US20190183184A1 - Electronic smoking article - Google Patents

Electronic smoking article Download PDF

Info

Publication number
US20190183184A1
US20190183184A1 US16/284,564 US201916284564A US2019183184A1 US 20190183184 A1 US20190183184 A1 US 20190183184A1 US 201916284564 A US201916284564 A US 201916284564A US 2019183184 A1 US2019183184 A1 US 2019183184A1
Authority
US
United States
Prior art keywords
heater
smoking article
electronic smoking
liquid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/284,564
Inventor
Kent B. Koller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altria Client Services LLC
Original Assignee
Altria Client Services LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altria Client Services LLC filed Critical Altria Client Services LLC
Priority to US16/284,564 priority Critical patent/US20190183184A1/en
Publication of US20190183184A1 publication Critical patent/US20190183184A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • A24F47/008
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/167Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • Electronic smoking articles include a liquid supply containing a liquid aerosol formulation and a heater.
  • the liquid aerosol formulation can include aerosol formers such as propylene glycol and/or glycerin. It is known that heating glycerin and/or propylene glycol beyond the temperatures required to volatilize the liquid aerosol formulation produces carbonyls.
  • Heaters formed of alloys including iron tend to corrode and rust over time, producing iron oxide. Iron oxide tends to catalyze reactions with glycerin and/or propylene glycol such that carbonyls and/or carbon monoxide are produced at temperatures below the temperature required to volatilize the liquid aerosol formulation in electronic smoking articles. Abatement of the production of carbonyls and/or carbon monoxide at lower temperatures is desirable.
  • the liquid aerosol formulation comprises at least one aerosol former, optionally water, optionally nicotine, and phosphoric acid.
  • the phosphoric acid is included in an amount sufficient to substantially abate corrosion of the heater.
  • the heater element can be a wire heater, such as a wire coil formed of a material including iron.
  • a method of abating formation of one or more of carbonyls, formaldehyde and carbon monoxide during smoking of an electronic smoking article includes forming a liquid aerosol formulation including phosphoric acid in an amount sufficient to substantially abate corrosion of the heater.
  • a liquid aerosol formulation of an electronic smoking article includes at least one aerosol former, optionally water, nicotine, and phosphoric acid in an amount sufficient to substantially abate corrosion of an iron-containing heater of an electronic smoking article.
  • FIG. 1 is a top planar view of an electronic smoking article in the form of an electronic cigarette according to a first embodiment.
  • FIG. 2 is a side cross-sectional view of the electronic smoking generating article shown in FIG. 1 .
  • Heaters formed of metal alloys including iron tend to corrode and rust over time, producing iron oxide.
  • the iron oxide tends to catalyze reactions with glycerin and/or propylene glycol such that carbonyls and/or carbon monoxide are produced at temperatures below the temperature required to volatilize the liquid aerosol formulation.
  • An electronic smoking article which abates corrosion of heaters formed of metal alloys including iron is described herein.
  • the term “electronic smoking article” is inclusive of all types of electronic smoking articles, regardless of form, size or shape, including electronic cigarettes, electronic cigars, electronic pipes, electronic hookahs and the like.
  • the liquid aerosol formulation can include nicotine or be nicotine free.
  • the liquid aerosol formulation can include tobacco flavors or instead, or in combination include other suitable flavors.
  • the electronic smoking article comprises a heater formed of a metal alloy including iron and a liquid supply region (or liquid supply) (or reservoir) containing a liquid aerosol formulation including at least one aerosol former and food grade phosphoric acid.
  • the phosphoric acid is included in the liquid aerosol formulation in an amount sufficient to substantially prevent corrosion of a heater and avoid formation of one or more of formaldehyde, carbonyls and carbon monoxide resulting from catalytic reactions between iron oxide and the at least one aerosol former.
  • the liquid aerosol formulation disclosed herein forms an aerosol when heated in an electronic smoking article as shown in FIGS. 1 and 2 .
  • the electronic smoking article 60 comprises a replaceable cartridge (or first section) 70 and a reusable fixture (or second section) 72 , which are coupled together at a threaded joint 74 or by other convenience such as a snug-fit, snap-fit, detent, clamp and/or clasp.
  • the first section 70 can house a mouth-end insert 20 , a heater 319 , a flexible, filamentary wick 328 and a reservoir 314 as discussed in further detail below.
  • the second section 72 can house a power supply 12 , control circuitry 11 , and optionally a puff sensor 16 .
  • the threaded portion 74 of the second section 72 can be connected to a battery charger when not connected to the first section 70 for use so as to charge the battery.
  • the first section 70 and the second section 72 include an outer cylindrical housing 22 extending in a longitudinal direction along the length of the electronic smoking article 60 .
  • the reservoir 314 of the first section 70 is refillable such that the first section 70 is reusable.
  • the first section 70 can also be replaceable so as to avoid the need for cleaning the heater 319 .
  • the electronic smoking article 60 includes a heater 319 and a filamentary wick 328 as shown in FIG. 2 .
  • the first section 70 includes an outer tube (or casing) 22 extending in a longitudinal direction and an inner tube (or chimney) 362 coaxially positioned within the outer tube 22 .
  • a nose portion 361 of an upstream gasket (or seal) 320 is fitted into an upstream end portion 365 of the inner tube 362 , while at the same time, an outer perimeter 367 of the gasket 320 provides a liquid-tight seal with an interior surface 397 of the outer casing 22 .
  • the upstream gasket 320 also includes a central, longitudinal air passage 315 , which opens into an interior of the inner tube 362 that defines a central channel 321 .
  • a transverse channel 333 at an upstream portion of the gasket 320 intersects and communicates with the central, longitudinal air passage 315 of the gasket 320 .
  • This channel 333 assures communication between the central, longitudinal air passage 315 and a space 335 defined between the gasket 320 and a threaded connection 74 .
  • a nose portion 393 of a downstream gasket 310 is fitted into a downstream end portion 381 of the inner tube 362 .
  • An outer perimeter 382 of the gasket 310 provides a substantially liquid-tight seal with an interior surface 397 of the outer casing 22 .
  • the downstream gasket 310 includes a central channel 384 disposed between the central passage 321 of the inner tube 362 and the mouth end insert 20 .
  • the reservoir 314 is contained in an annulus between an inner tube 362 and an outer casing 22 and between the upstream gasket 320 and the downstream gasket 310 .
  • the reservoir 314 at least partially surrounds the central air passage 321 .
  • the reservoir 314 comprises the liquid aerosol formulation and optionally a liquid storage medium (not shown) operable to store the liquid aerosol formulation therein.
  • the liquid storage medium is a fibrous material comprising cotton, polyethylene, polyester, rayon and combinations thereof.
  • the fibers have a diameter ranging in size from about 6 microns to about 15 microns (e.g., about 8 microns to about 12 microns or about 9 microns to about 11 microns).
  • the reservoir 314 may comprise a filled tank lacking a fibrous storage medium and containing only liquid aerosol formulation.
  • the liquid aerosol formulation has a boiling point suitable for use in the electronic electronic smoking article 60 , such as an electronic cigarette. If the boiling point is too high, the heater 319 will not be able to vaporize liquid in the filamentary wick 328 . However, if the boiling point is too low, the liquid may vaporize even when the heater 319 is not being activated.
  • the heater 319 extends through the central air passage 321 of the inner tube 362 .
  • the heater 319 is in contact with the filamentary wick 328 , which preferably extends between opposing sections of the reservoir 314 so as to deliver the liquid aerosol formulation from the reservoir 314 to the heater 319 .
  • the filamentary wick 328 preferably comprises filaments having a capacity to draw a liquid, more preferably a bundle of glass (or ceramic) filaments and most preferably a bundle comprising a group of windings of glass filaments, preferably three of such windings, all which arrangements are capable of drawing liquid via capillary action via interstitial spacings between the filaments.
  • the filamentary wick 328 is flexible and includes three strands, each strand including a plurality of filaments.
  • the electronic smoking article 60 also includes at least one air inlet 440 arranged upstream of the heater 319 .
  • the at least one air inlet 440 includes one or two air inlets. Alternatively, there may be three, four, five or more air inlets. Altering the size and number of air inlets 440 can also aid in establishing the resistance to draw of the electronic smoking article 60 .
  • the power supply 12 can include a battery arranged in the electronic smoking article 60 .
  • the power supply 12 is operable to apply voltage across the heater 319 associated with the filamentary wick 328 .
  • the heater 319 volatilizes the liquid aerosol formulation according to a power cycle of either a predetermined time period, such as a 2 to 10 second period.
  • electrical contacts between the heater 319 and the electrical leads 26 are highly conductive and temperature resistant while the heater 319 is highly resistive so that heat generation occurs primarily along the heater 319 and not at the contacts.
  • the battery can be a Lithium-ion battery or one of its variants, for example a Lithium-ion polymer battery.
  • the battery may be a Nickel-metal hydride battery, a Nickel cadmium battery, a Lithium-manganese battery, a Lithium-cobalt battery or a fuel cell.
  • the electronic smoking article 60 is usable by a smoker (vaporer) until the energy in the power supply is depleted.
  • the power supply 12 may be rechargeable and include circuitry allowing the battery to be chargeable by an external charging device. In that case, preferably the circuitry, when charged, provides power for a pre-determined number of puffs, after which the circuitry must be re-connected to an external charging device.
  • the electronic smoking article 60 of each embodiment also includes control circuitry which can be on a printed circuit board 11 .
  • the control circuitry 11 can also include a heater activation light 27 that is operable to glow when the heater 319 is activated.
  • the heater activation light 27 comprises at least one LED and is at an upstream end 28 of the electronic smoking article 60 so that the heater activation light 27 illuminates a cap which takes on the appearance of a burning coal during a puff.
  • the heater activation light 27 can be arranged to be visible to the smoker.
  • the heater activation light 27 can be utilized for smoking article system diagnostics.
  • the light 27 can also be configured such that the smoker can activate and/or deactivate the light 27 when desired, such that the light 27 would not activate during smoking (vaping) if desired.
  • the time-period of the electric current supply to the heater 319 may be pre-set depending on the amount of liquid desired to be vaporized.
  • the control circuitry 11 can be programmable and can include an application specific integrated circuit (ASIC). In other embodiments, the control circuitry 11 can include a microprocessor programmed to carry out functions.
  • ASIC application specific integrated circuit
  • the electronic smoking article 60 further includes a mouth-end insert 20 having at least two off-axis, preferably diverging outlets 21 .
  • the mouth-end insert 20 includes at least two diverging outlets 21 . (e.g, 3, 4, 5, or preferably 6 to 8 outlets or more).
  • the outlets 21 of the mouth-end insert 20 are located at ends of off-axis passages 23 and are angled outwardly in relation to the longitudinal direction of the electronic smoking article 60 (i.e., divergently).
  • the term “off-axis” denotes at an angle to the longitudinal direction of the electronic smoking article.
  • the mouth-end insert (or flow guide) 20 includes outlets uniformly distributed around the mouth-end insert 20 so as to substantially uniformly distribute aerosol in a smoker's mouth during use.
  • the aerosol enters the mouth and moves in different directions so as to provide a full mouth feel as compared to electronic smoking articles having an on-axis single orifice which directs the aerosol to a single location in a smoker's mouth.
  • outlets 21 and off-axis passages 23 are arranged such that droplets of unaerosolized liquid aerosol formulation carried in the aerosol impact interior surfaces of the mouth-end insert 20 and/or interior surfaces of the off-axis passages 23 such that the droplets are removed or broken apart.
  • the outlets 21 of the mouth-end insert 20 are located at the ends of the off-axis passages 23 and are angled at 5 to 60° with respect to the central longitudinal axis of the electronic smoking article 60 so as to more completely distribute aerosol throughout a mouth of a smoker during use and to remove droplets.
  • each outlet 21 has a diameter of about 0.015 inch to about 0.090 inch (e.g., about 0.020 inch to about 0.040 inch or about 0.028 inch to about 0.038 inch).
  • the size of the outlets 21 and off-axis passages 23 along with the number of outlets 21 can be selected to adjust the resistance to draw (RTD) of the electronic smoking article 60 , if desired.
  • the electronic smoking article 60 is about the same size as a conventional smoking article.
  • the electronic smoking article 60 can be about 80 mm to about 110 mm long, preferably about 80 mm to about 100 mm long and about 7 mm to about 8 mm in diameter.
  • the electronic smoking article is about 84 mm long and has a diameter of about 7.8 mm.
  • the outer cylindrical housing 22 of the electronic smoking article 60 may be formed of any suitable material or combination of materials.
  • the outer cylindrical housing 22 is formed at least partially of metal and is part of the electrical circuit.
  • the outer cylindrical housing 22 can be any suitable color and/or can include graphics or other indicia printed thereon.
  • the housing is described herein as cylindrical, other forms and shapes are contemplated.
  • At least one adhesive-backed label is applied to the outer housing 22 .
  • the label completely circumscribes the electronic smoking article 60 and can be colored and/or textured to provide the look and/or feel of a traditional cigarette.
  • the label can include holes therein which are sized and positioned so as to prevent blocking of the air inlets 440 .
  • the heater 319 is a wire coil heater formed of a metal alloy including iron
  • suitable electrically resistive materials for use in making the heater 319 include titanium, zirconium, tantalum and metals from the platinum group.
  • suitable metal alloys include stainless steel, nickel-, cobalt-, chromium-, aluminium- titanium- zirconium-, hafnium-, niobium-, molybdenum-, tantalum-, tungsten-, tin-, gallium-, manganese- and iron-containing alloys, and super-alloys based on nickel, iron, cobalt, stainless steel.
  • the heater can be formed of iron aluminide and other composite materials, the electrically resistive material may optionally be embedded in, encapsulated or coated with an insulating material or vice-versa, depending on the kinetics of energy transfer and the external physicochemical properties required.
  • the heater 319 may be constructed of iron-aluminide (e.g., FeAl or Fe 3 Al) or a nickel-chromium-iron.
  • a heater coil including even a small amount of iron may undergo corrosion, which is identified by visible pitting, discoloration and surface oxygen. While not wishing to be bound by theory, it is believed that the corroded heater 319 reacts with aerosol formers in the reservoir 314 to form carbonyls, formaldehyde, and carbon monoxide during smoking.
  • the addition of food grade phosphoric acid to the liquid aerosol formulation substantially abates potential corrosion of the iron-containing heater 319 and formation of iron oxide. Since formation of iron oxide is abated, iron oxide is not available to catalyze reactions with aerosol formers resulting in the formation of carbonyls and carbon monoxide in the aerosol.
  • the liquid aerosol formulation includes at least one aerosol former, optionally water, optionally nicotine, and phosphoric acid in an amount sufficient to substantially prevent corrosion of the heater 319 .
  • food grade phosphoric acid is added to the liquid aerosol formulation in an amount sufficient to substantially abate corrosion of the iron containing heater so as to reduce the amount of carbonyls and carbon monoxide formed during smoking as compared to liquid aerosol formulations excluding phosphoric acid.
  • the phosphoric acid is added in an amount ranging from about 0.1% to about 5% (e.g., about 0.2% to about 5%, about 0.5% to about 4%, about 0.75% to about 3%, or about 1% to about 2%).
  • the phosphoric acid is included in amount which is insufficient to alter the pH of the liquid aerosol formulation. While not wishing to be bound by theory, it is believed that acidic liquid aerosol formulations may promote charring of the heater, which can clog the heater and/or filamentary wick resulting in lower aerosol delivery and is therefore to be avoided or minimized.
  • the at least one aerosol former is selected from the group consisting of propylene glycol, glycerin and combinations thereof.
  • the at least one aerosol former is included in an amount ranging from about 40% by weight based on the weight of the liquid formulation to about 90% by weight based on the weight of the liquid formulation (e.g., about 50% to about 80%, about 55% to about 75% or about 60% to about 70%).
  • the liquid formulation can include propylene glycol and glycerin included in a ratio of about 3:2.
  • the liquid formulation also includes water.
  • Water can be included in an amount ranging from about 5% by weight based on the weight of the liquid formulation to about 40% by weight based on the weight of the liquid formulation, more preferably in an amount ranging from about 10% by weight based on the weight of the liquid formulation to about 15% by weight based on the weight of the liquid formulation.
  • the liquid aerosol formulation optionally includes at least one flavorant in an amount up to about 15% by weight (e.g., about 0.2% to about 15%, about 1% to about 12%, about 2% to about 10%, or about 5% to about 8%).
  • the at least one flavorant can be a natural flavorant or an artificial flavorant.
  • the at least one flavorant is selected from the group consisting of tobacco flavor, menthol, wintergreen, peppermint, herb flavors, fruit flavors, nut flavors, liquor flavors, and combinations thereof.
  • the liquid aerosol formulation also includes nicotine.
  • the nicotine is included in the liquid aerosol formulation in an amount ranging from about 1% by weight to about 10% by weight (e.g., about 2% to about 9%, about 2% to about 8%, about 2% to about 6%).
  • the liquid aerosol formulation can be nicotine-free.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Manufacture Of Tobacco Products (AREA)

Abstract

An electronic smoking article includes a heater and a liquid aerosol formulation. The heater is a coil heater. The liquid aerosol formulation includes at least one aerosol former, optionally water, nicotine and phosphoric acid. The phosphoric acid is included in an amount sufficient to substantially abate corrosion of the heater.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a Divisional application of U.S. application Ser. No. 14/332,823, filed Jul. 16, 2014, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional Application No. 61/856,923, filed on Jul. 22, 2013, the entire content of each of which is incorporated herein by reference thereto.
  • WORKING ENVIRONMENT
  • Electronic smoking articles include a liquid supply containing a liquid aerosol formulation and a heater. The liquid aerosol formulation can include aerosol formers such as propylene glycol and/or glycerin. It is known that heating glycerin and/or propylene glycol beyond the temperatures required to volatilize the liquid aerosol formulation produces carbonyls.
  • Heaters formed of alloys including iron tend to corrode and rust over time, producing iron oxide. Iron oxide tends to catalyze reactions with glycerin and/or propylene glycol such that carbonyls and/or carbon monoxide are produced at temperatures below the temperature required to volatilize the liquid aerosol formulation in electronic smoking articles. Abatement of the production of carbonyls and/or carbon monoxide at lower temperatures is desirable.
  • SUMMARY OF SELECTED FEATURES
  • An electronic smoking article, such as an electronic cigarette comprises a heater and a liquid aerosol formulation. The liquid aerosol formulation comprises at least one aerosol former, optionally water, optionally nicotine, and phosphoric acid. The phosphoric acid is included in an amount sufficient to substantially abate corrosion of the heater. The heater element can be a wire heater, such as a wire coil formed of a material including iron.
  • In an embodiment, a method of abating formation of one or more of carbonyls, formaldehyde and carbon monoxide during smoking of an electronic smoking article includes forming a liquid aerosol formulation including phosphoric acid in an amount sufficient to substantially abate corrosion of the heater.
  • In another embodiment, a liquid aerosol formulation of an electronic smoking article includes at least one aerosol former, optionally water, nicotine, and phosphoric acid in an amount sufficient to substantially abate corrosion of an iron-containing heater of an electronic smoking article.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a top planar view of an electronic smoking article in the form of an electronic cigarette according to a first embodiment.
  • FIG. 2 is a side cross-sectional view of the electronic smoking generating article shown in FIG. 1.
  • DETAILED DESCRIPTION
  • Heaters formed of metal alloys including iron tend to corrode and rust over time, producing iron oxide. During heating of a liquid aerosol formulation including at least one aerosol former, the iron oxide tends to catalyze reactions with glycerin and/or propylene glycol such that carbonyls and/or carbon monoxide are produced at temperatures below the temperature required to volatilize the liquid aerosol formulation. An electronic smoking article which abates corrosion of heaters formed of metal alloys including iron is described herein.
  • As used herein, the term “electronic smoking article” is inclusive of all types of electronic smoking articles, regardless of form, size or shape, including electronic cigarettes, electronic cigars, electronic pipes, electronic hookahs and the like. The liquid aerosol formulation can include nicotine or be nicotine free. Moreover, the liquid aerosol formulation can include tobacco flavors or instead, or in combination include other suitable flavors.
  • Preferably, the electronic smoking article comprises a heater formed of a metal alloy including iron and a liquid supply region (or liquid supply) (or reservoir) containing a liquid aerosol formulation including at least one aerosol former and food grade phosphoric acid. Preferably, the phosphoric acid is included in the liquid aerosol formulation in an amount sufficient to substantially prevent corrosion of a heater and avoid formation of one or more of formaldehyde, carbonyls and carbon monoxide resulting from catalytic reactions between iron oxide and the at least one aerosol former.
  • The liquid aerosol formulation disclosed herein forms an aerosol when heated in an electronic smoking article as shown in FIGS. 1 and 2. The electronic smoking article 60 comprises a replaceable cartridge (or first section) 70 and a reusable fixture (or second section) 72, which are coupled together at a threaded joint 74 or by other convenience such as a snug-fit, snap-fit, detent, clamp and/or clasp.
  • As shown in FIG. 2, the first section 70 can house a mouth-end insert 20, a heater 319, a flexible, filamentary wick 328 and a reservoir 314 as discussed in further detail below.
  • The second section 72 can house a power supply 12, control circuitry 11, and optionally a puff sensor 16. The threaded portion 74 of the second section 72 can be connected to a battery charger when not connected to the first section 70 for use so as to charge the battery.
  • Preferably, the first section 70 and the second section 72 include an outer cylindrical housing 22 extending in a longitudinal direction along the length of the electronic smoking article 60. Moreover, in one embodiment, the reservoir 314 of the first section 70 is refillable such that the first section 70 is reusable. In another embodiment, the first section 70 can also be replaceable so as to avoid the need for cleaning the heater 319.
  • In the preferred embodiment, the electronic smoking article 60 includes a heater 319 and a filamentary wick 328 as shown in FIG. 2. The first section 70 includes an outer tube (or casing) 22 extending in a longitudinal direction and an inner tube (or chimney) 362 coaxially positioned within the outer tube 22. Preferably, a nose portion 361 of an upstream gasket (or seal) 320 is fitted into an upstream end portion 365 of the inner tube 362, while at the same time, an outer perimeter 367 of the gasket 320 provides a liquid-tight seal with an interior surface 397 of the outer casing 22. The upstream gasket 320 also includes a central, longitudinal air passage 315, which opens into an interior of the inner tube 362 that defines a central channel 321. A transverse channel 333 at an upstream portion of the gasket 320 intersects and communicates with the central, longitudinal air passage 315 of the gasket 320. This channel 333 assures communication between the central, longitudinal air passage 315 and a space 335 defined between the gasket 320 and a threaded connection 74.
  • Preferably, a nose portion 393 of a downstream gasket 310 is fitted into a downstream end portion 381 of the inner tube 362. An outer perimeter 382 of the gasket 310 provides a substantially liquid-tight seal with an interior surface 397 of the outer casing 22. The downstream gasket 310 includes a central channel 384 disposed between the central passage 321 of the inner tube 362 and the mouth end insert 20.
  • In this embodiment, the reservoir 314 is contained in an annulus between an inner tube 362 and an outer casing 22 and between the upstream gasket 320 and the downstream gasket 310. Thus, the reservoir 314 at least partially surrounds the central air passage 321. The reservoir 314 comprises the liquid aerosol formulation and optionally a liquid storage medium (not shown) operable to store the liquid aerosol formulation therein.
  • Preferably, the liquid storage medium is a fibrous material comprising cotton, polyethylene, polyester, rayon and combinations thereof. Preferably, the fibers have a diameter ranging in size from about 6 microns to about 15 microns (e.g., about 8 microns to about 12 microns or about 9 microns to about 11 microns). In the alternative, the reservoir 314 may comprise a filled tank lacking a fibrous storage medium and containing only liquid aerosol formulation.
  • Also preferably, the liquid aerosol formulation has a boiling point suitable for use in the electronic electronic smoking article 60, such as an electronic cigarette. If the boiling point is too high, the heater 319 will not be able to vaporize liquid in the filamentary wick 328. However, if the boiling point is too low, the liquid may vaporize even when the heater 319 is not being activated.
  • Preferably, the heater 319 extends through the central air passage 321 of the inner tube 362. The heater 319 is in contact with the filamentary wick 328, which preferably extends between opposing sections of the reservoir 314 so as to deliver the liquid aerosol formulation from the reservoir 314 to the heater 319.
  • Preferably, the filamentary wick 328 preferably comprises filaments having a capacity to draw a liquid, more preferably a bundle of glass (or ceramic) filaments and most preferably a bundle comprising a group of windings of glass filaments, preferably three of such windings, all which arrangements are capable of drawing liquid via capillary action via interstitial spacings between the filaments. Preferably, the filamentary wick 328 is flexible and includes three strands, each strand including a plurality of filaments.
  • Preferably, the electronic smoking article 60 also includes at least one air inlet 440 arranged upstream of the heater 319. In the preferred embodiment, the at least one air inlet 440 includes one or two air inlets. Alternatively, there may be three, four, five or more air inlets. Altering the size and number of air inlets 440 can also aid in establishing the resistance to draw of the electronic smoking article 60.
  • The power supply 12 can include a battery arranged in the electronic smoking article 60. The power supply 12 is operable to apply voltage across the heater 319 associated with the filamentary wick 328. Thus, the heater 319 volatilizes the liquid aerosol formulation according to a power cycle of either a predetermined time period, such as a 2 to 10 second period.
  • Preferably, electrical contacts between the heater 319 and the electrical leads 26 are highly conductive and temperature resistant while the heater 319 is highly resistive so that heat generation occurs primarily along the heater 319 and not at the contacts.
  • The battery can be a Lithium-ion battery or one of its variants, for example a Lithium-ion polymer battery. Alternatively, the battery may be a Nickel-metal hydride battery, a Nickel cadmium battery, a Lithium-manganese battery, a Lithium-cobalt battery or a fuel cell. In that case, preferably, the electronic smoking article 60 is usable by a smoker (vaporer) until the energy in the power supply is depleted. Alternatively, the power supply 12 may be rechargeable and include circuitry allowing the battery to be chargeable by an external charging device. In that case, preferably the circuitry, when charged, provides power for a pre-determined number of puffs, after which the circuitry must be re-connected to an external charging device.
  • Preferably, the electronic smoking article 60 of each embodiment also includes control circuitry which can be on a printed circuit board 11. The control circuitry 11 can also include a heater activation light 27 that is operable to glow when the heater 319 is activated. Preferably, the heater activation light 27 comprises at least one LED and is at an upstream end 28 of the electronic smoking article 60 so that the heater activation light 27 illuminates a cap which takes on the appearance of a burning coal during a puff. Moreover, the heater activation light 27 can be arranged to be visible to the smoker. In addition, the heater activation light 27 can be utilized for smoking article system diagnostics. The light 27 can also be configured such that the smoker can activate and/or deactivate the light 27 when desired, such that the light 27 would not activate during smoking (vaping) if desired.
  • The time-period of the electric current supply to the heater 319 may be pre-set depending on the amount of liquid desired to be vaporized. The control circuitry 11 can be programmable and can include an application specific integrated circuit (ASIC). In other embodiments, the control circuitry 11 can include a microprocessor programmed to carry out functions.
  • As shown in FIG. 2, the electronic smoking article 60 further includes a mouth-end insert 20 having at least two off-axis, preferably diverging outlets 21. Preferably, the mouth-end insert 20 includes at least two diverging outlets 21. (e.g, 3, 4, 5, or preferably 6 to 8 outlets or more). Preferably, the outlets 21 of the mouth-end insert 20 are located at ends of off-axis passages 23 and are angled outwardly in relation to the longitudinal direction of the electronic smoking article 60 (i.e., divergently). As used herein, the term “off-axis” denotes at an angle to the longitudinal direction of the electronic smoking article. Also preferably, the mouth-end insert (or flow guide) 20 includes outlets uniformly distributed around the mouth-end insert 20 so as to substantially uniformly distribute aerosol in a smoker's mouth during use. Thus, as the aerosol passes into a smoker's mouth, the aerosol enters the mouth and moves in different directions so as to provide a full mouth feel as compared to electronic smoking articles having an on-axis single orifice which directs the aerosol to a single location in a smoker's mouth.
  • In addition, the outlets 21 and off-axis passages 23 are arranged such that droplets of unaerosolized liquid aerosol formulation carried in the aerosol impact interior surfaces of the mouth-end insert 20 and/or interior surfaces of the off-axis passages 23 such that the droplets are removed or broken apart. In the preferred embodiment, the outlets 21 of the mouth-end insert 20 are located at the ends of the off-axis passages 23 and are angled at 5 to 60° with respect to the central longitudinal axis of the electronic smoking article 60 so as to more completely distribute aerosol throughout a mouth of a smoker during use and to remove droplets.
  • Preferably, each outlet 21 has a diameter of about 0.015 inch to about 0.090 inch (e.g., about 0.020 inch to about 0.040 inch or about 0.028 inch to about 0.038 inch). The size of the outlets 21 and off-axis passages 23 along with the number of outlets 21 can be selected to adjust the resistance to draw (RTD) of the electronic smoking article 60, if desired.
  • In a preferred embodiment, the electronic smoking article 60 is about the same size as a conventional smoking article. In some embodiments, the electronic smoking article 60 can be about 80 mm to about 110 mm long, preferably about 80 mm to about 100 mm long and about 7 mm to about 8 mm in diameter. For example, in an embodiment, the electronic smoking article is about 84 mm long and has a diameter of about 7.8 mm.
  • The outer cylindrical housing 22 of the electronic smoking article 60 may be formed of any suitable material or combination of materials. Preferably, the outer cylindrical housing 22 is formed at least partially of metal and is part of the electrical circuit. The outer cylindrical housing 22 can be any suitable color and/or can include graphics or other indicia printed thereon. Although the housing is described herein as cylindrical, other forms and shapes are contemplated.
  • Preferably, at least one adhesive-backed label is applied to the outer housing 22. The label completely circumscribes the electronic smoking article 60 and can be colored and/or textured to provide the look and/or feel of a traditional cigarette. The label can include holes therein which are sized and positioned so as to prevent blocking of the air inlets 440.
  • In the preferred embodiment, the heater 319 is a wire coil heater formed of a metal alloy including iron Examples of suitable electrically resistive materials for use in making the heater 319 include titanium, zirconium, tantalum and metals from the platinum group. Examples of suitable metal alloys include stainless steel, nickel-, cobalt-, chromium-, aluminium- titanium- zirconium-, hafnium-, niobium-, molybdenum-, tantalum-, tungsten-, tin-, gallium-, manganese- and iron-containing alloys, and super-alloys based on nickel, iron, cobalt, stainless steel. For example, the heater can be formed of iron aluminide and other composite materials, the electrically resistive material may optionally be embedded in, encapsulated or coated with an insulating material or vice-versa, depending on the kinetics of energy transfer and the external physicochemical properties required. In a preferred embodiment, the heater 319 may be constructed of iron-aluminide (e.g., FeAl or Fe3Al) or a nickel-chromium-iron.
  • During use, a heater coil including even a small amount of iron (e.g., a wire coil formed of a nickel-chromium-iron alloy) may undergo corrosion, which is identified by visible pitting, discoloration and surface oxygen. While not wishing to be bound by theory, it is believed that the corroded heater 319 reacts with aerosol formers in the reservoir 314 to form carbonyls, formaldehyde, and carbon monoxide during smoking.
  • It has been found that the addition of food grade phosphoric acid to the liquid aerosol formulation substantially abates potential corrosion of the iron-containing heater 319 and formation of iron oxide. Since formation of iron oxide is abated, iron oxide is not available to catalyze reactions with aerosol formers resulting in the formation of carbonyls and carbon monoxide in the aerosol. Thus, in a preferred embodiment, the liquid aerosol formulation includes at least one aerosol former, optionally water, optionally nicotine, and phosphoric acid in an amount sufficient to substantially prevent corrosion of the heater 319.
  • In the preferred embodiment, food grade phosphoric acid is added to the liquid aerosol formulation in an amount sufficient to substantially abate corrosion of the iron containing heater so as to reduce the amount of carbonyls and carbon monoxide formed during smoking as compared to liquid aerosol formulations excluding phosphoric acid. Preferably, the phosphoric acid is added in an amount ranging from about 0.1% to about 5% (e.g., about 0.2% to about 5%, about 0.5% to about 4%, about 0.75% to about 3%, or about 1% to about 2%). Preferably, the phosphoric acid is included in amount which is insufficient to alter the pH of the liquid aerosol formulation. While not wishing to be bound by theory, it is believed that acidic liquid aerosol formulations may promote charring of the heater, which can clog the heater and/or filamentary wick resulting in lower aerosol delivery and is therefore to be avoided or minimized.
  • Also preferably, the at least one aerosol former is selected from the group consisting of propylene glycol, glycerin and combinations thereof. Preferably, the at least one aerosol former is included in an amount ranging from about 40% by weight based on the weight of the liquid formulation to about 90% by weight based on the weight of the liquid formulation (e.g., about 50% to about 80%, about 55% to about 75% or about 60% to about 70%). Moreover, in one embodiment, the liquid formulation can include propylene glycol and glycerin included in a ratio of about 3:2.
  • Preferably, the liquid formulation also includes water. Water can be included in an amount ranging from about 5% by weight based on the weight of the liquid formulation to about 40% by weight based on the weight of the liquid formulation, more preferably in an amount ranging from about 10% by weight based on the weight of the liquid formulation to about 15% by weight based on the weight of the liquid formulation.
  • The liquid aerosol formulation optionally includes at least one flavorant in an amount up to about 15% by weight (e.g., about 0.2% to about 15%, about 1% to about 12%, about 2% to about 10%, or about 5% to about 8%). The at least one flavorant can be a natural flavorant or an artificial flavorant. Preferably, the at least one flavorant is selected from the group consisting of tobacco flavor, menthol, wintergreen, peppermint, herb flavors, fruit flavors, nut flavors, liquor flavors, and combinations thereof.
  • Preferably, the liquid aerosol formulation also includes nicotine. The nicotine is included in the liquid aerosol formulation in an amount ranging from about 1% by weight to about 10% by weight (e.g., about 2% to about 9%, about 2% to about 8%, about 2% to about 6%). In an alternative embodiment, the liquid aerosol formulation can be nicotine-free.
  • When the word “about” is used in this specification in connection with a numerical value, it is intended that the associated numerical value include a tolerance of ±10% around the stated numerical value. Moreover, when reference is made to percentages in this specification, it is intended that those percentages are based on weight, i.e., weight percentages. The expression “up to” includes amounts of zero to the expressed upper limit and all values therebetween. When ranges are specified, the range includes all values therebetween such as increments of 0.1%.
  • Moreover, when the words “generally” and “substantially” are used in connection with geometric shapes, it is intended that precision of the geometric shape is not required but that latitude for the shape is within the scope of the disclosure. When used with geometric terms, the words “generally” and “substantially” are intended to encompass not only features which meet the strict definitions but also features which fairly approximate the strict definitions.
  • It will now be apparent that a new, improved, and nonobvious electronic smoking article, liquid aerosol formulation and method has been described in this specification with sufficient particularity as to be understood by one of ordinary skill in the art. Moreover, it will be apparent to those skilled in the art that numerous modifications, variations, substitutions, and equivalents exist for features of the electronic smoking article, liquid aerosol formulation and method which do not materially depart from the spirit and scope of the invention. Accordingly, it is expressly intended that all such modifications, variations, substitutions, and equivalents which fall within the spirit and scope of the invention as defined by the appended claims shall be embraced by the appended claims.

Claims (9)

1. A method of forming a pre-vapor formulation of an electronic vaping device comprising:
forming a pre-vapor formulation; and
adding phosphoric acid to the pre-vapor formulation in an amount ranging from about 0.1% by weight to about 5% by weight
2. The method of claim 1, wherein the forming comprises:
combining water and at least one vapor former.
3. The method of claim 2, wherein the forming further comprises:
adding nicotine to the pre-vapor formulation.
4. The method of claim 3, wherein the adding nicotine comprises:
adding nicotine in an amount ranging from about 1% by weight to about 10% by weight.
5. The method of claim 2, wherein the combining water comprises:
combining water with propylene glycol, glycerin, or both propylene glycol and glycerin.
6. The method of claim 2, wherein the forming comprises:
adding at least one vapor former in an amount ranging from about 40% by weight to about 90% by weight.
7. The method of claim 1, wherein the forming comprises:
combining glycerin and propylene glycol in a ratio of at least about 2:3.
8. The method of claim 1, further comprising:
adding at least one flavorant to the pre-vapor formulation.
9. The method of claim 8, wherein the adding at least one flavorant comprises:
adding the at least one flavorant in an amount ranging from about 2% to about 15% by weight.
US16/284,564 2013-07-22 2019-02-25 Electronic smoking article Abandoned US20190183184A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/284,564 US20190183184A1 (en) 2013-07-22 2019-02-25 Electronic smoking article

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361856923P 2013-07-22 2013-07-22
US14/332,823 US10251422B2 (en) 2013-07-22 2014-07-16 Electronic smoking article
US16/284,564 US20190183184A1 (en) 2013-07-22 2019-02-25 Electronic smoking article

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/332,823 Division US10251422B2 (en) 2013-07-22 2014-07-16 Electronic smoking article

Publications (1)

Publication Number Publication Date
US20190183184A1 true US20190183184A1 (en) 2019-06-20

Family

ID=51263571

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/332,823 Active 2036-10-28 US10251422B2 (en) 2013-07-22 2014-07-16 Electronic smoking article
US16/284,564 Abandoned US20190183184A1 (en) 2013-07-22 2019-02-25 Electronic smoking article

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/332,823 Active 2036-10-28 US10251422B2 (en) 2013-07-22 2014-07-16 Electronic smoking article

Country Status (3)

Country Link
US (2) US10251422B2 (en)
AR (1) AR097022A1 (en)
WO (1) WO2015013107A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021128345A1 (en) * 2019-12-27 2021-07-01 深圳雾芯科技有限公司 Flavor composition and electronic cigarette liquid containing flavor composition

Families Citing this family (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
KR20230013165A (en) 2013-05-06 2023-01-26 쥴 랩스, 인크. Nicotine salt formulations for aerosol devices and methods thereof
US10251422B2 (en) * 2013-07-22 2019-04-09 Altria Client Services Llc Electronic smoking article
US10980273B2 (en) 2013-11-12 2021-04-20 VMR Products, LLC Vaporizer, charger and methods of use
WO2015084544A1 (en) 2013-12-05 2015-06-11 Ploom, Inc. Nicotine liquid formulations for aerosol devices and methods thereof
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
KR102256886B1 (en) 2013-12-23 2021-05-31 쥴 랩스, 인크. Vaporization device systems and methods
US20160366947A1 (en) 2013-12-23 2016-12-22 James Monsees Vaporizer apparatus
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
WO2015183801A1 (en) 2014-05-27 2015-12-03 R. J. Reynolds Tobacco Company Nicotine salts, co-crystals, and salt co-crystal complexes
EP3760059B1 (en) 2014-09-17 2022-10-26 Fontem Holdings 4 B.V. Device for storing and vaporizing liquid media
MX2017007042A (en) 2014-12-05 2018-06-15 Juul Labs Inc Calibrated dose control.
GB201501429D0 (en) * 2015-01-28 2015-03-11 British American Tobacco Co Apparatus for heating aerosol generating material
US10611505B2 (en) 2015-05-04 2020-04-07 Rai Strategic Holdings, Inc. Dispensing machine for aerosol precursor
US10238145B2 (en) 2015-05-19 2019-03-26 Rai Strategic Holdings, Inc. Assembly substation for assembling a cartridge for a smoking article
US20160345621A1 (en) * 2015-06-01 2016-12-01 San Li Pre-vapor formulation of an electronic vaping device and/or methods of manufacturing the same
US11504489B2 (en) 2015-07-17 2022-11-22 Rai Strategic Holdings, Inc. Contained liquid system for refilling aerosol delivery devices
US10206429B2 (en) 2015-07-24 2019-02-19 Rai Strategic Holdings, Inc. Aerosol delivery device with radiant heating
US11134544B2 (en) 2015-07-24 2021-09-28 Rai Strategic Holdings, Inc. Aerosol delivery device with radiant heating
US20170059554A1 (en) 2015-09-02 2017-03-02 R. J. Reynolds Tobacco Company Method for monitoring use of a tobacco product
US20170112194A1 (en) 2015-10-21 2017-04-27 Rai Strategic Holdings, Inc. Rechargeable lithium-ion capacitor for an aerosol delivery device
US10918134B2 (en) 2015-10-21 2021-02-16 Rai Strategic Holdings, Inc. Power supply for an aerosol delivery device
US20170119052A1 (en) 2015-10-30 2017-05-04 R.J. Reynolds Tobacco Company Application specific integrated circuit (asic) for an aerosol delivery device
US10201187B2 (en) 2015-11-02 2019-02-12 Rai Strategic Holdings, Inc. User interface for an aerosol delivery device
US10820630B2 (en) 2015-11-06 2020-11-03 Rai Strategic Holdings, Inc. Aerosol delivery device including a wirelessly-heated atomizer and related method
WO2017089931A1 (en) 2015-11-25 2017-06-01 R. J. Reynolds Tobacco Company Nicotine salts, co-crystals, and salt co-crystal complexes
US10440992B2 (en) 2015-12-07 2019-10-15 Rai Strategic Holdings, Inc. Motion sensing for an aerosol delivery device
US9955733B2 (en) 2015-12-07 2018-05-01 Rai Strategic Holdings, Inc. Camera for an aerosol delivery device
US11291252B2 (en) 2015-12-18 2022-04-05 Rai Strategic Holdings, Inc. Proximity sensing for an aerosol delivery device
US10051891B2 (en) 2016-01-05 2018-08-21 Rai Strategic Holdings, Inc. Capacitive sensing input device for an aerosol delivery device
US10194694B2 (en) 2016-01-05 2019-02-05 Rai Strategic Holdings, Inc. Aerosol delivery device with improved fluid transport
US10258086B2 (en) 2016-01-12 2019-04-16 Rai Strategic Holdings, Inc. Hall effect current sensor for an aerosol delivery device
US10104912B2 (en) 2016-01-20 2018-10-23 Rai Strategic Holdings, Inc. Control for an induction-based aerosol delivery device
US10015989B2 (en) 2016-01-27 2018-07-10 Rai Strategic Holdings, Inc. One-way valve for refilling an aerosol delivery device
EP3419443A4 (en) 2016-02-11 2019-11-20 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
MX2018009702A (en) 2016-02-11 2019-07-08 Juul Labs Inc Fillable vaporizer cartridge and method of filling.
US11412781B2 (en) 2016-02-12 2022-08-16 Rai Strategic Holdings, Inc. Adapters for refilling an aerosol delivery device
US20170251724A1 (en) 2016-03-04 2017-09-07 Rai Strategic Holdings, Inc. Flexible display for an aerosol delivery device
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
US11207478B2 (en) 2016-03-25 2021-12-28 Rai Strategic Holdings, Inc. Aerosol production assembly including surface with micro-pattern
US10334880B2 (en) 2016-03-25 2019-07-02 Rai Strategic Holdings, Inc. Aerosol delivery device including connector comprising extension and receptacle
KR101960262B1 (en) * 2016-04-08 2019-03-21 공주대학교 산학협력단 New formulation for the reduction of carbonyl compounds and formation-inhibition of tobacco specific nistrosamines and carbonyl compounds in the liquids or the vapors of e-cigarettes, and colour change of nicotine liquids
US10333339B2 (en) 2016-04-12 2019-06-25 Rai Strategic Holdings, Inc. Charger for an aerosol delivery device
US10945462B2 (en) 2016-04-12 2021-03-16 Rai Strategic Holdings, Inc. Detachable power source for an aerosol delivery device
US10028534B2 (en) 2016-04-20 2018-07-24 Rai Strategic Holdings, Inc. Aerosol delivery device, and associated apparatus and method of formation thereof
WO2017188868A1 (en) * 2016-04-26 2017-11-02 Telefonaktiebolaget Lm Ericsson (Publ) User equipment camping in wireless systems
US10405579B2 (en) 2016-04-29 2019-09-10 Rai Strategic Holdings, Inc. Methods for assembling a cartridge for an aerosol delivery device, and associated systems and apparatuses
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
US10463078B2 (en) 2016-07-08 2019-11-05 Rai Strategic Holdings, Inc. Aerosol delivery device with condensing and non-condensing vaporization
US10405581B2 (en) 2016-07-08 2019-09-10 Rai Strategic Holdings, Inc. Gas sensing for an aerosol delivery device
US10231485B2 (en) 2016-07-08 2019-03-19 Rai Strategic Holdings, Inc. Radio frequency to direct current converter for an aerosol delivery device
US10602775B2 (en) 2016-07-21 2020-03-31 Rai Strategic Holdings, Inc. Aerosol delivery device with a unitary reservoir and liquid transport element comprising a porous monolith and related method
US10617151B2 (en) 2016-07-21 2020-04-14 Rai Strategic Holdings, Inc. Aerosol delivery device with a liquid transport element comprising a porous monolith and related method
US9974338B2 (en) 2016-07-25 2018-05-22 Fontem Holdings 1 B.V. Electronic cigarette with illuminated tip
US11019847B2 (en) 2016-07-28 2021-06-01 Rai Strategic Holdings, Inc. Aerosol delivery devices including a selector and related methods
US10765146B2 (en) 2016-08-08 2020-09-08 Rai Strategic Holdings, Inc. Boost converter for an aerosol delivery device
US20180070634A1 (en) 2016-09-09 2018-03-15 Rai Strategic Holdings, Inc. Analog control component for an aerosol delivery device
US20180070633A1 (en) 2016-09-09 2018-03-15 Rai Strategic Holdings, Inc. Power source for an aerosol delivery device
US10477896B2 (en) 2016-10-12 2019-11-19 Rai Strategic Holdings, Inc. Photodetector for measuring aerosol precursor composition in an aerosol delivery device
US20180103681A1 (en) * 2016-10-18 2018-04-19 Altria Client Services Llc Methods and systems for increasing stability of the pre-vapor formulation of an e-vaping device
US20180132526A1 (en) 2016-11-11 2018-05-17 Rai Strategic Holdings, Inc. Real-time temperature control for an aerosol delivery device
US20180132528A1 (en) 2016-11-14 2018-05-17 Rai Strategic Holdings, Inc. Photoelectric proximity sensor for gesture-based control of an aerosol delivery device
CN106418721A (en) * 2016-11-14 2017-02-22 林光榕 Electronic cigarette atomizer with divergent smoke outlet pipe
US10492530B2 (en) 2016-11-15 2019-12-03 Rai Strategic Holdings, Inc. Two-wire authentication system for an aerosol delivery device
US10524508B2 (en) 2016-11-15 2020-01-07 Rai Strategic Holdings, Inc. Induction-based aerosol delivery device
US11103012B2 (en) 2016-11-17 2021-08-31 Rai Strategic Holdings, Inc. Satellite navigation for an aerosol delivery device
US10206431B2 (en) 2016-11-18 2019-02-19 Rai Strategic Holdings, Inc. Charger for an aerosol delivery device
US10653183B2 (en) 2016-11-18 2020-05-19 Rai Strategic Holdings, Inc. Power source for an aerosol delivery device
US10172392B2 (en) 2016-11-18 2019-01-08 Rai Strategic Holdings, Inc. Humidity sensing for an aerosol delivery device
US10524509B2 (en) 2016-11-18 2020-01-07 Rai Strategic Holdings, Inc. Pressure sensing for an aerosol delivery device
US10537137B2 (en) 2016-11-22 2020-01-21 Rai Strategic Holdings, Inc. Rechargeable lithium-ion battery for an aerosol delivery device
EP3547858A1 (en) 2016-12-01 2019-10-09 RAI Strategic Holdings, Inc. Rechargeable lithium-ion capacitor for an aerosol delivery device
EP3549235B1 (en) 2016-12-02 2021-05-05 RAI Strategic Holdings, Inc. Induction charging for an aerosol delivery device
US11013266B2 (en) 2016-12-09 2021-05-25 Rai Strategic Holdings, Inc. Aerosol delivery device sensory system including an infrared sensor and related method
US10015991B1 (en) 2016-12-29 2018-07-10 Altria Client Services Llc Hybrid E-vaping cartridge, E-vaping device including a hybrid E-vaping cartridge, and method of making thereof
US10517326B2 (en) 2017-01-27 2019-12-31 Rai Strategic Holdings, Inc. Secondary battery for an aerosol delivery device
US10759554B2 (en) 2017-02-02 2020-09-01 Rai Strategic Holdings, Inc. Dispenser unit for aerosol precursor
US20180228203A1 (en) * 2017-02-16 2018-08-16 Altria Client Services Llc Pre-vapor formulation for formation of organic acids during operation of an e-vaping device
US10827783B2 (en) 2017-02-27 2020-11-10 Rai Strategic Holdings, Inc. Digital compass for an aerosol delivery device
US10674765B2 (en) 2017-03-29 2020-06-09 Rai Strategic Holdings, Inc. Aerosol delivery device with improved atomizer
US10440995B2 (en) 2017-03-29 2019-10-15 Rai Strategic Holdings, Inc. Aerosol delivery device including substrate with improved absorbency properties
US10314340B2 (en) 2017-04-21 2019-06-11 Rai Strategic Holdings, Inc. Refillable aerosol delivery device and related method
US10285444B2 (en) 2017-04-27 2019-05-14 Rai Strategic Holdings, Inc. Aerosol delivery device including a ceramic wicking element
US11297876B2 (en) 2017-05-17 2022-04-12 Rai Strategic Holdings, Inc. Aerosol delivery device
US10517330B2 (en) 2017-05-23 2019-12-31 RAI Stategic Holdings, Inc. Heart rate monitor for an aerosol delivery device
US10383369B2 (en) 2017-06-07 2019-08-20 Rai Strategic Holdings, Inc. Fibrous filtration material for electronic smoking article
US10842197B2 (en) 2017-07-12 2020-11-24 Rai Strategic Holdings, Inc. Detachable container for aerosol delivery having pierceable membrane
US11337456B2 (en) 2017-07-17 2022-05-24 Rai Strategic Holdings, Inc. Video analytics camera system for an aerosol delivery device
US10349674B2 (en) 2017-07-17 2019-07-16 Rai Strategic Holdings, Inc. No-heat, no-burn smoking article
US10791761B2 (en) 2017-08-17 2020-10-06 Rai Strategic Holdings, Inc. Microtextured liquid transport element for aerosol delivery device
CA3074463A1 (en) 2017-08-28 2019-03-07 Juul Labs, Inc. Wick for vaporizer device
WO2019049049A1 (en) 2017-09-05 2019-03-14 R. J. Reynolds Tobacco Company Nicotine salts, co-crystals, and salt co-crystal complexes
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US10505383B2 (en) 2017-09-19 2019-12-10 Rai Strategic Holdings, Inc. Intelligent charger for an aerosol delivery device
US11039645B2 (en) 2017-09-19 2021-06-22 Rai Strategic Holdings, Inc. Differential pressure sensor for an aerosol delivery device
US10660370B2 (en) 2017-10-12 2020-05-26 Rai Strategic Holdings, Inc. Aerosol delivery device including a control body, an atomizer body, and a cartridge and related methods
US20190116863A1 (en) 2017-10-24 2019-04-25 Rai Strategic Holdings, Inc. Method for formulating aerosol precursor for aerosol delivery device
CN107802037A (en) * 2017-11-29 2018-03-16 深圳市新宜康电子技术有限公司 Electronic cigarette with automatic detection tobacco tar amount
US10806181B2 (en) 2017-12-08 2020-10-20 Rai Strategic Holdings, Inc. Quasi-resonant flyback converter for an induction-based aerosol delivery device
US10786010B2 (en) 2017-12-15 2020-09-29 Rai Strategic Holdings, Inc. Aerosol delivery device with multiple aerosol delivery pathways
US10555558B2 (en) 2017-12-29 2020-02-11 Rai Strategic Holdings, Inc. Aerosol delivery device providing flavor control
CA3090194A1 (en) 2018-02-06 2019-08-15 Mcneil Ab Cartridge for electronic delivery system
US10813385B2 (en) 2018-03-09 2020-10-27 Rai Strategic Holdings, Inc. Buck regulator with operational amplifier feedback for an aerosol delivery device
US10945465B2 (en) 2018-03-15 2021-03-16 Rai Strategic Holdings, Inc. Induction heated susceptor and aerosol delivery device
US11206864B2 (en) 2018-03-26 2021-12-28 Rai Strategic Holdings, Inc. Aerosol delivery device providing flavor control
US10932490B2 (en) 2018-05-16 2021-03-02 Rai Strategic Holdings, Inc. Atomizer and aerosol delivery device
US10959459B2 (en) 2018-05-16 2021-03-30 Rai Strategic Holdings, Inc. Voltage regulator for an aerosol delivery device
US11191298B2 (en) 2018-06-22 2021-12-07 Rai Strategic Holdings, Inc. Aerosol source member having combined susceptor and aerosol precursor material
EP3829366A1 (en) 2018-07-31 2021-06-09 Juul Labs, Inc. Cartridge-based heat not burn vaporizer
US11094993B2 (en) 2018-08-10 2021-08-17 Rai Strategic Holdings, Inc. Charge circuitry for an aerosol delivery device
US10939707B2 (en) 2018-08-23 2021-03-09 Rai Strategic Holdings, Inc. Aerosol delivery device with segmented electrical heater
US20200077703A1 (en) 2018-09-11 2020-03-12 Rai Strategic Holdings, Inc. Wicking element for aerosol delivery device
US10791767B2 (en) 2018-10-12 2020-10-06 Rai Strategic Holdings, Inc. Connectors for forming electrical and mechanical connections between interchangeable units in an aerosol delivery system
US11588287B2 (en) 2018-10-12 2023-02-21 Rai Strategic Holdings, Inc. Aerosol delivery device with improved connectivity, airflow, and aerosol paths
US20200113240A1 (en) 2018-10-12 2020-04-16 Rai Strategic Holdings, Inc. Vaporization system
US11291249B2 (en) 2018-10-12 2022-04-05 Rai Strategic Holdings, Inc. Aerosol delivery device with visible indicator
US20200113243A1 (en) 2018-10-12 2020-04-16 Rai Strategic Holdings, Inc. Heater and liquid transport for an aerosol delivery system
JP6617189B1 (en) * 2018-10-31 2019-12-11 日本たばこ産業株式会社 Power supply unit for aerosol inhaler, aerosol inhaler, power control method for aerosol inhaler, and power control program for aerosol inhaler
US20200154779A1 (en) 2018-11-19 2020-05-21 Rai Strategic Holdings, Inc. Charging control for an aerosol delivery device
US11614720B2 (en) 2018-11-19 2023-03-28 Rai Strategic Holdings, Inc. Temperature control in an aerosol delivery device
US11372153B2 (en) 2018-11-19 2022-06-28 Rai Strategic Holdings, Inc. Cartridge orientation for selection of a control function in a vaporization system
US11592793B2 (en) 2018-11-19 2023-02-28 Rai Strategic Holdings, Inc. Power control for an aerosol delivery device
US11753750B2 (en) 2018-11-20 2023-09-12 R.J. Reynolds Tobacco Company Conductive aerosol generating composite substrate for aerosol source member
US11547816B2 (en) 2018-11-28 2023-01-10 Rai Strategic Holdings, Inc. Micropump for an aerosol delivery device
US11096419B2 (en) 2019-01-29 2021-08-24 Rai Strategic Holdings, Inc. Air pressure sensor for an aerosol delivery device
US20200237018A1 (en) 2019-01-29 2020-07-30 Rai Strategic Holdings, Inc. Susceptor arrangement for induction-heated aerosol delivery device
USD880055S1 (en) * 2019-01-30 2020-03-31 Hestia Shenzhen Biological Technology Co., Ltd Hand-held smoke generator
US20200245696A1 (en) 2019-02-06 2020-08-06 Rai Strategic Holdings, Inc. Buck-boost regulator circuit for an aerosol delivery device
US11456480B2 (en) 2019-02-07 2022-09-27 Rai Strategic Holdings, Inc. Non-inverting amplifier circuit for an aerosol delivery device
US20200278707A1 (en) 2019-03-01 2020-09-03 Rai Strategic Holdings, Inc. Temperature control circuitry for an aerosol delivery device
US11324249B2 (en) 2019-03-06 2022-05-10 R.J. Reynolds Tobacco Company Aerosol delivery device with nanocellulose substrate
US20200281250A1 (en) 2019-03-08 2020-09-10 Rai Strategic Holdings, Inc. Method for hydrolysis of lactic acid for aerosol delivery device
US11602164B2 (en) 2019-03-14 2023-03-14 Rai Strategic Holdings, Inc. Aerosol delivery device with graded porosity from inner to outer wall surfaces
US11200770B2 (en) 2019-04-02 2021-12-14 Rai Strategic Holdings, Inc. Functional control and age verification of electronic devices through visual communication
US11935350B2 (en) 2019-04-02 2024-03-19 Rai Strategic Holdings, Inc. Functional control and age verification of electronic devices through speaker communication
US11676438B2 (en) 2019-04-02 2023-06-13 Rai Strategic Holdings, Inc. Authentication and age verification for an aerosol delivery device
US11783395B2 (en) 2019-04-24 2023-10-10 Rai Strategic Holdings, Inc. Decentralized identity storage for tobacco products
US11690405B2 (en) 2019-04-25 2023-07-04 Rai Strategic Holdings, Inc. Artificial intelligence in an aerosol delivery device
US11517688B2 (en) 2019-05-10 2022-12-06 Rai Strategic Holdings, Inc. Flavor article for an aerosol delivery device
US20200359703A1 (en) 2019-05-17 2020-11-19 Rai Strategic Holdings, Inc. Age verification with registered cartridges for an aerosol delivery device
US20200367553A1 (en) 2019-05-22 2020-11-26 Rai Strategic Holdings, Inc. Reservoir configuration for aerosol delivery device
US11589425B2 (en) 2019-05-24 2023-02-21 Rai Strategic Holdings, Inc. Shape memory material for controlled liquid delivery in an aerosol delivery device
USD879371S1 (en) * 2019-07-09 2020-03-24 Chongqing CanEn Technology Co., Ltd. Electronic cigarette
US20210015171A1 (en) 2019-07-18 2021-01-21 R.J. Reynolds Tobacco Company Thermal energy absorbers for tobacco heating products
US11207711B2 (en) 2019-08-19 2021-12-28 Rai Strategic Holdings, Inc. Detachable atomization assembly for aerosol delivery device
CA3149463A1 (en) 2019-08-29 2021-03-04 Vahid Hejazi Dual-chamber aerosol dispenser
US11889861B2 (en) 2019-09-23 2024-02-06 Rai Strategic Holdings, Inc. Arrangement of atomization assemblies for aerosol delivery device
US11785991B2 (en) 2019-10-04 2023-10-17 Rai Strategic Holdings, Inc. Use of infrared temperature detection in an aerosol delivery device
US20210112882A1 (en) 2019-10-18 2021-04-22 Rai Strategic Holdings, Inc. Surface acoustic wave atomizer for aerosol delivery device
US11304451B2 (en) 2019-10-18 2022-04-19 Rai Strategic Holdings, Inc. Aerosol delivery device with dual reservoir
US11470689B2 (en) 2019-10-25 2022-10-11 Rai Strategic Holdings, Inc. Soft switching in an aerosol delivery device
EP4061164A4 (en) 2019-11-18 2023-12-13 RAI Strategic Holdings, Inc. Security tag
CA3163451A1 (en) 2019-12-30 2021-07-08 Rai Strategic Holdings Inc A heart rate monitor for an aerosol delivery device
US11607511B2 (en) 2020-01-08 2023-03-21 Nicoventures Trading Limited Inductively-heated substrate tablet for aerosol delivery device
US11457665B2 (en) 2020-01-16 2022-10-04 Nicoventures Trading Limited Susceptor arrangement for an inductively-heated aerosol delivery device
US20210321655A1 (en) 2020-04-16 2021-10-21 R.J. Reynolds Tobacco Company Aerosol delivery device including a segregated substrate
US20210321674A1 (en) 2020-04-21 2021-10-21 Rai Strategic Holdings, Inc. Pressure-sensing user interface for an aerosol delivery device
US11839240B2 (en) 2020-04-29 2023-12-12 Rai Strategic Holdings, Inc. Piezo sensor for a power source
CA3180409A1 (en) 2020-05-29 2021-12-02 Steven Michael Schennum Aerosol delivery device
US20220000178A1 (en) 2020-07-01 2022-01-06 Nicoventures Trading Limited 3d-printed substrate for aerosol delivery device
US11771132B2 (en) 2020-08-27 2023-10-03 Rai Strategic Holdings, Inc. Atomization nozzle for aerosol delivery device
US11707088B2 (en) 2020-09-25 2023-07-25 Rai Strategic Holdings, Inc. Aroma delivery system for aerosol delivery device
US11771136B2 (en) 2020-09-28 2023-10-03 Rai Strategic Holdings, Inc. Aerosol delivery device
US11856986B2 (en) 2020-10-19 2024-01-02 Rai Strategic Holdings, Inc. Customizable panel for aerosol delivery device
US20220168514A1 (en) 2020-12-01 2022-06-02 Rai Strategic Holdings, Inc. Microchannel Feed System for an Aerosol Delivery Device
US11969545B2 (en) 2020-12-01 2024-04-30 Rai Strategic Holdings, Inc. Liquid feed systems for an aerosol delivery device
US20220183389A1 (en) 2020-12-11 2022-06-16 Rai Strategic Holdings, Inc. Sleeve for smoking article
US20220304378A1 (en) 2021-03-24 2022-09-29 Rai Strategic Holdings, Inc. Aerosol delivery device
US20230107943A1 (en) 2021-10-01 2023-04-06 Rai Strategic Holdings, Inc. Mouthpiece for aerosol delivery device
US20230105080A1 (en) 2021-10-01 2023-04-06 Rai Strategic Holdings, Inc. Absorbent containing mouthpiece for aerosol delivery device
US20240057691A1 (en) 2022-08-19 2024-02-22 Rai Strategic Holdings, Inc. Pressurized aerosol delivery device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141102B2 (en) * 2003-01-29 2006-11-28 Kikuko Fukutani Antifreeze solution and rust inhibitor added thereto
US20090289215A1 (en) * 2008-05-26 2009-11-26 Hyundai Motor Company Antifreeze coolant composition having high heat-oxidation resistance
US20090294102A1 (en) * 2008-03-03 2009-12-03 Honeywell International Inc., Law Department Patent Services Heat transfer system comprising brazed aluminum, method, heat transfer fluid, and additive package
US9674894B2 (en) * 2012-12-28 2017-06-06 Philip Morris Products S.A. Heating assembly for an aerosol generating system
US10251422B2 (en) * 2013-07-22 2019-04-09 Altria Client Services Llc Electronic smoking article
US10327472B2 (en) * 2015-09-25 2019-06-25 Altria Client Services Llc Pre-vaporization formulation for controlling acidity in an e-vaping device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1910403A (en) * 1929-05-25 1933-05-23 Univ Illinois Prevention of embrittlement
US2856321A (en) * 1953-10-16 1958-10-14 Pullman Standard Car Mfg Co Method of preventing oxidation of metals
US4793366A (en) * 1985-11-12 1988-12-27 Hill Ira D Nicotine dispensing device and methods of making the same
SE0201669D0 (en) 2002-06-03 2002-06-03 Pharmacia Ab New formulation and use thereof
US20060180795A1 (en) * 2005-02-17 2006-08-17 Mccormick David R Stable acid inhibitor formulations with improved performance, lower toxicity and minimal environmental issues
GB0507887D0 (en) * 2005-04-20 2005-05-25 Rohm & Haas Elect Mat Immersion method
CN201067079Y (en) * 2006-05-16 2008-06-04 韩力 Simulation aerosol inhaler
AT507187B1 (en) 2008-10-23 2010-03-15 Helmut Dr Buchberger INHALER
CN101926506B (en) * 2009-06-19 2012-11-21 李文博 Application of neophytadiene being taken as cigarette additive
EP2319334A1 (en) * 2009-10-27 2011-05-11 Philip Morris Products S.A. A smoking system having a liquid storage portion
EP2340729A1 (en) 2009-12-30 2011-07-06 Philip Morris Products S.A. An improved heater for an electrically heated aerosol generating system
CN102905565B (en) * 2010-05-21 2016-08-24 环球蒸汽商标公司 Preparation is for the method for the tobacco extract of electricity smoke sucking equipment
US20120325228A1 (en) 2011-06-23 2012-12-27 Williams Jonnie R Alkaloid composition for e-cigarette
KR101332596B1 (en) 2011-10-28 2013-11-25 젱지슈안 Manufacturing method of electronic cigarette liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141102B2 (en) * 2003-01-29 2006-11-28 Kikuko Fukutani Antifreeze solution and rust inhibitor added thereto
US20090294102A1 (en) * 2008-03-03 2009-12-03 Honeywell International Inc., Law Department Patent Services Heat transfer system comprising brazed aluminum, method, heat transfer fluid, and additive package
US20090289215A1 (en) * 2008-05-26 2009-11-26 Hyundai Motor Company Antifreeze coolant composition having high heat-oxidation resistance
US9674894B2 (en) * 2012-12-28 2017-06-06 Philip Morris Products S.A. Heating assembly for an aerosol generating system
US10251422B2 (en) * 2013-07-22 2019-04-09 Altria Client Services Llc Electronic smoking article
US10327472B2 (en) * 2015-09-25 2019-06-25 Altria Client Services Llc Pre-vaporization formulation for controlling acidity in an e-vaping device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Cleveland.com Ohio House bills address cruelty and antifreeze poisoning Animals in the News, Cleveland.com, Advance Ohio, Published June 9, 2011, https //www.cleveland.com/metro/2011/06/_animals_in_the_news_39.html *
Definition of When, Merriam-Webster Dictionary, https://www.merriam-webster.com/dictionary/when (Year: 2019) *
Ohio House bills address cruelty and antifreeze poisoning: Animals in the News, Cleveland.com, Advance Ohio, Published June 9, 2011, https://www.cleveland.com/metro/2011/06/_animals_in_the_news_39.html (Year: 2011) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021128345A1 (en) * 2019-12-27 2021-07-01 深圳雾芯科技有限公司 Flavor composition and electronic cigarette liquid containing flavor composition

Also Published As

Publication number Publication date
AR097022A1 (en) 2016-02-10
US20150020830A1 (en) 2015-01-22
WO2015013107A1 (en) 2015-01-29
US10251422B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
US20190183184A1 (en) Electronic smoking article
US10021915B2 (en) Electronic smoking article
US11819059B2 (en) Electronic smoking article
US11478593B2 (en) Electronic vaping device
US10383371B2 (en) Electronic smoking article and improved heater element
US10264819B2 (en) Electronic smoking article

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION