. 4, 113 (2003)
    Arylborane compounds
    Figure US20200044163A1-20200206-C00198
    J. Am. Chem. Soc. 120, 9714 (1998)
    Fluorinated aromatic compounds
    Figure US20200044163A1-20200206-C00199
    J. Am. Chem. Soc. 122, 1832 (2000)
    Fullerene (e.g., C60)
    Figure US20200044163A1-20200206-C00200
    US20090101870
    Triazine complexes
    Figure US20200044163A1-20200206-C00201
    US20040036077
    Zn (N{circumflex over ( )}N) complexes
    Figure US20200044163A1-20200206-C00202
    U.S. Pat. No. 6,528,187
  • It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims (20)

What is claimed is:
1. A compound having a structure according to Formula 1:
Figure US20200044163A1-20200206-C00203
wherein Ra to Rg, R1 and R2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and
wherein Ar1 to Ar3 are independently substituted or unsubstituted aryl or heteroaryl and can connect to one another to form fused ring(s) and,
wherein L is a direct bond or a linker.
2. The compound of claim 1, wherein Ra to Rg are H.
3. The compound of claim 1, wherein Ar1 is
Figure US20200044163A1-20200206-C00204
4. The compound of claim 3, wherein Ar2 and Ar3 are phenyl.
5. The compound of claim 4, wherein L is a direct bond.
6. The compound of claim 1, wherein Ar1 and L are
Figure US20200044163A1-20200206-C00205
and Ar2 and Ar3 are phenyl.
7. The compound of claim 1, wherein said compound is selected from the group consisting of
Figure US20200044163A1-20200206-C00206
8. The compound of claim 1, wherein Ar1 and Ar2 are connected to form a carbazole moiety.
9. The compound of claim 8, wherein said compound is selected from the group consisting of
Figure US20200044163A1-20200206-C00207
10. The compound of claim 1, wherein Ar2 and Ar3 are connected to form a carbazole moiety.
11. The compound of claim 10, wherein said compound is selected from the group consisting of
Figure US20200044163A1-20200206-C00208
12. The compound of claim 1, wherein said compound is selected from the group consisting of
Figure US20200044163A1-20200206-C00209
Figure US20200044163A1-20200206-C00210
Figure US20200044163A1-20200206-C00211
Figure US20200044163A1-20200206-C00212
Figure US20200044163A1-20200206-C00213
Figure US20200044163A1-20200206-C00214
Figure US20200044163A1-20200206-C00215
Figure US20200044163A1-20200206-C00216
Figure US20200044163A1-20200206-C00217
Figure US20200044163A1-20200206-C00218
Figure US20200044163A1-20200206-C00219
Figure US20200044163A1-20200206-C00220
13. A first device comprising a first organic light emitting device, the first organic light emitting device comprising:
an anode;
a cathode; and
an emissive layer, disposed between the anode and the cathode, wherein the emissive layer comprises a first emitting compound having a structure according to Formula 1:
Figure US20200044163A1-20200206-C00221
wherein Ra to Rg, R1 and R2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and
wherein Ar1 to Ar3 are independently substituted or unsubstituted aryl or heteroaryl and can connect to one another to form fused ring(s) and,
wherein L is a direct bond or a linker.
14. The first device of claim 13, wherein the first emitting compound is selected from the group consisting of
Figure US20200044163A1-20200206-C00222
Figure US20200044163A1-20200206-C00223
Figure US20200044163A1-20200206-C00224
Figure US20200044163A1-20200206-C00225
Figure US20200044163A1-20200206-C00226
Figure US20200044163A1-20200206-C00227
Figure US20200044163A1-20200206-C00228
Figure US20200044163A1-20200206-C00229
15. The first device of claim 13, wherein the first device emits a luminescent radiation at room temperature when a voltage is applied across the organic light emitting device;
wherein the luminescent radiation comprises a delayed fluorescence process.
16. The first device of claim 13, wherein the emissive layer further comprises a first phosphorescent emitting material.
17. The first device of claim 16, wherein the emissive layer further comprises a second phosphorescent emitting material.
18. The first device of claim 13, wherein the emissive layer further comprises a host material.
19. The first device of claim 16, wherein the first device emits a white light at room temperature when a voltage is applied across the organic light emitting device.
20. A formulation comprising a compound having a structure according to Formula 1:
Figure US20200044163A1-20200206-C00230
wherein Ra to Rg, R1 and R2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and
wherein Ar1 to Ar3 are independently substituted or unsubstituted aryl or heteroaryl and can connect to one another to form fused ring(s) and,
wherein L is a direct bond or a linker.
US16/563,311 2014-06-03 2019-09-06 Organic electroluminescent materials and devices Abandoned US20200044163A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/563,311 US20200044163A1 (en) 2014-06-03 2019-09-06 Organic electroluminescent materials and devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/294,336 US10461260B2 (en) 2014-06-03 2014-06-03 Organic electroluminescent materials and devices
US16/563,311 US20200044163A1 (en) 2014-06-03 2019-09-06 Organic electroluminescent materials and devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/294,336 Continuation US10461260B2 (en) 2014-06-03 2014-06-03 Organic electroluminescent materials and devices

Publications (1)

Publication Number Publication Date
US20200044163A1 true US20200044163A1 (en) 2020-02-06

Family

ID=54702811

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/294,336 Active 2034-06-09 US10461260B2 (en) 2014-06-03 2014-06-03 Organic electroluminescent materials and devices
US16/563,311 Abandoned US20200044163A1 (en) 2014-06-03 2019-09-06 Organic electroluminescent materials and devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/294,336 Active 2034-06-09 US10461260B2 (en) 2014-06-03 2014-06-03 Organic electroluminescent materials and devices

Country Status (4)

Country Link
US (2) US10461260B2 (en)
JP (2) JP6731218B2 (en)
KR (1) KR102418620B1 (en)
CN (1) CN105294658B (en)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10559761B2 (en) 2015-03-09 2020-02-11 Kyulux, Inc. Light-emitting material, and organic electroluminescent device
US10804473B2 (en) * 2015-05-21 2020-10-13 Lg Chem, Ltd. Electron transport materials for electronic applications
JP6606986B2 (en) * 2015-11-11 2019-11-20 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND Aromatic Heterocyclic Derivative
WO2017115608A1 (en) * 2015-12-28 2017-07-06 コニカミノルタ株式会社 π-CONJUGATED COMPOUND, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, LIGHT EMITTING MATERIAL, CHARGE TRANSPORT MATERIAL, LUMINESCENT THIN FILM, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP7023452B2 (en) * 2016-06-17 2022-02-22 株式会社Kyulux Luminescent materials, organic light emitting devices and compounds
JP6687240B2 (en) * 2016-06-23 2020-04-22 国立大学法人北海道大学 Novel compound, chemical sensor, sensing device and sensing method
KR102630325B1 (en) * 2016-08-18 2024-01-29 주식회사 동진쎄미켐 Novel compound and organic electroluminescent device comprising the same
US10833276B2 (en) 2016-11-21 2020-11-10 Universal Display Corporation Organic electroluminescent materials and devices
US20190319197A1 (en) * 2016-11-23 2019-10-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic compound, applications thereof, organic mixture, and organic electronic device
CN109111433A (en) * 2017-06-22 2019-01-01 北京鼎材科技有限公司 A kind of organic electroluminescent compounds and application thereof and organic electroluminescence device
US11005048B2 (en) 2017-07-14 2021-05-11 Cynora Gmbh Organic molecules, in particular for use in optoelectronic devices
EP3428164A1 (en) * 2017-07-14 2019-01-16 Cynora Gmbh Organic molecules, in particular for use in optoelectronic devices
US10998506B2 (en) 2017-08-22 2021-05-04 Beijing Summer Sprout Technology Co., Ltd. Boron containing heterocyclic compound for OLEDs, an organic light-emitting device, and a formulation comprising the boron-containing heterocyclic compound
US11839147B2 (en) 2017-09-04 2023-12-05 Beijing Summer Sprout Technology Co., Ltd. Hole injection layer and charge generation layer containing a truxene based compound
US11177446B2 (en) 2017-09-14 2021-11-16 Beijing Summer Sprout Technology Co., Ltd. Silicon containing organic fluorescent materials
CN109575083A (en) 2017-09-29 2019-04-05 北京夏禾科技有限公司 The luminous organic material of the assistant ligand containing naphthenic base
US11325934B2 (en) 2017-09-29 2022-05-10 Beijing Summer Sprout Technology Co., Ltd. Organic luminescent materials containing tetraphenylene ligands
US10923660B2 (en) 2017-09-29 2021-02-16 Beijing Summer Sprout Technology Co., Ltd. Liquid formulation and a method for making electronic devices by solution process
CN109651065B (en) 2017-10-12 2022-11-29 北京夏禾科技有限公司 Tetraortho-phenylene anthracene compounds
EP3473620B1 (en) * 2017-10-18 2020-02-26 Cynora Gmbh Organic molecules, in particular for use in optoelectronic devices
US10978645B2 (en) 2017-10-20 2021-04-13 Beijing Summer Sprout Technology Co., Ltd. Indolocarbazole tetraphenylene compounds
KR102530155B1 (en) * 2017-10-23 2023-05-10 솔루스첨단소재 주식회사 Organic compounds and organic electro luminescence device comprising the same
US11349081B2 (en) 2017-11-14 2022-05-31 Beijing Summer Sprout Technology Co., Ltd. Azaindolocarbazole compounds
CN114920757A (en) 2017-12-13 2022-08-19 北京夏禾科技有限公司 Organic electroluminescent materials and devices
US11466009B2 (en) 2017-12-13 2022-10-11 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent materials and devices
US11466026B2 (en) 2017-12-13 2022-10-11 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent materials and devices
US11897896B2 (en) 2017-12-13 2024-02-13 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent materials and devices
CN109928885B (en) 2017-12-19 2022-11-29 北京夏禾科技有限公司 Tetraortho-phenylene triarylamine compounds
US11329237B2 (en) 2018-01-05 2022-05-10 Beijing Summer Sprout Technology Co., Ltd. Boron and nitrogen containing heterocyclic compounds
KR101857632B1 (en) * 2018-02-02 2018-05-14 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11038121B2 (en) 2018-04-09 2021-06-15 Beijing Summer Sprout Technology Co., Ltd. 9 membered ring carbazole compounds
CN117447526A (en) 2018-09-15 2024-01-26 北京夏禾科技有限公司 Containing fluorine-substituted metal complexes
CN111087416B (en) 2018-10-24 2024-05-14 北京夏禾科技有限公司 Silicon-containing electron transport material and use thereof
WO2020111602A1 (en) 2018-11-27 2020-06-04 주식회사 엘지화학 Novel compound and organic light-emitting element including same
CN117402190A (en) 2019-02-01 2024-01-16 北京夏禾科技有限公司 Organic luminescent material containing cyano-substituted ligand
CN111620853B (en) 2019-02-28 2023-07-28 北京夏禾科技有限公司 Organic electroluminescent material and device thereof
CN111909213B (en) 2019-05-09 2024-02-27 北京夏禾科技有限公司 Metal complex containing three different ligands
CN111909212B (en) 2019-05-09 2023-12-26 北京夏禾科技有限公司 Organic luminescent material containing 6-silicon-based substituted isoquinoline ligand
CN111909214B (en) 2019-05-09 2024-03-29 北京夏禾科技有限公司 Organic luminescent material containing 3-deuterium substituted isoquinoline ligand
KR102447007B1 (en) * 2019-06-27 2022-09-22 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
US11925046B2 (en) * 2019-08-02 2024-03-05 Kyushu University, National University Corporation Light-emitting device, light-emitting method, and organic light-emitting element
CN112430190B (en) 2019-08-26 2023-04-18 北京夏禾科技有限公司 Aromatic amine derivative and organic electroluminescent device comprising same
CN112679548B (en) 2019-10-18 2023-07-28 北京夏禾科技有限公司 Organic light-emitting materials with ancillary ligands having partially fluoro substituted substituents
CN111018843B (en) * 2019-11-01 2022-01-28 陕西莱特光电材料股份有限公司 Compound, electronic element and electronic device
DE102020131491B4 (en) 2019-11-29 2023-09-14 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device
EP4101850A4 (en) * 2020-02-04 2023-07-12 Kyulux, Inc. Compound, luminescent material, delayed fluorescent material, and organic optical device
KR102563286B1 (en) * 2020-04-28 2023-08-02 삼성에스디아이 주식회사 Compound for organic optoelectronic device, organic optoelectronic device and display device
DE102021110753B4 (en) 2020-04-30 2023-07-13 Beijing Summer Sprout Technology Co., Ltd. Light-emitting material with a polycyclic ligand
JP2021191744A (en) 2020-05-19 2021-12-16 北京夏禾科技有限公司 Organic light emitting material
CN117362298A (en) 2020-06-05 2024-01-09 北京夏禾科技有限公司 Electroluminescent material and device
CN113816996A (en) 2020-06-20 2021-12-21 北京夏禾科技有限公司 Phosphorescent organic metal complex and application thereof
CN113816997B (en) 2020-06-20 2024-05-28 北京夏禾科技有限公司 Phosphorescent organometallic complex and application thereof
US20220020935A1 (en) 2020-07-20 2022-01-20 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent materials and devices
US20220162244A1 (en) 2020-11-18 2022-05-26 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device thereof
US20220165968A1 (en) 2020-11-23 2022-05-26 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device thereof
CN114621198A (en) 2020-12-11 2022-06-14 北京夏禾科技有限公司 Organic electroluminescent material and device thereof
DE102021132670A1 (en) 2020-12-11 2022-06-15 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device made therefrom
CN113683599B (en) * 2020-12-24 2022-07-29 陕西莱特光电材料股份有限公司 Nitrogen-containing compound, electronic element comprising same and electronic device
US20220359832A1 (en) 2021-02-06 2022-11-10 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent device
CN114907412A (en) 2021-02-06 2022-08-16 北京夏禾科技有限公司 Organic electroluminescent material and device thereof
CN115666146A (en) 2021-07-10 2023-01-31 北京夏禾科技有限公司 Organic electroluminescent device
US20230189629A1 (en) 2021-08-20 2023-06-15 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device thereof
CN114075181B (en) * 2021-08-31 2024-02-02 陕西莱特迈思光电材料有限公司 Nitrogen-containing compound, and organic electroluminescent device and electronic device using same
EP4174078A1 (en) 2021-10-29 2023-05-03 Beijing Summer Sprout Technology Co., Ltd. Electroluminescent material and device thereof
CN117343078A (en) 2021-11-25 2024-01-05 北京夏禾科技有限公司 Organic electroluminescent material and device
CN114149368A (en) * 2021-11-30 2022-03-08 云南大学 Organic room temperature electrophosphorescent material, preparation method and organic electroluminescent diode thereof
EP4335846A1 (en) 2022-06-30 2024-03-13 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device thereof
EP4328285A1 (en) 2022-08-25 2024-02-28 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device thereof
CN115819427B (en) * 2023-02-23 2023-05-12 夏禾科技(江苏)有限公司 Synthesis method of fused azamacrocyclic compound containing benzoquinoxaline substituted indole and pyrrole

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120211736A1 (en) * 2009-11-03 2012-08-23 Cheil Industries, Inc. Compound for organic photoelectric device and organic photoelectric device including the same
US20120248968A1 (en) * 2011-03-25 2012-10-04 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2013165192A1 (en) * 2012-05-02 2013-11-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
US20150325794A1 (en) * 2012-12-07 2015-11-12 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
EP0650955B1 (en) 1993-11-01 1998-08-19 Hodogaya Chemical Co., Ltd. Amine compound and electro-luminescence device comprising same
US5703436A (en) 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US5707745A (en) 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
US5844363A (en) 1997-01-23 1998-12-01 The Trustees Of Princeton Univ. Vacuum deposited, non-polymeric flexible organic light emitting devices
US6091195A (en) 1997-02-03 2000-07-18 The Trustees Of Princeton University Displays having mesa pixel configuration
US6013982A (en) 1996-12-23 2000-01-11 The Trustees Of Princeton University Multicolor display devices
US5834893A (en) 1996-12-23 1998-11-10 The Trustees Of Princeton University High efficiency organic light emitting devices with light directing structures
US6303238B1 (en) 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
US6337102B1 (en) 1997-11-17 2002-01-08 The Trustees Of Princeton University Low pressure vapor phase deposition of organic thin films
US6087196A (en) 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6528187B1 (en) 1998-09-08 2003-03-04 Fuji Photo Film Co., Ltd. Material for luminescence element and luminescence element using the same
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6294398B1 (en) 1999-11-23 2001-09-25 The Trustees Of Princeton University Method for patterning devices
US6458475B1 (en) 1999-11-24 2002-10-01 The Trustee Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
KR100377321B1 (en) 1999-12-31 2003-03-26 주식회사 엘지화학 Electronic device comprising organic compound having p-type semiconducting characteristics
US6660410B2 (en) * 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
EP1325671B1 (en) 2000-08-11 2012-10-24 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
US6579630B2 (en) 2000-12-07 2003-06-17 Canon Kabushiki Kaisha Deuterated semiconducting organic compounds used for opto-electronic devices
JP3812730B2 (en) 2001-02-01 2006-08-23 富士写真フイルム株式会社 Transition metal complex and light emitting device
JP4307000B2 (en) 2001-03-08 2009-08-05 キヤノン株式会社 Metal coordination compound, electroluminescent element and display device
JP4310077B2 (en) 2001-06-19 2009-08-05 キヤノン株式会社 Metal coordination compound and organic light emitting device
WO2003001616A2 (en) 2001-06-20 2003-01-03 Showa Denko K.K. Light emitting material and organic light-emitting device
US7071615B2 (en) 2001-08-20 2006-07-04 Universal Display Corporation Transparent electrodes
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
US7431968B1 (en) 2001-09-04 2008-10-07 The Trustees Of Princeton University Process and apparatus for organic vapor jet deposition
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
US7166368B2 (en) 2001-11-07 2007-01-23 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
US6863997B2 (en) 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
KR100691543B1 (en) 2002-01-18 2007-03-09 주식회사 엘지화학 New material for transporting electron and organic electroluminescent display using the same
US6878975B2 (en) 2002-02-08 2005-04-12 Agilent Technologies, Inc. Polarization field enhanced tunnel structures
US20030230980A1 (en) 2002-06-18 2003-12-18 Forrest Stephen R Very low voltage, high efficiency phosphorescent oled in a p-i-n structure
US7189989B2 (en) 2002-08-22 2007-03-13 Fuji Photo Film Co., Ltd. Light emitting element
EP2261301A1 (en) 2002-08-27 2010-12-15 Fujifilm Corporation Organometallic complexes, organic electroluminescent devices and organic electroluminescent displays
US6687266B1 (en) 2002-11-08 2004-02-03 Universal Display Corporation Organic light emitting materials and devices
JP4365196B2 (en) 2002-12-27 2009-11-18 富士フイルム株式会社 Organic electroluminescence device
JP4365199B2 (en) 2002-12-27 2009-11-18 富士フイルム株式会社 Organic electroluminescence device
US7338722B2 (en) 2003-03-24 2008-03-04 The University Of Southern California Phenyl and fluorenyl substituted phenyl-pyrazole complexes of Ir
US7090928B2 (en) 2003-04-01 2006-08-15 The University Of Southern California Binuclear compounds
US7345301B2 (en) 2003-04-15 2008-03-18 Merck Patent Gmbh Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures
US7029765B2 (en) 2003-04-22 2006-04-18 Universal Display Corporation Organic light emitting devices having reduced pixel shrinkage
US20060186791A1 (en) 2003-05-29 2006-08-24 Osamu Yoshitake Organic electroluminescent element
JP2005011610A (en) 2003-06-18 2005-01-13 Nippon Steel Chem Co Ltd Organic electroluminescent element
US20050025993A1 (en) 2003-07-25 2005-02-03 Thompson Mark E. Materials and structures for enhancing the performance of organic light emitting devices
TWI390006B (en) 2003-08-07 2013-03-21 Nippon Steel Chemical Co Organic EL materials with aluminum clamps
DE10338550A1 (en) 2003-08-19 2005-03-31 Basf Ag Transition metal complexes with carbene ligands as emitters for organic light-emitting diodes (OLEDs)
US20060269780A1 (en) 2003-09-25 2006-11-30 Takayuki Fukumatsu Organic electroluminescent device
JP4822687B2 (en) 2003-11-21 2011-11-24 富士フイルム株式会社 Organic electroluminescence device
US7332232B2 (en) 2004-02-03 2008-02-19 Universal Display Corporation OLEDs utilizing multidentate ligand systems
EP2325191A1 (en) 2004-03-11 2011-05-25 Mitsubishi Chemical Corporation Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same
TW200531592A (en) 2004-03-15 2005-09-16 Nippon Steel Chemical Co Organic electroluminescent device
JP4869565B2 (en) 2004-04-23 2012-02-08 富士フイルム株式会社 Organic electroluminescence device
US7491823B2 (en) 2004-05-18 2009-02-17 The University Of Southern California Luminescent compounds with carbene ligands
US7393599B2 (en) 2004-05-18 2008-07-01 The University Of Southern California Luminescent compounds with carbene ligands
US7279704B2 (en) 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US7534505B2 (en) 2004-05-18 2009-05-19 The University Of Southern California Organometallic compounds for use in electroluminescent devices
US7154114B2 (en) 2004-05-18 2006-12-26 Universal Display Corporation Cyclometallated iridium carbene complexes for use as hosts
US7445855B2 (en) 2004-05-18 2008-11-04 The University Of Southern California Cationic metal-carbene complexes
WO2005123873A1 (en) 2004-06-17 2005-12-29 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
WO2006000544A2 (en) 2004-06-28 2006-01-05 Ciba Specialty Chemicals Holding Inc. Electroluminescent metal complexes with triazoles and benzotriazoles
US20060008670A1 (en) 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
EP2271183B1 (en) 2004-07-23 2015-03-18 Konica Minolta Holdings, Inc. Organic electroluminescent element, display and illuminator
DE102004057072A1 (en) 2004-11-25 2006-06-01 Basf Ag Use of Transition Metal Carbene Complexes in Organic Light Emitting Diodes (OLEDs)
KR101272435B1 (en) 2004-12-30 2013-06-07 이 아이 듀폰 디 네모아 앤드 캄파니 Organometallic complexes
US8377571B2 (en) 2005-02-04 2013-02-19 Konica Minolta Holdings, Inc. Material for organic electroluminescence element, organic electroluminescence element, display device and lighting device
KR100803125B1 (en) 2005-03-08 2008-02-14 엘지전자 주식회사 Red phosphorescent compounds and organic electroluminescence devices using the same
JP5125502B2 (en) 2005-03-16 2013-01-23 コニカミノルタホールディングス株式会社 Organic electroluminescence element material, organic electroluminescence element
DE102005014284A1 (en) 2005-03-24 2006-09-28 Basf Ag Use of compounds containing aromatic or heteroaromatic rings containing groups via carbonyl groups as matrix materials in organic light-emitting diodes
JPWO2006103874A1 (en) 2005-03-29 2008-09-04 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
US20060222886A1 (en) * 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
JP5157442B2 (en) 2005-04-18 2013-03-06 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
US7807275B2 (en) 2005-04-21 2010-10-05 Universal Display Corporation Non-blocked phosphorescent OLEDs
JP4533796B2 (en) 2005-05-06 2010-09-01 富士フイルム株式会社 Organic electroluminescence device
US8007927B2 (en) 2007-12-28 2011-08-30 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
US9051344B2 (en) 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
EP2277978B1 (en) 2005-05-31 2016-03-30 Universal Display Corporation Triphenylene hosts in phosphorescent light emitting diodes
JP4976288B2 (en) 2005-06-07 2012-07-18 新日鐵化学株式会社 Organometallic complex and organic electroluminescence device using the same
US7638072B2 (en) 2005-06-27 2009-12-29 E. I. Du Pont De Nemours And Company Electrically conductive polymer compositions
WO2007004380A1 (en) 2005-07-01 2007-01-11 Konica Minolta Holdings, Inc. Organic electroluminescent element material, organic electroluminescent element, display device, and lighting equipment
WO2007028417A1 (en) 2005-09-07 2007-03-15 Technische Universität Braunschweig Triplett emitter having condensed five-membered rings
JP4887731B2 (en) 2005-10-26 2012-02-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
CN102633820B (en) 2005-12-01 2015-01-21 新日铁住金化学株式会社 Compound for organic electroluminescent element and organic electroluminescent element
US20090295276A1 (en) 2005-12-01 2009-12-03 Tohru Asari Organic Electroluminescent Device
ATE553111T1 (en) 2006-02-10 2012-04-15 Universal Display Corp METAL COMPLEXES OF IMIDAZOÄ1,2-FÜPHENANTHRIDINE LIGANDS AND THEIR USE IN OLED DEVICES
JP4823730B2 (en) 2006-03-20 2011-11-24 新日鐵化学株式会社 Luminescent layer compound and organic electroluminescent device
EP2639231B1 (en) 2006-04-26 2019-02-06 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence element using the same
WO2007132678A1 (en) 2006-05-11 2007-11-22 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
EP2034538B1 (en) 2006-06-02 2013-10-09 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence element, and organic electroluminescence element using the material
JP5139297B2 (en) 2006-08-23 2013-02-06 出光興産株式会社 Aromatic amine derivatives and organic electroluminescence devices using them
JP5589251B2 (en) 2006-09-21 2014-09-17 コニカミノルタ株式会社 Organic electroluminescence element material
WO2008056746A1 (en) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device
EP2518045A1 (en) 2006-11-24 2012-10-31 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
US8119255B2 (en) 2006-12-08 2012-02-21 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
US8778508B2 (en) 2006-12-08 2014-07-15 Universal Display Corporation Light-emitting organometallic complexes
DE602008004738D1 (en) 2007-02-23 2011-03-10 Basf Se ELECTROLUMINESCENT METAL COMPLEXES WITH BENZOTRIAZOLENE
CN101687893B (en) 2007-04-26 2014-01-22 巴斯夫欧洲公司 Silanes containing phenothiazine-S-oxide or phenothiazine-S,S-dioxide groups and the use thereof in OLEDs
WO2008156879A1 (en) 2007-06-20 2008-12-24 Universal Display Corporation Blue phosphorescent imidazophenanthridine materials
EP2170911B1 (en) 2007-06-22 2018-11-28 UDC Ireland Limited Light emitting cu(i) complexes
WO2009003898A1 (en) 2007-07-05 2009-01-08 Basf Se Organic light-emitting diodes containing carbene transition metal complex emitters and at least one compound selected from disilylcarbazoles, disilyldibenzofurans, disilyldibenzothiophenes, disilyldibenzophospholes, disilyldibenzothiophene s-oxides and disilyldibenzothiophene s,s-dioxides
US8779655B2 (en) 2007-07-07 2014-07-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
WO2009008205A1 (en) 2007-07-07 2009-01-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
US20090045731A1 (en) 2007-07-07 2009-02-19 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
TW200911730A (en) 2007-07-07 2009-03-16 Idemitsu Kosan Co Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
JP5473600B2 (en) 2007-07-07 2014-04-16 出光興産株式会社 Chrysene derivative and organic electroluminescence device using the same
JPWO2009008099A1 (en) 2007-07-10 2010-09-02 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
US8080658B2 (en) 2007-07-10 2011-12-20 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same
WO2009018009A1 (en) 2007-07-27 2009-02-05 E. I. Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing inorganic nanoparticles
EP3159333B1 (en) 2007-08-08 2020-04-22 Universal Display Corporation Benzo-fused thiophene or furan compounds comprising a triphenylene group
JP2009040728A (en) 2007-08-09 2009-02-26 Canon Inc Organometallic complex and organic light-emitting element using the same
EP2203461B1 (en) 2007-10-17 2011-08-10 Basf Se Transition metal complexes having bridged carbene ligands and the use thereof in oleds
US20090101870A1 (en) 2007-10-22 2009-04-23 E. I. Du Pont De Nemours And Company Electron transport bi-layers and devices made with such bi-layers
US7914908B2 (en) 2007-11-02 2011-03-29 Global Oled Technology Llc Organic electroluminescent device having an azatriphenylene derivative
DE102007053771A1 (en) 2007-11-12 2009-05-14 Merck Patent Gmbh Organic electroluminescent devices
KR101353635B1 (en) 2007-11-15 2014-01-20 이데미쓰 고산 가부시키가이샤 Benzochrysene derivative and organic electroluminescent device using the same
KR101583097B1 (en) 2007-11-22 2016-01-07 이데미쓰 고산 가부시키가이샤 Organic el element and solution containing organic el material
KR20100106414A (en) 2007-11-22 2010-10-01 이데미쓰 고산 가부시키가이샤 Organic el element
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
CN105859792A (en) 2008-02-12 2016-08-17 巴斯夫欧洲公司 Electroluminescent metal complexes with dibenzo[f,h]quinoxalines
KR101074193B1 (en) * 2008-08-22 2011-10-14 주식회사 엘지화학 Organic electronic device material and organic electronic device using the same
US7960566B2 (en) * 2008-10-17 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative and light-emitting devices, electronic devices, and lighting device using the anthracene derivative
US9067947B2 (en) * 2009-01-16 2015-06-30 Universal Display Corporation Organic electroluminescent materials and devices
KR101233380B1 (en) * 2009-10-21 2013-02-15 제일모직주식회사 Novel compound for organic photoelectric device and organic photoelectric device including the same
EP3176241A1 (en) 2009-12-07 2017-06-07 Nippon Steel & Sumikin Chemical Co., Ltd. Organic light-emitting material and organic light-emitting element
KR101783344B1 (en) * 2009-12-28 2017-09-29 신닛테츠 수미킨 가가쿠 가부시키가이샤 Organic electroluminescent element
CN103313980B (en) * 2011-02-07 2017-04-19 出光兴产株式会社 Biscarbazole derivative and organic electroluminescent element using same
JP6197265B2 (en) 2011-03-28 2017-09-20 東レ株式会社 Light emitting device material and light emitting device
KR20130011405A (en) * 2011-07-21 2013-01-30 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescence compounds and organic electroluminescence device using the same
US20140191225A1 (en) 2011-08-18 2014-07-10 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescence element using same
KR101474800B1 (en) 2011-08-19 2014-12-19 제일모직 주식회사 Compound for organic OPTOELECTRONIC device, ORGANIC LIGHT EMITTING DIODE INCLUDING THE SAME and DISPLAY INCLUDING THE organic LIGHT EMITTING DIODE
WO2013046635A1 (en) 2011-09-28 2013-04-04 出光興産株式会社 Material for organic electroluminescent element, and organic electroluminescent element produced using same
WO2013062043A1 (en) * 2011-10-26 2013-05-02 東ソー株式会社 4-aminocarbazole compound and use of same
KR20140106631A (en) * 2011-12-02 2014-09-03 고쿠리쓰다이가쿠호진 규슈다이가쿠 Organic light emitting device and delayed fluorescent material and compound used therein
JP2013116975A (en) * 2011-12-02 2013-06-13 Kyushu Univ Delayed fluorescent material, organic light emitting device, and compound
US9530969B2 (en) * 2011-12-05 2016-12-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
CN103959503B (en) 2011-12-05 2016-08-24 出光兴产株式会社 Material for organic electroluminescent element and organic electroluminescent element
JP5993934B2 (en) 2012-02-29 2016-09-14 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device
JP2015135836A (en) 2012-03-29 2015-07-27 出光興産株式会社 Organic electroluminescent element and material for organic electroluminescent element
KR102191022B1 (en) 2012-04-18 2020-12-14 에스에프씨 주식회사 Heterocyclic com pounds and organic light-emitting diode including the same
WO2013175747A1 (en) 2012-05-22 2013-11-28 出光興産株式会社 Organic electroluminescent element
JP6195828B2 (en) * 2012-05-24 2017-09-13 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
CN102738413B (en) 2012-06-15 2016-08-03 固安翌光科技有限公司 A kind of organic electroluminescence device and preparation method thereof
JP2015201463A (en) * 2012-08-07 2015-11-12 国立大学法人九州大学 Organic electroluminescent element, compound used for the same, carrier transport material, and host material
JP2015216136A (en) * 2012-08-17 2015-12-03 出光興産株式会社 Organic electroluminescent element
JP6469579B2 (en) * 2012-10-31 2019-02-13 メルク パテント ゲーエムベーハー Electronic element
US20140131665A1 (en) * 2012-11-12 2014-05-15 Universal Display Corporation Organic Electroluminescent Device With Delayed Fluorescence
US9512136B2 (en) * 2012-11-26 2016-12-06 Universal Display Corporation Organic electroluminescent materials and devices
US9166175B2 (en) * 2012-11-27 2015-10-20 Universal Display Corporation Organic electroluminescent materials and devices
JP6208424B2 (en) * 2012-12-05 2017-10-04 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Amine derivative having fluorine-substituted aryl group, organic EL material including the same, and organic EL device using the same
JP6249150B2 (en) * 2013-01-23 2017-12-20 株式会社Kyulux Luminescent material and organic light emitting device using the same
CN105980517B (en) * 2013-11-12 2019-05-14 九州有机光材股份有限公司 Luminescent material and the delayed fluorescence body and organic illuminating element for using it
TWI540129B (en) 2013-11-22 2016-07-01 Dic股份有限公司 Material for organic electroluminescence device and application thereof, organic electroluminescence device and application thereof
KR102145784B1 (en) * 2013-12-18 2020-08-19 이데미쓰 고산 가부시키가이샤 Compound, organic electroluminescence element material, ink composition, organic electroluminescence element, electronic device, and method for producing compound
KR102124045B1 (en) * 2014-05-02 2020-06-18 삼성디스플레이 주식회사 Organic light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120211736A1 (en) * 2009-11-03 2012-08-23 Cheil Industries, Inc. Compound for organic photoelectric device and organic photoelectric device including the same
US20120248968A1 (en) * 2011-03-25 2012-10-04 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2013165192A1 (en) * 2012-05-02 2013-11-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
US20150126736A1 (en) * 2012-05-02 2015-05-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
US20150325794A1 (en) * 2012-12-07 2015-11-12 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element

Also Published As

Publication number Publication date
JP2015229677A (en) 2015-12-21
JP2019145808A (en) 2019-08-29
CN105294658A (en) 2016-02-03
US20150349273A1 (en) 2015-12-03
KR20220101585A (en) 2022-07-19
KR102418620B1 (en) 2022-07-08
US10461260B2 (en) 2019-10-29
JP6814243B2 (en) 2021-01-13
CN105294658B (en) 2019-04-23
KR20150139459A (en) 2015-12-11
JP6731218B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
US20200044163A1 (en) Organic electroluminescent materials and devices
US11289659B2 (en) Organic electroluminescent materials and devices
US9670185B2 (en) Organic electroluminescent materials and devices
US9755159B2 (en) Organic materials for OLEDs
US9166175B2 (en) Organic electroluminescent materials and devices
US11600782B2 (en) Organic electroluminescent materials and devices
US9537106B2 (en) Organic electroluminescent materials and devices
US9773985B2 (en) Organic electroluminescent materials and devices
US20140131665A1 (en) Organic Electroluminescent Device With Delayed Fluorescence
US9419225B2 (en) Organic electroluminescent materials and devices
US20150249221A1 (en) Organic electroluminescent materials and devices
US10566546B2 (en) Organic electroluminescent materials and devices
US10256411B2 (en) Organic electroluminescent materials and devices
US10208026B2 (en) Organic electroluminescent materials and devices
US10707423B2 (en) Organic electroluminescent materials and devices
US9647217B2 (en) Organic electroluminescent materials and devices
US9876173B2 (en) Organic electroluminescent materials and devices
US9386657B2 (en) Organic Electroluminescent materials and devices
US9455412B2 (en) Organic electroluminescent materials and devices
US9312499B1 (en) Organic electroluminescent materials and devices
US9741941B2 (en) Organic electroluminescent materials and devices
US20160329509A1 (en) Organic electroluminescent materials and devices
US9224958B2 (en) Organic electroluminescent materials and devices
US9761814B2 (en) Organic light-emitting materials and devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSAL DISPLAY CORPORATION, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUNG, YI-TZU;WONG, KEN-TSUNG;KWONG, RAYMOND;AND OTHERS;SIGNING DATES FROM 20140529 TO 20140530;REEL/FRAME:050303/0070

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION