US20190376167A1 - Steel Material and Method for Producing Steel Material - Google Patents

Steel Material and Method for Producing Steel Material Download PDF

Info

Publication number
US20190376167A1
US20190376167A1 US16/476,704 US201816476704A US2019376167A1 US 20190376167 A1 US20190376167 A1 US 20190376167A1 US 201816476704 A US201816476704 A US 201816476704A US 2019376167 A1 US2019376167 A1 US 2019376167A1
Authority
US
United States
Prior art keywords
steel material
chemical composition
content
steel
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/476,704
Inventor
Shinji Yoshida
Yuji Arai
Atsushi Soma
Hiroki KAMITANI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Assigned to NIPPON STEEL CORPORATION reassignment NIPPON STEEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARAI, YUJI, KAMITANI, Hiroki, SOMA, ATSUSHI, YOSHIDA, SHINJI
Publication of US20190376167A1 publication Critical patent/US20190376167A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present invention relates to a steel material and a method for producing the steel material, and more particularly relates to a steel material suitable for use in a sour environment, and a method for producing the steel material.
  • oil wells and gas wells Due to the deepening of oil wells and gas wells (hereunder, oil wells and gas wells are collectively referred to as “oil wells”), there is a demand to enhance the strength of oil-well steel pipes.
  • 80 ksi grade (yield strength is 80 to 95 ksi, that is, 551 to 655 MPa) and 95 ksi grade (yield strength is 95 to 110 ksi, that is, 655 to 758 MPa) oil-well steel pipes are being widely utilized, and recently requests are also starting to be made for 110 ksi grade (yield strength is 110 to 125 ksi, that is, 758 to 862 MPa), 125 ksi grade (yield strength is 125 ksi to 140 ksi, that is, 862 to 965 MPa) and 140 ksi grade (yield strength is 140 ksi to 155 ksi, that is, 965 to 1069 MPa)
  • SSC resistance sulfide stress cracking resistance
  • Patent Literature 1 Japanese Patent Application Publication No. 62-253720
  • Patent Literature 2 Japanese Patent Application Publication No. 59-232220
  • Patent Literature 3 Japanese Patent Application Publication No. 6-322478
  • Patent Literature 4 Japanese Patent Application Publication No. 8-311551
  • Patent Literature 5 Japanese Patent Application Publication No. 2000-256783
  • Patent Literature 6 Japanese Patent Application Publication No. 2005-350754
  • Patent Literature 7 National Publication of International Patent Application No. 2012-519238 (Patent Literature 8) and Japanese Patent Application Publication No. 2012-26030
  • Patent Literature 9 Japanese Patent Application Publication No.
  • Patent Literature 1 proposes a method for improving the SSC resistance of steel for oil wells by reducing impurities such as Mn and P.
  • Patent Literature 2 proposes a method for improving the SSC resistance of steel by performing quenching twice to refine the grains.
  • Patent Literature 3 proposes a method for improving the SSC resistance of a 125 ksi grade steel material by refining the steel microstructure by a heat treatment using induction heating.
  • Patent Literature 4 proposes a method for improving the SSC resistance of steel pipes of 110 to 140 ksi grade by enhancing the hardenability of the steel by utilizing a direct quenching process and also increasing the tempering temperature.
  • Patent Literature 5 and Patent Literature 6 each propose a method for improving the SSC resistance of a steel for low-alloy oil country tubular goods of 110 to 140 ksi grade by controlling the shapes of carbides.
  • Patent Literature 7 proposes a method for improving the SSC resistance of steel material of 125 ksi (862 MPa) grade or higher by controlling the dislocation density and the hydrogen diffusion coefficient to desired values.
  • Patent Literature 8 proposes a method for improving the SSC resistance of steel of 125 ksi (862 MPa) grade by subjecting a low-alloy steel containing 0.3 to 0.5% of C to quenching multiple times.
  • Patent Literature 9 proposes a method for controlling the shapes or number of carbides by employing a tempering process composed of a two-stage heat treatment. More specifically, in Patent Literature 9, a method is proposed that enhances the SSC resistance of 125 ksi (862 MPa) grade steel by suppressing the number density of large M 3 C particles or M 2 C particles.
  • Patent Literature 1 Japanese Patent Application Publication No. 62-253720
  • Patent Literature 2 Japanese Patent Application Publication No. 59-232220
  • Patent Literature 3 Japanese Patent Application Publication No. 6-322478
  • Patent Literature 4 Japanese Patent Application Publication No. 8-311551
  • Patent Literature 5 Japanese Patent Application Publication No. 2000-256783
  • Patent Literature 6 Japanese Patent Application Publication No. 2000-297344
  • Patent Literature 7 Japanese Patent Application Publication No. 2005-350754
  • Patent Literature 8 National Publication of International Patent Application No. 2012-519238
  • Patent Literature 9 Japanese Patent Application Publication No. 2012-26030
  • Patent Literatures 1 to 9 even if the techniques disclosed in the aforementioned Patent Literatures 1 to 9 are applied, in the case of steel material (for example, oil-well steel pipes) having a yield strength of 140 ksi grade (965 to 1069 MPa), excellent SSC resistance cannot be stably obtained in some cases.
  • An objective of the present disclosure is to provide a steel material that has a yield strength within a range of 965 to 1069 MPa (140 to 155 ksi; 140 ksi grade) and that also has excellent SSC resistance.
  • a steel material according to the present disclosure contains a chemical composition consisting of, in mass %, C: more than 0.50 to 0.80%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.025% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.20 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, B: 0.0001 to 0.0050%, N: 0.002 to 0.010%, O: 0.0100% or less, V: 0 to 0.30%, Nb: 0 to 0.100%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, Co: 0 to 0.50%, W: 0 to 0.50%, Ni: 0 to 0.50% and Cu: 0 to 0.50%, with the balance being Fe and impurities.
  • the steel material according to the present disclosure also contains an amount of dissolved C within a range of 0.010 to 0.060 mass %.
  • the steel material according to the present disclosure also has a yield strength within a range of 965 to 1069 MPa, and a yield ratio of the steel material is 90% or more.
  • a method for producing a steel material according to the present disclosure includes a preparation process, a quenching process and a tempering process.
  • the preparation process an intermediate steel material containing the aforementioned chemical composition is prepared.
  • the quenching process after the preparation process, the intermediate steel material that is at a temperature in a range of 800 to 1000° C. is cooled at a cooling rate of 50° C./min or more.
  • the tempering process the intermediate steel material after the quenching is held for 10 to 90 minutes at a temperature in a range of 660° C. to an A c1 point, and thereafter is cooled from 600° C. to 200° C. at an average cooling rate of 5 to 300° C./sec.
  • the steel material according to the present disclosure has a yield strength within a range of 965 to 1069 MPa (140 ksi grade), and also has excellent SSC resistance.
  • FIG. 1 is a view illustrating the relation between the amount of dissolved C and a fracture toughness value K 1SSC .
  • FIG. 2A shows a side view and a cross-sectional view of a DCB test specimen that is used in a DCB test in the examples.
  • FIG. 2B is a perspective view of a wedge that is used in the DCB test in the examples.
  • the present inventors conducted investigations and studies regarding a method for obtaining both a yield strength in a range of 965 to 1069 MPa (140 ksi grade) and SSC resistance in a steel material that it is assumed will be used in a sour environment, and obtained the following findings.
  • the yield strength of the steel material will increase.
  • dislocations will occlude hydrogen. Therefore, if the dislocation density of the steel material increases, there is a possibility that the amount of hydrogen that the steel material occludes will also increase.
  • the hydrogen concentration in the steel material increases as a result of increasing the dislocation density, even if high strength is obtained, the SSC resistance of the steel material will decrease. Accordingly, at first glance it seems that, in order to obtain both a high strength of 140 ksi grade (965 to 1069 MPa) and SSC resistance, utilizing the dislocation density to enhance the strength is not preferable.
  • the present inventors discovered that by adjusting the amount of dissolved C in a steel material, excellent SSC resistance can also be obtained while at the same time raising the yield strength to 140 ksi grade (965 to 1069 MPa) by utilizing the dislocation density.
  • the reason is not certain, it is considered that the reason may be as follows.
  • Dislocations include mobile dislocations and sessile dislocations, and it is considered that dissolved C in a steel material immobilizes mobile dislocations to thereby form sessile dislocations.
  • dissolved C in a steel material immobilizes mobile dislocations to thereby form sessile dislocations.
  • the disappearance of dislocations can be inhibited, and thus a decrease in the dislocation density can be suppressed. In this case, the yield strength of the steel material can be maintained.
  • the sessile dislocations that are formed by dissolved C reduce the amount of hydrogen that is occluded in the steel material more than mobile dislocations. Therefore, it is considered that by increasing the density of sessile dislocations that are formed by dissolved C, the amount of hydrogen that is occluded in the steel material is reduced. As a result, the SSC resistance of the steel material can be increased. It is considered that because of this mechanism, excellent SSC resistance is obtained even when the steel material has high strength of 140 ksi grade.
  • the present inventors considered that by appropriately adjusting the amount of dissolved C in a steel material, the SSC resistance of the steel material can be increased while maintaining a yield strength of 140 ksi grade. Therefore, using a steel material containing chemical composition consisting of, in mass %, C: more than 0.50 to 0.80%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.025% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.20 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, B: 0.0001 to 0.0050%, N: 0.002 to 0.010%, 0: 0.0100% or less, V: 0 to 0.30%, Nb: 0 to 0.100%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, Co: 0 to 0.50%, W: 0 to 0.50%, Ni:
  • FIG. 1 is a view illustrating the relation between the amount of dissolved C and a fracture toughness value K 1SSC for respective test numbers of the examples.
  • FIG. 1 was obtained by the following method.
  • FIG. 1 was created using the amount of dissolved C (mass %) and the fracture toughness value K 1SSC (MPa ⁇ m) obtained with respect to steel materials for which, among the steel materials of the examples that are described later, conditions other than the amount of dissolved C satisfied the range of the present embodiment.
  • the yield strength YS of each of the steel materials shown in FIG. 1 was within the range of 965 to 1069 MPa (140 ksi grade). Adjustment of the yield strength YS was performed by adjusting the tempering temperature. Further, with respect to the SSC resistance, if the fracture toughness value K 1SSC that is an index of SSC resistance was 30.0 MPa ⁇ m or more, it was determined that the SSC resistance was good.
  • the fracture toughness value K 1SSC becomes 30.0 MPa ⁇ m or more and excellent SSC resistance can be obtained.
  • the amount of dissolved C of the steel material is set within the range of 0.010 to 0.060 mass %.
  • the microstructure of the steel is made a microstructure that is principally composed of tempered martensite and tempered bainite.
  • the term “principally composed of tempered martensite and tempered bainite” means that the total volume ratio of tempered martensite and tempered bainite is 90% or more.
  • a steel material according to the present embodiment that was completed based on the above findings contains a chemical composition consisting of, in mass %, C: more than 0.50 to 0.80%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.025% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.20 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, B: 0.0001 to 0.0050%, N: 0.002 to 0.010%, 0: 0.0100% or less, V: 0 to 0.30%, Nb: 0 to 0.100%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, Co: 0 to 0.50%, W: 0 to 0.50%, Ni: 0 to 0.50% and Cu: 0 to 0.50%, with the balance being Fe and impurities.
  • the steel material according to the present embodiment further contains an amount of dissolved C within a range of 0.010 to 0.060 mass %. Further, in the steel material according to the present embodiment, the yield strength is within a range of 965 to 1069 MPa, and the yield ratio is 90% or more.
  • the steel material is, for example, a steel pipe or a steel plate.
  • the aforementioned chemical composition may contain one or more types of element selected from the group consisting of V: 0.01 to 0.30% and Nb: 0.002 to 0.100%.
  • the aforementioned chemical composition may contain one or more types of element selected from the group consisting of Ca: 0.0001 to 0.0100%, Mg: 0.0001 to 0.0100% and Zr: 0.0001 to 0.0100%.
  • the aforementioned chemical composition may contain one or more types of element selected from the group consisting of Co: 0.02 to 0.50% and W: 0.02 to 0.50%.
  • the aforementioned chemical composition may contain one or more types of element selected from the group consisting of Ni: 0.02 to 0.50% and Cu: 0.01 to 0.50%.
  • the aforementioned steel material may be an oil-well steel pipe.
  • the oil-well steel pipe may be a steel pipe that is used for a line pipe or may be a steel pipe used for oil country tubular goods (OCTG).
  • the oil-well steel pipe may be a seamless steel pipe, or may be a welded steel pipe.
  • the oil country tubular goods are, for example, steel pipes that are used as casing pipes or tubing pipes.
  • an oil-well steel pipe according to the present embodiment is a seamless steel pipe. If the oil-well steel pipe according to the present embodiment is a seamless steel pipe, even if the wall thickness is 15 mm or more, the oil-well steel pipe will have a yield strength within a range of 965 to 1069 MPa (140 ksi grade) and will also have excellent SSC resistance.
  • excellent SSC resistance means, specifically, that a value of K 1SSC (MPa ⁇ m) is 30.0 MPa ⁇ m or more in a DCB test performed in accordance with “Method D” described in NACE TM0177-2005 using an autoclave in which a solution obtained by mixing a degassed 5% saline solution and 4 g/L of sodium acetate and adjusting to pH 3.5 using hydrochloric acid, and a gaseous mixture consisting of 10% H 2 S gas and 90% CO 2 gas at a total pressure of 1 atm were sealed.
  • the term “amount of dissolved C” mentioned above means the difference between the amount of C (mass %) in carbides in the steel material and the C content of the chemical composition of the steel material.
  • the amount of C in carbides in the steel material is determined by Formula (1) to Formula (5) using an Fe concentration ⁇ Fe>a, a Cr concentration ⁇ Cr>a, an Mn concentration ⁇ Mn>a, an Mo concentration ⁇ Mo>a, a V concentration ⁇ V>a and an Nb concentration ⁇ Nb>a in carbides (cementite and MC-type carbides) obtained as residue when extraction residue analysis is performed on the steel material, and an Fe concentration ⁇ Fe>b, a Cr concentration ⁇ Cr>b, an Mn concentration ⁇ Mn>b and an Mo concentration ⁇ Mo>b in cementite obtained by performing point analysis by EDS with respect to cementite identified by performing TEM observation of a replica film obtained by an extraction replica method.
  • ⁇ Mo> c ( ⁇ Fe> a + ⁇ Cr> a + ⁇ Mn> a ) x ⁇ Mo> b /( ⁇ Fe> b + ⁇ Cr> b + ⁇ Mn> b ) (1)
  • ⁇ C> a ( ⁇ Fe> a/ 55.85+ ⁇ Cr> a/ 52+ ⁇ Mn> a/ 53.94+ ⁇ Mo> c/ 95.9)/3 ⁇ 12 (3)
  • ⁇ C> b ( ⁇ V> a/ 50.94+ ⁇ Mo> d/ 95.9+ ⁇ Nb> a/ 92.9) ⁇ 12 (4)
  • cementite means carbides containing an Fe content of 50 mass % or more.
  • a method for producing a steel material according to the present embodiment includes a preparation process, a quenching process and a tempering process.
  • the preparation process an intermediate steel material containing the aforementioned chemical composition is prepared.
  • the quenching process after the preparation process, the intermediate steel material that is at a temperature in a range of 800 to 1000° C. is cooled at a cooling rate of 50° C./min or more.
  • the tempering process the intermediate steel material after quenching is held at a temperature in a range of 660° C. to the A c1 point for 10 to 90 minutes, and thereafter the intermediate steel material is cooled at an average cooling rate of 5 to 300° C./sec with respect to cooling from 600° C. to 200° C.
  • intermediate steel material refers to a hollow shell in a case where the end product is a steel pipe, and refers to a plate-shaped steel material in a case where the end product is a steel plate.
  • the preparation process of the aforementioned production method may include a starting material preparation process of preparing a starting material containing the aforementioned chemical composition, and a hot working process of subjecting the starting material to hot working to produce an intermediate steel material.
  • the chemical composition of the steel material according to the present embodiment contains the following elements.
  • Carbon (C) enhances the hardenability and increases the strength of the steel material. C also promotes spheroidization of carbides during tempering in the production process, and increases the SSC resistance of the steel material. If the carbides are dispersed, the strength of the steel material increases further. These effects will not be obtained if the C content is too low. On the other hand, if the C content is too high, the toughness of the steel material will decrease and quench cracking is liable to occur. Therefore, the C content is within the range of more than 0.50 to 0.80%. A preferable lower limit of the C content is 0.51%. A preferable upper limit of the C content is 0.70%, and more preferably is 0.62%.
  • Si deoxidizes the steel. If the Si content is too low, this effect is not obtained. On the other hand, if the Si content is too high, the SSC resistance of the steel material decreases. Therefore, the Si content is within the range of 0.05 to 1.00%. A preferable lower limit of the Si content is 0.15%, and more preferably is 0.20%. A preferable upper limit of the Si content is 0.85%, and more preferably is 0.50%.
  • Mn Manganese deoxidizes the steel material. Mn also enhances the hardenability. If the Mn content is too low, these effects are not obtained. On the other hand, if the Mn content is too high, Mn segregates at grain boundaries together with impurities such as P and S. In such a case, the SSC resistance of the steel material will decrease. Therefore, the Mn content is within a range of 0.05 to 1.00%. A preferable lower limit of the Mn content is 0.25%, and more preferably is 0.30%. A preferable upper limit of the Mn content is 0.90%, and more preferably is 0.80%.
  • Phosphorous (P) is an impurity.
  • the P content is more than 0%. P segregates at the grain boundaries and decreases the SSC resistance of the steel material. Therefore, the P content is 0.025% or less.
  • a preferable upper limit of the P content is 0.020%, and more preferably is 0.015%.
  • the P content is as low as possible. However, if the P content is excessively reduced, the production cost increases significantly. Therefore, when taking industrial production into consideration, a preferable lower limit of the P content is 0.0001%, more preferably is 0.0003%, and further preferably is 0.001%.
  • S Sulfur
  • the S content is more than 0%. S segregates at the grain boundaries and decreases the SSC resistance of the steel material. Therefore, the S content is 0.0100% or less.
  • a preferable upper limit of the S content is 0.0050%, and more preferably is 0.0030%.
  • the S content is as low as possible. However, if the S content is excessively reduced, the production cost increases significantly. Therefore, when taking industrial production into consideration, a preferable lower limit of the S content is 0.0001%, more preferably is 0.0002%, and further preferably is 0.0003%.
  • Chromium (Cr) enhances the hardenability of the steel material. Cr also increases temper softening resistance of the steel material and enables high-temperature tempering. As a result, the SSC resistance of the steel material increases. If the Cr content is too low, aforementioned effects are not obtained. On the other hand, if the Cr content is too high, the toughness and SSC resistance of the steel material decreases. Therefore, the Cr content is within a range of 0.20 to 1.50%. A preferable lower limit of the Cr content is 0.25%, and more preferably is 0.30%. A preferable upper limit of the Cr content is 1.30%.
  • Molybdenum (Mo) enhances the hardenability of the steel material. Mo also forms fine carbides and increases the temper softening resistance of the steel material. As a result, Mo increases the SSC resistance of the steel material by high temperature tempering. If the Mo content is too low, these effects are not obtained. On the other hand, if the Mo content is too high, the aforementioned effects are saturated. Therefore, the Mo content is within a range of 0.25 to 1.50%. A preferable lower limit of the Mo content is 0.50%, and more preferably is 0.65%. A preferable upper limit of the Mo content is 1.20%, and more preferably is 1.00%.
  • Titanium (Ti) forms nitrides, and refines crystal grains by the pinning effect. As a result, the strength of the steel material increases. If the Ti content is too low, this effect is not obtained. On the other hand, if the Ti content is too high, Ti nitrides coarsen and the SSC resistance of the steel material decreases. Therefore, the Ti content is within a range of 0.002 to 0.050%. A preferable lower limit of the Ti content is 0.003%, and more preferably is 0.005%. A preferable upper limit of the Ti content is 0.030%, and more preferably is 0.020%.
  • B Boron
  • a preferable lower limit of the B content is 0.0003%, and more preferably is 0.0007%.
  • a preferable upper limit of the B content is 0.0035%, and more preferably is 0.0025%.
  • N Nitrogen
  • N is unavoidably contained. N combines with Ti to form fine nitrides and thereby refines the grains. On the other hand, if the N content is too high, N will form coarse nitrides and the SSC resistance of the steel material will decrease. Therefore, the N content is within the range of 0.002 to 0.010%. A preferable upper limit of the N content is 0.005%, and more preferably is 0.004%.
  • Oxygen (O) is an impurity.
  • the O content is more than 0%.
  • O forms coarse oxides and reduces the corrosion resistance of the steel material. Therefore, the O content is 0.0100% or less.
  • a preferable upper limit of the O content is 0.0030%, and more preferably is 0.0020%.
  • the O content is as low as possible. However, if the O content is excessively reduced, the production cost increases significantly. Therefore, when taking industrial production into consideration, a preferable lower limit of the O content is 0.0001%, more preferably is 0.0002%, and further preferably is 0.0003%.
  • the balance of the chemical composition of the steel material according to the present embodiment is Fe and impurities.
  • impurities refers to elements which, during industrial production of the steel material, are mixed in from ore or scrap that is used as a raw material of the steel material, or from the production environment or the like, and which are allowed within a range that does not adversely affect the steel material according to the present embodiment.
  • the chemical composition of the steel material described above may further contain one or more types of element selected from the group consisting of V and Nb in lieu of a part of Fe. Each of these elements is an optional element, and increases the SSC resistance of the steel material.
  • Vanadium (V) is an optional element, and need not be contained. In other words, the V content may be 0%. If contained, V combines with C or N to form carbides, nitrides or carbo-nitrides and the like (hereinafter, referred to as “carbo-nitrides and the like”). These carbo-nitrides and the like refine the substructure of the steel material by the pinning effect, and improve the SSC resistance of the steel. V also forms fine carbides during tempering. The fine carbides increase the temper softening resistance of the steel material, and increase the strength of the steel material.
  • V also forms spherical MC-type carbides
  • V suppresses the formation of acicular M 2 C-type carbides and thereby increases the SSC resistance of the steel material. If even a small amount of V is contained, aforementioned effects are obtained to a certain extent. However, if the V content is too high, the toughness of the steel material decreases. Therefore, the V content is within the range of 0 to 0.30%.
  • a preferable lower limit of the V content is more than 0%, more preferably is 0.01%, and further preferably is 0.02%.
  • a preferable upper limit of the V content is 0.20%, more preferably is 0.15%, and further preferably is 0.12%.
  • Niobium (Nb) is an optional element, and need not be contained. In other words, the Nb content may be 0%. If contained, Nb forms carbo-nitrides and the like. These carbo-nitrides and the like refine the substructure of the steel material by the pinning effect, and increase the SSC resistance of the steel material. In addition, because Nb also forms spherical MC-type carbides, Nb suppresses the formation of acicular M 2 C-type carbides and thereby increases the SSC resistance of the steel material. If even a small amount of Nb is contained, aforementioned effects are obtained to a certain extent.
  • the Nb content is within the range of 0 to 0.100%.
  • a preferable lower limit of the Nb content is more than 0%, more preferably is 0.002%, further preferably is 0.003%, and further preferably is 0.007%.
  • a preferable upper limit of the Nb content is 0.025%, and more preferably is 0.020%.
  • a total of the contents of the aforementioned V and Nb is preferably 0.30% or less, and further preferably is 0.20% or less.
  • the chemical composition of the steel material described above may further contain one or more types of element selected from the group consisting of Ca, Mg and Zr in lieu of a part of Fe. Each of these elements is an optional element, and increases the SSC resistance of the steel material.
  • Ca Calcium
  • the Ca content may be 0%. If contained, Ca refines sulfides in the steel material and increases the SSC resistance of the steel material. If even a small amount of Ca is contained, aforementioned effect is obtained to a certain extent. However, if the Ca content is too high, oxides in the steel material coarsen and the SSC resistance of the steel material decreases. Therefore, the Ca content is within the range of 0 to 0.0100%.
  • a preferable lower limit of the Ca content is more than 0%, more preferably is 0.0001%, further preferably is 0.0003%, and further preferably is 0.0006%.
  • a preferable upper limit of the Ca content is 0.0025%, and more preferably is 0.0020%.
  • Magnesium (Mg) is an optional element, and need not be contained.
  • the Mg content may be 0%. If contained, Mg renders S in the steel material harmless by forming sulfides, and increases the SSC resistance of the steel material. If even a small amount of Mg is contained, aforementioned effect is obtained to a certain extent. However, if the Mg content is too high, oxides in the steel material coarsen and decrease the SSC resistance of the steel material. Therefore, the Mg content is within the range of 0 to 0.0100%.
  • a preferable lower limit of the Mg content is more than 0%, more preferably is 0.0001%, further preferably is 0.0003%, and further preferably is 0.0006%, and even further preferably is 0.0010%.
  • a preferable upper limit of the Mg content is 0.0025%, and more preferably is 0.0020%.
  • Zirconium (Zr) is an optional element, and need not be contained.
  • the Zr content may be 0%. If contained, Zr refines sulfides in the steel material and increases the SSC resistance of the steel material. If even a small amount of Zr is contained, aforementioned effect is obtained to a certain extent. However, if the Zr content is too high, oxides in the steel material coarsen. Therefore, the Zr content is within the range of 0 to 0.0100%.
  • a preferable lower limit of the Zr content is more than 0%, more preferably is 0.0001%, further preferably is 0.0003%, and further preferably is 0.0006%.
  • a preferable upper limit of the Zr content is 0.0025%, and more preferably is 0.0020%.
  • the total of the contents of these elements is preferably 0.0100% or less, and more preferably is 0.0050% or less.
  • the chemical composition of the steel material described above may further contain one or more types of element selected from the group consisting of Co and W in lieu of a part of Fe.
  • element selected from the group consisting of Co and W in lieu of a part of Fe.
  • Each of these elements is an optional element that forms a protective corrosion coating in a hydrogen sulfide environment and suppresses hydrogen penetration. By this means, each of these elements increases the SSC resistance of the steel material.
  • Co Co
  • the Co content may be 0%. If contained, Co forms a protective corrosion coating in a hydrogen sulfide environment and suppresses hydrogen penetration. By this means, Co increases the SSC resistance of the steel material. If even a small amount of Co is contained, aforementioned effect is obtained to a certain extent. However, if the Co content is too high, the hardenability of the steel material will decrease, and the steel material strength will decrease. Therefore, the Co content is within the range of 0 to 0.50%.
  • a preferable lower limit of the Co content is more than 0%, more preferably is 0.02%, and further preferably is 0.05%.
  • a preferable upper limit of the Co content is 0.45%, and more preferably is 0.40%.
  • Tungsten (W) is an optional element, and need not be contained.
  • the W content may be 0%. If contained, W forms a protective corrosion coating in a hydrogen sulfide environment and suppresses hydrogen penetration. By this means, W increases the SSC resistance of the steel material. If even a small amount of W is contained, aforementioned effect is obtained to a certain extent. However, if the W content is too high, coarse carbides form in the steel material and the SSC resistance of the steel material decreases. Therefore, the W content is within the range of 0 to 0.50%.
  • a preferable lower limit of the W content is more than 0%, more preferably is 0.02%, and further preferably is 0.05%.
  • a preferable upper limit of the W content is 0.45%, and more preferably is 0.40%.
  • the chemical composition of the steel material described above may further contain one or more types of element selected from the group consisting of Ni and Cu in lieu of a part of Fe. Each of these elements is an optional element, and increases the hardenability of the steel.
  • Nickel (Ni) is an optional element, and need not be contained. In other words, the Ni content may be 0%. If contained, Ni enhances the hardenability of the steel material and increases the steel material strength. If even a small amount of Ni is contained, aforementioned effect is obtained to a certain extent. However, if the Ni content is too high, the Ni will promote local corrosion, and the SSC resistance of the steel material will decrease. Therefore, the Ni content is within the range of 0 to 0.50%. A preferable lower limit of the Ni content is more than 0%, more preferably is 0.02%, and further preferably is 0.05%. A preferable upper limit of the Ni content is 0.35%, and more preferably is 0.25%.
  • Copper (Cu) is an optional element, and need not be contained.
  • the Cu content may be 0%. If contained, Cu enhances the hardenability of the steel material and increases the steel material strength. If even a small amount of Cu is contained, aforementioned effect is obtained to a certain extent. However, if the Cu content is too high, the hardenability of the steel material will be too high, and the SSC resistance of the steel material will decrease. Therefore, the Cu content is within the range of 0 to 0.50%.
  • a preferable lower limit of the Cu content is more than 0%, more preferably is 0.01%, further preferably is 0.02%, and further preferably is 0.05%.
  • a preferable upper limit of the Cu content is 0.35%, and more preferably is 0.25%.
  • the steel material according to the present embodiment contains an amount of dissolved C which is within the range of 0.010 to 0.060 mass %. If the amount of dissolved C is less than 0.010 mass %, the immobilization of dislocations in the steel material will be insufficient and excellent SSC resistance of the steel material will not be obtained. On the other hand, if the amount of dissolved C is more than 0.060 mass %, conversely, the SSC resistance of the steel material will decrease. Therefore, the amount of dissolved C is within the range of 0.010 to 0.060 mass %. A preferable lower limit of the amount of dissolved C is 0.020 mass % and more preferably is 0.030 mass %
  • An amount of dissolved C within the aforementioned range is obtained by, for example, controlling the holding time for tempering and controlling the cooling rate in the tempering process. The reason is as described hereinafter.
  • the amount of dissolved C is highest immediately after quenching. Immediately after quenching, C is dissolved except for a small amount thereof that precipitated as carbides during quenching. In the tempering process thereafter, some of the C precipitates as carbides as a result of being held for tempering. As a result, the amount of dissolved C decreases toward the thermal equilibrium concentration with respect to the tempering temperature. If the holding time for tempering is too short, this effect will not be obtained and the amount of dissolved C will be too high. On the other hand, if the holding time for tempering is too long, the amount of dissolved C will approach the aforementioned thermal equilibrium concentration, and will hardly change. Therefore, in the present embodiment the holding time for tempering is set within the range of 10 to 90 minutes.
  • cooling rate for cooling after tempering is slow, dissolved C will reprecipitate while the temperature is decreasing.
  • the cooling rate has been slow. Consequently, the amount of dissolved C has been almost 0 mass %. Therefore, in the present embodiment, the cooling rate after tempering is raised, and a dissolved C amount in the range of 0.010 to 0.060 mass % is obtained.
  • the cooling method is, for example, a method that performs forced cooling of the steel material continuously from the tempering temperature to thereby continuously decrease the surface temperature of the steel material.
  • Examples of this kind of continuous cooling treatment include a method that cools the steel material by immersion in a water bath, and a method that cools the steel material in an accelerated manner by shower water cooling, mist cooling or forced air cooling.
  • the cooling rate after tempering is measured at a region that is most slowly cooled within a cross-section of the steel material that is tempered (for example, in the case of forcedly cooling both surfaces, the cooling rate is measured at the center portion of the steel material thickness).
  • the cooling rate after tempering can be measured by inserting a sheath-type thermocouple into the center portion of the thickness of the steel plate and measuring the temperature.
  • the cooling rate after tempering can be measured by inserting a sheath-type thermocouple into the center portion of the wall thickness of the steel pipe and measuring the temperature.
  • the surface temperature on the non-forcedly cooled side of the steel material can be measured by means of a non-contact type infrared thermometer.
  • the temperature region from 600° C. to 200° C. is a temperature region in which diffusion of C is comparatively fast. Therefore, in the present embodiment, the average cooling rate in the temperature region from 600° C. to 200° C. is made 5° C./sec or more.
  • the cooling rate after tempering is made 300° C./sec or less.
  • the amount of dissolved C can be made to fall within the range of 0.010 to 0.060 mass %.
  • the amount of dissolved C in the steel material may be adjusted to within a range of 0.010 to 0.060 mass % by another method.
  • the term “amount of dissolved C” means the difference between the amount of C (mass %) in carbides in the steel material and the C content of the chemical composition of the steel material.
  • the amount of C in carbides in the steel material is determined by Formula (1) to Formula (5) using an Fe concentration ⁇ Fe>a, a Cr concentration ⁇ Cr>a, an Mn concentration ⁇ Mn>a, an Mo concentration ⁇ Mo>a, a V concentration ⁇ V>a and an Nb concentration ⁇ Nb>a in carbides (cementite and MC-type carbides) obtained as residue when extraction residue analysis is performed on the steel material, and an Fe concentration ⁇ Fe>b, a Cr concentration ⁇ Cr>b, an Mn concentration ⁇ Mn>b and an Mo concentration ⁇ Mo>b in cementite obtained by performing point analysis by EDS with respect to cementite identified by performing TEM observation of a replica film obtained by an extraction replica method.
  • ⁇ Mo> c ( ⁇ Fe> a + ⁇ Cr> a + ⁇ Mn> a ) x ⁇ Mo> b /( ⁇ Fe> b + ⁇ Cr> b + ⁇ Mn> b ) (1)
  • ⁇ C> a ( ⁇ Fe> a/ 55.85+ ⁇ Cr> a/ 52+ ⁇ Mn> a/ 53.94+ ⁇ Mo> c/ 95.9)/3 ⁇ 12 (3)
  • ⁇ C> b ( ⁇ V> a/ 50.94+ ⁇ Mo> d/ 95.9+ ⁇ Nb> a/ 92.9) ⁇ 12 (4)
  • cementite means carbides containing an Fe content of 50 mass % or more.
  • the method for calculating the amount of dissolved C is described in detail.
  • an analysis sample having the shape of a machined chip is taken from a center portion of the thickness
  • an analysis sample having the shape of a machined chip is taken from a center portion of the wall thickness.
  • the C content (mass %) is analyzed by an oxygen-stream combustion-infrared absorption method. The resulting value was taken to be the C content ( ⁇ C>) of the steel material.
  • the precipitated C amount is calculated by the following procedures 1 to 4. Specifically, in procedure 1 an extraction residue analysis is performed. In procedure 2, an extraction replica method using a transmission electron microscope (hereunder, referred to as “TEM”), and an element concentration analysis (hereunder, referred to as “EDS analysis”) of elements in cementite is performed by energy dispersive X-ray spectrometry (hereunder, referred to as “EDS”). In procedure 3, the Mo content is adjusted. In procedure 4, the precipitated C amount is calculated.
  • TEM transmission electron microscope
  • EDS analysis element concentration analysis
  • EDS energy dispersive X-ray spectrometry
  • carbides in the steel material are captured as residue, and the contents of Fe, Cr, Mn, Mo, V and Nb in the residue are determined.
  • carbides is a generic term for cementite (M 3 C-type carbides) and MC-type carbides.
  • the specific procedure is as follows. In a case where the steel material is a plate material, a cylindrical test specimen having a diameter of 6 mm and a length of 50 mm is extracted from a center portion of the thickness.
  • a cylindrical test specimen having a diameter of 6 mm and a length of 50 mm is extracted from a center portion of the wall thickness of the steel pipe in a manner so that the center of the wall thickness becomes the center of the cross-section.
  • the surface of the extracted test specimen is polished to remove about 50 ⁇ m by preliminary electropolishing to obtain a newly formed surface.
  • the electropolished test specimen is subjected to electrolysis in an electrolyte solution of 10% acetylacetone+1% tetra-ammonium+methanol.
  • the electrolyte solution after electrolysis is passed through a 0.2- ⁇ m filter to capture residue.
  • the obtained residue is subjected to acid decomposition, and the concentrations of Fe, Cr, Mn, Mo, V and Nb are determined in units of mass percent by ICP (inductively coupled plasma) optical emission spectrometry.
  • concentrations are defined as ⁇ Fe>a, ⁇ Cr>a, ⁇ Mn>a, ⁇ Mo>a, ⁇ V>a and ⁇ Nb>a, respectively.
  • procedure 2 the content of each of Fe, Cr, Mn and Mo in cementite is determined.
  • the specific procedure is as follows. A micro test specimen is cut out from a center portion of the thickness in a case where the steel material is a plate material, and is cut out from a center portion of the wall thickness in a case where the steel material is a steel pipe, and the surface of the micro test specimen is finished by mirror polishing. The test specimen is immersed for 10 minutes in a 3% nital etching reagent to etch the surface. The surface thereof is covered with a carbon deposited film. The test specimen whose surface is covered with the deposited film is immersed in a 5% nital etching reagent, and held therein for 20 minutes to cause the deposited film to peel off.
  • the deposited film that peeled off is cleaned with ethanol, and thereafter is scooped up with a sheet mesh and dried.
  • the deposited film (replica film) is observed using a TEM, and point analysis by EDS is performed with respect to 20 particles of cementite.
  • the concentration of each of Fe, Cr, Mn and Mo is determined in units of mass percent when taking the total of the alloying elements excluding carbon in the cementite as 100%.
  • the concentrations are determined for 20 particles of cementite, and the arithmetic average values for the respective elements are defined as ⁇ Fe>b, ⁇ Cr>b, ⁇ Mn>b and ⁇ Mo>b.
  • the Mo concentration in the carbides is determined.
  • Fe, Cr, Mn and Mo concentrate in cementite.
  • V, Nb and Mo concentrate in MC-type carbides.
  • Mo is caused to concentrate in both cementite and MC-type carbides by tempering. Therefore, the Mo amount is calculated separately for cementite and for MC-type carbides.
  • a part of V also concentrates in cementite.
  • the amount of V that concentrates in cementite is negligibly small in comparison to the amount of V that concentrates in MC-type carbides. Therefore, when determining the amount of dissolved C, V is regarded as concentrating only in MC-type carbides.
  • the amount of Mo precipitating as cementite ( ⁇ Mo>c) is calculated by Formula (1).
  • ⁇ Mo> c ( ⁇ Fe> a + ⁇ Cr> a + ⁇ Mn> a ) x ⁇ Mo> b /( ⁇ Fe> b + ⁇ Cr> b + ⁇ Mn> b ) (1)
  • the precipitated C amount is calculated as the total of the C amount precipitating as cementite ( ⁇ C>a) and the C amount precipitating as MC-type carbides ( ⁇ C>b).
  • ⁇ C>a and ⁇ C>b are calculated in units of mass percent by Formula (3) and Formula (4), respectively.
  • Formula (3) is a formula that is derived from the fact that the structure of cementite is a M 3 C type structure (M include Fe, Cr, Mn and Mo).
  • ⁇ C> a ( ⁇ Fe> a/ 55.85+ ⁇ Cr> a/ 52+ ⁇ Mn> a/ 53.94+ ⁇ Mo> c/ 95.9)/3 ⁇ 12 (3)
  • ⁇ C> b ( ⁇ V> a/ 50.94+ ⁇ Mo> d/ 95.9+ ⁇ Nb> a/ 92.9) ⁇ 12 (4)
  • the precipitated C amount is ⁇ C>a+ ⁇ C>b.
  • the amount of dissolved C (hereunder, also referred to as “ ⁇ C>c”) is calculated in units of mass percent by Formula (5) as a difference between the C content ( ⁇ C>) and the precipitated C amount of the steel material.
  • the microstructure of the steel material according to the present embodiment is principally composed of tempered martensite and tempered bainite. More specifically, the volume ratio of tempered martensite and/or tempered bainite in the microstructure is 90% or more. In other words, the total of the volume ratios of tempered martensite and tempered bainite in the microstructure is 90% or more. The balance of the microstructure is, for example, retained austenite or the like. If the microstructure of the steel material containing the aforementioned chemical composition contains tempered martensite and tempered bainite in an amount equivalent to a total volume ratio of 90% or more, the yield strength will be within the range of 965 to 1069 MPa (140 ksi grade), and the yield ratio will be 90% or more.
  • the microstructure is composed of only tempered martensite and/or tempered bainite.
  • the following method can be adopted in the case of determining the total of the volume ratios of tempered martensite and tempered bainite by observation.
  • the steel material is a plate material
  • a small piece having an observation surface with dimensions of 10 mm in the rolling direction and 10 mm in the plate width direction is cut out from a center portion of the thickness.
  • the steel material is a steel pipe
  • a small piece having an observation surface with dimensions of 10 mm in the pipe axis direction and 10 mm in the pipe circumferential direction is cut out from a center portion of the wall thickness.
  • the small piece After polishing the observation surface to obtain a mirror surface, the small piece is immersed for about 10 seconds in a nital etching reagent, to reveal the microstructure by etching.
  • the etched observation surface is observed by means of a secondary electron image obtained using a scanning electron microscope (SEM), and observation is performed for 10 visual fields.
  • the area of each visual field is 400 m 2 (magnification of ⁇ 5000).
  • tempered martensite and tempered bainite are identified based on the contrast.
  • the total of the area fractions of tempered martensite and tempered bainite that are identified is determined.
  • the arithmetic average value of the totals of the area fractions of tempered martensite and tempered bainite determined in all visual fields is taken as the volume ratio of tempered martensite and tempered bainite.
  • the shape of the steel material according to the present embodiment is not particularly limited.
  • the steel material is, for example, a steel pipe or a steel plate.
  • the steel material is a seamless steel pipe.
  • a preferable wall thickness is 9 to 60 mm.
  • the steel material according to the present embodiment is, in particular, suitable for use as a heavy-wall oil-well steel pipe. More specifically, even if the steel material according to the present embodiment is an oil-well steel pipe having a thick wall of 15 mm or more or, furthermore, 20 mm or more, the steel material exhibits excellent strength and SSC resistance.
  • the yield strength YS of the steel material according to the present embodiment is within a range of 965 to 1069 MPa (140 ksi grade), and the yield ratio YR of the steel material is 90% or more.
  • yield strength YS means the stress when elongation of 0.65% is obtained in a tensile test.
  • the strength of the steel material according to the present embodiment is of 140 ksi grade. Even though the steel material according to the present embodiment has such high strength, the steel material also has excellent SSC resistance by satisfying the conditions regarding the chemical composition, amount of dissolved C and microstructure, which are described above.
  • the SSC resistance of the steel material according to the present embodiment can be evaluated by a DCB test performed in accordance with “Method D” described in NACE TM0177-2005.
  • the liquid solution used is obtained by mixing a degassed 5% saline solution and 4 g/L of sodium acetate and adjusting to pH 3.5 using hydrochloric acid.
  • the gas charged inside the autoclave is a gaseous mixture of 10% H 2 S gas and 90% CO 2 gas at a total pressure of 1 atm.
  • a DCB test specimen into which a wedge was driven is enclosed inside the vessel, and is held for three weeks at 24° C. while agitating the liquid solution and also continuously blowing in the aforementioned gaseous mixture.
  • the K 1SSC (MPa ⁇ m) value of the steel material according to the present embodiment determined under the foregoing conditions is 30.0 MPa ⁇ m or more.
  • the method for producing a steel material according to the present embodiment includes a preparation process, a quenching process and a tempering process.
  • the preparation process may include a starting material preparation process and a hot working process.
  • a method for producing an oil-well steel pipe will be described as one example of a method for producing a steel material.
  • the method for producing an oil-well steel pipe includes a process of preparing a hollow shell (preparation process), and a process of subjecting the hollow shell to quenching and tempering to obtain an oil-well steel pipe (quenching process and tempering process). Each of these processes is described in detail hereunder.
  • an intermediate steel material containing the aforementioned chemical composition is prepared.
  • the method for producing the intermediate steel material is not particularly limited as long as the intermediate steel material contains the aforementioned chemical composition.
  • the term “intermediate steel material” refers to a plate-shaped steel material in a case where the end product is a steel plate, and refers to a hollow shell in a case where the end product is a steel pipe.
  • the preparation process may preferably include a process in which a starting material is prepared (starting material preparation process), and a process in which the starting material is subjected to hot working to produce an intermediate steel material (hot working process).
  • starting material preparation process a process in which a starting material is prepared
  • hot working process a process in which the starting material is subjected to hot working to produce an intermediate steel material
  • a starting material is produced using molten steel containing the aforementioned chemical composition.
  • a cast piece (a slab, bloom or billet) is produced by a continuous casting process using the molten steel.
  • An ingot may also be produced by an ingot-making process using the molten steel.
  • the slab, bloom or ingot may be subjected to blooming to produce a billet.
  • the starting material (a slab, bloom or billet) is produced by the above described process.
  • the starting material that was prepared is subjected to hot working to produce an intermediate steel material.
  • the intermediate steel material corresponds to a hollow shell.
  • the billet is heated in a heating furnace.
  • the heating temperature is not particularly limited, for example, the heating temperature is within a range of 1100 to 1300° C.
  • the billet that is extracted from the heating furnace is subjected to hot working to produce a hollow shell (seamless steel pipe).
  • the Mannesmann process is performed as the hot working to produce the hollow shell. In this case, a round billet is piercing-rolled using a piercing machine.
  • the piercing ratio is, for example, within a range of 1.0 to 4.0.
  • the round billet that underwent piercing-rolling is further hot-rolled to form a hollow shell using a mandrel mill, a reducer, a sizing mill or the like.
  • the cumulative reduction of area in the hot working process is, for example, 20 to 70%.
  • a hollow shell may also be produced from the billet by another hot working method.
  • a hollow shell may be produced by forging such as Ehrhardt process.
  • a hollow shell is produced by the above process.
  • the wall thickness of the hollow shell is, for example, 9 to 60 mm.
  • the hollow shell produced by hot working may be air-cooled (as-rolled).
  • the hollow shell produced by hot working may be subjected to direct quenching after hot rolling without being cooled to normal temperature, or may be subjected to quenching after undergoing supplementary heating (reheating) after hot rolling.
  • reheating supplementary heating
  • a stress relief treatment may be performed at a time that is after quenching and before the heat treatment of the next process.
  • an intermediate steel material is prepared in the preparation process.
  • the intermediate steel material may be produced by the aforementioned preferable process, or may be an intermediate steel material that was produced by a third party, or an intermediate steel material that was produced in another factory other than the factory in which a quenching process and a tempering process that are described later are performed, or at a different works.
  • the quenching process is described in detail hereunder.
  • the intermediate steel material (hollow shell) that was prepared is subjected to quenching.
  • quenching means rapidly cooling the intermediate steel material that is at a temperature not less than the A 3 point.
  • a preferable quenching temperature is 800 to 1000° C.
  • the quenching temperature corresponds to the surface temperature of the intermediate steel material that is measured by a thermometer placed on the exit side of the apparatus that performs the final hot working.
  • the quenching temperature corresponds to the temperature of the furnace that performs the supplementary heating.
  • the quenching method for example, continuously cools the hollow shell from the quenching starting temperature, and continuously decreases the surface temperature of the hollow shell.
  • the method of performing the continuous cooling treatment is not particularly limited.
  • the method of performing the continuous cooling treatment is, for example, a method that cools the hollow shell by immersing the hollow shell in a water bath, or a method that cools the hollow shell in an accelerated manner by shower water cooling or mist cooling.
  • the intermediate steel material is rapidly cooled during quenching.
  • the average cooling rate when the surface temperature of the intermediate steel material (hollow shell) is within the range of 800 to 500° C. during quenching is defined as a cooling rate during quenching CR 800-500 .
  • the cooling rate during quenching CR 800-500 is 50° C./min or higher.
  • a preferable lower limit of the cooling rate during quenching CR 800-500 is 100° C./min, and more preferably is 250° C./min.
  • an upper limit of the cooling rate during quenching CR 800-500 is not particularly defined, for example, the upper limit is 60000° C./min.
  • quenching is performed after performing heating of the hollow shell in the austenite zone a plurality of times.
  • the SSC resistance of the steel material increases because austenite grains are refined prior to quenching.
  • Heating in the austenite zone may be repeated a plurality of times by performing quenching a plurality of times, or heating in the austenite zone may be repeated a plurality of times by performing normalizing and quenching.
  • the tempering process will be described in detail.
  • Tempering is performed after performing the aforementioned quenching.
  • the tempering temperature is appropriately adjusted in accordance with the chemical composition of the steel material and the yield strength YS, which is to be obtained.
  • the tempering temperature is adjusted so as to adjust the yield strength YS of the steel material to within a range of 965 to 1069 MPa (140 ksi grade) and to make the YR of the steel material 90% or more.
  • a preferable tempering temperature is in a range from 660° C. to the A ct point. If the tempering temperature is 660° C. or more, carbides are sufficiently spheroidized and the SSC resistance is further increased.
  • the tempering time is set within a range of 10 to 90 minutes.
  • a preferable lower limit of the tempering time is 15 minutes.
  • a preferable upper limit of the tempering time is 70 minutes, and more preferably is 60 minutes. Note that, in a case where the steel material is a steel pipe, in comparison to other shapes, temperature variations with respect to the steel pipe are liable to occur during holding for tempering.
  • the tempering time is preferably set within a range of 15 to 90 minutes.
  • a person skilled in the art will be sufficiently capable of making the yield strength YS of the steel material containing the chemical composition of the present embodiment fall within the range of 965 to less than 1069 MPa by appropriately adjusting the aforementioned holding time at the aforementioned tempering temperature.
  • the average cooling rate when the surface temperature of the intermediate steel material (hollow shell) is within the range of 600 to 200° C. after tempering is defined as a cooling rate after tempering CR 600-200 .
  • the cooling rate after tempering CR 600-200 is 5° C./sec or higher.
  • the temperature region from 600° C. to 200° C. is a temperature region in which diffusion of C is comparatively fast.
  • the cooling rate after tempering is too fast, in some cases very little of the C that had dissolved will precipitate, and the amount of dissolved C will be excessive. In such a case, the SSC resistance of the steel material decreases. Furthermore, in such a case, the low-temperature toughness of the steel material may decrease.
  • the cooling rate after tempering CR 600-200 is within the range of 5 to 300° C./sec.
  • a preferable lower limit of the cooling rate after tempering CR 600-200 is 10° C./sec, and more preferably is 15° C./sec.
  • a preferable upper limit of the cooling rate after tempering CR 600-200 is 100° C./sec, and more preferably is 50° C./sec.
  • a method for cooling so that the cooling rate after tempering CR 600-200 is within the range of 5 to 300° C./sec is not particularly limited, and a well-known method can be used.
  • the cooling method for example, is a method that performs forced cooling of a hollow shell continuously from the tempering temperature to thereby continuously decrease the surface temperature of the hollow shell. Examples of this kind of continuous cooling treatment include a method that cools the hollow shell by immersion in a water bath, and a method that cools the hollow shell in an accelerated manner by shower water cooling, mist cooling or forced air cooling.
  • the cooling rate after tempering CR 600-200 is measured at a region that is most slowly cooled within a cross-section of the intermediate steel material that is tempered (for example, in the case of forcedly cooling both surfaces, the cooling rate is measured at the center portion of the thickness of the intermediate steel material).
  • a method for producing a steel pipe has been described as one example of the aforementioned production method.
  • the steel material according to the present embodiment may be a steel plate or another shape.
  • An example of a method for producing a steel plate or a steel material of another shape also includes, for example, a preparation process, a quenching process and a tempering process, similarly to the production method described above.
  • the aforementioned production method is one example, and the steel material according to the present embodiment may be produced by another production method.
  • Ingots were produced using the aforementioned molten steels. The ingots were hot rolled to produce steel plates having a thickness of 20 mm.
  • the steel plates of each test number were reheated to bring the steel plate temperature to the quenching temperature (920° C., which is in the austenite single-phase zone), and were held for 20 minutes. After being held, the steel plates were immersed in a water bath and quenched. At this time, the cooling rate during quenching (CR 800-500 ) was 400° C./min. With respect to Test Number 23, after holding at the quenching temperature, the steel plate was cooled by immersion in an oil bath. At this time, the average cooling rate from 800° C. to 500° C. was 40° C./min.
  • the steel plates of each test number were subjected to tempering.
  • the tempering temperature was adjusted so that the steel plates became 140 ksi grade as specified in the API standards (yield strength of 965 to 1069 MPa).
  • the steel plates were cooled.
  • controlled cooling by mist water cooling from both sides of the steel plate was performed. Note that, a type K thermocouple of a sheath type was inserted into a center portion of the thickness of the steel plate in advance, and the temperature was measured with respect to tempering and the cooling thereafter.
  • the tempering temperature (° C.) and tempering time (min) and the cooling rate (CR 600-200 ) (° C./sec) after tempering are shown in Table 2. Note that, the A c1 point of the steel material in each of Test Number 1 to Test Number 25 was 750° C., and the tempering temperature was set so as to be lower than the A c1 point.
  • a tensile test was performed in accordance with ASTM E8. Round bar tensile test specimens having a diameter of 6.35 mm and a parallel portion length of 35 mm were prepared from the center parts of the thickness of the steel plates of each test number after the quenching and tempering described above. The axial direction of each of the tensile test specimens was parallel to the rolling direction of the steel plate. A tensile test was performed in the atmosphere at normal temperature (25° C.) using each round bar test specimen, and the yield strength YS (MPa) and tensile strength TS (MPa) were obtained. Note that, in the present examples, the stress at the time of 0.65% elongation obtained in the tensile test defined as the YS for each test number. Further, the largest stress during uniform elongation was taken as the TS. A ratio between the YS and the TS was adopted as the yield ratio YR (%).
  • the amount of dissolved C was measured and calculated by the measurement method described above.
  • the TEM used was JEM-2010 manufactured by JEOL Ltd.
  • the acceleration voltage was set to 200 kV
  • the irradiation current was 2.56 nA
  • measurement was performed for 60 seconds at each point.
  • the observation regions for the TEM observation were 8 ⁇ m ⁇ 8 ⁇ m, and observation was performed with respect to an arbitrary 10 visual fields.
  • the residual amounts of each element and the concentrations of each element in cementite that were used to calculate the amount of dissolved C were as listed in Table 3.
  • a DCB test was conducted in accordance with “Method D” of NACE TM0177-2005, and the SSC resistance was evaluated. Specifically, three of the DCB test specimen illustrated in FIG. 2A were taken from a center portion of the thickness of each steel plate. The DCB test specimens were taken in a manner such that the longitudinal direction of each DCB test specimen was parallel with the rolling direction. A wedge illustrated in FIG. 2B was further prepared from each steel plate. A thickness t of the wedge was 3.10 mm.
  • the wedge was driven in between the arms of the DCB test specimen. Thereafter, the DCB test specimen into which the wedge was driven was enclosed in a vessel. A liquid solution obtained by mixing a degassed 5% saline solution and 4 g/L of sodium acetate and adjusting to pH 3.5 with hydrochloric acid was poured into the vessel so that a gas portion remained in the vessel. Thereafter, a gaseous mixture consisting of 10% H 2 S gas and 90% CO 2 gas was charged at a total pressure of 1 atm inside the autoclave to stir the liquid phase, and the gaseous mixture was saturated in the liquid solution.
  • the vessel After sealing the vessel that had undergone the above described process, the vessel was held for three weeks at 24° C. while stirring the liquid solution and also continuously blowing in the aforementioned gaseous mixture. Thereafter, the DCB test specimens were taken out from inside the vessel.
  • a pin was inserted into a hole formed in the tip of the arms of each DCB test specimen that was taken out and a notch portion was opened with a tensile testing machine, and a wedge releasing stress P was measured.
  • the notch in the DCB test specimen was released in liquid nitrogen, and a crack propagation length “a” with respect to crack propagation that occurred during immersion was measured.
  • the crack propagation length “a” was measured visually using vernier calipers.
  • a fracture toughness value K 1SSC (MPa ⁇ m) was determined using Formula (6) based on the obtained wedge releasing stress P and the crack propagation length “a”.
  • the fracture toughness value K 1SSC (MPa ⁇ m) of the three DCB test specimens was determined.
  • the arithmetic average of the three fracture toughness values was defined as the fracture toughness value K 1SSC (MPa ⁇ m) of the relevant steel.
  • K 1 ⁇ SSC Pa ⁇ ( 2 ⁇ 3 + 2.38 h / a ) ⁇ ( B / Bn ) 1 / 3 Bh 3 / 2 ( 6 )
  • h represents the height (mm) of each arm of the DCB test specimen
  • B represents the thickness (mm) of the DCB test specimen
  • Bn represents the web thickness (mm) of the DCB test specimen.
  • the obtained fracture toughness values K 1SSC are shown in Table 2. If the fracture toughness value K 1SSC that was defined as described above was 30.0 MPa ⁇ m or more, it was determined that the SSC resistance was good. Note that, the clearance between the arms when the wedge is driven in prior to immersion in the test bath influences the K 1SSC value. Accordingly, actual measurement of the clearance between the arms was performed in advance using a micrometer, and it was also confirmed that the clearance was within the range in the API standards.
  • the chemical compositions of the steel plates of Test Numbers 1 to 13 were appropriate, the YS was in the range of 965 to 1069 MPa (140 ksi grade), and the YR was 90% or more. In addition, the amount of dissolved C was in the range of 0.010 to 0.060 mass %. As a result, the K 1SSC value was 30.0 MPa ⁇ m or more and excellent SSC resistance was exhibited.
  • the tempering time was too short. Consequently, the amount of dissolved C was more than 0.060 mass %. As a result, the fracture toughness value K 1SSC was less than 30.0 MPa ⁇ m and excellent SSC resistance was not exhibited.
  • the Mo content was too low.
  • the fracture toughness value K 1SSC was less than 30.0 MPa ⁇ m and excellent SSC resistance was not exhibited.
  • the N content was too high.
  • the fracture toughness value K 1SSC was less than 30.0 MPa ⁇ m and excellent SSC resistance was not exhibited.
  • the Si content was too high.
  • the fracture toughness value K 1SSC was less than 30.0 MPa ⁇ m and excellent SSC resistance was not exhibited.
  • the YR was less than 90%.
  • the fracture toughness value K 1SSC was less than 30.0 MPa ⁇ m and excellent SSC resistance was not exhibited. It is considered that the reason was that ferrite mixed into the microstructure because the cooling rate during quenching was slow.
  • the cooling rate after tempering was too slow. Consequently, the amount of dissolved C was less than 0.010 mass %. As a result, the fracture toughness value K 1SSC was less than 30.0 MPa ⁇ m and excellent SSC resistance was not exhibited.
  • the tempering temperature was too low. Consequently, the YS was more than 1069 MPa. As a result, the fracture toughness value K 1SSC was less than 30.0 MPa ⁇ m and excellent SSC resistance was not exhibited.
  • the steel material according to the present invention is widely applicable to steel materials to be utilized in a sour environment, and preferably can be utilized as a steel material for oil wells that is utilized in an oil well environment, and further preferably can be utilized as oil-well steel pipes, such as casing, tubing and line pipes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The steel material according to the present disclosure contains a chemical composition consisting of, in mass %, C: more than 0.50 to 0.80%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.025% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.20 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, B: 0.0001 to 0.0050%, N: 0.002 to 0.010% and O: 0.0100% or less, with the balance being Fe and impurities. The steel material contains an amount of dissolved C within a range of 0.010 to 0.060 mass %. The steel material also has a yield strength within a range of 965 to 1069 MPa, and a yield ratio of the steel material is 90% or more.

Description

    TECHNICAL FIELD
  • The present invention relates to a steel material and a method for producing the steel material, and more particularly relates to a steel material suitable for use in a sour environment, and a method for producing the steel material.
  • BACKGROUND ART
  • Due to the deepening of oil wells and gas wells (hereunder, oil wells and gas wells are collectively referred to as “oil wells”), there is a demand to enhance the strength of oil-well steel pipes. Specifically, 80 ksi grade (yield strength is 80 to 95 ksi, that is, 551 to 655 MPa) and 95 ksi grade (yield strength is 95 to 110 ksi, that is, 655 to 758 MPa) oil-well steel pipes are being widely utilized, and recently requests are also starting to be made for 110 ksi grade (yield strength is 110 to 125 ksi, that is, 758 to 862 MPa), 125 ksi grade (yield strength is 125 ksi to 140 ksi, that is, 862 to 965 MPa) and 140 ksi grade (yield strength is 140 ksi to 155 ksi, that is, 965 to 1069 MPa) oil-well steel pipes.
  • Most deep wells are in a sour environment containing corrosive hydrogen sulfide. Oil-well steel pipes for use in such sour environments are required to have not only high strength, but to also have sulfide stress cracking resistance (hereunder, referred to as “SSC resistance”).
  • Technology for enhancing the SSC resistance of steel materials as typified by oil-well steel pipes is disclosed in Japanese Patent Application Publication No. 62-253720 (Patent Literature 1), Japanese Patent Application Publication No. 59-232220 (Patent Literature 2), Japanese Patent Application Publication No. 6-322478 (Patent Literature 3), Japanese Patent Application Publication No. 8-311551 (Patent Literature 4), Japanese Patent Application Publication No. 2000-256783 (Patent Literature 5), Japanese Patent Application Publication No. 2000-297344 (Patent Literature 6), Japanese Patent Application Publication No. 2005-350754 (Patent Literature 7), National Publication of International Patent Application No. 2012-519238 (Patent Literature 8) and Japanese Patent Application Publication No. 2012-26030 (Patent Literature 9).
  • Patent Literature 1 proposes a method for improving the SSC resistance of steel for oil wells by reducing impurities such as Mn and P. Patent Literature 2 proposes a method for improving the SSC resistance of steel by performing quenching twice to refine the grains.
  • Patent Literature 3 proposes a method for improving the SSC resistance of a 125 ksi grade steel material by refining the steel microstructure by a heat treatment using induction heating. Patent Literature 4 proposes a method for improving the SSC resistance of steel pipes of 110 to 140 ksi grade by enhancing the hardenability of the steel by utilizing a direct quenching process and also increasing the tempering temperature.
  • Patent Literature 5 and Patent Literature 6 each propose a method for improving the SSC resistance of a steel for low-alloy oil country tubular goods of 110 to 140 ksi grade by controlling the shapes of carbides. Patent Literature 7 proposes a method for improving the SSC resistance of steel material of 125 ksi (862 MPa) grade or higher by controlling the dislocation density and the hydrogen diffusion coefficient to desired values. Patent Literature 8 proposes a method for improving the SSC resistance of steel of 125 ksi (862 MPa) grade by subjecting a low-alloy steel containing 0.3 to 0.5% of C to quenching multiple times. Patent Literature 9 proposes a method for controlling the shapes or number of carbides by employing a tempering process composed of a two-stage heat treatment. More specifically, in Patent Literature 9, a method is proposed that enhances the SSC resistance of 125 ksi (862 MPa) grade steel by suppressing the number density of large M3C particles or M2C particles.
  • CITATION LIST Patent Literature Patent Literature 1: Japanese Patent Application Publication No. 62-253720 Patent Literature 2: Japanese Patent Application Publication No. 59-232220 Patent Literature 3: Japanese Patent Application Publication No. 6-322478 Patent Literature 4: Japanese Patent Application Publication No. 8-311551 Patent Literature 5: Japanese Patent Application Publication No. 2000-256783 Patent Literature 6: Japanese Patent Application Publication No. 2000-297344 Patent Literature 7: Japanese Patent Application Publication No. 2005-350754 Patent Literature 8: National Publication of International Patent Application No. 2012-519238 Patent Literature 9: Japanese Patent Application Publication No. 2012-26030
  • However, even if the techniques disclosed in the aforementioned Patent Literatures 1 to 9 are applied, in the case of steel material (for example, oil-well steel pipes) having a yield strength of 140 ksi grade (965 to 1069 MPa), excellent SSC resistance cannot be stably obtained in some cases.
  • SUMMARY OF INVENTION Technical Problem
  • An objective of the present disclosure is to provide a steel material that has a yield strength within a range of 965 to 1069 MPa (140 to 155 ksi; 140 ksi grade) and that also has excellent SSC resistance.
  • Solution to Problem
  • A steel material according to the present disclosure contains a chemical composition consisting of, in mass %, C: more than 0.50 to 0.80%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.025% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.20 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, B: 0.0001 to 0.0050%, N: 0.002 to 0.010%, O: 0.0100% or less, V: 0 to 0.30%, Nb: 0 to 0.100%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, Co: 0 to 0.50%, W: 0 to 0.50%, Ni: 0 to 0.50% and Cu: 0 to 0.50%, with the balance being Fe and impurities. The steel material according to the present disclosure also contains an amount of dissolved C within a range of 0.010 to 0.060 mass %. The steel material according to the present disclosure also has a yield strength within a range of 965 to 1069 MPa, and a yield ratio of the steel material is 90% or more.
  • A method for producing a steel material according to the present disclosure includes a preparation process, a quenching process and a tempering process. In the preparation process, an intermediate steel material containing the aforementioned chemical composition is prepared. In the quenching process, after the preparation process, the intermediate steel material that is at a temperature in a range of 800 to 1000° C. is cooled at a cooling rate of 50° C./min or more. In the tempering process, the intermediate steel material after the quenching is held for 10 to 90 minutes at a temperature in a range of 660° C. to an Ac1 point, and thereafter is cooled from 600° C. to 200° C. at an average cooling rate of 5 to 300° C./sec.
  • Advantageous Effects of Invention
  • The steel material according to the present disclosure has a yield strength within a range of 965 to 1069 MPa (140 ksi grade), and also has excellent SSC resistance.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a view illustrating the relation between the amount of dissolved C and a fracture toughness value K1SSC.
  • FIG. 2A shows a side view and a cross-sectional view of a DCB test specimen that is used in a DCB test in the examples.
  • FIG. 2B is a perspective view of a wedge that is used in the DCB test in the examples.
  • DESCRIPTION OF EMBODIMENTS
  • The present inventors conducted investigations and studies regarding a method for obtaining both a yield strength in a range of 965 to 1069 MPa (140 ksi grade) and SSC resistance in a steel material that it is assumed will be used in a sour environment, and obtained the following findings.
  • If the dislocation density in the steel material is increased, the yield strength of the steel material will increase. However, there is a possibility that dislocations will occlude hydrogen. Therefore, if the dislocation density of the steel material increases, there is a possibility that the amount of hydrogen that the steel material occludes will also increase. If the hydrogen concentration in the steel material increases as a result of increasing the dislocation density, even if high strength is obtained, the SSC resistance of the steel material will decrease. Accordingly, at first glance it seems that, in order to obtain both a high strength of 140 ksi grade (965 to 1069 MPa) and SSC resistance, utilizing the dislocation density to enhance the strength is not preferable.
  • However, the present inventors discovered that by adjusting the amount of dissolved C in a steel material, excellent SSC resistance can also be obtained while at the same time raising the yield strength to 140 ksi grade (965 to 1069 MPa) by utilizing the dislocation density. Although the reason is not certain, it is considered that the reason may be as follows.
  • Dislocations include mobile dislocations and sessile dislocations, and it is considered that dissolved C in a steel material immobilizes mobile dislocations to thereby form sessile dislocations. When mobile dislocations are immobilized by dissolved C, the disappearance of dislocations can be inhibited, and thus a decrease in the dislocation density can be suppressed. In this case, the yield strength of the steel material can be maintained.
  • In addition, it is considered that the sessile dislocations that are formed by dissolved C reduce the amount of hydrogen that is occluded in the steel material more than mobile dislocations. Therefore, it is considered that by increasing the density of sessile dislocations that are formed by dissolved C, the amount of hydrogen that is occluded in the steel material is reduced. As a result, the SSC resistance of the steel material can be increased. It is considered that because of this mechanism, excellent SSC resistance is obtained even when the steel material has high strength of 140 ksi grade.
  • As described above, the present inventors considered that by appropriately adjusting the amount of dissolved C in a steel material, the SSC resistance of the steel material can be increased while maintaining a yield strength of 140 ksi grade. Therefore, using a steel material containing chemical composition consisting of, in mass %, C: more than 0.50 to 0.80%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.025% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.20 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, B: 0.0001 to 0.0050%, N: 0.002 to 0.010%, 0: 0.0100% or less, V: 0 to 0.30%, Nb: 0 to 0.100%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, Co: 0 to 0.50%, W: 0 to 0.50%, Ni: 0 to 0.50% and Cu: 0 to 0.50%, with the balance being Fe and impurities, the present inventors investigated the relation between the amount of dissolved C, the yield strength, and a fracture toughness value K1SSC that is an index of SSC resistance.
  • [Relation Between Amount of Dissolved C and SSC Resistance]
  • FIG. 1 is a view illustrating the relation between the amount of dissolved C and a fracture toughness value K1SSC for respective test numbers of the examples. FIG. 1 was obtained by the following method. FIG. 1 was created using the amount of dissolved C (mass %) and the fracture toughness value K1SSC (MPa √m) obtained with respect to steel materials for which, among the steel materials of the examples that are described later, conditions other than the amount of dissolved C satisfied the range of the present embodiment.
  • The yield strength YS of each of the steel materials shown in FIG. 1 was within the range of 965 to 1069 MPa (140 ksi grade). Adjustment of the yield strength YS was performed by adjusting the tempering temperature. Further, with respect to the SSC resistance, if the fracture toughness value K1SSC that is an index of SSC resistance was 30.0 MPa√m or more, it was determined that the SSC resistance was good.
  • Referring to FIG. 1, in a steel material in which the conditions of the aforementioned chemical composition are satisfied, when the amount of dissolved C was 0.010 mass % or more, the fracture toughness value K1SSC became 30.0 MPa√m or more, indicating excellent SSC resistance. On the other hand, in a steel material in which the conditions of the aforementioned chemical composition are satisfied, when the amount of dissolved C was more than 0.060 mass %, the fracture toughness value K1SSC was less than 30.0 MPaV/m. In other words, it was clarified that when the amount of dissolved C is too high, conversely, the SSC resistance decreases.
  • The reason the SSC resistance decreases when the amount of dissolved C is too high as described above has not been clarified. However, with respect to the range of the chemical composition and yield strength YS of the present embodiment, excellent SSC resistance can be obtained if the amount of dissolved C is made 0.060 mass % or less.
  • Therefore, by adjusting the chemical composition and tempering conditions to obtain a yield strength YS within a range of 965 to 1069 MPa (140 ksi grade) and also making the amount of dissolved C 0.010 to 0.060 mass %, the fracture toughness value K1SSC becomes 30.0 MPa√m or more and excellent SSC resistance can be obtained.
  • Accordingly, in the present embodiment, the amount of dissolved C of the steel material is set within the range of 0.010 to 0.060 mass %.
  • Note that, in order to appropriately control the amount of dissolved C and inhibit the occurrence of mobile dislocations, the microstructure of the steel is made a microstructure that is principally composed of tempered martensite and tempered bainite. The term “principally composed of tempered martensite and tempered bainite” means that the total volume ratio of tempered martensite and tempered bainite is 90% or more. When the microstructure of the steel is principally composed of tempered martensite and tempered bainite, in the steel material according to the present embodiment, the yield strength YS is in a range of 965 to 1069 MPa (140 ksi grade), and a yield ratio YR (ratio of the yield strength YS to the tensile strength TS; in other words, yield ratio YR (%)=yield strength YS/tensile strength TS) is 90% or more.
  • A steel material according to the present embodiment that was completed based on the above findings contains a chemical composition consisting of, in mass %, C: more than 0.50 to 0.80%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.025% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.20 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, B: 0.0001 to 0.0050%, N: 0.002 to 0.010%, 0: 0.0100% or less, V: 0 to 0.30%, Nb: 0 to 0.100%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, Co: 0 to 0.50%, W: 0 to 0.50%, Ni: 0 to 0.50% and Cu: 0 to 0.50%, with the balance being Fe and impurities. The steel material according to the present embodiment further contains an amount of dissolved C within a range of 0.010 to 0.060 mass %. Further, in the steel material according to the present embodiment, the yield strength is within a range of 965 to 1069 MPa, and the yield ratio is 90% or more.
  • In the present description, although not particularly limited, the steel material is, for example, a steel pipe or a steel plate.
  • The aforementioned chemical composition may contain one or more types of element selected from the group consisting of V: 0.01 to 0.30% and Nb: 0.002 to 0.100%.
  • The aforementioned chemical composition may contain one or more types of element selected from the group consisting of Ca: 0.0001 to 0.0100%, Mg: 0.0001 to 0.0100% and Zr: 0.0001 to 0.0100%.
  • The aforementioned chemical composition may contain one or more types of element selected from the group consisting of Co: 0.02 to 0.50% and W: 0.02 to 0.50%.
  • The aforementioned chemical composition may contain one or more types of element selected from the group consisting of Ni: 0.02 to 0.50% and Cu: 0.01 to 0.50%.
  • The aforementioned steel material may be an oil-well steel pipe.
  • In the present description, the oil-well steel pipe may be a steel pipe that is used for a line pipe or may be a steel pipe used for oil country tubular goods (OCTG). The oil-well steel pipe may be a seamless steel pipe, or may be a welded steel pipe. The oil country tubular goods are, for example, steel pipes that are used as casing pipes or tubing pipes.
  • Preferably, an oil-well steel pipe according to the present embodiment is a seamless steel pipe. If the oil-well steel pipe according to the present embodiment is a seamless steel pipe, even if the wall thickness is 15 mm or more, the oil-well steel pipe will have a yield strength within a range of 965 to 1069 MPa (140 ksi grade) and will also have excellent SSC resistance.
  • The term “excellent SSC resistance” mentioned above means, specifically, that a value of K1SSC (MPa√m) is 30.0 MPa√m or more in a DCB test performed in accordance with “Method D” described in NACE TM0177-2005 using an autoclave in which a solution obtained by mixing a degassed 5% saline solution and 4 g/L of sodium acetate and adjusting to pH 3.5 using hydrochloric acid, and a gaseous mixture consisting of 10% H2S gas and 90% CO2 gas at a total pressure of 1 atm were sealed.
  • Further, the term “amount of dissolved C” mentioned above means the difference between the amount of C (mass %) in carbides in the steel material and the C content of the chemical composition of the steel material. The amount of C in carbides in the steel material is determined by Formula (1) to Formula (5) using an Fe concentration <Fe>a, a Cr concentration <Cr>a, an Mn concentration <Mn>a, an Mo concentration <Mo>a, a V concentration <V>a and an Nb concentration <Nb>a in carbides (cementite and MC-type carbides) obtained as residue when extraction residue analysis is performed on the steel material, and an Fe concentration <Fe>b, a Cr concentration <Cr>b, an Mn concentration <Mn>b and an Mo concentration <Mo>b in cementite obtained by performing point analysis by EDS with respect to cementite identified by performing TEM observation of a replica film obtained by an extraction replica method.

  • <Mo>c=(<Fe>a+<Cr>a+<Mn>a)x<Mo>b/(<Fe>b+<Cr>b+<Mn>b)  (1)

  • <Mo>d=<Mo>a−<Mo>c  (2)

  • <C>a=(<Fe>a/55.85+<Cr>a/52+<Mn>a/53.94+<Mo>c/95.9)/3×12  (3)

  • <C>b=(<V>a/50.94+<Mo>d/95.9+<Nb>a/92.9)×12  (4)

  • (amount of dissolved C)=<C>−(<C>a+<C>b)  (5)
  • Note that, in the present description, the term “cementite” means carbides containing an Fe content of 50 mass % or more.
  • A method for producing a steel material according to the present embodiment includes a preparation process, a quenching process and a tempering process. In the preparation process, an intermediate steel material containing the aforementioned chemical composition is prepared. In the quenching process, after the preparation process, the intermediate steel material that is at a temperature in a range of 800 to 1000° C. is cooled at a cooling rate of 50° C./min or more. In the tempering process, the intermediate steel material after quenching is held at a temperature in a range of 660° C. to the Ac1 point for 10 to 90 minutes, and thereafter the intermediate steel material is cooled at an average cooling rate of 5 to 300° C./sec with respect to cooling from 600° C. to 200° C.
  • In the present description, the term “intermediate steel material” refers to a hollow shell in a case where the end product is a steel pipe, and refers to a plate-shaped steel material in a case where the end product is a steel plate.
  • The preparation process of the aforementioned production method may include a starting material preparation process of preparing a starting material containing the aforementioned chemical composition, and a hot working process of subjecting the starting material to hot working to produce an intermediate steel material.
  • Hereunder, the steel material according to the present embodiment is described in detail. The symbol “%” in relation to an element means “mass percent” unless specifically stated otherwise.
  • [Chemical Composition]
  • The chemical composition of the steel material according to the present embodiment contains the following elements.
  • C: More than 0.50 to 0.80%
  • Carbon (C) enhances the hardenability and increases the strength of the steel material. C also promotes spheroidization of carbides during tempering in the production process, and increases the SSC resistance of the steel material. If the carbides are dispersed, the strength of the steel material increases further. These effects will not be obtained if the C content is too low. On the other hand, if the C content is too high, the toughness of the steel material will decrease and quench cracking is liable to occur. Therefore, the C content is within the range of more than 0.50 to 0.80%. A preferable lower limit of the C content is 0.51%. A preferable upper limit of the C content is 0.70%, and more preferably is 0.62%.
  • Si: 0.05 to 1.00%
  • Silicon (Si) deoxidizes the steel. If the Si content is too low, this effect is not obtained. On the other hand, if the Si content is too high, the SSC resistance of the steel material decreases. Therefore, the Si content is within the range of 0.05 to 1.00%. A preferable lower limit of the Si content is 0.15%, and more preferably is 0.20%. A preferable upper limit of the Si content is 0.85%, and more preferably is 0.50%.
  • Mn: 0.05 to 1.00%
  • Manganese (Mn) deoxidizes the steel material. Mn also enhances the hardenability. If the Mn content is too low, these effects are not obtained. On the other hand, if the Mn content is too high, Mn segregates at grain boundaries together with impurities such as P and S. In such a case, the SSC resistance of the steel material will decrease. Therefore, the Mn content is within a range of 0.05 to 1.00%. A preferable lower limit of the Mn content is 0.25%, and more preferably is 0.30%. A preferable upper limit of the Mn content is 0.90%, and more preferably is 0.80%.
  • P: 0.025% or Less
  • Phosphorous (P) is an impurity. In other words, the P content is more than 0%. P segregates at the grain boundaries and decreases the SSC resistance of the steel material. Therefore, the P content is 0.025% or less. A preferable upper limit of the P content is 0.020%, and more preferably is 0.015%. Preferably, the P content is as low as possible. However, if the P content is excessively reduced, the production cost increases significantly. Therefore, when taking industrial production into consideration, a preferable lower limit of the P content is 0.0001%, more preferably is 0.0003%, and further preferably is 0.001%.
  • S: 0.0100% or Less
  • Sulfur (S) is an impurity. In other words, the S content is more than 0%. S segregates at the grain boundaries and decreases the SSC resistance of the steel material. Therefore, the S content is 0.0100% or less. A preferable upper limit of the S content is 0.0050%, and more preferably is 0.0030%. Preferably, the S content is as low as possible. However, if the S content is excessively reduced, the production cost increases significantly. Therefore, when taking industrial production into consideration, a preferable lower limit of the S content is 0.0001%, more preferably is 0.0002%, and further preferably is 0.0003%.
  • Al: 0.005 to 0.100%
  • Aluminum (Al) deoxidizes the steel material. If the Al content is too low, this effect is not obtained and the SSC resistance of the steel material decreases. On the other hand, if the Al content is too high, coarse oxide-based inclusions are formed and the SSC resistance of the steel material decreases. Therefore, the Al content is within a range of 0.005 to 0.100%. A preferable lower limit of the Al content is 0.015%, and more preferably is 0.020%. A preferable upper limit of the Al content is 0.080%, and more preferably is 0.060%. In the present description, the “Al” content means “acid-soluble Al”, that is, the content of “sol. Al”.
  • Cr: 0.20 to 1.50%
  • Chromium (Cr) enhances the hardenability of the steel material. Cr also increases temper softening resistance of the steel material and enables high-temperature tempering. As a result, the SSC resistance of the steel material increases. If the Cr content is too low, aforementioned effects are not obtained. On the other hand, if the Cr content is too high, the toughness and SSC resistance of the steel material decreases. Therefore, the Cr content is within a range of 0.20 to 1.50%. A preferable lower limit of the Cr content is 0.25%, and more preferably is 0.30%. A preferable upper limit of the Cr content is 1.30%.
  • Mo: 0.25 to 1.50%
  • Molybdenum (Mo) enhances the hardenability of the steel material. Mo also forms fine carbides and increases the temper softening resistance of the steel material. As a result, Mo increases the SSC resistance of the steel material by high temperature tempering. If the Mo content is too low, these effects are not obtained. On the other hand, if the Mo content is too high, the aforementioned effects are saturated. Therefore, the Mo content is within a range of 0.25 to 1.50%. A preferable lower limit of the Mo content is 0.50%, and more preferably is 0.65%. A preferable upper limit of the Mo content is 1.20%, and more preferably is 1.00%.
  • Ti: 0.002 to 0.050%
  • Titanium (Ti) forms nitrides, and refines crystal grains by the pinning effect. As a result, the strength of the steel material increases. If the Ti content is too low, this effect is not obtained. On the other hand, if the Ti content is too high, Ti nitrides coarsen and the SSC resistance of the steel material decreases. Therefore, the Ti content is within a range of 0.002 to 0.050%. A preferable lower limit of the Ti content is 0.003%, and more preferably is 0.005%. A preferable upper limit of the Ti content is 0.030%, and more preferably is 0.020%.
  • B: 0.0001 to 0.0050%
  • Boron (B) dissolves in the steel, enhances the hardenability of the steel material and increases the steel material strength. This effect is not obtained if the B content is too low. On the other hand, if the B content is too high, coarse nitrides form and the SSC resistance of the steel material decreases. Therefore, the B content is within a range of 0.0001 to 0.0050%. A preferable lower limit of the B content is 0.0003%, and more preferably is 0.0007%. A preferable upper limit of the B content is 0.0035%, and more preferably is 0.0025%.
  • N: 0.002 to 0.010%
  • Nitrogen (N) is unavoidably contained. N combines with Ti to form fine nitrides and thereby refines the grains. On the other hand, if the N content is too high, N will form coarse nitrides and the SSC resistance of the steel material will decrease. Therefore, the N content is within the range of 0.002 to 0.010%. A preferable upper limit of the N content is 0.005%, and more preferably is 0.004%.
  • O: 0.0100% or Less
  • Oxygen (O) is an impurity. In other words, the O content is more than 0%. O forms coarse oxides and reduces the corrosion resistance of the steel material. Therefore, the O content is 0.0100% or less. A preferable upper limit of the O content is 0.0030%, and more preferably is 0.0020%. Preferably, the O content is as low as possible. However, if the O content is excessively reduced, the production cost increases significantly. Therefore, when taking industrial production into consideration, a preferable lower limit of the O content is 0.0001%, more preferably is 0.0002%, and further preferably is 0.0003%.
  • The balance of the chemical composition of the steel material according to the present embodiment is Fe and impurities. Here, the term “impurities” refers to elements which, during industrial production of the steel material, are mixed in from ore or scrap that is used as a raw material of the steel material, or from the production environment or the like, and which are allowed within a range that does not adversely affect the steel material according to the present embodiment.
  • [Regarding Optional Elements]
  • The chemical composition of the steel material described above may further contain one or more types of element selected from the group consisting of V and Nb in lieu of a part of Fe. Each of these elements is an optional element, and increases the SSC resistance of the steel material.
  • V: 0 to 0.30%
  • Vanadium (V) is an optional element, and need not be contained. In other words, the V content may be 0%. If contained, V combines with C or N to form carbides, nitrides or carbo-nitrides and the like (hereinafter, referred to as “carbo-nitrides and the like”). These carbo-nitrides and the like refine the substructure of the steel material by the pinning effect, and improve the SSC resistance of the steel. V also forms fine carbides during tempering. The fine carbides increase the temper softening resistance of the steel material, and increase the strength of the steel material. In addition, because V also forms spherical MC-type carbides, V suppresses the formation of acicular M2C-type carbides and thereby increases the SSC resistance of the steel material. If even a small amount of V is contained, aforementioned effects are obtained to a certain extent. However, if the V content is too high, the toughness of the steel material decreases. Therefore, the V content is within the range of 0 to 0.30%. A preferable lower limit of the V content is more than 0%, more preferably is 0.01%, and further preferably is 0.02%. A preferable upper limit of the V content is 0.20%, more preferably is 0.15%, and further preferably is 0.12%.
  • Nb: 0 to 0.100%
  • Niobium (Nb) is an optional element, and need not be contained. In other words, the Nb content may be 0%. If contained, Nb forms carbo-nitrides and the like. These carbo-nitrides and the like refine the substructure of the steel material by the pinning effect, and increase the SSC resistance of the steel material. In addition, because Nb also forms spherical MC-type carbides, Nb suppresses the formation of acicular M2C-type carbides and thereby increases the SSC resistance of the steel material. If even a small amount of Nb is contained, aforementioned effects are obtained to a certain extent. However, if the Nb content is too high, carbo-nitrides and the like are excessively formed and the SSC resistance of the steel material decreases. Therefore, the Nb content is within the range of 0 to 0.100%. A preferable lower limit of the Nb content is more than 0%, more preferably is 0.002%, further preferably is 0.003%, and further preferably is 0.007%. A preferable upper limit of the Nb content is 0.025%, and more preferably is 0.020%.
  • A total of the contents of the aforementioned V and Nb is preferably 0.30% or less, and further preferably is 0.20% or less.
  • The chemical composition of the steel material described above may further contain one or more types of element selected from the group consisting of Ca, Mg and Zr in lieu of a part of Fe. Each of these elements is an optional element, and increases the SSC resistance of the steel material.
  • Ca: 0 to 0.0100%
  • Calcium (Ca) is an optional element, and need not be contained. In other words, the Ca content may be 0%. If contained, Ca refines sulfides in the steel material and increases the SSC resistance of the steel material. If even a small amount of Ca is contained, aforementioned effect is obtained to a certain extent. However, if the Ca content is too high, oxides in the steel material coarsen and the SSC resistance of the steel material decreases. Therefore, the Ca content is within the range of 0 to 0.0100%. A preferable lower limit of the Ca content is more than 0%, more preferably is 0.0001%, further preferably is 0.0003%, and further preferably is 0.0006%. A preferable upper limit of the Ca content is 0.0025%, and more preferably is 0.0020%.
  • Mg: 0 to 0.0100%
  • Magnesium (Mg) is an optional element, and need not be contained. In other words, the Mg content may be 0%. If contained, Mg renders S in the steel material harmless by forming sulfides, and increases the SSC resistance of the steel material. If even a small amount of Mg is contained, aforementioned effect is obtained to a certain extent. However, if the Mg content is too high, oxides in the steel material coarsen and decrease the SSC resistance of the steel material. Therefore, the Mg content is within the range of 0 to 0.0100%. A preferable lower limit of the Mg content is more than 0%, more preferably is 0.0001%, further preferably is 0.0003%, and further preferably is 0.0006%, and even further preferably is 0.0010%. A preferable upper limit of the Mg content is 0.0025%, and more preferably is 0.0020%.
  • Zr: 0 to 0.0100%
  • Zirconium (Zr) is an optional element, and need not be contained. In other words, the Zr content may be 0%. If contained, Zr refines sulfides in the steel material and increases the SSC resistance of the steel material. If even a small amount of Zr is contained, aforementioned effect is obtained to a certain extent. However, if the Zr content is too high, oxides in the steel material coarsen. Therefore, the Zr content is within the range of 0 to 0.0100%. A preferable lower limit of the Zr content is more than 0%, more preferably is 0.0001%, further preferably is 0.0003%, and further preferably is 0.0006%. A preferable upper limit of the Zr content is 0.0025%, and more preferably is 0.0020%.
  • In a case where two or more types of element selected from the aforementioned group containing Ca, Mg and Zr are contained in combination, the total of the contents of these elements is preferably 0.0100% or less, and more preferably is 0.0050% or less.
  • The chemical composition of the steel material described above may further contain one or more types of element selected from the group consisting of Co and W in lieu of a part of Fe. Each of these elements is an optional element that forms a protective corrosion coating in a hydrogen sulfide environment and suppresses hydrogen penetration. By this means, each of these elements increases the SSC resistance of the steel material.
  • Co: 0 to 0.50%
  • Cobalt (Co) is an optional element, and need not be contained. In other words, the Co content may be 0%. If contained, Co forms a protective corrosion coating in a hydrogen sulfide environment and suppresses hydrogen penetration. By this means, Co increases the SSC resistance of the steel material. If even a small amount of Co is contained, aforementioned effect is obtained to a certain extent. However, if the Co content is too high, the hardenability of the steel material will decrease, and the steel material strength will decrease. Therefore, the Co content is within the range of 0 to 0.50%. A preferable lower limit of the Co content is more than 0%, more preferably is 0.02%, and further preferably is 0.05%. A preferable upper limit of the Co content is 0.45%, and more preferably is 0.40%.
  • W: 0 to 0.50%
  • Tungsten (W) is an optional element, and need not be contained. In other words, the W content may be 0%. If contained, W forms a protective corrosion coating in a hydrogen sulfide environment and suppresses hydrogen penetration. By this means, W increases the SSC resistance of the steel material. If even a small amount of W is contained, aforementioned effect is obtained to a certain extent. However, if the W content is too high, coarse carbides form in the steel material and the SSC resistance of the steel material decreases. Therefore, the W content is within the range of 0 to 0.50%. A preferable lower limit of the W content is more than 0%, more preferably is 0.02%, and further preferably is 0.05%. A preferable upper limit of the W content is 0.45%, and more preferably is 0.40%.
  • The chemical composition of the steel material described above may further contain one or more types of element selected from the group consisting of Ni and Cu in lieu of a part of Fe. Each of these elements is an optional element, and increases the hardenability of the steel.
  • Ni: 0 to 0.50%
  • Nickel (Ni) is an optional element, and need not be contained. In other words, the Ni content may be 0%. If contained, Ni enhances the hardenability of the steel material and increases the steel material strength. If even a small amount of Ni is contained, aforementioned effect is obtained to a certain extent. However, if the Ni content is too high, the Ni will promote local corrosion, and the SSC resistance of the steel material will decrease. Therefore, the Ni content is within the range of 0 to 0.50%. A preferable lower limit of the Ni content is more than 0%, more preferably is 0.02%, and further preferably is 0.05%. A preferable upper limit of the Ni content is 0.35%, and more preferably is 0.25%.
  • Cu: 0 to 0.50%
  • Copper (Cu) is an optional element, and need not be contained. In other words, the Cu content may be 0%. If contained, Cu enhances the hardenability of the steel material and increases the steel material strength. If even a small amount of Cu is contained, aforementioned effect is obtained to a certain extent. However, if the Cu content is too high, the hardenability of the steel material will be too high, and the SSC resistance of the steel material will decrease. Therefore, the Cu content is within the range of 0 to 0.50%. A preferable lower limit of the Cu content is more than 0%, more preferably is 0.01%, further preferably is 0.02%, and further preferably is 0.05%. A preferable upper limit of the Cu content is 0.35%, and more preferably is 0.25%.
  • [Amount of Dissolved C]
  • The steel material according to the present embodiment contains an amount of dissolved C which is within the range of 0.010 to 0.060 mass %. If the amount of dissolved C is less than 0.010 mass %, the immobilization of dislocations in the steel material will be insufficient and excellent SSC resistance of the steel material will not be obtained. On the other hand, if the amount of dissolved C is more than 0.060 mass %, conversely, the SSC resistance of the steel material will decrease. Therefore, the amount of dissolved C is within the range of 0.010 to 0.060 mass %. A preferable lower limit of the amount of dissolved C is 0.020 mass % and more preferably is 0.030 mass %
  • An amount of dissolved C within the aforementioned range is obtained by, for example, controlling the holding time for tempering and controlling the cooling rate in the tempering process. The reason is as described hereinafter.
  • The amount of dissolved C is highest immediately after quenching. Immediately after quenching, C is dissolved except for a small amount thereof that precipitated as carbides during quenching. In the tempering process thereafter, some of the C precipitates as carbides as a result of being held for tempering. As a result, the amount of dissolved C decreases toward the thermal equilibrium concentration with respect to the tempering temperature. If the holding time for tempering is too short, this effect will not be obtained and the amount of dissolved C will be too high. On the other hand, if the holding time for tempering is too long, the amount of dissolved C will approach the aforementioned thermal equilibrium concentration, and will hardly change. Therefore, in the present embodiment the holding time for tempering is set within the range of 10 to 90 minutes.
  • If the cooling rate for cooling after tempering is slow, dissolved C will reprecipitate while the temperature is decreasing. In the conventional methods for producing steel material, because cooling after tempering has been performed by allowing the steel material to cool, the cooling rate has been slow. Consequently, the amount of dissolved C has been almost 0 mass %. Therefore, in the present embodiment, the cooling rate after tempering is raised, and a dissolved C amount in the range of 0.010 to 0.060 mass % is obtained.
  • The cooling method is, for example, a method that performs forced cooling of the steel material continuously from the tempering temperature to thereby continuously decrease the surface temperature of the steel material. Examples of this kind of continuous cooling treatment include a method that cools the steel material by immersion in a water bath, and a method that cools the steel material in an accelerated manner by shower water cooling, mist cooling or forced air cooling.
  • The cooling rate after tempering is measured at a region that is most slowly cooled within a cross-section of the steel material that is tempered (for example, in the case of forcedly cooling both surfaces, the cooling rate is measured at the center portion of the steel material thickness). Specifically, in a case where the steel material is a steel plate, the cooling rate after tempering can be measured by inserting a sheath-type thermocouple into the center portion of the thickness of the steel plate and measuring the temperature. In a case where the steel material is a steel pipe, the cooling rate after tempering can be measured by inserting a sheath-type thermocouple into the center portion of the wall thickness of the steel pipe and measuring the temperature. Further, in a case of forcedly cooling only a surface on one side of the steel material, the surface temperature on the non-forcedly cooled side of the steel material can be measured by means of a non-contact type infrared thermometer.
  • The temperature region from 600° C. to 200° C. is a temperature region in which diffusion of C is comparatively fast. Therefore, in the present embodiment, the average cooling rate in the temperature region from 600° C. to 200° C. is made 5° C./sec or more.
  • On the other hand, if the cooling rate after tempering is too fast, very little of the C that had dissolved after being held during tempering precipitates. As a result, in some cases the amount of dissolved C is excessive. In this case, the SSC resistance of the steel material decreases. Therefore, in the present embodiment, the cooling rate after tempering is made 300° C./sec or less.
  • In this case, the amount of dissolved C can be made to fall within the range of 0.010 to 0.060 mass %. However, the amount of dissolved C in the steel material may be adjusted to within a range of 0.010 to 0.060 mass % by another method.
  • [Method for Calculating Amount of Dissolved C]
  • The term “amount of dissolved C” means the difference between the amount of C (mass %) in carbides in the steel material and the C content of the chemical composition of the steel material. The amount of C in carbides in the steel material is determined by Formula (1) to Formula (5) using an Fe concentration <Fe>a, a Cr concentration <Cr>a, an Mn concentration <Mn>a, an Mo concentration <Mo>a, a V concentration <V>a and an Nb concentration <Nb>a in carbides (cementite and MC-type carbides) obtained as residue when extraction residue analysis is performed on the steel material, and an Fe concentration <Fe>b, a Cr concentration <Cr>b, an Mn concentration <Mn>b and an Mo concentration <Mo>b in cementite obtained by performing point analysis by EDS with respect to cementite identified by performing TEM observation of a replica film obtained by an extraction replica method.

  • <Mo>c=(<Fe>a+<Cr>a+<Mn>a)x<Mo>b/(<Fe>b+<Cr>b+<Mn>b)  (1)

  • <Mo>d=<Mo>a−<Mo>c  (2)

  • <C>a=(<Fe>a/55.85+<Cr>a/52+<Mn>a/53.94+<Mo>c/95.9)/3×12  (3)

  • <C>b=(<V>a/50.94+<Mo>d/95.9+<Nb>a/92.9)×12  (4)

  • (amount of dissolved C)=<C>−(<C>a+<C>b)  (5)
  • Note that, in the present description, the term “cementite” means carbides containing an Fe content of 50 mass % or more. Hereunder, the method for calculating the amount of dissolved C is described in detail.
  • [Determination of C Content of Steel Material]
  • In a case where the steel material is a plate material, an analysis sample having the shape of a machined chip is taken from a center portion of the thickness, and in a case where the steel material is a pipe material, an analysis sample having the shape of a machined chip is taken from a center portion of the wall thickness. The C content (mass %) is analyzed by an oxygen-stream combustion-infrared absorption method. The resulting value was taken to be the C content (<C>) of the steel material.
  • [Calculation of C Amount that Precipitates as Carbides (Precipitated C Amount)]
  • The precipitated C amount is calculated by the following procedures 1 to 4. Specifically, in procedure 1 an extraction residue analysis is performed. In procedure 2, an extraction replica method using a transmission electron microscope (hereunder, referred to as “TEM”), and an element concentration analysis (hereunder, referred to as “EDS analysis”) of elements in cementite is performed by energy dispersive X-ray spectrometry (hereunder, referred to as “EDS”). In procedure 3, the Mo content is adjusted. In procedure 4, the precipitated C amount is calculated.
  • [Procedure 1. Determination of Residual Amounts of Fe, Cr, Mn, Mo, V and Nb by Extraction Residue Analysis]
  • In procedure 1, carbides in the steel material are captured as residue, and the contents of Fe, Cr, Mn, Mo, V and Nb in the residue are determined. Here, the term “carbides” is a generic term for cementite (M3C-type carbides) and MC-type carbides. The specific procedure is as follows. In a case where the steel material is a plate material, a cylindrical test specimen having a diameter of 6 mm and a length of 50 mm is extracted from a center portion of the thickness. In a case where the steel material is a steel pipe, a cylindrical test specimen having a diameter of 6 mm and a length of 50 mm is extracted from a center portion of the wall thickness of the steel pipe in a manner so that the center of the wall thickness becomes the center of the cross-section. The surface of the extracted test specimen is polished to remove about 50 μm by preliminary electropolishing to obtain a newly formed surface. The electropolished test specimen is subjected to electrolysis in an electrolyte solution of 10% acetylacetone+1% tetra-ammonium+methanol. The electrolyte solution after electrolysis is passed through a 0.2-μm filter to capture residue. The obtained residue is subjected to acid decomposition, and the concentrations of Fe, Cr, Mn, Mo, V and Nb are determined in units of mass percent by ICP (inductively coupled plasma) optical emission spectrometry. The concentrations are defined as <Fe>a, <Cr>a, <Mn>a, <Mo>a, <V>a and <Nb>a, respectively.
  • [Procedure 2. Determination of Content of Fe, Cr, Mn and Mo in Cementite by Extraction Replica Method and EDS]
  • In procedure 2, the content of each of Fe, Cr, Mn and Mo in cementite is determined. The specific procedure is as follows. A micro test specimen is cut out from a center portion of the thickness in a case where the steel material is a plate material, and is cut out from a center portion of the wall thickness in a case where the steel material is a steel pipe, and the surface of the micro test specimen is finished by mirror polishing. The test specimen is immersed for 10 minutes in a 3% nital etching reagent to etch the surface. The surface thereof is covered with a carbon deposited film. The test specimen whose surface is covered with the deposited film is immersed in a 5% nital etching reagent, and held therein for 20 minutes to cause the deposited film to peel off. The deposited film that peeled off is cleaned with ethanol, and thereafter is scooped up with a sheet mesh and dried. The deposited film (replica film) is observed using a TEM, and point analysis by EDS is performed with respect to 20 particles of cementite. The concentration of each of Fe, Cr, Mn and Mo is determined in units of mass percent when taking the total of the alloying elements excluding carbon in the cementite as 100%. The concentrations are determined for 20 particles of cementite, and the arithmetic average values for the respective elements are defined as <Fe>b, <Cr>b, <Mn>b and <Mo>b.
  • [Procedure 3. Adjustment of Mo Amount]
  • Next, the Mo concentration in the carbides is determined. In this case, Fe, Cr, Mn and Mo concentrate in cementite. On the other hand, V, Nb and Mo concentrate in MC-type carbides. In other words, Mo is caused to concentrate in both cementite and MC-type carbides by tempering. Therefore, the Mo amount is calculated separately for cementite and for MC-type carbides. Note that, in some cases a part of V also concentrates in cementite. However, the amount of V that concentrates in cementite is negligibly small in comparison to the amount of V that concentrates in MC-type carbides. Therefore, when determining the amount of dissolved C, V is regarded as concentrating only in MC-type carbides.
  • Specifically, the amount of Mo precipitating as cementite (<Mo>c) is calculated by Formula (1).

  • <Mo>c=(<Fe>a+<Cr>a+<Mn>a)x<Mo>b/(<Fe>b+<Cr>b+<Mn>b)  (1)
  • On the other hand, the amount of Mo precipitating as MC-type carbides (<Mo>d) is calculated in units of mass percent by Formula (2).

  • <Mo>d=<Mo>a−<Mo>c  (2)
  • [Procedure 4. Calculation of Precipitated C Amount]
  • The precipitated C amount is calculated as the total of the C amount precipitating as cementite (<C>a) and the C amount precipitating as MC-type carbides (<C>b). <C>a and <C>b are calculated in units of mass percent by Formula (3) and Formula (4), respectively. Note that, Formula (3) is a formula that is derived from the fact that the structure of cementite is a M3C type structure (M include Fe, Cr, Mn and Mo).

  • <C>a=(<Fe>a/55.85+<Cr>a/52+<Mn>a/53.94+<Mo>c/95.9)/3×12  (3)

  • <C>b=(<V>a/50.94+<Mo>d/95.9+<Nb>a/92.9)×12  (4)
  • Thus, the precipitated C amount is <C>a+<C>b.
  • [Calculation of Amount of Dissolved C]
  • The amount of dissolved C (hereunder, also referred to as “<C>c”) is calculated in units of mass percent by Formula (5) as a difference between the C content (<C>) and the precipitated C amount of the steel material.

  • <C>c=<C>−(<C>a+<C>b)  (5)
  • [Microstructure]
  • The microstructure of the steel material according to the present embodiment is principally composed of tempered martensite and tempered bainite. More specifically, the volume ratio of tempered martensite and/or tempered bainite in the microstructure is 90% or more. In other words, the total of the volume ratios of tempered martensite and tempered bainite in the microstructure is 90% or more. The balance of the microstructure is, for example, retained austenite or the like. If the microstructure of the steel material containing the aforementioned chemical composition contains tempered martensite and tempered bainite in an amount equivalent to a total volume ratio of 90% or more, the yield strength will be within the range of 965 to 1069 MPa (140 ksi grade), and the yield ratio will be 90% or more.
  • In the present embodiment, if the yield strength YS is within the range of 965 to 1069 MPa (140 ksi grade) and the YR is 90% or more, it is assumed that the total of the volume ratios of tempered martensite and tempered bainite in the microstructure is 90% or more. Preferably, the microstructure is composed of only tempered martensite and/or tempered bainite.
  • Note that, the following method can be adopted in the case of determining the total of the volume ratios of tempered martensite and tempered bainite by observation. In a case where the steel material is a plate material, a small piece having an observation surface with dimensions of 10 mm in the rolling direction and 10 mm in the plate width direction is cut out from a center portion of the thickness. In a case where the steel material is a steel pipe, a small piece having an observation surface with dimensions of 10 mm in the pipe axis direction and 10 mm in the pipe circumferential direction is cut out from a center portion of the wall thickness. After polishing the observation surface to obtain a mirror surface, the small piece is immersed for about 10 seconds in a nital etching reagent, to reveal the microstructure by etching. The etched observation surface is observed by means of a secondary electron image obtained using a scanning electron microscope (SEM), and observation is performed for 10 visual fields. The area of each visual field is 400 m2 (magnification of ×5000). In each visual field, tempered martensite and tempered bainite are identified based on the contrast. The total of the area fractions of tempered martensite and tempered bainite that are identified is determined. In the present embodiment, the arithmetic average value of the totals of the area fractions of tempered martensite and tempered bainite determined in all visual fields is taken as the volume ratio of tempered martensite and tempered bainite.
  • [Shape of Steel Material]
  • The shape of the steel material according to the present embodiment is not particularly limited. The steel material is, for example, a steel pipe or a steel plate. In a case where the steel material is an oil-well steel pipe, preferably the steel material is a seamless steel pipe. In this case, a preferable wall thickness is 9 to 60 mm. The steel material according to the present embodiment is, in particular, suitable for use as a heavy-wall oil-well steel pipe. More specifically, even if the steel material according to the present embodiment is an oil-well steel pipe having a thick wall of 15 mm or more or, furthermore, 20 mm or more, the steel material exhibits excellent strength and SSC resistance.
  • [Yield Strength YS and Yield Ratio YR of Steel Material]
  • The yield strength YS of the steel material according to the present embodiment is within a range of 965 to 1069 MPa (140 ksi grade), and the yield ratio YR of the steel material is 90% or more. In the present description, the term “yield strength YS” means the stress when elongation of 0.65% is obtained in a tensile test. In short, the strength of the steel material according to the present embodiment is of 140 ksi grade. Even though the steel material according to the present embodiment has such high strength, the steel material also has excellent SSC resistance by satisfying the conditions regarding the chemical composition, amount of dissolved C and microstructure, which are described above.
  • [SSC Resistance of Steel Material]
  • The SSC resistance of the steel material according to the present embodiment can be evaluated by a DCB test performed in accordance with “Method D” described in NACE TM0177-2005. The liquid solution used is obtained by mixing a degassed 5% saline solution and 4 g/L of sodium acetate and adjusting to pH 3.5 using hydrochloric acid. The gas charged inside the autoclave is a gaseous mixture of 10% H2S gas and 90% CO2 gas at a total pressure of 1 atm. Thereafter, a DCB test specimen into which a wedge was driven is enclosed inside the vessel, and is held for three weeks at 24° C. while agitating the liquid solution and also continuously blowing in the aforementioned gaseous mixture. The K1SSC (MPa√m) value of the steel material according to the present embodiment determined under the foregoing conditions is 30.0 MPa√m or more.
  • [Production Method]
  • The method for producing a steel material according to the present embodiment includes a preparation process, a quenching process and a tempering process. The preparation process may include a starting material preparation process and a hot working process. In the present embodiment, a method for producing an oil-well steel pipe will be described as one example of a method for producing a steel material. The method for producing an oil-well steel pipe includes a process of preparing a hollow shell (preparation process), and a process of subjecting the hollow shell to quenching and tempering to obtain an oil-well steel pipe (quenching process and tempering process). Each of these processes is described in detail hereunder.
  • [Preparation Process]
  • In the preparation process, an intermediate steel material containing the aforementioned chemical composition is prepared. The method for producing the intermediate steel material is not particularly limited as long as the intermediate steel material contains the aforementioned chemical composition. As used here, the term “intermediate steel material” refers to a plate-shaped steel material in a case where the end product is a steel plate, and refers to a hollow shell in a case where the end product is a steel pipe.
  • The preparation process may preferably include a process in which a starting material is prepared (starting material preparation process), and a process in which the starting material is subjected to hot working to produce an intermediate steel material (hot working process). Hereunder, a case in which the preparation process includes the starting material preparation process and the hot working process is described in detail.
  • [Starting Material Preparation Process]
  • In the starting material preparation process, a starting material is produced using molten steel containing the aforementioned chemical composition. Specifically, a cast piece (a slab, bloom or billet) is produced by a continuous casting process using the molten steel. An ingot may also be produced by an ingot-making process using the molten steel. As necessary, the slab, bloom or ingot may be subjected to blooming to produce a billet. The starting material (a slab, bloom or billet) is produced by the above described process.
  • [Hot Working Process]
  • In the hot working process, the starting material that was prepared is subjected to hot working to produce an intermediate steel material. In a case where the steel material is a steel pipe, the intermediate steel material corresponds to a hollow shell. First, the billet is heated in a heating furnace. Although the heating temperature is not particularly limited, for example, the heating temperature is within a range of 1100 to 1300° C. The billet that is extracted from the heating furnace is subjected to hot working to produce a hollow shell (seamless steel pipe). For example, the Mannesmann process is performed as the hot working to produce the hollow shell. In this case, a round billet is piercing-rolled using a piercing machine. When performing piercing-rolling, although the piercing ratio is not particularly limited, the piercing ratio is, for example, within a range of 1.0 to 4.0. The round billet that underwent piercing-rolling is further hot-rolled to form a hollow shell using a mandrel mill, a reducer, a sizing mill or the like. The cumulative reduction of area in the hot working process is, for example, 20 to 70%.
  • A hollow shell may also be produced from the billet by another hot working method. For example, in the case of a heavy-wall steel material of a short length such as a coupling, a hollow shell may be produced by forging such as Ehrhardt process. A hollow shell is produced by the above process. Although not particularly limited, the wall thickness of the hollow shell is, for example, 9 to 60 mm.
  • The hollow shell produced by hot working may be air-cooled (as-rolled). The hollow shell produced by hot working may be subjected to direct quenching after hot rolling without being cooled to normal temperature, or may be subjected to quenching after undergoing supplementary heating (reheating) after hot rolling. However, in the case of performing direct quenching or quenching after supplementary heating, it is preferable to stop the cooling midway through the quenching process and conduct slow cooling for the purpose of suppressing quench cracking.
  • In a case where direct quenching is performed after hot rolling, or quenching is performed after supplementary heating after hot rolling, for the purpose of eliminating residual stress, a stress relief treatment (SR treatment) may be performed at a time that is after quenching and before the heat treatment of the next process.
  • As described above, an intermediate steel material is prepared in the preparation process. The intermediate steel material may be produced by the aforementioned preferable process, or may be an intermediate steel material that was produced by a third party, or an intermediate steel material that was produced in another factory other than the factory in which a quenching process and a tempering process that are described later are performed, or at a different works. The quenching process is described in detail hereunder.
  • [Quenching Process]
  • In the quenching process, the intermediate steel material (hollow shell) that was prepared is subjected to quenching. In the present description, the term “quenching” means rapidly cooling the intermediate steel material that is at a temperature not less than the A3 point. A preferable quenching temperature is 800 to 1000° C. In a case where direct quenching is performed after hot working, the quenching temperature corresponds to the surface temperature of the intermediate steel material that is measured by a thermometer placed on the exit side of the apparatus that performs the final hot working. Further, in a case where quenching is performed after supplementary heating is performed after hot working, the quenching temperature corresponds to the temperature of the furnace that performs the supplementary heating.
  • The quenching method, for example, continuously cools the hollow shell from the quenching starting temperature, and continuously decreases the surface temperature of the hollow shell. The method of performing the continuous cooling treatment is not particularly limited. The method of performing the continuous cooling treatment is, for example, a method that cools the hollow shell by immersing the hollow shell in a water bath, or a method that cools the hollow shell in an accelerated manner by shower water cooling or mist cooling.
  • If the cooling rate during quenching is too slow, the microstructure does not become one that is principally composed of martensite and bainite, and the mechanical property defined in the present embodiment is not obtained. Therefore, as described above, in the method for producing the steel material according to the present embodiment, the intermediate steel material is rapidly cooled during quenching. Specifically, in the quenching process, the average cooling rate when the surface temperature of the intermediate steel material (hollow shell) is within the range of 800 to 500° C. during quenching is defined as a cooling rate during quenching CR800-500. The cooling rate during quenching CR800-500 is 50° C./min or higher. A preferable lower limit of the cooling rate during quenching CR800-500 is 100° C./min, and more preferably is 250° C./min. Although an upper limit of the cooling rate during quenching CR800-500 is not particularly defined, for example, the upper limit is 60000° C./min.
  • Preferably, quenching is performed after performing heating of the hollow shell in the austenite zone a plurality of times. In this case, the SSC resistance of the steel material increases because austenite grains are refined prior to quenching. Heating in the austenite zone may be repeated a plurality of times by performing quenching a plurality of times, or heating in the austenite zone may be repeated a plurality of times by performing normalizing and quenching. Hereunder, the tempering process will be described in detail.
  • [Tempering Process]
  • Tempering is performed after performing the aforementioned quenching. The tempering temperature is appropriately adjusted in accordance with the chemical composition of the steel material and the yield strength YS, which is to be obtained. In other words, with respect to the hollow shell containing the chemical composition of the present embodiment, the tempering temperature is adjusted so as to adjust the yield strength YS of the steel material to within a range of 965 to 1069 MPa (140 ksi grade) and to make the YR of the steel material 90% or more.
  • A preferable tempering temperature is in a range from 660° C. to the Act point. If the tempering temperature is 660° C. or more, carbides are sufficiently spheroidized and the SSC resistance is further increased.
  • If the holding time for tempering (tempering time) is too short, the amount of dissolved C becomes excessive because precipitation of carbides does not proceed. Even if the tempering time is overlong, there will be almost no change in the amount of dissolved C. Therefore, in order to control the amount of dissolved C to be within an appropriate range, the tempering time is set within a range of 10 to 90 minutes. A preferable lower limit of the tempering time is 15 minutes. A preferable upper limit of the tempering time is 70 minutes, and more preferably is 60 minutes. Note that, in a case where the steel material is a steel pipe, in comparison to other shapes, temperature variations with respect to the steel pipe are liable to occur during holding for tempering. Therefore, in a case where the steel material is a steel pipe, the tempering time is preferably set within a range of 15 to 90 minutes. A person skilled in the art will be sufficiently capable of making the yield strength YS of the steel material containing the chemical composition of the present embodiment fall within the range of 965 to less than 1069 MPa by appropriately adjusting the aforementioned holding time at the aforementioned tempering temperature.
  • [Regarding Rapid Cooling after Tempering]
  • Conventionally, cooling after tempering has not been controlled. However, if the cooling rate of the steel material after tempering (that is, after being held for the aforementioned holding time at the aforementioned tempering temperature) is slow, almost all of the C that had dissolved will reprecipitate while the temperature is decreasing. In other words, the amount of dissolved C will be approximately 0 mass %. Therefore, in the present embodiment, the intermediate steel material (hollow shell) after tempering is rapidly cooled.
  • Specifically, in the tempering process, the average cooling rate when the surface temperature of the intermediate steel material (hollow shell) is within the range of 600 to 200° C. after tempering is defined as a cooling rate after tempering CR600-200. In the method for producing the steel material according to the present embodiment, the cooling rate after tempering CR600-200 is 5° C./sec or higher. By this means, the amount of dissolved C according to the present embodiment is obtained. The temperature region from 600° C. to 200° C. is a temperature region in which diffusion of C is comparatively fast. On the other hand, if the cooling rate after tempering is too fast, in some cases very little of the C that had dissolved will precipitate, and the amount of dissolved C will be excessive. In such a case, the SSC resistance of the steel material decreases. Furthermore, in such a case, the low-temperature toughness of the steel material may decrease.
  • Therefore, the cooling rate after tempering CR600-200 is within the range of 5 to 300° C./sec. A preferable lower limit of the cooling rate after tempering CR600-200 is 10° C./sec, and more preferably is 15° C./sec. A preferable upper limit of the cooling rate after tempering CR600-200 is 100° C./sec, and more preferably is 50° C./sec.
  • A method for cooling so that the cooling rate after tempering CR600-200 is within the range of 5 to 300° C./sec is not particularly limited, and a well-known method can be used. The cooling method, for example, is a method that performs forced cooling of a hollow shell continuously from the tempering temperature to thereby continuously decrease the surface temperature of the hollow shell. Examples of this kind of continuous cooling treatment include a method that cools the hollow shell by immersion in a water bath, and a method that cools the hollow shell in an accelerated manner by shower water cooling, mist cooling or forced air cooling. Note that, the cooling rate after tempering CR600-200 is measured at a region that is most slowly cooled within a cross-section of the intermediate steel material that is tempered (for example, in the case of forcedly cooling both surfaces, the cooling rate is measured at the center portion of the thickness of the intermediate steel material).
  • A method for producing a steel pipe has been described as one example of the aforementioned production method. However, the steel material according to the present embodiment may be a steel plate or another shape. An example of a method for producing a steel plate or a steel material of another shape also includes, for example, a preparation process, a quenching process and a tempering process, similarly to the production method described above. However, the aforementioned production method is one example, and the steel material according to the present embodiment may be produced by another production method.
  • EXAMPLES
  • Molten steels of a weight of 180 kg containing the chemical compositions shown in Table 1 were produced.
  • TABLE 1
    Test Chemical Composition (Unit is mass %; balance is Fe and impurities)
    Number C Si Mn P S Al Cr Mo Ti B N
     1 0.51 0.31 0.42 0.008 0.0007 0.036 0.49 0.71 0.015 0.0013 0.005
     2 0.52 0.29 0.46 0.009 0.0005 0.055 0.48 0.70 0.015 0.0011 0.003
     3 0.53 0.31 0.46 0.009 0.0008 0.036 1.05 0.70 0.014 0.0013 0.002
     4 0.51 0.30 0.43 0.008 0.0007 0.043 1.04 0.69 0.016 0.0014 0.005
     5 0.53 0.31 0.44 0.009 0.0008 0.049 0.50 0.70 0.014 0.0014 0.003
     6 0.55 0.29 0.45 0.011 0.0008 0.041 0.48 1.25 0.013 0.0015 0.002
     7 0.58 0.23 0.41 0.012 0.0006 0.045 1.01 0.68 0.013 0.0014 0.005
     8 0.60 0.27 0.43 0.010 0.0008 0.039 0.99 0.70 0.014 0.0012 0.004
     9 0.62 0.26 0.42 0.010 0.0011 0.041 0.53 0.72 0.007 0.0012 0.003
    10 0.61 0.26 0.44 0.011 0.0008 0.035 0.53 0.68 0.007 0.0013 0.004
    11 0.62 0.26 0.44 0.009 0.0008 0.049 0.65 0.70 0.006 0.0012 0.003
    12 0.67 0.26 0.44 0.010 0.0008 0.045 1.35 0.50 0.007 0.0013 0.003
    13 0.68 0.24 0.41 0.011 0.0006 0.038 0.49 0.70 0.011 0.0013 0.004
    14 0.51 0.26 0.43 0.012 0.0007 0.046 0.49 0.71 0.006 0.0005 0.003
    15 0.51 0.29 0.40 0.010 0.0005 0.047 1.10 0.71 0.015 0.0023 0.004
    16 0.52 0.29 0.43 0.011 0.0010 0.050 0.65 0.70 0.018 0.0021 0.005
    17 0.51 0.31 0.47 0.012 0.0006 0.049 1.00 0.69 0.019 0.0014 0.004
    18 0.55 0.29 0.40 0.009 0.0008 0.036 0.12 0.68 0.015 0.0014 0.004
    19 0.56 0.28 0.44 0.009 0.0008 0.046 1.30 0.19 0.007 0.0015 0.003
    20 0.54 0.28 1.20 0.010 0.0006 0.043 0.52 0.57 0.006 0.0012 0.005
    21 0.58 0.28 0.44 0.011 0.0007 0.033 0.51 0.88 0.027 0.0015 0.015
    22 0.62 1.50 0.44 0.010 0.0010 0.045 0.52 0.98 0.027 0.0015 0.003
    23 0.52 0.27 0.38 0.009 0.0008 0.041 0.50 0.66 0.008 0.0013 0.004
    24 0.60 0.22 0.45 0.011 0.0008 0.031 0.51 0.71 0.012 0.0012 0.003
    25 0.55 0.30 0.42 0.009 0.0010 0.049 0.67 0.71 0.011 0.0015 0.004
    Test Chemical Composition (Unit is mass %; balance is Fe and impurities)
    Number O V Nb Ca Mg Zr Co W Ni Cu
     1 0.0006 0.10 0.010
     2 0.0008
     3 0.0007 0.09
     4 0.0011 0.011
     5 0.0013 0.0019
     6 0.0015 0.0015
     7 0.0007 0.0018
     8 0.0006 0.32
     9 0.0010 0.31
    10 0.0009 0.06
    11 0.0008 0.24
    12 0.0016
    13 0.0015
    14 0.0012
    15 0.0011
    16 0.0018
    17 0.0014
    18 0.0014
    19 0.0011 0.10
    20 0.0014
    21 0.0015
    22 0.0017
    23 0.0014
    24 0.0016 0.10
    25 0.0009
  • Ingots were produced using the aforementioned molten steels. The ingots were hot rolled to produce steel plates having a thickness of 20 mm.
  • After hot rolling, the steel plate of each test number was allowed to cool to bring the steel plate temperature to normal temperature (25° C.).
  • After being allowed to cool, the steel plates of each test number were reheated to bring the steel plate temperature to the quenching temperature (920° C., which is in the austenite single-phase zone), and were held for 20 minutes. After being held, the steel plates were immersed in a water bath and quenched. At this time, the cooling rate during quenching (CR800-500) was 400° C./min. With respect to Test Number 23, after holding at the quenching temperature, the steel plate was cooled by immersion in an oil bath. At this time, the average cooling rate from 800° C. to 500° C. was 40° C./min.
  • After quenching, the steel plates of each test number were subjected to tempering. In the tempering, the tempering temperature was adjusted so that the steel plates became 140 ksi grade as specified in the API standards (yield strength of 965 to 1069 MPa). After performing a heat treatment at the respective tempering temperatures, the steel plates were cooled. For the cooling, controlled cooling by mist water cooling from both sides of the steel plate was performed. Note that, a type K thermocouple of a sheath type was inserted into a center portion of the thickness of the steel plate in advance, and the temperature was measured with respect to tempering and the cooling thereafter. The tempering temperature (° C.) and tempering time (min) and the cooling rate (CR600-200) (° C./sec) after tempering are shown in Table 2. Note that, the Ac1 point of the steel material in each of Test Number 1 to Test Number 25 was 750° C., and the tempering temperature was set so as to be lower than the Ac1 point.
  • TABLE 2
    Cooling
    Tempering Tempering Rate After Dissolved C KISSC (MPa√m)
    Test Temperature Time Tempering YS TS YR Amount Average
    Number (° C.) (min) (° C./sec) (MPa) (MPa) (%) (mass %) 1 2 3 Value
    1 700 15 25 1025 1087 94 0.043 31.4 32.0 33.9 32.4
    2 690 15 10 973 1050 93 0.041 35.1 32.3 32.9 33.4
    3 690 30 10 1059 1148 92 0.041 30.6 31.5 31.4 31.2
    4 690 40 5 1065 1153 92 0.025 30.9 31.6 31.1 31.2
    5 680 40 10 983 1059 93 0.041 33.3 32.0 31.2 32.2
    6 680 35 10 988 1068 93 0.046 33.2 32.6 31.7 32.5
    7 680 35 35 993 1073 93 0.044 32.6 34.0 35.2 33.9
    8 680 35 35 991 1071 93 0.044 33.9 32.7 33.2 33.3
    9 680 60 35 980 1056 93 0.048 32.9 33.6 33.8 33.4
    10 680 30 15 984 1060 93 0.050 34.8 36.3 36.2 35.8
    11 680 30 10 989 1062 93 0.037 31.6 33.6 33.2 32.8
    12 680 30 10 986 1060 93 0.045 34.4 34.2 35.9 34.8
    13 680 60 25 974 1048 93 0.047 35.9 34.7 34.8 35.1
    14 670 30 2 987 1065 93 0.005 24.7 26.3 26.7 25.9
    15 670 40 2 980 1053 93 0.003 26.2 21.5 22.7 23.5
    16 690 5 10 990 1084 91 0.083 22.7 23.7 25.1 23.8
    17 670 10 600 992 1078 92 0.074 23.5 24.5 24.8 24.3
    18 660 20 15 973 1042 93 0.048 25.8 20.6 23.0 23.1
    19 690 20 25 1056 1137 93 0.044 21.0 21.4 23.7 22.0
    20 690 30 5 976 1045 93 0.033 20.5 19.5 21.4 20.5
    21 690 30 25 973 1044 93 0.052 25.1 25.8 27.2 26.0
    22 690 30 15 974 1047 93 0.046 22.4 24.2 20.8 22.5
    23 670 10 15 966 1094 88 0.043 24.3 21.2 21.0 22.2
    24 690 30 2 1041 1124 93 0.003 24.1 25.1 23.4 24.2
    25 600 30 10 1345 1465 92 0.046 10.1 5.3 4.2 6.5
  • [Evaluation Results]
  • [YS and TS Tests]
  • A tensile test was performed in accordance with ASTM E8. Round bar tensile test specimens having a diameter of 6.35 mm and a parallel portion length of 35 mm were prepared from the center parts of the thickness of the steel plates of each test number after the quenching and tempering described above. The axial direction of each of the tensile test specimens was parallel to the rolling direction of the steel plate. A tensile test was performed in the atmosphere at normal temperature (25° C.) using each round bar test specimen, and the yield strength YS (MPa) and tensile strength TS (MPa) were obtained. Note that, in the present examples, the stress at the time of 0.65% elongation obtained in the tensile test defined as the YS for each test number. Further, the largest stress during uniform elongation was taken as the TS. A ratio between the YS and the TS was adopted as the yield ratio YR (%).
  • [Microstructure Determination Test]
  • With respect to the microstructures of the steel plates of each test number, apart from Test Number 23 and 25, because the YS was in a range of 965 to 1069 MPa (140 ksi grade) and the YR was 90% or more, it was determined that the total of the volume ratios of tempered martensite and tempered bainite was 90% or more. In the case of Test Number 23, it is considered that ferrite formed.
  • [Amount of Dissolved C Measurement Test]
  • With respect to the steel plates of each test number, the amount of dissolved C (mass %) was measured and calculated by the measurement method described above. Note that, the TEM used was JEM-2010 manufactured by JEOL Ltd., the acceleration voltage was set to 200 kV, and for the EDS point analysis the irradiation current was 2.56 nA, and measurement was performed for 60 seconds at each point. The observation regions for the TEM observation were 8 μm×8 μm, and observation was performed with respect to an arbitrary 10 visual fields. The residual amounts of each element and the concentrations of each element in cementite that were used to calculate the amount of dissolved C were as listed in Table 3.
  • TABLE 3
    Residual Amount Concentration In Dissolved C
    Test (mass %) Cementite (mass %) Amount
    Number Fe Mn Cr Mo V Nb Fe Mn Cr Mo (mass %)
    1 5.6 0.25 0.27 0.23 0.088 0.010 88.8 2.7 3.9 4.6 0.043
    2 5.9 0.25 0.28 0.36 83.7 3.8 7.5 5.0 0.041
    3 5.6 0.22 0.52 0.33 0.075 77.6 2.8 14.6 5.0 0.041
    4 5.7 0.21 0.47 0.40 0.011 78.0 2.9 14.4 4.7 0.025
    5 6.1 0.24 0.23 0.36 86.5 2.9 5.6 5.0 0.041
    6 6.0 0.29 0.24 0.68 84.8 3.0 3.7 8.5 0.046
    7 6.5 0.23 0.44 0.44 81.2 2.5 10.7 5.6 0.044
    8 6.7 0.24 0.48 0.43 77.8 2.6 14.6 5.0 0.044
    9 7.1 0.32 0.25 0.46 83.6 2.8 8.1 5.5 0.048
    10 6.9 0.27 0.33 0.44 84.2 2.9 7.7 5.2 0.050
    11 7.2 0.29 0.32 0.47 80.8 2.9 10.8 5.5 0.037
    12 7.4 0.32 0.67 0.42 72.1 2.5 20.9 4.5 0.045
    13 7.8 0.35 0.36 0.46 85.6 2.6 6.8 5.0 0.047
    14 6.3 0.25 0.29 0.29 85.9 2.9 7.2 4.0 0.005
    15 6.0 0.26 0.55 0.35 78.0 2.2 15.0 4.8 0.003
    16 5.4 0.20 0.33 0.24 88.7 3.0 4.5 3.8 0.083
    17 5.2 0.17 0.43 0.40 80.4 3.3 10.0 6.3 0.074
    18 6.4 0.25 0.08 0.39 90.5 2.5 2.0 5.0 0.048
    19 6.0 0.23 0.68 0.11 0.058 78.0 3.2 17.0 1.8 0.044
    20 6.1 0.49 0.15 0.51 81.3 5.0 6.8 6.9 0.033
    21 6.5 0.26 0.30 0.46 84.0 3.0 7.0 6.0 0.052
    22 7.2 0.26 0.28 0.38 86.0 1.5 8.0 4.5 0.046
    23 5.9 0.24 0.26 0.38 84.5 2.9 7.1 5.5 0.043
    24 7.2 0.26 0.28 0.41 0.091 86.2 3.2 5.8 4.8 0.003
    25 6.1 0.28 0.31 0.42 85.8 2.8 6.3 5.1 0.046
  • [DCB Test]
  • With respect to the steel plates of each test number, a DCB test was conducted in accordance with “Method D” of NACE TM0177-2005, and the SSC resistance was evaluated. Specifically, three of the DCB test specimen illustrated in FIG. 2A were taken from a center portion of the thickness of each steel plate. The DCB test specimens were taken in a manner such that the longitudinal direction of each DCB test specimen was parallel with the rolling direction. A wedge illustrated in FIG. 2B was further prepared from each steel plate. A thickness t of the wedge was 3.10 mm.
  • The wedge was driven in between the arms of the DCB test specimen. Thereafter, the DCB test specimen into which the wedge was driven was enclosed in a vessel. A liquid solution obtained by mixing a degassed 5% saline solution and 4 g/L of sodium acetate and adjusting to pH 3.5 with hydrochloric acid was poured into the vessel so that a gas portion remained in the vessel. Thereafter, a gaseous mixture consisting of 10% H2S gas and 90% CO2 gas was charged at a total pressure of 1 atm inside the autoclave to stir the liquid phase, and the gaseous mixture was saturated in the liquid solution.
  • After sealing the vessel that had undergone the above described process, the vessel was held for three weeks at 24° C. while stirring the liquid solution and also continuously blowing in the aforementioned gaseous mixture. Thereafter, the DCB test specimens were taken out from inside the vessel.
  • A pin was inserted into a hole formed in the tip of the arms of each DCB test specimen that was taken out and a notch portion was opened with a tensile testing machine, and a wedge releasing stress P was measured. In addition, the notch in the DCB test specimen was released in liquid nitrogen, and a crack propagation length “a” with respect to crack propagation that occurred during immersion was measured. The crack propagation length “a” was measured visually using vernier calipers. A fracture toughness value K1SSC (MPa√m) was determined using Formula (6) based on the obtained wedge releasing stress P and the crack propagation length “a”. For each steel, the fracture toughness value K1SSC (MPa√m) of the three DCB test specimens was determined. For each steel, the arithmetic average of the three fracture toughness values was defined as the fracture toughness value K1SSC (MPa√m) of the relevant steel.
  • K 1 SSC = Pa ( 2 3 + 2.38 h / a ) ( B / Bn ) 1 / 3 Bh 3 / 2 ( 6 )
  • In Formula (6), h represents the height (mm) of each arm of the DCB test specimen, B represents the thickness (mm) of the DCB test specimen, and Bn represents the web thickness (mm) of the DCB test specimen. These are defined in “Method D” of NACE TM0177-96.
  • For each test number, the obtained fracture toughness values K1SSC are shown in Table 2. If the fracture toughness value K1SSC that was defined as described above was 30.0 MPa√m or more, it was determined that the SSC resistance was good. Note that, the clearance between the arms when the wedge is driven in prior to immersion in the test bath influences the K1SSC value. Accordingly, actual measurement of the clearance between the arms was performed in advance using a micrometer, and it was also confirmed that the clearance was within the range in the API standards.
  • [Test Results]
  • The test results are shown in Table 2.
  • Referring to Table 1 and Table 2, the chemical compositions of the steel plates of Test Numbers 1 to 13 were appropriate, the YS was in the range of 965 to 1069 MPa (140 ksi grade), and the YR was 90% or more. In addition, the amount of dissolved C was in the range of 0.010 to 0.060 mass %. As a result, the K1SSC value was 30.0 MPa√m or more and excellent SSC resistance was exhibited.
  • On the other hand, for the steel plates of Test Numbers 14 and 15, the cooling rate after tempering was too slow. Consequently, the amount of dissolved C was less than 0.010 mass %. As a result, the fracture toughness value K1SSC was less than 30.0 MPa√m and excellent SSC resistance was not exhibited.
  • For the steel plate of Test Number 16, the tempering time was too short. Consequently, the amount of dissolved C was more than 0.060 mass %. As a result, the fracture toughness value K1SSC was less than 30.0 MPa√m and excellent SSC resistance was not exhibited.
  • For the steel plate of Test Number 17, the cooling rate after tempering was too fast. Consequently, the amount of dissolved C was more than 0.060 mass %. As a result, the fracture toughness value K1SSC was less than 30.0 MPa√m and excellent SSC resistance was not exhibited.
  • In the steel plate of Test Number 18, the Cr content was too low. As a result, the fracture toughness value K1SSC was less than 30.0 MPa√m and excellent SSC resistance was not exhibited.
  • For the steel plate of Test Number 19, the Mo content was too low. As a result, the fracture toughness value K1SSC was less than 30.0 MPa√m and excellent SSC resistance was not exhibited.
  • In the steel plate of Test Number 20, the Mn content was too high. As a result, the fracture toughness value K1SSC was less than 30.0 MPa√m and excellent SSC resistance was not exhibited.
  • For the steel plate of Test Number 21, the N content was too high. As a result, the fracture toughness value K1SSC was less than 30.0 MPa√m and excellent SSC resistance was not exhibited.
  • For the steel plate of Test Number 22, the Si content was too high. As a result, the fracture toughness value K1SSC was less than 30.0 MPa√m and excellent SSC resistance was not exhibited.
  • For the steel plate of Test Number 23, the YR was less than 90%. As a result, the fracture toughness value K1SSC was less than 30.0 MPa√m and excellent SSC resistance was not exhibited. It is considered that the reason was that ferrite mixed into the microstructure because the cooling rate during quenching was slow.
  • For the steel plate of Test Number 24, the cooling rate after tempering was too slow. Consequently, the amount of dissolved C was less than 0.010 mass %. As a result, the fracture toughness value K1SSC was less than 30.0 MPa√m and excellent SSC resistance was not exhibited.
  • For the steel plate of Test Number 25, the tempering temperature was too low. Consequently, the YS was more than 1069 MPa. As a result, the fracture toughness value K1SSC was less than 30.0 MPa√m and excellent SSC resistance was not exhibited.
  • An embodiment of the present invention has been described above. However, the embodiment described above is merely an example for implementing the present invention. Accordingly, the present invention is not limited to the above embodiment, and the above embodiment can be appropriately modified and performed within a range that does not deviate from the gist of the present invention.
  • INDUSTRIAL APPLICABILITY
  • The steel material according to the present invention is widely applicable to steel materials to be utilized in a sour environment, and preferably can be utilized as a steel material for oil wells that is utilized in an oil well environment, and further preferably can be utilized as oil-well steel pipes, such as casing, tubing and line pipes.

Claims (20)

1. A steel material comprising:
a chemical composition consisting of, in mass %,
C: more than 0.50 to 0.80%,
Si: 0.05 to 1.00%,
Mn: 0.05 to 1.00%,
P: 0.025% or less,
S: 0.0100% or less,
Al: 0.005 to 0.100%,
Cr: 0.20 to 1.50%,
Mo: 0.25 to 1.50%,
Ti: 0.002 to 0.050%,
B: 0.0001 to 0.0050%,
N: 0.002 to 0.010%,
O: 0.0100% or less,
V: 0 to 0.30%,
Nb: 0 to 0.100%,
Ca: 0 to 0.0100%,
Mg: 0 to 0.0100%,
Zr: 0 to 0.0100%,
Co: 0 to 0.50%,
W: 0 to 0.50%,
Ni: 0 to 0.50%, and
Cu: 0 to 0.50%
with the balance being Fe and impurities,
an amount of dissolved C within a range of 0.010 to 0.060 mass %,
a yield strength within a range of 965 to 1069 MPa, and
a yield ratio of 90% or more.
2. The steel material according to claim 1, wherein the chemical composition contains one or more types of element selected from the group consisting of:
V: 0.01 to 0.30%, and
Nb: 0.002 to 0.100%.
3. The steel material according to claim 1, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Ca: 0.0001 to 0.0100%,
Mg: 0.0001 to 0.0100%, and
Zr: 0.0001 to 0.0100%.
4-8. (canceled)
9. The steel material according to claim 2, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Ca: 0.0001 to 0.0100%,
Mg: 0.0001 to 0.0100%, and
Zr: 0.0001 to 0.0100%.
10. The steel material according to claim 1, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Co: 0.02 to 0.50%, and
W: 0.02 to 0.50%.
11. The steel material according to claim 2, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Co: 0.02 to 0.50%, and
W: 0.02 to 0.50%.
12. The steel material according to claim 3, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Co: 0.02 to 0.50%, and
W: 0.02 to 0.50%.
13. The steel material according to claim 9, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Co: 0.02 to 0.50%, and
W: 0.02 to 0.50%.
14. The steel material according to claim 1, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Ni: 0.02 to 0.50%, and
Cu: 0.01 to 0.50%.
15. The steel material according to claim 2, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Ni: 0.02 to 0.50%, and
Cu: 0.01 to 0.50%.
16. The steel material according to claim 3, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Ni: 0.02 to 0.50%, and
Cu: 0.01 to 0.50%.
17. The steel material according to claim 9, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Ni: 0.02 to 0.50%, and
Cu: 0.01 to 0.50%.
18. The steel material according to claim 10, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Ni: 0.02 to 0.50%, and
Cu: 0.01 to 0.50%.
19. The steel material according to claim 11, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Ni: 0.02 to 0.50%, and
Cu: 0.01 to 0.50%.
20. The steel material according to claim 12, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Ni: 0.02 to 0.50%, and
Cu: 0.01 to 0.50%.
21. The steel material according to claim 13, wherein the chemical composition contains one or more types of element selected from the group consisting of:
Ni: 0.02 to 0.50%, and
Cu: 0.01 to 0.50%.
22. The steel material according to claim 1, wherein the steel material is an oil-well steel pipe.
23. A method for producing a steel material, comprising:
a preparation process of preparing an intermediate steel material containing a chemical composition according to claim 1,
a quenching process of, after the preparation process, cooling the intermediate steel material that is at a temperature in a range of 800 to 1000° C. at a cooling rate of 50° C./min; and
a tempering process of holding the intermediate steel material after quenching at a temperature in a range of 660° C. to an Ac1 point for 10 to 90 minutes, and thereafter cooling the intermediate steel material at an average cooling rate in a temperature region from 600° C. to 200° C. of 5 to 300° C./sec.
24. The method for producing a steel material according to claim 23, wherein the preparation process includes:
a starting material preparation process of preparing a starting material containing a chemical composition according to claim 1, and
a hot working process of subjecting the starting material to hot working to produce an intermediate steel material.
US16/476,704 2017-01-24 2018-01-22 Steel Material and Method for Producing Steel Material Abandoned US20190376167A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017009977 2017-01-24
JP2017-009977 2017-01-24
PCT/JP2018/001750 WO2018139400A1 (en) 2017-01-24 2018-01-22 Steel material, and steel material manufacturing method

Publications (1)

Publication Number Publication Date
US20190376167A1 true US20190376167A1 (en) 2019-12-12

Family

ID=62978210

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/476,704 Abandoned US20190376167A1 (en) 2017-01-24 2018-01-22 Steel Material and Method for Producing Steel Material

Country Status (10)

Country Link
US (1) US20190376167A1 (en)
EP (1) EP3575428A4 (en)
JP (1) JP6747524B2 (en)
CN (1) CN110234779A (en)
AU (1) AU2018213593A1 (en)
BR (1) BR112019014676A2 (en)
CA (1) CA3049859A1 (en)
MX (1) MX2019008642A (en)
RU (1) RU2725389C1 (en)
WO (1) WO2018139400A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155893B2 (en) * 2018-03-26 2021-10-26 Nippon Steel Corporation Steel material suitable for use in sour environment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002425B (en) * 2015-06-18 2017-12-22 宝山钢铁股份有限公司 Superhigh intensity superhigh tenacity oil casing pipe steel, petroleum casing pipe and its manufacture method
JP6950519B2 (en) * 2017-12-25 2021-10-13 日本製鉄株式会社 Steel materials, steel pipes for oil wells, and manufacturing methods for steel materials
JP6947012B2 (en) * 2017-12-25 2021-10-13 日本製鉄株式会社 Steel materials, steel pipes for oil wells, and manufacturing methods for steel materials
JP7235102B2 (en) 2019-04-11 2023-03-08 日本製鉄株式会社 Steel plate and its manufacturing method
CN111910055A (en) * 2020-07-08 2020-11-10 东莞首嘉制管有限公司 Internal and external fine-pumping steel pipe and processing technology thereof

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232220A (en) 1983-06-14 1984-12-27 Sumitomo Metal Ind Ltd Manufacture of high strength steel with superior resistance to sulfide corrosion cracking
JPS60187664A (en) * 1984-03-01 1985-09-25 Nippon Steel Corp Electric welded oil well pipe having low hardness and high yield strength and its production
JPH06104849B2 (en) 1986-04-25 1994-12-21 新日本製鐵株式会社 Method for producing low alloy high strength oil well steel excellent in sulfide stress cracking resistance
JP3358135B2 (en) 1993-02-26 2002-12-16 新日本製鐵株式会社 High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
JP3332599B2 (en) * 1994-09-07 2002-10-07 花王株式会社 Bleach and bleach detergent composition
JP3416857B2 (en) * 1994-09-12 2003-06-16 住友金属工業株式会社 Steel with excellent hydrogen embrittlement resistance and method for producing the same
JP3755163B2 (en) 1995-05-15 2006-03-15 住友金属工業株式会社 Manufacturing method of high-strength seamless steel pipe with excellent resistance to sulfide stress cracking
JPH1150148A (en) * 1997-08-06 1999-02-23 Sumitomo Metal Ind Ltd Production of high strength and high corrosion resistance seamless steel pipe
JP3493153B2 (en) * 1999-01-12 2004-02-03 株式会社神戸製鋼所 Wire or steel bars and machine parts with excellent cold workability
JP2000256783A (en) 1999-03-11 2000-09-19 Sumitomo Metal Ind Ltd High strength steel for oil well excellent in toughness and sulfide stress corrosion cracking resistance and its production
JP4058840B2 (en) * 1999-04-09 2008-03-12 住友金属工業株式会社 Oil well steel excellent in toughness and sulfide stress corrosion cracking resistance and method for producing the same
JP4140556B2 (en) 2004-06-14 2008-08-27 住友金属工業株式会社 Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
JP4027956B2 (en) * 2006-01-23 2007-12-26 株式会社神戸製鋼所 High strength spring steel having excellent brittle fracture resistance and method for producing the same
JP4973663B2 (en) * 2007-03-30 2012-07-11 住友金属工業株式会社 Low alloy oil well pipe steel and seamless steel pipe
FR2942808B1 (en) 2009-03-03 2011-02-18 Vallourec Mannesmann Oil & Gas LOW-ALLOY STEEL WITH HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CRUSHING UNDER SULFIDE STRESS.
JP5728836B2 (en) * 2009-06-24 2015-06-03 Jfeスチール株式会社 Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
JP5779984B2 (en) 2010-06-21 2015-09-16 Jfeスチール株式会社 Oil well steel pipe excellent in sulfide stress cracking resistance and method for producing the same
JP5662894B2 (en) * 2011-07-27 2015-02-04 株式会社神戸製鋼所 Steel material for the upper deck of crude oil tankers with excellent corrosion resistance or cargo for bulk carriers
JP2013129879A (en) * 2011-12-22 2013-07-04 Jfe Steel Corp High-strength seamless steel tube for oil well with superior sulfide stress cracking resistance, and method for producing the same
US10407758B2 (en) * 2012-06-20 2019-09-10 Nippon Steel Corporation Steel for oil country tubular goods and method of producing the same
CN104685087B (en) * 2012-09-26 2017-03-15 新日铁住金株式会社 Complex tissue steel plate and its manufacture method
IN2015DN03313A (en) * 2012-11-05 2015-10-09 Nippon Steel & Sumitomo Metal Corp
JP5861786B2 (en) * 2013-01-16 2016-02-16 Jfeスチール株式会社 Stainless steel seamless steel pipe for oil well and manufacturing method thereof
AU2015361346B2 (en) * 2014-12-12 2019-02-28 Nippon Steel Corporation Low-alloy steel for oil well pipe and method for manufacturing low-alloy steel oil well pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155893B2 (en) * 2018-03-26 2021-10-26 Nippon Steel Corporation Steel material suitable for use in sour environment

Also Published As

Publication number Publication date
JPWO2018139400A1 (en) 2019-11-07
CN110234779A (en) 2019-09-13
CA3049859A1 (en) 2018-08-02
BR112019014676A2 (en) 2020-05-26
AU2018213593A1 (en) 2019-08-01
EP3575428A4 (en) 2020-07-22
JP6747524B2 (en) 2020-08-26
EP3575428A1 (en) 2019-12-04
RU2725389C1 (en) 2020-07-02
WO2018139400A1 (en) 2018-08-02
MX2019008642A (en) 2019-09-23

Similar Documents

Publication Publication Date Title
US11078558B2 (en) Steel material, oil-well steel pipe, and method for producing steel material
US20190376167A1 (en) Steel Material and Method for Producing Steel Material
JP2019112680A (en) Steel, steel pipe for oil well, and method for producing steel
JP2019112679A (en) Steel, steel pipe for oil well, and method for producing steel
US11155893B2 (en) Steel material suitable for use in sour environment
US11643712B2 (en) Steel pipe and method for producing steel pipe
EP3875622B1 (en) Steel material and method for producing steel material
US11773460B2 (en) Steel pipe and method for producing steel pipe
US11473177B2 (en) Steel material suitable for use in sour environment
US11174539B2 (en) Steel material suitable for use in sour environment
EP3926059A1 (en) Steel material for use in sour environments
US11332813B2 (en) Steel material suitable for use in sour environment
JP2019112681A (en) Steel, steel pipe for oil well, and method for producing steel

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIPPON STEEL CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSHIDA, SHINJI;ARAI, YUJI;SOMA, ATSUSHI;AND OTHERS;REEL/FRAME:049701/0353

Effective date: 20190606

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION