US20190198249A1 - Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, and multi-layer ceramic electronic component package - Google Patents

Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, and multi-layer ceramic electronic component package Download PDF

Info

Publication number
US20190198249A1
US20190198249A1 US16/225,585 US201816225585A US2019198249A1 US 20190198249 A1 US20190198249 A1 US 20190198249A1 US 201816225585 A US201816225585 A US 201816225585A US 2019198249 A1 US2019198249 A1 US 2019198249A1
Authority
US
United States
Prior art keywords
layer ceramic
electronic component
layer
ceramic
ceramic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/225,585
Inventor
Hiroaki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Assigned to TAIYO YUDEN CO., LTD. reassignment TAIYO YUDEN CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SATO, HIROAKI
Publication of US20190198249A1 publication Critical patent/US20190198249A1/en
Priority to US18/158,736 priority Critical patent/US20230162925A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a multi-layer ceramic electronic component such as a multi-layer ceramic capacitor, and a multi-layer ceramic electronic component mounting substrate and a multi-layer ceramic electronic component package that mount the multi-layer ceramic electronic component.
  • a multi-layer ceramic electronic component such as a multi-layer ceramic capacitor, in which a ceramic body includes a plurality of laminated internal electrodes, has been known.
  • the multi-layer ceramic electronic component is mounted onto a circuit board of a personal digital assistant or another electronic device and widely used.
  • Japanese Patent Application Laid-open No. 2014-99589 discloses a method of mounting a multi-layer ceramic capacitor housed in a package onto a circuit board. Specifically, a cover tape is peeled off from a package including a plurality of accommodating sections in which the multi-layer ceramic capacitors are arranged such that internal electrodes thereof are oriented in a certain direction, and the multi-layer ceramic capacitors are subjected to suction and held one by one by a suction nozzle and then mounted at predetermined positions on the surface of the circuit board.
  • a multi-layer ceramic electronic component including a ceramic body and a pair of external electrodes.
  • the ceramic body includes internal electrodes laminated in a first direction, and a pair of main surfaces including a center region facing in the first direction.
  • the pair of external electrodes are connected to the internal electrodes and face each other in a second direction orthogonal to the first direction.
  • a dimension of the ceramic body in the first direction is 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a third direction orthogonal to the first direction and the second direction.
  • the center region is formed at a center portion of at least one of the pair of main surfaces in the second direction.
  • the ceramic body includes the center region formed at the center portion of at least one of the pair of main surfaces in the second direction. Accordingly, a suction nozzle for transferring the multi-layer ceramic electronic component at the time of mounting can come into close contact with the center region and can stably hold the center region. Therefore, it is possible to inhibit occurrence of a failure at the time of mounting in the multi-layer ceramic electronic component.
  • a dimension of the center region in the third direction may be 80% or more and less than 100% of the dimension of the ceramic body in the third direction.
  • the center region may include a flat region.
  • a multi-layer ceramic electronic component mounting substrate including a circuit board and a multi-layer ceramic electronic component.
  • the multi-layer ceramic electronic component includes a ceramic body and a pair of external electrodes and is mounted onto the circuit board via the pair of external electrodes.
  • the ceramic body includes internal electrodes laminated in a first direction and a pair of main surfaces including a center region facing in the first direction.
  • the pair of external electrodes are connected to the internal electrodes and face each other in a second direction orthogonal to the first direction.
  • a dimension of the ceramic body in the first direction is 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a third direction orthogonal to the first direction and the second direction.
  • the center region is formed at a center portion of at least one of the pair of main surfaces in the second direction.
  • the multi-layer ceramic electronic component is mounted onto the circuit board with the center region being faced outward in the first direction.
  • the multi-layer ceramic electronic component is placed onto the circuit board with the center region being held by suction by the suction nozzle in the first direction. Accordingly, in the multi-layer ceramic electronic component mounting substrate, the multi-layer ceramic electronic component is mounted onto the circuit board with the center region being faced outward in the first direction.
  • a multi-layer ceramic electronic component package including a multi-layer ceramic electronic component, a housing portion, and a sealing portion.
  • the multi-layer ceramic electronic component includes a ceramic body and a pair of external electrodes and is mounted onto a circuit board via the pair of external electrodes.
  • the ceramic body includes internal electrodes laminated in a first direction and a pair of main surfaces including a center region facing in the first direction.
  • the pair of external electrodes are connected to the internal electrodes and face each other in a second direction orthogonal to the first direction.
  • a dimension of the ceramic body in the first direction is 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a third direction orthogonal to the first direction and the second direction.
  • the center region is formed at a center portion of at least one of the pair of main surfaces in the second direction.
  • the housing portion includes a recess that houses the multi-layer ceramic electronic component and includes a take-out opening.
  • the sealing portion covers the take-out opening of the recess.
  • the multi-layer ceramic electronic component is housed in the recess with the center region being faced to the take-out opening.
  • a method of producing a multi-layer ceramic electronic component including: forming an internal electrode pattern having a predetermined thickness on an unsintered ceramic sheet; forming a dielectric pattern in an electrode non-formation region around the internal electrode pattern on the ceramic sheet such that the dielectric pattern occupies 75% or more and less than 100% of a space portion facing to the electrode non-formation region and having the predetermined thickness; laminating in a first direction the ceramic sheets on each of which the internal electrode pattern and the dielectric pattern are formed, and forming a ceramic body including a plurality of internal electrodes laminated in the first direction, a dimension of the ceramic body in the first direction being 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a second direction orthogonal to the first direction; and forming a pair of external electrodes connected to the plurality of internal electrodes and facing each other in a third direction orthogonal to the first direction and the second direction.
  • the dielectric pattern not only the internal electrode pattern but also the dielectric pattern are formed on each ceramic sheet.
  • the dielectric pattern is formed to occupy 75% or more of the space portion, the laminated ceramic sheets can be inhibited from sinking down into gaps between the internal electrode patterns and the dielectric patterns. Accordingly, also in a ceramic body including a lot of laminated ceramic sheets, variations in height dimension for each region can be suppressed, and the center region can be formed on at least one of the main surfaces.
  • the dielectric pattern is less than 100% of the space portion, it is possible to inhibit the dielectric pattern from overlapping with the internal electrode pattern if the dielectric pattern is slightly displaced from the internal electrode pattern. This can also suppress variations in height dimension in the ceramic body and form the center region.
  • a multi-layer ceramic electronic component As described above, according to the present disclosure, it is possbile to provide a multi-layer ceramic electronic component, a multi-layer ceramic electronic component mounting substrate, and a multi-layer ceramic electronic component package, which are capable of improving electrical characteristics without increasing a mounting area on a circuit board.
  • FIG. 1 is a perspective view of a multi-layer ceramic capacitor according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of the multi-layer ceramic capacitor taken along the A-A′ line in FIG. 1 ;
  • FIG. 3 is a cross-sectional view of the multi-layer ceramic capacitor taken along the B-B′ line in FIG. 1 ;
  • FIG. 4 is a diagram showing a microstructure of a cross section of the multi-layer ceramic capacitor
  • FIG. 5 is a partially enlarged view of FIG. 3 ;
  • FIG. 6 is a flowchart showing a method of producing the multi-layer ceramic capacitor
  • FIGS. 7A and 7B are each a plan view showing a production process of the multi-layer ceramic capacitor
  • FIG. 8 is a partial cross-sectional view of the multi-layer ceramic capacitor taken along the C-C′ line of FIG. 7A ;
  • FIG. 9 is a partial cross-sectional view similar to FIG. 8 and a view for describing Step S 02 of FIG. 6 ;
  • FIG. 10 is a perspective view showing a production process of the multi-layer ceramic capacitor
  • FIG. 11 is a perspective view showing a production process of the multi-layer ceramic capacitor
  • FIG. 12 is a plan view of a multi-layer ceramic capacitor package according to the embodiment of the present disclosure.
  • FIG. 13 is a cross-sectional view of the package taken along the D-D′ line in FIG. 12 ;
  • FIG. 14 is a cross-sectional view schematically showing a step of mounting the multi-layer ceramic capacitor.
  • FIG. 15 is a cross-sectional view of a multi-layer ceramic capacitor mounting substrate according to the embodiment of the present disclosure.
  • an X axis, a Y axis, and a Z axis orthogonal to one another are shown as appropriate.
  • the X axis, the Y axis, and the Z axis are common in all figures.
  • FIGS. 1 to 3 each show a multi-layer ceramic capacitor 10 according to an embodiment of the present disclosure.
  • FIG. 1 is a perspective view of the multi-layer ceramic capacitor 10 .
  • FIG. 2 is a cross-sectional view of the multi-layer ceramic capacitor 10 taken along the A-A′ line in FIG. 1 .
  • FIG. 3 is a cross-sectional view of the multi-layer ceramic capacitor 10 taken along the B-B′ line in FIG. 1 .
  • the multi-layer ceramic capacitor 10 includes a ceramic body 11 , a first external electrode 14 , and a second external electrode 15 .
  • the ceramic body 11 has two end surfaces 11 a and 11 b facing in an X-axis direction, two side surfaces 11 c and 11 d facing in a Y-axis direction, and two main surfaces 11 e and 11 f facing in a Z-axis direction. Ridges connecting the respective surfaces of the ceramic body 11 are chamfered.
  • the shape of the ceramic body 11 is not limited to the above shape. In other words, the ceramic body 11 does not need to have the rectangular shape as shown in FIGS. 1 to 3 .
  • the first external electrode 14 and the second external electrode 15 are configured to face each other in the X-axis direction and to respectively cover both the end surfaces 11 a and 11 b of the ceramic body 11 .
  • the first external electrode 14 and the second external electrode 15 extend to the four surfaces connected to both the end surfaces 11 a and 11 b, i.e., the two main surfaces 11 e and 11 f and the two side surfaces 11 c and 11 d.
  • both of the first external electrode 14 and the second external electrode 15 have U-shaped cross sections parallel to the X-Z plane and the X-Y plane.
  • the ceramic body 11 includes a multi-layer unit 16 and covers 17 .
  • the multi-layer unit 16 has a configuration in which first internal electrodes 12 and second internal electrodes 13 are alternately laminated in the Z-axis direction via ceramic layers 18 .
  • the covers 17 cover an upper surface and a lower surface of the multi-layer unit 16 in the Z-axis direction.
  • the first internal electrodes 12 and the second internal electrodes 13 are alternately laminated in the Z-axis direction via the ceramic layers 18 .
  • the first internal electrodes 12 are drawn to the end surface 11 a to be connected to the first external electrode 14 and are apart from the second external electrode 15 .
  • the second internal electrodes 13 are drawn to the end surface 11 b to be connected to the second external electrode 15 and are apart from the first external electrode 14 .
  • first and second internal electrodes 12 and 13 are not drawn to the side surfaces 11 c and 11 d. Accordingly, side margins made of dielectric ceramics are formed on the sides of the side surfaces 11 c and 11 d of the multi-layer unit 16 .
  • the first and second internal electrodes 12 and 13 mainly contain nickel (Ni) and function as internal electrodes of the multi-layer ceramic capacitor 10 . It should be noted that the first and second internal electrodes 12 and 13 may contain at least one of copper (Cu), silver (Ag), or palladium (Pd) as a main component, other than nickel.
  • Ni nickel
  • the first and second internal electrodes 12 and 13 may contain at least one of copper (Cu), silver (Ag), or palladium (Pd) as a main component, other than nickel.
  • Each of the ceramic layers 18 is disposed between the first internal electrode 12 and the second internal electrode 13 and is made of dielectric ceramics.
  • the ceramic layer 18 is made of dielectric ceramics having a high dielectric constant.
  • polycrystal of a barium titanate (BaTiO 3 ) based material i.e., polycrystal having a Perovskite structure containing barium (Ba) and titanium (Ti) is used. This provides the multi-layer ceramic capacitor 10 with a large capacitance.
  • the ceramic layer 18 may be made of a strontium titanate (SrTiO 3 ) based material, a calcium titanate (CaTiO 3 ) based material, a magnesium titanate (MgTiO 3 ) based material, a calcium zirconate (CaZrO 3 ) based material, a calcium zirconate titanate (Ca(Zr,Ti)O 3 ) based material, a barium zirconate (BaZrO 3 ) based material, a titanium oxide (TiO 2 ) based material, or the like.
  • a strontium titanate (SrTiO 3 ) based material a strontium titanate (SrTiO 3 ) based material, a calcium titanate (CaTiO 3 ) based material, a magnesium titanate (MgTiO 3 ) based material, a calcium zirconate (CaZrO 3 ) based material, a calcium zircon
  • the covers 17 are also made of dielectric ceramics.
  • the material of the covers 17 only needs to be insulating ceramics, but use of the dielectric ceramics similar to the dielectric ceramics of the ceramic layers 18 leads to suppression of internal stress in the ceramic body 11 .
  • the multi-layer ceramic capacitor 10 stores charge corresponding to the voltage applied between the first external electrode 14 and the second external electrode 15 .
  • the basic configuration of the multi-layer ceramic capacitor 10 according to this embodiment is not limited to the configuration shown in FIGS. 1 to 3 and can be changed as appropriate.
  • the ceramic body 11 is characterized in that a height dimension T in the Z-axis direction is 1.1 times or more and 1.6 times or less a width dimension W in the Y-axis direction. This can increase the number of lamination of the first and second internal electrodes 12 and 13 and increase the capacitance of the multi-layer ceramic capacitor 10 without increasing a cross-sectional area of the ceramic body 11 in the X-Y plane.
  • the height dimension T of the ceramic body 11 means a dimension along the Z-axis direction at the center portion of the ceramic body 11 in the Y-axis direction, on a Y-Z cross-section (see FIG. 3 ) that is cut at the center portion of the multi-layer ceramic capacitor 10 in the X-axis direction.
  • the height dimension T can be defined by a relationship between the width dimension W and a length dimension L to be described later.
  • the width dimension W of the ceramic body 11 means a dimension along the Y-axis direction at the center portion of the ceramic body 11 in the Z-axis direction, on the Y-Z cross-section (see FIG. 3 ) that is cut at the center portion of the multi-layer ceramic capacitor 10 in the X-axis direction.
  • the width dimension W is not particularly limited and can be set to, for example, 0.10 mm or more and 1.50 mm or less.
  • the length dimension L of the ceramic body 11 may be larger than 1.0 times and equal to or smaller than 1.5 times the height dimension T. This can increase the height dimension T and increase the capacitance without increasing the mounting area for the multi-layer ceramic capacitor 10 and allows handling at the time of manufacturing or mounting to be described later to be smoothly performed.
  • the length dimension L of the ceramic body 11 means a dimension along the X-axis direction at the center portion of the ceramic body 11 in the Z-axis direction, on the Z-X cross-section (see FIG. 2 ) that is cut at the center portion of the multi-layer ceramic capacitor 10 in the Y-axis direction.
  • the length dimension L is not particularly limited and can be set to, for example, 0.20 mm or more and 2.00 mm or less.
  • the thickness of the cover 17 may be reduced.
  • the dimension (thickness) of the cover 17 in the Z-axis direction may be 15 ⁇ m or less.
  • each ceramic layer 18 between the first and second internal electrodes 12 and 13 may be reduced.
  • a mean dimension (mean thickness) of the ceramic layers 18 in the Z-axis direction may be set to, for example, 1.0 ⁇ m or less or further 0.5 ⁇ m or less.
  • the mean thickness of the ceramic layers 18 can be calculated as a mean value of the thicknesses measured at a plurality of sites of the ceramic layers 18 .
  • a position at which the thickness of the ceramic layer 18 is to be measured or the number of positions may be optionally determined.
  • an example of a method of measuring a mean thickness T of the ceramic layers 18 will be described with reference to FIG. 4 .
  • FIG. 4 is a diagram showing a microstructure of a cross section of the ceramic body 11 , which is observed in the visual field of 12.6 ⁇ m ⁇ 8.35 ⁇ m with a scanning electron microscope. For each of the six ceramic layers 18 within the visual field, the thickness is measured at five sites indicated by the arrows arranged at equal intervals of 2 ⁇ m. A mean value of the thicknesses obtained at the 30 sites can be set as a mean thickness.
  • the height dimension T can be increased and a large number of first and second internal electrodes 12 and 13 can be laminated without increasing the mounting area, so that a large capacitance can be achieved.
  • the multi-layer ceramic capacitor 10 has been difficult to handle at the time of mounting, and it has been difficult to achieve a multi-layer ceramic capacitor in which the height dimension T is larger than the width dimension W.
  • the multi-layer ceramic capacitor 10 of this embodiment at least one of the main surface 11 e or 11 f has a center region F facing in the Z-axis direction.
  • the center region F is a flat region that is formed at the center portion in the Y-axis direction of at least one of the main surface 11 e or 11 f and formed as a flat surface substantially parallel to the X-Y plane.
  • the center region F is formed on each of the main surfaces 11 e and 11 f, but it may be formed on either one of the main surfaces 11 e and 11 f.
  • Peripheral portions of each of the main surfaces 11 e and 11 f in the Y-axis direction are positioned outward in the Y-axis direction of the center portion and have curved surfaces extending from the center region F.
  • FIG. 5 is a partially enlarged view of FIG. 3 .
  • the center region F will be described in detail with reference to FIG. 5 .
  • a first imaginary line L 1 and a second imaginary line L 2 are defined on the Y-Z cross-section of the ceramic body 11 , the first imaginary line L 1 passes through a center point C of the main surface 11 e ( 11 f ) in the Y-axis direction and orthogonally intersects with the Z-axis direction (the first imaginary line L 1 is parallel to the Y-axis direction), and the second imaginary line L 2 is parallel to the first imaginary line L 1 and has an interval of 1% of the height dimension T of the ceramic body 11 (T*0.01) from the first imaginary line L 1 .
  • the center region F means a region between two points at which the second imaginary line L 2 and the main surface 11 e ( 11 f ) intersect with each other.
  • the center point C of the main surface 11 e ( 11 f ) in the Y-axis direction means the center of the width dimension of each of the main surfaces 11 e and 11 f along the Y-axis direction.
  • FIG. 5 shows the center point of the main surface 11 e in the Y-axis direction by an arrow and shows the first imaginary line L 1 and the second imaginary line L 2 by thick chain lines.
  • a width dimension Wf of the center region F along the Y-axis direction corresponds to a distance along the Y-axis direction between the two points at which the second imaginary line L 2 and the main surface 11 e ( 11 f ) intersect with each other.
  • the width dimension Wf of the center region F can be set to be 80% or more and less than 100% of the widthdimension W of the ceramic body 11 . Accordingly, the width dimension Wf of the flat center region F can be sufficiently ensured and handleability at the time of mounting can be further improved.
  • the multi-layer ceramic capacitor 10 including the center region F can be produced by the following production method.
  • FIG. 6 is a flowchart showing a method of producing the multi-layer ceramic capacitor 10 .
  • FIGS. 7A to 11 are views each showing a production process of the multi-layer ceramic capacitor 10 .
  • the method of producing the multi-layer ceramic capacitor 10 will be described along FIG. 6 with reference to FIGS. 7A to 11 as appropriate.
  • first internal electrode patterns 112 and second internal electrode patterns 113 are respectively formed on first ceramic sheets 101 and second ceramic sheets 102 for forming the multi-layer unit 16 .
  • the first and second ceramic sheets 101 and 102 are configured as unsintered dielectric green sheets mainly containing dielectric ceramics.
  • dielectric ceramics powder having a particle diameter of, for example, 20 nm to 200 nm can be used.
  • the first and second ceramic sheets 101 and 102 are each formed into a sheet shape by using a roll coater or a doctor blade, for example.
  • the thickness of each of the first and second ceramic sheets 101 and 102 is not limited, but it is adjusted to have 1.5 ⁇ m or less, for example.
  • FIGS. 7A and 7B are plan views of the first ceramic sheet 101 and the second ceramic sheet 102 , respectively.
  • the first and second ceramic sheets 101 and 102 are each formed into a large-sized sheet that is not singulated.
  • FIGS. 7A and 7B each show cutting lines Lx and Ly used when the sheets are singulated into the multi-layer ceramic capacitors 10 .
  • the cutting lines Lx are parallel to the X axis
  • the cutting lines Ly are parallel to the Y axis.
  • the unsintered first internal electrode patterns 112 corresponding to the first internal electrodes 12 are formed on the first ceramic sheet 101
  • the unsintered second internal electrode patterns 113 corresponding to the second internal electrodes 13 are formed on the second ceramic sheet 102 .
  • the first internal electrode patterns 112 and the second internal electrode patterns 113 can be formed by applying an optional electrical conductive paste to the first ceramic sheets 101 and the second ceramic sheets 102 , respectively.
  • a method of applying the electrical conductive paste can be optionally selected from well-known techniques. For example, for the application of the electrical conductive paste, a screen printing method or a gravure printing method can be used.
  • Each of the first internal electrode patterns 112 on the first ceramic sheets 101 is formed in a substantially rectangular shape that crosses one cutting line Ly 1 or Ly 2 and extends in the X-axis direction.
  • the first internal electrode patterns 112 are cut on the cutting lines Ly 1 , Ly 2 , and Lx, thus forming the first internal electrodes 12 of the multi-layer ceramic capacitors 10 .
  • the first internal electrode pattern 112 on the cutting line Ly 1 or Ly 2 corresponds to a drawn portion to be exposed at the end surface 11 a.
  • a first column including the first internal electrode patterns 112 that extend across the cutting lines Ly 1 and are disposed along the X-axis direction, and a second column including the first internal electrode patterns 112 that extend across the cutting lines Ly 2 and are disposed along the X-axis direction are arranged alternately in the Y-axis direction.
  • the first internal electrode patterns 112 adjacent to each other in the X-axis direction face each other while sandwiching the cutting line Ly 2 therebetween.
  • the first internal electrode patterns 112 adjacent to each other in the X-axis direction face each other while sandwiching the cutting line Ly 1 therebetween.
  • the first internal electrode patterns 112 are displaced by one chip in the X-axis direction between the first column and the second column adjacent to each other in the Y-axis direction.
  • the second internal electrode patterns 113 on the second ceramic sheets 102 are configured to be similar to the first internal electrode patterns 112 .
  • the second internal electrode patterns 113 in a column corresponding to the first column of the first ceramic sheet 101 extend across the cutting lines Ly 2
  • the second internal electrode patterns 113 in a column corresponding to the second column of the first ceramic sheet 101 extend across the cutting lines Ly 1 .
  • the second internal electrode patterns 113 are displaced from the first internal electrode patterns 112 by one chip in the X-axis direction or the Y-axis direction.
  • An electrode non-formation region N is a region in which the first and second internal electrode patterns 112 and 113 are not formed on each of the first and second ceramic sheets 101 and 102 .
  • the electrode non-formation region N includes a plurality of belt-like regions extending along the cutting lines Ly 1 and Ly 2 between the first internal electrode patterns 112 adjacent to each other in the X-axis direction, and a plurality of belt-like regions extending along the cutting lines Lx between the first internal electrode patterns 112 adjacent to each other in the Y-axis direction.
  • the electrode non-formation region N is formed in a lattice pattern as a whole, in which those belt-like regions are alternately crossed.
  • the electrode non-formation region N corresponds to side margins and end margins of the multi-layer ceramic capacitor 10 .
  • the electrode non-formation region N in the second ceramic sheet 102 is also formed in a similar manner.
  • FIG. 8 is a partially enlarged cross-sectional view of the electrode non-formation region N between the internal electrode patterns 112 ( 113 ) adjacent to each other on the cross section taken along the C-C′ line of FIG. 7A .
  • the electrode non-formation region N between the second internal electrode patterns 113 shown in FIG. 7B has a configuration similar to that of the electrode non-formation region N between the first internal electrode patterns 112 . Accordingly, the electrode non-formation region N of both the first and second ceramic sheets 101 and 102 will be described with reference to FIGS. 8 and 9 .
  • the internal electrode patterns 112 ( 113 ) each having a predetermined thickness d 1 are formed on the ceramic sheet 101 ( 102 ).
  • the thickness d 1 of the internal electrode patterns 112 ( 113 ) is a mean thickness of the internal electrode patterns 112 ( 113 ) and can be calculated as, for example, a mean value of the thicknesses measured at a plurality of sites as in the case of the mean thickness of the ceramic layers 18 .
  • a space portion S sandwiched between the adjacent internal electrode patterns 112 ( 113 ) is formed in the electrode non-formation region N.
  • the space portion S is a space region having a thickness d 1 and facing to the electrode non-formation region N.
  • the space portion S has a volume obtained by multiplying the area of the electrode non-formation region N by the thickness d 1 .
  • FIGS. 8 and 9 each show the space portion S surrounded by a thick broken line.
  • Step S 02 a dielectric pattern P is formed in the electrode non-formation region N around the first internal electrode patterns 112 on the first ceramic sheet 101 and around the second internal electrode patterns 113 on the second ceramic sheet 102 .
  • FIG. 9 is a cross-sectional view of the same position as that of FIG. 8 and shows a state in which the dielectric pattern P is formed in the space portion S.
  • the dielectric pattern P can be formed by applying a ceramic paste to the electrode non-formation region N of the ceramic sheet 101 ( 102 ).
  • the ceramic paste only needs to mainly contain dielectric ceramics, but use of dielectric ceramics similar to that of the first and second ceramic sheets 101 and 102 leads to suppression of internal stress at the time of sintering.
  • a screen printing method or a gravure printing method can be used, for example.
  • the dielectric pattern P is formed to occupy 75% or more and less than 100% of the space portion S.
  • the volume of the dielectric pattern P is 75% or more and less than 100% of the volume of the space portion S, the volume of the space portion S being obtained by multiplying the area of the electrode non-formation region N by the thickness d 1 of the internal electrode pattern 112 ( 113 ).
  • a mean thickness of the dielectric pattern P only needs to be equal to or smaller than the thickness d 1 of the space portion S.
  • the mean thickness of the dielectric pattern P may be 80% or more and 100% or less when the thickness d 1 is assumed as 100%.
  • the mean thickness of the dielectric pattern P can be a mean value measured in a similar manner to the case where the thicknesses of the first and second internal electrode patterns 112 and 113 are measured.
  • the ceramic sheet 101 ( 102 ) may have gaps Q, in which the dielectric pattern P is not formed, around the internal electrode patterns 112 ( 113 ).
  • the dielectric pattern P can be inhibited from being formed on the internal electrode patterns 112 ( 113 ).
  • Step S 03 the first and second ceramic sheets 101 and 102 prepared in Steps S 01 and S 02 and third ceramic sheets 103 are laminated as shown in FIG. 10 , to produce a multi-layer sheet 104 .
  • the third ceramic sheet 103 is a ceramic sheet on which the first and second internal electrode patterns 112 and 113 and the dielectric pattern P are not formed. It should be noted that FIG. 10 omits the illustration of the gaps Q.
  • the multi-layer sheet 104 includes a laminated electrode sheet 105 and two laminated cover sheets 106 .
  • the first ceramic sheets 101 and the second ceramic sheets 102 are alternately laminated in the Z-axis direction in the laminated electrode sheet 105 .
  • Only the third ceramic sheets 103 are laminated in the laminated cover sheet 106 .
  • the two laminated cover sheets 106 are provided on the upper surface and the lower surface of the laminated electrode sheet 105 in the Z-axis direction.
  • the laminated electrode sheet 105 corresponds to the multi-layer unit 16 after sintering.
  • the laminated cover sheets 106 correspond to the covers 17 after sintering.
  • the number of lamination of the first and second ceramic sheets 101 and 102 in the laminated electrode sheet 105 is adjusted so as to obtain a desired capacitance and a desired height dimension T after sintering.
  • the number of lamination of the third ceramic sheets 103 in the laminated cover sheet 106 is not limited to the example shown in FIG. 10 and is adjusted as appropriate.
  • the multi-layer sheet 104 is integrated by pressure-bonding the first, second, and third ceramic sheets 101 , 102 , and 103 .
  • pressure-bonding of the first, second, and third ceramic sheets 101 , 102 , and 103 for example, hydrostatic pressing or uniaxial pressing is favorably used. This makes it possible to obtain a high-density multi-layer sheet 104 .
  • Step S 04 the multi-layer sheet 104 obtained in Step S 03 is cut along the cutting lines Lx and Ly, to produce an unsintered ceramic body 111 .
  • FIG. 11 is a perspective view of the ceramic body 111 obtained in Step S 04 .
  • the unsintered ceramic body 111 has two end surfaces 111 a and 111 b facing in the X-axis direction, two side surfaces 111 c and 111 d facing in the Y-axis direction, and two main surfaces 111 e and 111 f facing in the Z-axis direction.
  • a cut portion corresponding to the laminated electrode sheet 105 is formed as an unsintered multi-layer unit 116 .
  • Cut portions corresponding to the laminated cover sheets 106 are formed as unsintered covers 117 .
  • the unsintered ceramic body 111 has such an outer shape that the height dimension T in the Z-axis direction is 1.1 times or more and 1.6 times or less the width dimension in the Y-axis direction after sintering. Further, the main surfaces 111 e and 111 f each include a center region F′ that is defined in a manner similar to the center region F. A width dimension of the center region F′ in the Y-axis direction can be set to 80% or more and less than 100% of the width dimension of the unsintered ceramic body 111 , as in the case of the center region F. It should be noted that the unsintered ceramic body 111 may be chamfered by barrel polishing or the like after the cutting. In such a case, barrel polishing is performed such that the width dimension of the center region F′ falls within the range described above.
  • Step S 05 Sintering
  • Step S 05 the unsintered ceramic body 111 obtained in Step S 04 is sintered, to produce the ceramic body 11 shown in FIGS. 1 to 3 .
  • the multi-layer unit 116 becomes the multi-layer unit 16
  • the covers 117 become the covers 17 .
  • Sintering can be performed in a reduction atmosphere or a low-oxygen partial pressure atmosphere, for example.
  • Step S 06 the first external electrode 14 and the second external electrode 15 are formed on the ceramic body 11 obtained in Step S 05 , to produce the multi-layer ceramic capacitor 10 shown in FIGS. 1 to 3 .
  • Step S 06 first, an unsintered electrode material is applied so as to cover one of the end surfaces of the ceramic body 11 that face in the X-axis direction, and then applied so as to cover the other end surface of the ceramic body 11 that faces in the X-axis direction.
  • the unsintered electrode material applied to the ceramic body 11 is baked in a reduction atmosphere or a low-oxygen partial pressure atmosphere, for example, to form base films on the ceramic body 11 .
  • intermediate films and surface films are formed by plating such as electrolytic plating, thus completing the first external electrode 14 and the second external electrode 15 .
  • Step S 06 part of the processing in Step S 06 described above may be performed before Step S 05 .
  • the unsintered electrode material may be applied to both the end surfaces of the unsintered ceramic body 111 that face in the X-axis direction, and in Step S 05 , the unsintered ceramic body 111 may be sintered and, simultaneously, the unsintered electrode material may be baked to form the base films of the first external electrode 14 and the second external electrode 15 .
  • the unsintered electrode material may be applied to the ceramic body 111 that has been subjected to debinder processing, to simultaneously sinter the unsintered electrode material and the ceramic body 111 .
  • the ceramic body 11 thus produced has the height dimension T in the Z-axis direction, which is 1.1 times or more and 1.6 times or less the width dimension W in the Y-axis direction, and includes the flat center regions F.
  • the center region F is formed by forming the dielectric pattern P that occupies 75% or more and less than 100% of the space portion S.
  • a capacitance forming portion in which the internal electrode patterns are laminated and a side margin portion in which the electrode non-formation regions are laminated have a difference in height dimension in the Z-axis direction due to the thicknesses of the internal electrode patterns. Additionally, as the number of lamination of the ceramic sheets becomes larger, that is, as the height dimension of the multi-layer ceramic capacitor becomes larger, the difference in height dimension in the Z-axis direction between the above-mentioned portions becomes larger.
  • the height dimension gradually increases from the peripheral portions in the Y-axis direction toward the center portion in the Y-axis direction, and the main surfaces are formed as curved surfaces protruding in the Z-axis direction.
  • the dielectric pattern is intended to be formed on the entire electrode non-formation region N (i.e., in a state of occupying 100% of the space portion), even with a slight displacement of the dielectric pattern, the dielectric pattern overlaps with the internal electrode patterns. Accordingly, the thickness of the overlapping portion increases, and the height of the ceramic body in the Z-axis direction becomes uneven.
  • the dielectric pattern P is formed so as to occupy 75% or more of the space portion S, and thus the gaps Q can be made small to such an extent that the ceramic sheets laminated in Step S 03 do not sink down into the gaps Q. Accordingly, the height of the laminated electrode sheet 105 in the Z-axis direction can be formed to be uniform, and the center regions F′ are formed in the unsintered ceramic body 111 . Therefore, the center regions F are also formed in the sintered ceramic body 11 .
  • the dielectric pattern P is formed so as to occupy a portion less than 100% of the space portion S, and thus narrow gaps Q can be provided in the electrode non-formation region N. Accordingly, even when the dielectric pattern P is slightly displaced with respect to the internal electrode patterns 112 ( 113 ), the displacement is mitigated by the gaps Q. Therefore, it is possible to reduce the risk of overlapping of the dielectric pattern P with the internal electrode patterns 112 ( 113 ).
  • the multi-layer ceramic capacitor 10 is packaged as a package 100 with the center region F being faced upward in the Z-axis direction. Accordingly, a mounting step of taking the multi-layer ceramic capacitor 10 out of the package 100 and mounting the multi-layer ceramic capacitor 10 to an electronic device can be smoothly performed.
  • FIG. 12 is a plan view of the package 100 for the multi-layer ceramic capacitor 10 .
  • FIG. 13 is a cross-sectional view taken along the D-D′ line in FIG. 12 . It should be noted that the configuration of the package 100 according to this embodiment is not limited to the configuration shown in FIGS. 12 and 13 .
  • the package 100 is long in the Y-axis direction, has a predetermined depth in the Z-axis direction, and houses a plurality of multi-layer ceramic capacitors 10 .
  • the package 100 includes a housing portion 110 , a sealing portion 120 , and a plurality of multi-layer ceramic capacitors 10 .
  • the housing portion 110 includes a plurality of recesses 110 a formed at predetermined intervals along the Y-axis direction.
  • the housing portion 110 is typically a carrier tape, but it may be a chip tray in which the recesses 110 a that house the multi-layer ceramic capacitors 10 are arranged in a lattice pattern, for example. Further, a material forming the housing portion 110 is also not particularly limited, and a synthetic resin, paper, or the like can be used therefor.
  • the recess 110 a is formed downward from an upper surface 110 c of the housing portion 110 in the Z-axis direction and has a size capable of housing each multi-layer ceramic capacitor 10 .
  • a take-out opening 110 b is formed on the upper surface 110 c side of the recess 110 a. The take-out opening 110 b is used when the multi-layer ceramic capacitor 10 is housed in the recess 110 a and taken out of the recess 110 a.
  • the sealing portion 120 is disposed on the housing portion 110 so as to be capable of being peeled off.
  • the sealing portion 120 is formed to cover the take-out openings 110 b of the recesses 110 a in the Z-axis direction.
  • the sealing portion 120 is typically a cover tape, but it is not particularly limited as long as the sealing portion 120 is a member capable of being peeled off from the housing portion 110 and having a function of sealing the recesses 110 a. Further, the sealing portion 120 may be made of the same type of material as that of the housing portion 110 or may be made of a different material.
  • the multi-layer ceramic capacitor 10 is housed in the recess 110 a with the flat center region F being faced to the take-out opening 110 b side (upward in the Z-axis direction). It is favorable that the center region F on the take-out opening 110 b side is formed such that the width dimension Wf is 80% or more and less than 100% of the width dimension W of the ceramic body 11 .
  • main surfaces 11 e and 11 f include the respective center regions F, one of the main surfaces 11 e and 11 f is faced upward in the Z-axis direction when the multi-layer ceramic capacitor 10 is housed. If one of the main surfaces 11 e and 11 f includes the center region F, the one of the main surfaces 11 e and 11 f, which includes the center region F, is faced upward in the Z-axis direction when the multi-layer ceramic capacitor 10 is housed.
  • FIG. 14 is a cross-sectional view schematically showing a step of mounting the multi-layer ceramic capacitor 10 , which shows a cross section corresponding to FIG. 13 .
  • FIG. 15 is a cross-sectional view of a multi-layer ceramic capacitor mounting substrate (mounting substrate) 200 , onto which the multi-layer ceramic capacitor 10 is mounted, when viewed in the Y-axis direction.
  • the multi-layer ceramic capacitors 10 are taken out of the package 100 one by one and are mounted onto a circuit board 210 of an electronic device.
  • description will be given with reference to FIGS. 14 and 15 .
  • the sealing portion 120 is peeled off from the housing portion 110 .
  • the multi-layer ceramic capacitor 10 is taken out through the take-out opening 110 b of the package 100 by using a suction nozzle M of a chip mounter.
  • the suction nozzle M holds the flat center region F by suction from above in the Z-axis direction, the flat center region F being faced to the take-out opening 110 b side.
  • the suction nozzle M moves the multi-layer ceramic capacitor 10 onto the circuit board 210 while keeping suction of the center region F.
  • the suction nozzle M disposes the multi-layer ceramic capacitor 10 at a predetermined position on the circuit board 210 , and then releases the suction. At that time as well, the center region F is faced upward in the Z-axis direction.
  • the first and second external electrodes 14 and 15 of the multi-layer ceramic capacitor 10 and the circuit board 210 are bonded to each other in the Z-axis direction by solder H or the like, and a mounting substrate 200 onto which the multi-layer ceramic electronic component 10 is mounted is formed as shown in FIG. 15 .
  • the multi-layer ceramic capacitor 10 is mounted with the center region F being faced upward in the Z-axis direction.
  • the center portion of the main surface of the ceramic body has a curved surface.
  • a gap is generated between the tip of the suction nozzle M and the main surface of the ceramic body, and the suction by the suction nozzle M becomes insufficient. Therefore, there is a possibility that a failure, such as the difficulty of performing suction of the main surface of the multi-layer ceramic capacitor or the drop of the multi-layer ceramic capacitor in the process of transfer, occurs in the mounting step.
  • the flat center region F is formed on at least one of the main surface 11 e or 11 f of the ceramic body 11 , and the multi-layer ceramic capacitor 10 is packaged with the center region F being faced upward in the Z-axis direction. Accordingly, the tip of the suction nozzle M and the center region F of the ceramic body 11 come into close contact with each other, so that the suction nozzle M can stably perform suction of the center region F. Therefore, it is possible to inhibit failures from occurring at the time of suction by the suction nozzle M and to smoothly mount the multi-layer ceramic capacitor 10 .
  • the height dimension T of the ceramic body 11 is set to be 1.1 times or more and 1.6 times or less the width dimension W thereof.
  • the multi-layer ceramic capacitor 10 can keep the balance thereof even if the height dimension T is larger than the width dimension W. Accordingly, in the recess 110 a of the package 100 or in the mounting step, the multi-layer ceramic capacitor 10 can be inhibited from falling down and can be handled at a posture at which the height direction of the multi-layer ceramic capacitor 10 coincides with the Z-axis direction. This also allows the multi-layer ceramic capacitor 10 to be smoothly mounted.
  • the multi-layer ceramic capacitor 10 In such a manner, according to the multi-layer ceramic capacitor 10 , a failure caused at the time of mounting can be inhibited from occurring even if the number of lamination of the first and second internal electrodes 12 and 13 is increased, so that the capacitance can be increased without changing the mounting area. Therefore, it is possible to achieve the multi-layer ceramic capacitor 10 having a large capacitance and capable of contributing to reduction in size of the electronic device.
  • samples of the multi-layer ceramic capacitor 10 were produced by the production method described above, and the shape and a suction rate of the suction nozzle M were investigated.
  • samples (Examples 1 to 3 and Comparative examples 1 and 2) of the multi-layer ceramic capacitor were produced.
  • the samples had three sizes: a first size having a length dimension (L) of 0.69 mm, a width dimension (W) of 0.39 mm, and a height dimension (T) of 0.55 mm; a second size having a length dimension (L) of 1.15 mm, a width dimension (W) of 0.65 mm, and a height dimension (T) of 1.00 mm; and a third size having a length dimension (L) of 1.20 mm, a width dimension (W) of 0.75 mm, and a height dimension (T) of 0.85 mm.
  • a ratio of the length dimension to the height dimension (L/T) was 1.15 to 1.41
  • a ratio of the height dimension to the width dimension (T/W) was 1.13 to 1.54.
  • Table 1 shows a volume ratio of the dielectric pattern to the volume of the space portion (space occupancy rate), the volume of the space portion being obtained by multiplying the area of the electrode non-formation region by the thickness of the internal electrode pattern. It should be noted that a value of the space occupancy rate shown in Table 1 was a mean value of the 300 samples for each of Examples and Comparative examples.
  • the space occupancy rate was 95% in Example 1, 90% in Example 2, and 75% in Example 3, all of which were 75% or more and less than 100%. Meanwhile, in Comparative example 1, the space occupancy rate was 50%. In Comparative example 2, the space occupancy rate was 0% because the dielectric pattern was not formed.
  • a proportion (Wf/W) of the width dimension (Wf) of the flat center region to the width dimension (W) of the multi-layer ceramic capacitor was measured.
  • Table 1 shows the results of the measurement. It should be noted that a value of the proportion of the width dimension shown in Table 1 was a mean value of the 300 samples for each of Examples and Comparative examples. Further, for a value of the proportion of the width dimension in each sample, one of the two main surfaces of each sample, which has a larger proportion of the width dimension of the center region, was employed.
  • the proportion of the width dimension was 85% in Example 1, 83% in Example 2, and 82% in Example 3, all of which were 80% or more in Examples 1 to 3. Meanwhile, the proportion of the width dimension was 65% in Comparative example 1, and 35% in Comparative example 2, all of which were less than 80%.
  • the proportion (Wf/W) of the width dimension showed a positive relationship with the space occupancy rate of the dielectric pattern. Specifically, in Examples 1 to 3 in which the space occupancy rate is 75% or more and less than 100%, the Wf/W was 80% or more in each example. However, in Comparative examples 1 and 2 in which the space occupancy rate was 50% or less, the Wf/W was 65% or less in each example. From those results, it was confirmed that when the space occupancy rate of the dielectric pattern is set to 75% or more and less than 100%, the center region can be formed such that the proportion of the width dimension is 80% or more.
  • a housing portion including recesses in a package was prepared, and each sample was held in the recess with a main surface being faced to the take-out opening side, the main surface including the center region having a larger proportion of the width dimension.
  • the main surface of each sample on the take-out opening side was tried to be subjected to suction by a suction nozzle of a chip mounter.
  • a proportion of the samples whose main surfaces could be subjected to suction was calculated as a “suction rate”. Table 1 shows the results thereof.
  • the embodiment of the present disclosure has been described, but the present disclosure is not limited to the embodiment described above, and it should be appreciated that the present disclosure may be variously modified without departing from the gist of the present disclosure.
  • the embodiment of the present disclosure can be an embodiment in which some embodiments are combined.
  • the multi-layer unit 16 may be divided into a plurality of multi-layer units 16 and then disposed in the Z-axis direction.
  • the first and second internal electrodes 12 and 13 only need to be alternately disposed along the Z-axis direction, and the first internal electrodes 12 or the second internal electrodes 13 may be consecutively disposed at portions where the multi-layer units 16 are adjacent to each other.
  • the multi-layer ceramic capacitor has been described as an example of a ceramic electronic component, but the present disclosure can be applied to any other multi-layer ceramic electronic components in which paired internal electrodes are alternately disposed.
  • Examples of such multi-layer ceramic electronic components include a piezoelectric element.

Abstract

A multi-layer ceramic electronic component includes: a ceramic body that includes internal electrodes laminated in a first direction, and a pair of main surfaces including a center region facing in the first direction; and a pair of external electrodes connected to the internal electrodes and facing each other in a second direction orthogonal to the first direction, a dimension of the ceramic body in the first direction being 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a third direction orthogonal to the first direction and the second direction, the center region being formed at a center portion of at least one of the pair of main surfaces in the second direction.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit under 35 U.S.C. § 119 of Japanese Application No. 2017-246104, filed Dec. 22, 2017, which is hereby incorporated in its entirety.
  • BACKGROUND
  • The present disclosure relates to a multi-layer ceramic electronic component such as a multi-layer ceramic capacitor, and a multi-layer ceramic electronic component mounting substrate and a multi-layer ceramic electronic component package that mount the multi-layer ceramic electronic component.
  • In the past, a multi-layer ceramic electronic component such as a multi-layer ceramic capacitor, in which a ceramic body includes a plurality of laminated internal electrodes, has been known. The multi-layer ceramic electronic component is mounted onto a circuit board of a personal digital assistant or another electronic device and widely used.
  • Japanese Patent Application Laid-open No. 2014-99589 (paragraph [0031], FIG. 6, etc.) discloses a method of mounting a multi-layer ceramic capacitor housed in a package onto a circuit board. Specifically, a cover tape is peeled off from a package including a plurality of accommodating sections in which the multi-layer ceramic capacitors are arranged such that internal electrodes thereof are oriented in a certain direction, and the multi-layer ceramic capacitors are subjected to suction and held one by one by a suction nozzle and then mounted at predetermined positions on the surface of the circuit board.
  • SUMMARY
  • In recent years, electronic devices such as personal digital assistants have increasingly achieved downsizing, and a mounting area for ceramic electronic components on a circuit board is limited. Meanwhile, there is a demand for improvement in electrical characteristics of multi-layer ceramic electronic components, such as increase in capacitance of multi-layer ceramic capacitors.
  • In view of the circumstances as described above, it is desirable to provide a multi-layer ceramic electronic component, a multi-layer ceramic electronic component mounting substrate, and a multi-layer ceramic electronic component package, which are capable of improving electrical characteristics without increasing a mounting area on a circuit board.
  • According to an embodiment of the present disclosure, there is provided a multi-layer ceramic electronic component including a ceramic body and a pair of external electrodes.
  • The ceramic body includes internal electrodes laminated in a first direction, and a pair of main surfaces including a center region facing in the first direction.
  • The pair of external electrodes are connected to the internal electrodes and face each other in a second direction orthogonal to the first direction.
  • A dimension of the ceramic body in the first direction is 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a third direction orthogonal to the first direction and the second direction.
  • The center region is formed at a center portion of at least one of the pair of main surfaces in the second direction.
  • With this configuration, it is possible to increase the height of the ceramic body while maintaining the area of the main surface and to increase the number of lamination of the internal electrodes. Therefore, it is possible to achieve a multi-layer ceramic electronic component capable of improving electrical characteristics without increasing a mounting area on a circuit board.
  • Additionally, the ceramic body includes the center region formed at the center portion of at least one of the pair of main surfaces in the second direction. Accordingly, a suction nozzle for transferring the multi-layer ceramic electronic component at the time of mounting can come into close contact with the center region and can stably hold the center region. Therefore, it is possible to inhibit occurrence of a failure at the time of mounting in the multi-layer ceramic electronic component.
  • A dimension of the center region in the third direction may be 80% or more and less than 100% of the dimension of the ceramic body in the third direction.
  • The center region may include a flat region.
  • Accordingly, it is possible to further improve the stability of suction at the time of mounting in the multi-layer ceramic electronic component and to inhibit occurrence of a failure more reliably.
  • According to another embodiment of the present disclosure, there is provided a multi-layer ceramic electronic component mounting substrate including a circuit board and a multi-layer ceramic electronic component.
  • The multi-layer ceramic electronic component includes a ceramic body and a pair of external electrodes and is mounted onto the circuit board via the pair of external electrodes.
  • The ceramic body includes internal electrodes laminated in a first direction and a pair of main surfaces including a center region facing in the first direction.
  • The pair of external electrodes are connected to the internal electrodes and face each other in a second direction orthogonal to the first direction.
  • A dimension of the ceramic body in the first direction is 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a third direction orthogonal to the first direction and the second direction.
  • The center region is formed at a center portion of at least one of the pair of main surfaces in the second direction.
  • The multi-layer ceramic electronic component is mounted onto the circuit board with the center region being faced outward in the first direction.
  • The multi-layer ceramic electronic component is placed onto the circuit board with the center region being held by suction by the suction nozzle in the first direction. Accordingly, in the multi-layer ceramic electronic component mounting substrate, the multi-layer ceramic electronic component is mounted onto the circuit board with the center region being faced outward in the first direction.
  • According to still another embodiment of the present disclosure, there is provided a multi-layer ceramic electronic component package including a multi-layer ceramic electronic component, a housing portion, and a sealing portion.
  • The multi-layer ceramic electronic component includes a ceramic body and a pair of external electrodes and is mounted onto a circuit board via the pair of external electrodes.
  • The ceramic body includes internal electrodes laminated in a first direction and a pair of main surfaces including a center region facing in the first direction.
  • The pair of external electrodes are connected to the internal electrodes and face each other in a second direction orthogonal to the first direction.
  • A dimension of the ceramic body in the first direction is 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a third direction orthogonal to the first direction and the second direction.
  • The center region is formed at a center portion of at least one of the pair of main surfaces in the second direction.
  • The housing portion includes a recess that houses the multi-layer ceramic electronic component and includes a take-out opening.
  • The sealing portion covers the take-out opening of the recess.
  • The multi-layer ceramic electronic component is housed in the recess with the center region being faced to the take-out opening.
  • With this configuration, when the sealing portion is peeled off, the center region is to be exposed from the take-out opening. Therefore, it is possible to cause the suction nozzle to come into close contact with the center region without changing the posture of the multi-layer ceramic electronic component, and smoothly mount the multi-layer ceramic electronic component.
  • According to yet still another embodiment of the present disclosure, there is provided a method of producing a multi-layer ceramic electronic component, the method including: forming an internal electrode pattern having a predetermined thickness on an unsintered ceramic sheet; forming a dielectric pattern in an electrode non-formation region around the internal electrode pattern on the ceramic sheet such that the dielectric pattern occupies 75% or more and less than 100% of a space portion facing to the electrode non-formation region and having the predetermined thickness; laminating in a first direction the ceramic sheets on each of which the internal electrode pattern and the dielectric pattern are formed, and forming a ceramic body including a plurality of internal electrodes laminated in the first direction, a dimension of the ceramic body in the first direction being 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a second direction orthogonal to the first direction; and forming a pair of external electrodes connected to the plurality of internal electrodes and facing each other in a third direction orthogonal to the first direction and the second direction.
  • Accordingly, not only the internal electrode pattern but also the dielectric pattern are formed on each ceramic sheet. When the dielectric pattern is formed to occupy 75% or more of the space portion, the laminated ceramic sheets can be inhibited from sinking down into gaps between the internal electrode patterns and the dielectric patterns. Accordingly, also in a ceramic body including a lot of laminated ceramic sheets, variations in height dimension for each region can be suppressed, and the center region can be formed on at least one of the main surfaces. Further, when the dielectric pattern is less than 100% of the space portion, it is possible to inhibit the dielectric pattern from overlapping with the internal electrode pattern if the dielectric pattern is slightly displaced from the internal electrode pattern. This can also suppress variations in height dimension in the ceramic body and form the center region.
  • As described above, according to the present disclosure, it is possbile to provide a multi-layer ceramic electronic component, a multi-layer ceramic electronic component mounting substrate, and a multi-layer ceramic electronic component package, which are capable of improving electrical characteristics without increasing a mounting area on a circuit board.
  • These and other objects, features and advantages of the present disclosure will become more apparent in light of the following detailed description of embodiments thereof, as illustrated in the accompanying drawings.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a perspective view of a multi-layer ceramic capacitor according to an embodiment of the present disclosure;
  • FIG. 2 is a cross-sectional view of the multi-layer ceramic capacitor taken along the A-A′ line in FIG. 1;
  • FIG. 3 is a cross-sectional view of the multi-layer ceramic capacitor taken along the B-B′ line in FIG. 1;
  • FIG. 4 is a diagram showing a microstructure of a cross section of the multi-layer ceramic capacitor;
  • FIG. 5 is a partially enlarged view of FIG. 3;
  • FIG. 6 is a flowchart showing a method of producing the multi-layer ceramic capacitor;
  • FIGS. 7A and 7B are each a plan view showing a production process of the multi-layer ceramic capacitor;
  • FIG. 8 is a partial cross-sectional view of the multi-layer ceramic capacitor taken along the C-C′ line of FIG. 7A;
  • FIG. 9 is a partial cross-sectional view similar to FIG. 8 and a view for describing Step S02 of FIG. 6;
  • FIG. 10 is a perspective view showing a production process of the multi-layer ceramic capacitor;
  • FIG. 11 is a perspective view showing a production process of the multi-layer ceramic capacitor;
  • FIG. 12 is a plan view of a multi-layer ceramic capacitor package according to the embodiment of the present disclosure;
  • FIG. 13 is a cross-sectional view of the package taken along the D-D′ line in FIG. 12;
  • FIG. 14 is a cross-sectional view schematically showing a step of mounting the multi-layer ceramic capacitor; and
  • FIG. 15 is a cross-sectional view of a multi-layer ceramic capacitor mounting substrate according to the embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings.
  • In the figures, an X axis, a Y axis, and a Z axis orthogonal to one another are shown as appropriate. The X axis, the Y axis, and the Z axis are common in all figures.
  • 1. Basic Configuration of Multi-Layer Ceramic Capacitor 10
  • FIGS. 1 to 3 each show a multi-layer ceramic capacitor 10 according to an embodiment of the present disclosure. FIG. 1 is a perspective view of the multi-layer ceramic capacitor 10. FIG. 2 is a cross-sectional view of the multi-layer ceramic capacitor 10 taken along the A-A′ line in FIG. 1. FIG. 3 is a cross-sectional view of the multi-layer ceramic capacitor 10 taken along the B-B′ line in FIG. 1.
  • The multi-layer ceramic capacitor 10 includes a ceramic body 11, a first external electrode 14, and a second external electrode 15.
  • Typically, the ceramic body 11 has two end surfaces 11 a and 11 b facing in an X-axis direction, two side surfaces 11 c and 11 d facing in a Y-axis direction, and two main surfaces 11 e and 11 f facing in a Z-axis direction. Ridges connecting the respective surfaces of the ceramic body 11 are chamfered.
  • It should be noted that the shape of the ceramic body 11 is not limited to the above shape. In other words, the ceramic body 11 does not need to have the rectangular shape as shown in FIGS. 1 to 3.
  • The first external electrode 14 and the second external electrode 15 are configured to face each other in the X-axis direction and to respectively cover both the end surfaces 11 a and 11 b of the ceramic body 11. The first external electrode 14 and the second external electrode 15 extend to the four surfaces connected to both the end surfaces 11 a and 11 b, i.e., the two main surfaces 11 e and 11 f and the two side surfaces 11 c and 11 d. With this configuration, both of the first external electrode 14 and the second external electrode 15 have U-shaped cross sections parallel to the X-Z plane and the X-Y plane.
  • The ceramic body 11 includes a multi-layer unit 16 and covers 17. The multi-layer unit 16 has a configuration in which first internal electrodes 12 and second internal electrodes 13 are alternately laminated in the Z-axis direction via ceramic layers 18. The covers 17 cover an upper surface and a lower surface of the multi-layer unit 16 in the Z-axis direction.
  • The first internal electrodes 12 and the second internal electrodes 13 are alternately laminated in the Z-axis direction via the ceramic layers 18. The first internal electrodes 12 are drawn to the end surface 11 a to be connected to the first external electrode 14 and are apart from the second external electrode 15. The second internal electrodes 13 are drawn to the end surface 11 b to be connected to the second external electrode 15 and are apart from the first external electrode 14.
  • Further, the first and second internal electrodes 12 and 13 are not drawn to the side surfaces 11 c and 11 d. Accordingly, side margins made of dielectric ceramics are formed on the sides of the side surfaces 11 c and 11 d of the multi-layer unit 16.
  • Typically, the first and second internal electrodes 12 and 13 mainly contain nickel (Ni) and function as internal electrodes of the multi-layer ceramic capacitor 10. It should be noted that the first and second internal electrodes 12 and 13 may contain at least one of copper (Cu), silver (Ag), or palladium (Pd) as a main component, other than nickel.
  • Each of the ceramic layers 18 is disposed between the first internal electrode 12 and the second internal electrode 13 and is made of dielectric ceramics. In order to increase the capacitance of the multi-layer unit 16, the ceramic layer 18 is made of dielectric ceramics having a high dielectric constant.
  • For the dielectric ceramics having a high dielectric constant, polycrystal of a barium titanate (BaTiO3) based material, i.e., polycrystal having a Perovskite structure containing barium (Ba) and titanium (Ti) is used. This provides the multi-layer ceramic capacitor 10 with a large capacitance.
  • It should be noted that the ceramic layer 18 may be made of a strontium titanate (SrTiO3) based material, a calcium titanate (CaTiO3) based material, a magnesium titanate (MgTiO3) based material, a calcium zirconate (CaZrO3) based material, a calcium zirconate titanate (Ca(Zr,Ti)O3) based material, a barium zirconate (BaZrO3) based material, a titanium oxide (TiO2) based material, or the like.
  • The covers 17 are also made of dielectric ceramics. The material of the covers 17 only needs to be insulating ceramics, but use of the dielectric ceramics similar to the dielectric ceramics of the ceramic layers 18 leads to suppression of internal stress in the ceramic body 11.
  • With such a condiguration, when a voltage is applied between the first external electrode 14 and the second external electrode 15 in the multi-layer ceramic capacitor 10, the voltage is applied to the plurality of ceramic layers 18 between the first internal electrodes 12 and the second internal electrodes 13. Thus, the multi-layer ceramic capacitor 10 stores charge corresponding to the voltage applied between the first external electrode 14 and the second external electrode 15.
  • It should be noted that the basic configuration of the multi-layer ceramic capacitor 10 according to this embodiment is not limited to the configuration shown in FIGS. 1 to 3 and can be changed as appropriate.
  • 2. Detailed Configuration of Ceramic Body
  • As shown in FIG. 3, the ceramic body 11 is characterized in that a height dimension T in the Z-axis direction is 1.1 times or more and 1.6 times or less a width dimension W in the Y-axis direction. This can increase the number of lamination of the first and second internal electrodes 12 and 13 and increase the capacitance of the multi-layer ceramic capacitor 10 without increasing a cross-sectional area of the ceramic body 11 in the X-Y plane.
  • Here, the height dimension T of the ceramic body 11 means a dimension along the Z-axis direction at the center portion of the ceramic body 11 in the Y-axis direction, on a Y-Z cross-section (see FIG. 3) that is cut at the center portion of the multi-layer ceramic capacitor 10 in the X-axis direction. In this embodiment, the height dimension T can be defined by a relationship between the width dimension W and a length dimension L to be described later.
  • The width dimension W of the ceramic body 11 means a dimension along the Y-axis direction at the center portion of the ceramic body 11 in the Z-axis direction, on the Y-Z cross-section (see FIG. 3) that is cut at the center portion of the multi-layer ceramic capacitor 10 in the X-axis direction. The width dimension W is not particularly limited and can be set to, for example, 0.10 mm or more and 1.50 mm or less.
  • The length dimension L of the ceramic body 11 may be larger than 1.0 times and equal to or smaller than 1.5 times the height dimension T. This can increase the height dimension T and increase the capacitance without increasing the mounting area for the multi-layer ceramic capacitor 10 and allows handling at the time of manufacturing or mounting to be described later to be smoothly performed.
  • The length dimension L of the ceramic body 11 means a dimension along the X-axis direction at the center portion of the ceramic body 11 in the Z-axis direction, on the Z-X cross-section (see FIG. 2) that is cut at the center portion of the multi-layer ceramic capacitor 10 in the Y-axis direction. The length dimension L is not particularly limited and can be set to, for example, 0.20 mm or more and 2.00 mm or less.
  • In order to further increase the number of layers of the first and second internal electrodes 12 and 13 and increase the capacitance of the multi-layer ceramic capacitor 10, the thickness of the cover 17 may be reduced. As an example, the dimension (thickness) of the cover 17 in the Z-axis direction may be 15 μm or less.
  • In order to further increase the capacitance of the multi-layer ceramic capacitor 10, the thickness of each ceramic layer 18 between the first and second internal electrodes 12 and 13 may be reduced. For example, a mean dimension (mean thickness) of the ceramic layers 18 in the Z-axis direction may be set to, for example, 1.0 μm or less or further 0.5 μm or less.
  • It should be noted that the mean thickness of the ceramic layers 18 can be calculated as a mean value of the thicknesses measured at a plurality of sites of the ceramic layers 18. A position at which the thickness of the ceramic layer 18 is to be measured or the number of positions may be optionally determined. Hereinafter, an example of a method of measuring a mean thickness T of the ceramic layers 18 will be described with reference to FIG. 4.
  • FIG. 4 is a diagram showing a microstructure of a cross section of the ceramic body 11, which is observed in the visual field of 12.6 μm×8.35 μm with a scanning electron microscope. For each of the six ceramic layers 18 within the visual field, the thickness is measured at five sites indicated by the arrows arranged at equal intervals of 2 μm. A mean value of the thicknesses obtained at the 30 sites can be set as a mean thickness.
  • In such a manner, in the multi-layer ceramic capacitor 10 of this embodiment, the height dimension T can be increased and a large number of first and second internal electrodes 12 and 13 can be laminated without increasing the mounting area, so that a large capacitance can be achieved.
  • Meanwhile, in the past, the multi-layer ceramic capacitor 10 has been difficult to handle at the time of mounting, and it has been difficult to achieve a multi-layer ceramic capacitor in which the height dimension T is larger than the width dimension W.
  • In this regard, in the multi-layer ceramic capacitor 10 of this embodiment, at least one of the main surface 11 e or 11 f has a center region F facing in the Z-axis direction. With this configuration, as will be described later, handleability at the time of mounting can be improved even if the height dimension T is larger than the width dimension W.
  • The center region F is a flat region that is formed at the center portion in the Y-axis direction of at least one of the main surface 11 e or 11 f and formed as a flat surface substantially parallel to the X-Y plane. In this embodiment, the center region F is formed on each of the main surfaces 11 e and 11 f, but it may be formed on either one of the main surfaces 11 e and 11 f. Peripheral portions of each of the main surfaces 11 e and 11 f in the Y-axis direction are positioned outward in the Y-axis direction of the center portion and have curved surfaces extending from the center region F.
  • FIG. 5 is a partially enlarged view of FIG. 3. The center region F will be described in detail with reference to FIG. 5.
  • It is assumed that a first imaginary line L1 and a second imaginary line L2 are defined on the Y-Z cross-section of the ceramic body 11, the first imaginary line L1 passes through a center point C of the main surface 11 e (11 f) in the Y-axis direction and orthogonally intersects with the Z-axis direction (the first imaginary line L1 is parallel to the Y-axis direction), and the second imaginary line L2 is parallel to the first imaginary line L1 and has an interval of 1% of the height dimension T of the ceramic body 11 (T*0.01) from the first imaginary line L1. In this case, the center region F means a region between two points at which the second imaginary line L2 and the main surface 11 e (11 f) intersect with each other. “The center point C of the main surface 11 e (11 f) in the Y-axis direction” described herein means the center of the width dimension of each of the main surfaces 11 e and 11 f along the Y-axis direction. FIG. 5 shows the center point of the main surface 11 e in the Y-axis direction by an arrow and shows the first imaginary line L1 and the second imaginary line L2 by thick chain lines.
  • When the center region F is defined as described above, a width dimension Wf of the center region F along the Y-axis direction corresponds to a distance along the Y-axis direction between the two points at which the second imaginary line L2 and the main surface 11 e (11 f) intersect with each other. The width dimension Wf of the center region F can be set to be 80% or more and less than 100% of the widthdimension W of the ceramic body 11. Accordingly, the width dimension Wf of the flat center region F can be sufficiently ensured and handleability at the time of mounting can be further improved.
  • The multi-layer ceramic capacitor 10 including the center region F can be produced by the following production method.
  • 3. Method of Producing Multi-Layer Ceramic Capacitor 10
  • FIG. 6 is a flowchart showing a method of producing the multi-layer ceramic capacitor 10. FIGS. 7A to 11 are views each showing a production process of the multi-layer ceramic capacitor 10. Hereinafter, the method of producing the multi-layer ceramic capacitor 10 will be described along FIG. 6 with reference to FIGS. 7A to 11 as appropriate.
  • 3.1 Step S01: Formation of Internal Electrode Pattern
  • In Step S01, first internal electrode patterns 112 and second internal electrode patterns 113 are respectively formed on first ceramic sheets 101 and second ceramic sheets 102 for forming the multi-layer unit 16.
  • The first and second ceramic sheets 101 and 102 are configured as unsintered dielectric green sheets mainly containing dielectric ceramics. For the dielectric ceramics, powder having a particle diameter of, for example, 20 nm to 200 nm can be used. The first and second ceramic sheets 101 and 102 are each formed into a sheet shape by using a roll coater or a doctor blade, for example. The thickness of each of the first and second ceramic sheets 101 and 102 is not limited, but it is adjusted to have 1.5 μm or less, for example.
  • FIGS. 7A and 7B are plan views of the first ceramic sheet 101 and the second ceramic sheet 102, respectively. At this stage, the first and second ceramic sheets 101 and 102 are each formed into a large-sized sheet that is not singulated. FIGS. 7A and 7B each show cutting lines Lx and Ly used when the sheets are singulated into the multi-layer ceramic capacitors 10. The cutting lines Lx are parallel to the X axis, and the cutting lines Ly are parallel to the Y axis.
  • As shown in FIGS. 7A and 7B, the unsintered first internal electrode patterns 112 corresponding to the first internal electrodes 12 are formed on the first ceramic sheet 101, and the unsintered second internal electrode patterns 113 corresponding to the second internal electrodes 13 are formed on the second ceramic sheet 102.
  • The first internal electrode patterns 112 and the second internal electrode patterns 113 can be formed by applying an optional electrical conductive paste to the first ceramic sheets 101 and the second ceramic sheets 102, respectively. A method of applying the electrical conductive paste can be optionally selected from well-known techniques. For example, for the application of the electrical conductive paste, a screen printing method or a gravure printing method can be used.
  • Each of the first internal electrode patterns 112 on the first ceramic sheets 101 is formed in a substantially rectangular shape that crosses one cutting line Ly1 or Ly2 and extends in the X-axis direction. The first internal electrode patterns 112 are cut on the cutting lines Ly1, Ly2, and Lx, thus forming the first internal electrodes 12 of the multi-layer ceramic capacitors 10. The first internal electrode pattern 112 on the cutting line Ly1 or Ly2 corresponds to a drawn portion to be exposed at the end surface 11 a.
  • In the first ceramic sheet 101, a first column including the first internal electrode patterns 112 that extend across the cutting lines Ly1 and are disposed along the X-axis direction, and a second column including the first internal electrode patterns 112 that extend across the cutting lines Ly2 and are disposed along the X-axis direction are arranged alternately in the Y-axis direction. In the first column, the first internal electrode patterns 112 adjacent to each other in the X-axis direction face each other while sandwiching the cutting line Ly2 therebetween. In the second column, the first internal electrode patterns 112 adjacent to each other in the X-axis direction face each other while sandwiching the cutting line Ly1 therebetween. In other words, the first internal electrode patterns 112 are displaced by one chip in the X-axis direction between the first column and the second column adjacent to each other in the Y-axis direction.
  • The second internal electrode patterns 113 on the second ceramic sheets 102 are configured to be similar to the first internal electrode patterns 112. However, in the second ceramic sheet 102, the second internal electrode patterns 113 in a column corresponding to the first column of the first ceramic sheet 101 extend across the cutting lines Ly2, and the second internal electrode patterns 113 in a column corresponding to the second column of the first ceramic sheet 101 extend across the cutting lines Ly1. In other words, the second internal electrode patterns 113 are displaced from the first internal electrode patterns 112 by one chip in the X-axis direction or the Y-axis direction.
  • An electrode non-formation region N is a region in which the first and second internal electrode patterns 112 and 113 are not formed on each of the first and second ceramic sheets 101 and 102. In the first ceramic sheet 101, the electrode non-formation region N includes a plurality of belt-like regions extending along the cutting lines Ly1 and Ly2 between the first internal electrode patterns 112 adjacent to each other in the X-axis direction, and a plurality of belt-like regions extending along the cutting lines Lx between the first internal electrode patterns 112 adjacent to each other in the Y-axis direction. The electrode non-formation region N is formed in a lattice pattern as a whole, in which those belt-like regions are alternately crossed. The electrode non-formation region N corresponds to side margins and end margins of the multi-layer ceramic capacitor 10.
  • The electrode non-formation region N in the second ceramic sheet 102 is also formed in a similar manner.
  • FIG. 8 is a partially enlarged cross-sectional view of the electrode non-formation region N between the internal electrode patterns 112 (113) adjacent to each other on the cross section taken along the C-C′ line of FIG. 7A. It should be noted that the electrode non-formation region N between the second internal electrode patterns 113 shown in FIG. 7B has a configuration similar to that of the electrode non-formation region N between the first internal electrode patterns 112. Accordingly, the electrode non-formation region N of both the first and second ceramic sheets 101 and 102 will be described with reference to FIGS. 8 and 9.
  • In FIG. 8, the internal electrode patterns 112 (113) each having a predetermined thickness d1 are formed on the ceramic sheet 101 (102). The thickness d1 of the internal electrode patterns 112 (113) is a mean thickness of the internal electrode patterns 112 (113) and can be calculated as, for example, a mean value of the thicknesses measured at a plurality of sites as in the case of the mean thickness of the ceramic layers 18.
  • A space portion S sandwiched between the adjacent internal electrode patterns 112 (113) is formed in the electrode non-formation region N. The space portion S is a space region having a thickness d1 and facing to the electrode non-formation region N. In other words, the space portion S has a volume obtained by multiplying the area of the electrode non-formation region N by the thickness d1. FIGS. 8 and 9 each show the space portion S surrounded by a thick broken line.
  • 3.2 Step S02: Formation of Dielectric Pattern
  • In Step S02, a dielectric pattern P is formed in the electrode non-formation region N around the first internal electrode patterns 112 on the first ceramic sheet 101 and around the second internal electrode patterns 113 on the second ceramic sheet 102.
  • FIG. 9 is a cross-sectional view of the same position as that of FIG. 8 and shows a state in which the dielectric pattern P is formed in the space portion S.
  • The dielectric pattern P can be formed by applying a ceramic paste to the electrode non-formation region N of the ceramic sheet 101 (102). The ceramic paste only needs to mainly contain dielectric ceramics, but use of dielectric ceramics similar to that of the first and second ceramic sheets 101 and 102 leads to suppression of internal stress at the time of sintering. For the application of the ceramic paste, a screen printing method or a gravure printing method can be used, for example.
  • In this embodiment, the dielectric pattern P is formed to occupy 75% or more and less than 100% of the space portion S. In other words, the volume of the dielectric pattern P is 75% or more and less than 100% of the volume of the space portion S, the volume of the space portion S being obtained by multiplying the area of the electrode non-formation region N by the thickness d1 of the internal electrode pattern 112 (113).
  • A mean thickness of the dielectric pattern P only needs to be equal to or smaller than the thickness d1 of the space portion S. For example, the mean thickness of the dielectric pattern P may be 80% or more and 100% or less when the thickness d1 is assumed as 100%. The mean thickness of the dielectric pattern P can be a mean value measured in a similar manner to the case where the thicknesses of the first and second internal electrode patterns 112 and 113 are measured.
  • The ceramic sheet 101 (102) may have gaps Q, in which the dielectric pattern P is not formed, around the internal electrode patterns 112 (113). When the gaps Q between the internal electrode patterns 112 (113) and the dielectric pattern P are provided, the dielectric pattern P can be inhibited from being formed on the internal electrode patterns 112 (113).
  • 3.3 Step S03: Lamination
  • In Step S03, the first and second ceramic sheets 101 and 102 prepared in Steps S01 and S02 and third ceramic sheets 103 are laminated as shown in FIG. 10, to produce a multi-layer sheet 104. The third ceramic sheet 103 is a ceramic sheet on which the first and second internal electrode patterns 112 and 113 and the dielectric pattern P are not formed. It should be noted that FIG. 10 omits the illustration of the gaps Q.
  • The multi-layer sheet 104 includes a laminated electrode sheet 105 and two laminated cover sheets 106. The first ceramic sheets 101 and the second ceramic sheets 102 are alternately laminated in the Z-axis direction in the laminated electrode sheet 105. Only the third ceramic sheets 103 are laminated in the laminated cover sheet 106. The two laminated cover sheets 106 are provided on the upper surface and the lower surface of the laminated electrode sheet 105 in the Z-axis direction. The laminated electrode sheet 105 corresponds to the multi-layer unit 16 after sintering. The laminated cover sheets 106 correspond to the covers 17 after sintering.
  • The number of lamination of the first and second ceramic sheets 101 and 102 in the laminated electrode sheet 105 is adjusted so as to obtain a desired capacitance and a desired height dimension T after sintering.
  • The number of lamination of the third ceramic sheets 103 in the laminated cover sheet 106 is not limited to the example shown in FIG. 10 and is adjusted as appropriate.
  • The multi-layer sheet 104 is integrated by pressure-bonding the first, second, and third ceramic sheets 101, 102, and 103. For the pressure-bonding of the first, second, and third ceramic sheets 101, 102, and 103, for example, hydrostatic pressing or uniaxial pressing is favorably used. This makes it possible to obtain a high-density multi-layer sheet 104.
  • 3.4 Step S04: Cutting
  • In Step S04, the multi-layer sheet 104 obtained in Step S03 is cut along the cutting lines Lx and Ly, to produce an unsintered ceramic body 111.
  • FIG. 11 is a perspective view of the ceramic body 111 obtained in Step S04.
  • As shown in FIG. 11, the unsintered ceramic body 111 has two end surfaces 111 a and 111 b facing in the X-axis direction, two side surfaces 111 c and 111 d facing in the Y-axis direction, and two main surfaces 111 e and 111 f facing in the Z-axis direction. A cut portion corresponding to the laminated electrode sheet 105 is formed as an unsintered multi-layer unit 116. Cut portions corresponding to the laminated cover sheets 106 are formed as unsintered covers 117.
  • The unsintered ceramic body 111 has such an outer shape that the height dimension T in the Z-axis direction is 1.1 times or more and 1.6 times or less the width dimension in the Y-axis direction after sintering. Further, the main surfaces 111 e and 111 f each include a center region F′ that is defined in a manner similar to the center region F. A width dimension of the center region F′ in the Y-axis direction can be set to 80% or more and less than 100% of the width dimension of the unsintered ceramic body 111, as in the case of the center region F. It should be noted that the unsintered ceramic body 111 may be chamfered by barrel polishing or the like after the cutting. In such a case, barrel polishing is performed such that the width dimension of the center region F′ falls within the range described above.
  • 3.5 Step S05: Sintering
  • In Step S05, the unsintered ceramic body 111 obtained in Step S04 is sintered, to produce the ceramic body 11 shown in FIGS. 1 to 3. In other words, in Step S05, the multi-layer unit 116 becomes the multi-layer unit 16, and the covers 117 become the covers 17. Sintering can be performed in a reduction atmosphere or a low-oxygen partial pressure atmosphere, for example.
  • 3.6 Step S06: Formation of External Electrode
  • In Step S06, the first external electrode 14 and the second external electrode 15 are formed on the ceramic body 11 obtained in Step S05, to produce the multi-layer ceramic capacitor 10 shown in FIGS. 1 to 3.
  • In Step S06, first, an unsintered electrode material is applied so as to cover one of the end surfaces of the ceramic body 11 that face in the X-axis direction, and then applied so as to cover the other end surface of the ceramic body 11 that faces in the X-axis direction. The unsintered electrode material applied to the ceramic body 11 is baked in a reduction atmosphere or a low-oxygen partial pressure atmosphere, for example, to form base films on the ceramic body 11. On the base films baked onto the ceramic body 11, intermediate films and surface films are formed by plating such as electrolytic plating, thus completing the first external electrode 14 and the second external electrode 15.
  • It should be noted that part of the processing in Step S06 described above may be performed before Step S05. For example, before Step S05, the unsintered electrode material may be applied to both the end surfaces of the unsintered ceramic body 111 that face in the X-axis direction, and in Step S05, the unsintered ceramic body 111 may be sintered and, simultaneously, the unsintered electrode material may be baked to form the base films of the first external electrode 14 and the second external electrode 15. Alternatively, the unsintered electrode material may be applied to the ceramic body 111 that has been subjected to debinder processing, to simultaneously sinter the unsintered electrode material and the ceramic body 111.
  • As shown in FIGS. 1 to 3, the ceramic body 11 thus produced has the height dimension T in the Z-axis direction, which is 1.1 times or more and 1.6 times or less the width dimension W in the Y-axis direction, and includes the flat center regions F. In Step S02, the center region F is formed by forming the dielectric pattern P that occupies 75% or more and less than 100% of the space portion S.
  • If the dielectric pattern is not formed, a capacitance forming portion in which the internal electrode patterns are laminated and a side margin portion in which the electrode non-formation regions are laminated have a difference in height dimension in the Z-axis direction due to the thicknesses of the internal electrode patterns. Additionally, as the number of lamination of the ceramic sheets becomes larger, that is, as the height dimension of the multi-layer ceramic capacitor becomes larger, the difference in height dimension in the Z-axis direction between the above-mentioned portions becomes larger. For that reason, in the ceramic body in which the laminated ceramic sheets are pressure-bonded and cut, the height dimension gradually increases from the peripheral portions in the Y-axis direction toward the center portion in the Y-axis direction, and the main surfaces are formed as curved surfaces protruding in the Z-axis direction.
  • Further, if the dielectric pattern is intended to be formed on the entire electrode non-formation region N (i.e., in a state of occupying 100% of the space portion), even with a slight displacement of the dielectric pattern, the dielectric pattern overlaps with the internal electrode patterns. Accordingly, the thickness of the overlapping portion increases, and the height of the ceramic body in the Z-axis direction becomes uneven.
  • Meanwhile, when the proportion of the dielectric pattern occupying the space portion is less than 75%, a gap between the internal electrode pattern and the dielectric pattern becomes larger. As a result, the laminated ceramic sheets sink down into the gaps at the time of pressure-bonding, and the height of the ceramic body in the Z-axis direction becomes uneven again.
  • In this embodiment, the dielectric pattern P is formed so as to occupy 75% or more of the space portion S, and thus the gaps Q can be made small to such an extent that the ceramic sheets laminated in Step S03 do not sink down into the gaps Q. Accordingly, the height of the laminated electrode sheet 105 in the Z-axis direction can be formed to be uniform, and the center regions F′ are formed in the unsintered ceramic body 111. Therefore, the center regions F are also formed in the sintered ceramic body 11.
  • Further, the dielectric pattern P is formed so as to occupy a portion less than 100% of the space portion S, and thus narrow gaps Q can be provided in the electrode non-formation region N. Accordingly, even when the dielectric pattern P is slightly displaced with respect to the internal electrode patterns 112 (113), the displacement is mitigated by the gaps Q. Therefore, it is possible to reduce the risk of overlapping of the dielectric pattern P with the internal electrode patterns 112 (113).
  • Additionally, after the production, the multi-layer ceramic capacitor 10 is packaged as a package 100 with the center region F being faced upward in the Z-axis direction. Accordingly, a mounting step of taking the multi-layer ceramic capacitor 10 out of the package 100 and mounting the multi-layer ceramic capacitor 10 to an electronic device can be smoothly performed.
  • Hereinafter, the configuration of the package 100 and a method of mounting the multi-layer ceramic capacitor 10 will be described in detail.
  • 4. Configuration of Package 100 for Multi-Layer Ceramic Capacitor 10
  • FIG. 12 is a plan view of the package 100 for the multi-layer ceramic capacitor 10. FIG. 13 is a cross-sectional view taken along the D-D′ line in FIG. 12. It should be noted that the configuration of the package 100 according to this embodiment is not limited to the configuration shown in FIGS. 12 and 13.
  • For example, the package 100 is long in the Y-axis direction, has a predetermined depth in the Z-axis direction, and houses a plurality of multi-layer ceramic capacitors 10.
  • The package 100 includes a housing portion 110, a sealing portion 120, and a plurality of multi-layer ceramic capacitors 10.
  • The housing portion 110 includes a plurality of recesses 110 a formed at predetermined intervals along the Y-axis direction.
  • The housing portion 110 is typically a carrier tape, but it may be a chip tray in which the recesses 110 a that house the multi-layer ceramic capacitors 10 are arranged in a lattice pattern, for example. Further, a material forming the housing portion 110 is also not particularly limited, and a synthetic resin, paper, or the like can be used therefor.
  • The recess 110 a is formed downward from an upper surface 110 c of the housing portion 110 in the Z-axis direction and has a size capable of housing each multi-layer ceramic capacitor 10. A take-out opening 110 b is formed on the upper surface 110 c side of the recess 110 a. The take-out opening 110 b is used when the multi-layer ceramic capacitor 10 is housed in the recess 110 a and taken out of the recess 110 a.
  • The sealing portion 120 is disposed on the housing portion 110 so as to be capable of being peeled off. The sealing portion 120 is formed to cover the take-out openings 110 b of the recesses 110 a in the Z-axis direction. The sealing portion 120 is typically a cover tape, but it is not particularly limited as long as the sealing portion 120 is a member capable of being peeled off from the housing portion 110 and having a function of sealing the recesses 110 a. Further, the sealing portion 120 may be made of the same type of material as that of the housing portion 110 or may be made of a different material.
  • The multi-layer ceramic capacitor 10 is housed in the recess 110 a with the flat center region F being faced to the take-out opening 110 b side (upward in the Z-axis direction). It is favorable that the center region F on the take-out opening 110 b side is formed such that the width dimension Wf is 80% or more and less than 100% of the width dimension W of the ceramic body 11.
  • If the main surfaces 11 e and 11 f include the respective center regions F, one of the main surfaces 11 e and 11 f is faced upward in the Z-axis direction when the multi-layer ceramic capacitor 10 is housed. If one of the main surfaces 11 e and 11 f includes the center region F, the one of the main surfaces 11 e and 11 f, which includes the center region F, is faced upward in the Z-axis direction when the multi-layer ceramic capacitor 10 is housed.
  • 5. Method of Mounting Multi-Layer Ceramic Capacitor 10
  • FIG. 14 is a cross-sectional view schematically showing a step of mounting the multi-layer ceramic capacitor 10, which shows a cross section corresponding to FIG. 13. FIG. 15 is a cross-sectional view of a multi-layer ceramic capacitor mounting substrate (mounting substrate) 200, onto which the multi-layer ceramic capacitor 10 is mounted, when viewed in the Y-axis direction.
  • The multi-layer ceramic capacitors 10 are taken out of the package 100 one by one and are mounted onto a circuit board 210 of an electronic device. Hereinafter, description will be given with reference to FIGS. 14 and 15.
  • First, the sealing portion 120 is peeled off from the housing portion 110. Subsequently, as shown in FIG. 14, the multi-layer ceramic capacitor 10 is taken out through the take-out opening 110 b of the package 100 by using a suction nozzle M of a chip mounter. The suction nozzle M holds the flat center region F by suction from above in the Z-axis direction, the flat center region F being faced to the take-out opening 110 b side.
  • The suction nozzle M moves the multi-layer ceramic capacitor 10 onto the circuit board 210 while keeping suction of the center region F. The suction nozzle M disposes the multi-layer ceramic capacitor 10 at a predetermined position on the circuit board 210, and then releases the suction. At that time as well, the center region F is faced upward in the Z-axis direction.
  • Subsequently, the first and second external electrodes 14 and 15 of the multi-layer ceramic capacitor 10 and the circuit board 210 are bonded to each other in the Z-axis direction by solder H or the like, and a mounting substrate 200 onto which the multi-layer ceramic electronic component 10 is mounted is formed as shown in FIG. 15.
  • Also in the mounting substrate 200, the multi-layer ceramic capacitor 10 is mounted with the center region F being faced upward in the Z-axis direction.
  • Here, if the dielectric pattern is not formed to have the volume occupying 75% or more and less than 100% of the space portion, as described above, the center portion of the main surface of the ceramic body has a curved surface. In this case, a gap is generated between the tip of the suction nozzle M and the main surface of the ceramic body, and the suction by the suction nozzle M becomes insufficient. Therefore, there is a possibility that a failure, such as the difficulty of performing suction of the main surface of the multi-layer ceramic capacitor or the drop of the multi-layer ceramic capacitor in the process of transfer, occurs in the mounting step.
  • In this embodiment, the flat center region F is formed on at least one of the main surface 11 e or 11 f of the ceramic body 11, and the multi-layer ceramic capacitor 10 is packaged with the center region F being faced upward in the Z-axis direction. Accordingly, the tip of the suction nozzle M and the center region F of the ceramic body 11 come into close contact with each other, so that the suction nozzle M can stably perform suction of the center region F. Therefore, it is possible to inhibit failures from occurring at the time of suction by the suction nozzle M and to smoothly mount the multi-layer ceramic capacitor 10.
  • Further, in the multi-layer ceramic capacitor 10, the height dimension T of the ceramic body 11 is set to be 1.1 times or more and 1.6 times or less the width dimension W thereof. Thus, the multi-layer ceramic capacitor 10 can keep the balance thereof even if the height dimension T is larger than the width dimension W. Accordingly, in the recess 110 a of the package 100 or in the mounting step, the multi-layer ceramic capacitor 10 can be inhibited from falling down and can be handled at a posture at which the height direction of the multi-layer ceramic capacitor 10 coincides with the Z-axis direction. This also allows the multi-layer ceramic capacitor 10 to be smoothly mounted.
  • Additionally, setting the length dimension L of the ceramic body 11 to be larger than 1.0 times and equal to or smaller than 1.5 times the height dimension T also enables the balance of the ceramic body 11 to be kept. Therefore, handleability at the time of mounting of the multi-layer ceramic capacitor 10 can be more improved.
  • In such a manner, according to the multi-layer ceramic capacitor 10, a failure caused at the time of mounting can be inhibited from occurring even if the number of lamination of the first and second internal electrodes 12 and 13 is increased, so that the capacitance can be increased without changing the mounting area. Therefore, it is possible to achieve the multi-layer ceramic capacitor 10 having a large capacitance and capable of contributing to reduction in size of the electronic device.
  • 6. Examples and Comparative Examples
  • As Examples and Comparative examples of this embodiment, samples of the multi-layer ceramic capacitor 10 were produced by the production method described above, and the shape and a suction rate of the suction nozzle M were investigated.
  • First, samples (Examples 1 to 3 and Comparative examples 1 and 2) of the multi-layer ceramic capacitor were produced. The samples had three sizes: a first size having a length dimension (L) of 0.69 mm, a width dimension (W) of 0.39 mm, and a height dimension (T) of 0.55 mm; a second size having a length dimension (L) of 1.15 mm, a width dimension (W) of 0.65 mm, and a height dimension (T) of 1.00 mm; and a third size having a length dimension (L) of 1.20 mm, a width dimension (W) of 0.75 mm, and a height dimension (T) of 0.85 mm. In other words, a ratio of the length dimension to the height dimension (L/T) was 1.15 to 1.41, and a ratio of the height dimension to the width dimension (T/W) was 1.13 to 1.54. Further, in the following evaluation, 100 samples for each of the three sizes for each of Examples and Comparative examples, i.e., 1,500 samples in total were used.
  • In each of the samples of Examples 1 to 3 and Comparative example 1, a dielectric pattern was formed. Table 1 shows a volume ratio of the dielectric pattern to the volume of the space portion (space occupancy rate), the volume of the space portion being obtained by multiplying the area of the electrode non-formation region by the thickness of the internal electrode pattern. It should be noted that a value of the space occupancy rate shown in Table 1 was a mean value of the 300 samples for each of Examples and Comparative examples.
  • The space occupancy rate was 95% in Example 1, 90% in Example 2, and 75% in Example 3, all of which were 75% or more and less than 100%. Meanwhile, in Comparative example 1, the space occupancy rate was 50%. In Comparative example 2, the space occupancy rate was 0% because the dielectric pattern was not formed.
  • TABLE 1
    Space occupancy rate Wf/W Suction rate
    Example1 95% 85% 99%
    Example2 90% 83% 99%
    Example3 75% 82% 99%
    Comparative example1 50% 65% 92%
    Comparative example2  0% 35% 85%
  • Further, a proportion (Wf/W) of the width dimension (Wf) of the flat center region to the width dimension (W) of the multi-layer ceramic capacitor was measured. Table 1 shows the results of the measurement. It should be noted that a value of the proportion of the width dimension shown in Table 1 was a mean value of the 300 samples for each of Examples and Comparative examples. Further, for a value of the proportion of the width dimension in each sample, one of the two main surfaces of each sample, which has a larger proportion of the width dimension of the center region, was employed.
  • The proportion of the width dimension was 85% in Example 1, 83% in Example 2, and 82% in Example 3, all of which were 80% or more in Examples 1 to 3. Meanwhile, the proportion of the width dimension was 65% in Comparative example 1, and 35% in Comparative example 2, all of which were less than 80%.
  • The proportion (Wf/W) of the width dimension showed a positive relationship with the space occupancy rate of the dielectric pattern. Specifically, in Examples 1 to 3 in which the space occupancy rate is 75% or more and less than 100%, the Wf/W was 80% or more in each example. However, in Comparative examples 1 and 2 in which the space occupancy rate was 50% or less, the Wf/W was 65% or less in each example. From those results, it was confirmed that when the space occupancy rate of the dielectric pattern is set to 75% or more and less than 100%, the center region can be formed such that the proportion of the width dimension is 80% or more.
  • Subsequently, a housing portion including recesses in a package was prepared, and each sample was held in the recess with a main surface being faced to the take-out opening side, the main surface including the center region having a larger proportion of the width dimension. The main surface of each sample on the take-out opening side was tried to be subjected to suction by a suction nozzle of a chip mounter. In the 300 samples of each of Examples and Comparative Examples, a proportion of the samples whose main surfaces could be subjected to suction was calculated as a “suction rate”. Table 1 shows the results thereof.
  • As shown in Table 1, it was confirmed that the suction rate is 99% in all of Examples 1 to 3, almost all of the samples can be subjected to suction, and the handleability at the time of mounting are optimal. Meanwhile, the suction rate was 92% in Comparative example 1 and 85% in Comparative example 2, in which the suction failed in approximately 10 to 20% of the samples. Accordingly, it was confirmed that the handleability at the time of mounting in Comparative examples 1 and 2 are inferior to those in Examples 1 to 3.
  • 7. Other Embodiments
  • Hereinabobve, the embodiment of the present disclosure has been described, but the present disclosure is not limited to the embodiment described above, and it should be appreciated that the present disclosure may be variously modified without departing from the gist of the present disclosure. For example, the embodiment of the present disclosure can be an embodiment in which some embodiments are combined.
  • For example, in the multi-layer ceramic capacitor 10, the multi-layer unit 16 may be divided into a plurality of multi-layer units 16 and then disposed in the Z-axis direction. In this case, in each multi-layer unit 16, the first and second internal electrodes 12 and 13 only need to be alternately disposed along the Z-axis direction, and the first internal electrodes 12 or the second internal electrodes 13 may be consecutively disposed at portions where the multi-layer units 16 are adjacent to each other.
  • Further, in the embodiment described above, the multi-layer ceramic capacitor has been described as an example of a ceramic electronic component, but the present disclosure can be applied to any other multi-layer ceramic electronic components in which paired internal electrodes are alternately disposed. Examples of such multi-layer ceramic electronic components include a piezoelectric element.

Claims (5)

What is claimed is:
1. A multi-layer ceramic electronic component, comprising:
a ceramic body that includes
internal electrodes laminated in a first direction, and
a pair of main surfaces including a center region facing in the first direction; and
a pair of external electrodes connected to the internal electrodes and facing each other in a second direction orthogonal to the first direction,
a dimension of the ceramic body in the first direction being 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a third direction orthogonal to the first direction and the second direction,
the center region being formed at a center portion of at least one of the pair of main surfaces in the second direction.
2. The multi-layer ceramic electronic component according to claim 1, wherein
a dimension of the center region in the third direction is 80% or more and less than 100% of the dimension of the ceramic body in the third direction.
3. The multi-layer ceramic electronic component according to claim 1, wherein
the center region includes a flat region.
4. A multi-layer ceramic electronic component mounting substrate, comprising:
a circuit board; and
a multi-layer ceramic electronic component including
a ceramic body including internal electrodes laminated in a first direction, and
a pair of external electrodes connected to the internal electrodes and facing each other in a second direction orthogonal to the first direction, the multi-layer ceramic electronic component being mounted onto the circuit board via the pair of external electrodes,
a dimension of the ceramic body in the first direction being 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a third direction orthogonal to the first direction and the second direction,
the ceramic body including a pair of main surfaces including a center region facing in the first direction, the center region being formed at a center portion of at least one of the pair of main surfaces in the second direction,
the multi-layer ceramic electronic component being mounted onto the circuit board with the center region being faced outward in the first direction.
5. A multi-layer ceramic electronic component package, comprising:
a multi-layer ceramic electronic component including
a ceramic body including internal electrodes laminated in a first direction, and
a pair of external electrodes connected to the internal electrodes and facing each other in a second direction orthogonal to the first direction, the multi-layer ceramic electronic component being mounted onto a circuit board via the pair of external electrodes;
a housing portion including a recess that houses the multi-layer ceramic electronic component and includes a take-out opening; and
a sealing portion that covers the take-out opening of the recess,
a dimension of the ceramic body in the first direction being 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a third direction orthogonal to the first direction and the second direction,
the ceramic body including a pair of main surfaces including a center region facing in the first direction, the center region being formed at a center portion of at least one of the pair of main surfaces in the second direction,
the multi-layer ceramic electronic component being housed in the recess with the center region being faced to the take-out opening.
US16/225,585 2017-12-22 2018-12-19 Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, and multi-layer ceramic electronic component package Abandoned US20190198249A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/158,736 US20230162925A1 (en) 2017-12-22 2023-01-24 Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, and multi-layer ceramic electronic component package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-246104 2017-12-22
JP2017246104A JP7356207B2 (en) 2017-12-22 2017-12-22 Multilayer ceramic electronic components, multilayer ceramic electronic component mounting boards, and multilayer ceramic electronic component packages

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/158,736 Continuation US20230162925A1 (en) 2017-12-22 2023-01-24 Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, and multi-layer ceramic electronic component package

Publications (1)

Publication Number Publication Date
US20190198249A1 true US20190198249A1 (en) 2019-06-27

Family

ID=66951429

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/225,585 Abandoned US20190198249A1 (en) 2017-12-22 2018-12-19 Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, and multi-layer ceramic electronic component package
US18/158,736 Pending US20230162925A1 (en) 2017-12-22 2023-01-24 Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, and multi-layer ceramic electronic component package

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/158,736 Pending US20230162925A1 (en) 2017-12-22 2023-01-24 Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, and multi-layer ceramic electronic component package

Country Status (5)

Country Link
US (2) US20190198249A1 (en)
JP (1) JP7356207B2 (en)
KR (1) KR20190076861A (en)
CN (2) CN116487185A (en)
TW (1) TWI803548B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200066455A1 (en) * 2018-08-23 2020-02-27 Taiyo Yuden Co., Ltd. Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, multi-layer ceramic electronic component package, and method of producing a multi-layer ceramic electronic component
US11069480B2 (en) * 2018-10-24 2021-07-20 Taiyo Yuden Co., Ltd. Multi-layer ceramic electronic component and method of producing the same
US20220076893A1 (en) * 2019-08-16 2022-03-10 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771520A (en) * 1985-04-25 1988-09-20 Murata Manufacturing Co., Ltd. Method of producing laminated ceramic capacitors
US20120147516A1 (en) * 2010-12-08 2012-06-14 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic condenser and method for manufacturing the same
US20120229949A1 (en) * 2011-03-09 2012-09-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
US20130020913A1 (en) * 2011-07-20 2013-01-24 Tdk Corporation Electronic component and method for manufacturing electronic component
US20140002949A1 (en) * 2012-06-28 2014-01-02 Hyun Hee Gu Multilayer ceramic electronic component
US20140126106A1 (en) * 2012-11-05 2014-05-08 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component, manufacturing method therefor, serial taping electronic component, manufacturing method therefor, and direction identification method for laminated ceramic electronic component
US20140307362A1 (en) * 2013-04-16 2014-10-16 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and mounting board therefor
JP2015026825A (en) * 2013-06-19 2015-02-05 太陽誘電株式会社 Multilayer ceramic capacitor
US20150122537A1 (en) * 2013-11-05 2015-05-07 Murata Manufacturing Co., Ltd. Capacitor, capacitor mounting structure, and taped electronic component series
US20150340154A1 (en) * 2014-05-26 2015-11-26 Samsung Electro-Mechanics Co., Ltd. Composite electronic component, method of manufacturing the same, board for mounting thereof, and packaging unit thereof
US20160049256A1 (en) * 2014-08-13 2016-02-18 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor, multilayer ceramic capacitor series including the same, and multilayer ceramic capacitor mount body including the same
US20160049245A1 (en) * 2014-08-13 2016-02-18 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
US20170011852A1 (en) * 2015-07-09 2017-01-12 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180720B2 (en) * 1997-06-16 2001-06-25 松下電器産業株式会社 Manufacturing method of multilayer ceramic electronic component
JP3758442B2 (en) 1999-02-23 2006-03-22 株式会社村田製作所 Manufacturing method of multilayer ceramic capacitor
US7089659B2 (en) * 2001-05-25 2006-08-15 Kyocera Corporation Method of producing ceramic laminates
JP3726035B2 (en) 2001-05-25 2005-12-14 京セラ株式会社 Manufacturing method of ceramic laminate
JP4432450B2 (en) * 2003-10-22 2010-03-17 株式会社村田製作所 Manufacturing method of multilayer ceramic electronic component
JP4359607B2 (en) * 2006-09-19 2009-11-04 Tdk株式会社 Electrode step absorbing printing paste and method for producing multilayer ceramic electronic component
JP5423977B2 (en) * 2010-03-30 2014-02-19 Tdk株式会社 Manufacturing method of multilayer ceramic electronic component
KR102000686B1 (en) * 2011-10-21 2019-07-17 삼성전기주식회사 Laminated ceramic electronic parts
JP2014099589A (en) 2012-10-19 2014-05-29 Murata Mfg Co Ltd Method of manufacturing mounting substrate on which multilayer ceramic capacitors are mounted and mounting structure body
CN103021657B (en) * 2012-12-31 2016-12-28 广东风华高新科技股份有限公司 Electrode pattern printing process in chip multilayer ceramic capacitor
KR20140125111A (en) * 2013-04-18 2014-10-28 삼성전기주식회사 Multi-layered ceramic electronic part, manufacturing method thereof and board for mounting the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771520A (en) * 1985-04-25 1988-09-20 Murata Manufacturing Co., Ltd. Method of producing laminated ceramic capacitors
US20120147516A1 (en) * 2010-12-08 2012-06-14 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic condenser and method for manufacturing the same
US20120229949A1 (en) * 2011-03-09 2012-09-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
US20130020913A1 (en) * 2011-07-20 2013-01-24 Tdk Corporation Electronic component and method for manufacturing electronic component
US20140002949A1 (en) * 2012-06-28 2014-01-02 Hyun Hee Gu Multilayer ceramic electronic component
US20140126106A1 (en) * 2012-11-05 2014-05-08 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component, manufacturing method therefor, serial taping electronic component, manufacturing method therefor, and direction identification method for laminated ceramic electronic component
US20140307362A1 (en) * 2013-04-16 2014-10-16 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and mounting board therefor
JP2015026825A (en) * 2013-06-19 2015-02-05 太陽誘電株式会社 Multilayer ceramic capacitor
US20150122537A1 (en) * 2013-11-05 2015-05-07 Murata Manufacturing Co., Ltd. Capacitor, capacitor mounting structure, and taped electronic component series
US20150340154A1 (en) * 2014-05-26 2015-11-26 Samsung Electro-Mechanics Co., Ltd. Composite electronic component, method of manufacturing the same, board for mounting thereof, and packaging unit thereof
US20160049256A1 (en) * 2014-08-13 2016-02-18 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor, multilayer ceramic capacitor series including the same, and multilayer ceramic capacitor mount body including the same
US20160049245A1 (en) * 2014-08-13 2016-02-18 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
US20170011852A1 (en) * 2015-07-09 2017-01-12 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200066455A1 (en) * 2018-08-23 2020-02-27 Taiyo Yuden Co., Ltd. Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, multi-layer ceramic electronic component package, and method of producing a multi-layer ceramic electronic component
US10854392B2 (en) * 2018-08-23 2020-12-01 Taiyo Yuden Co., Ltd. Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, multi-layer ceramic electronic component package, and method of producing a multi-layer ceramic electronic component
US20220044874A1 (en) * 2018-08-23 2022-02-10 Taiyo Yuden Co., Ltd. Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, multi-layer ceramic electronic component package, and method of producing a multi-layer ceramic electronic component
US11636981B2 (en) 2018-08-23 2023-04-25 Taiyo Yuden Co., Ltd. Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, multi-layer ceramic electronic component package, and method of producing a multi-layer ceramic electronic component
US11069480B2 (en) * 2018-10-24 2021-07-20 Taiyo Yuden Co., Ltd. Multi-layer ceramic electronic component and method of producing the same
US20220076893A1 (en) * 2019-08-16 2022-03-10 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon
US20220208475A1 (en) * 2019-08-16 2022-06-30 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon
US11670459B2 (en) * 2019-08-16 2023-06-06 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon
US11694847B2 (en) * 2019-08-16 2023-07-04 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon

Also Published As

Publication number Publication date
US20230162925A1 (en) 2023-05-25
CN110033945A (en) 2019-07-19
JP2019114631A (en) 2019-07-11
KR20190076861A (en) 2019-07-02
TW201929015A (en) 2019-07-16
JP7356207B2 (en) 2023-10-04
TWI803548B (en) 2023-06-01
CN116487185A (en) 2023-07-25

Similar Documents

Publication Publication Date Title
US10224148B2 (en) Multi-layer ceramic capacitor and method of producing the same
CN108573811B (en) Multilayer ceramic capacitor and method for manufacturing same
US11830679B2 (en) Multi-layer ceramic electronic component
US20230162925A1 (en) Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, and multi-layer ceramic electronic component package
US10269498B2 (en) Multi-layer ceramic capacitor and method of producing the same
CN108573812B (en) Multilayer ceramic capacitor and method for manufacturing same
US11715593B2 (en) Multi-layer ceramic capacitor
US11145458B2 (en) Multi-layer ceramic electronic component
US11049660B2 (en) Multi-layer ceramic electronic component and method of producing the same
US11636981B2 (en) Multi-layer ceramic electronic component, multi-layer ceramic electronic component mounting substrate, multi-layer ceramic electronic component package, and method of producing a multi-layer ceramic electronic component
US20230187132A1 (en) Multilayer ceramic electronic component, manufacturing method thereof, circuit board, and package
US11069480B2 (en) Multi-layer ceramic electronic component and method of producing the same
US11955287B2 (en) Multilayer electronic component
WO2024009997A1 (en) Multilayer ceramic capacitor, package, and circuit board
US11694845B2 (en) Multi-layer ceramic electronic component and method of producing the same
JP2023122205A (en) Multilayer ceramic capacitor and circuit board
JP2023085559A (en) Manufacturing method of multilayer ceramic electronic component

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAIYO YUDEN CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SATO, HIROAKI;REEL/FRAME:048341/0898

Effective date: 20190208

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION