US20190181820A1 - Switch for Controlling a Gain of an Amplifier and Method Thereof - Google Patents

Switch for Controlling a Gain of an Amplifier and Method Thereof Download PDF

Info

Publication number
US20190181820A1
US20190181820A1 US15/853,960 US201715853960A US2019181820A1 US 20190181820 A1 US20190181820 A1 US 20190181820A1 US 201715853960 A US201715853960 A US 201715853960A US 2019181820 A1 US2019181820 A1 US 2019181820A1
Authority
US
United States
Prior art keywords
nmos transistor
switch
voltage
transistor
pmos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/853,960
Other versions
US10320351B1 (en
Inventor
Jiazhou Liu
Donghui GAO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beken Corp
Original Assignee
Beken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beken Corp filed Critical Beken Corp
Assigned to BEKEN CORPORATION reassignment BEKEN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAO, DONGHUI, LIU, JIAZHOU
Application granted granted Critical
Publication of US10320351B1 publication Critical patent/US10320351B1/en
Publication of US20190181820A1 publication Critical patent/US20190181820A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/303Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters using a switching device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/001Digital control of analog signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45528Indexing scheme relating to differential amplifiers the FBC comprising one or more passive resistors and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45616Indexing scheme relating to differential amplifiers the IC comprising more than one switch, which are not cross coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal

Definitions

  • the present application relates to a digital circuit and more particularly, but not exclusively, to a switch for controlling a gain of an amplifier and method thereof.
  • a switch In a conventional amplifier, a switch is used to control a gain or other parameters of the amplifier.
  • the switch may be implemented by a N-channel metal oxide semiconductor field effect transistors (NMOSFET).
  • NMOSFET N-channel metal oxide semiconductor field effect transistors
  • the switch may have a too high switched-on voltage to be turned on and work properly. Therefore it is desirable to have a switch for controlling a gain of the amplifier that can work properly.
  • a switch for controlling a gain of an amplifier comprising a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter; wherein a source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor, a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor; a gate of the third PMOS transistor is configured to receive a switch voltage (Vs); a gate of the fourth PMOS transistor is configured to receive a negative switch voltage (Vsn); a gate of the fifth PMOS transistor is connected to an output
  • a switch assembly for controlling a gain of an amplifier, wherein the switch assembly including a plurality of switches, each switch comprises a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter; wherein a source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor, a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor; a gate of the third PMOS transistor is configured to receive a switch voltage (Vs); a gate of the fourth PMOS transistor is configured to receive a negative switch voltage (Vsn
  • a method in a switch for controlling a gain of an amplifier comprising a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter; wherein a source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor, a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor; a gate of the third PMOS transistor is configured to receive a switch voltage (Vs); a gate of the fourth PMOS transistor is configured to receive a negative switch voltage (Vsn); a gate of the fifth PMOS
  • the switch will be turned on properly and will not be overvoltage, therefore can work properly.
  • FIG. 1 is a circuit diagram including a switch and an amplifier according to an embodiment of the invention.
  • FIG. 2 is a simplified circuit diagram including a switch in a switched-on state and an amplifier according to an embodiment of the invention.
  • FIG. 3 is a circuit diagram including a switch in a switched-off state and an amplifier according to an embodiment of the invention.
  • FIG. 4 is a circuit diagram including a switch assembly and an amplifier according to an embodiment of the invention.
  • FIG. 5 is a flow chart illustrating a method of controlling a gain of an amplifier according to an embodiment of the invention.
  • FIG. 1 is a circuit diagram of a circuit 10 including a switch 100 and an amplifier according to an embodiment of the invention.
  • the switch 100 comprises a first NMOS transistor M 1 , a second NMOS transistor M 2 , a third PMOS transistor M 3 , a fourth NMOS transistor M 4 , a fifth PMOS transistor M 5 , a first resistor R 1 , and an inverter INV.
  • the source of the first NMOS transistor M 1 is connected to a first terminal of the first resistor R 1 .
  • a drain of the first NMOS transistor M 1 is connected to a drain of the third PMOS transistor M 3 , a source of the fourth NMOS transistor M 4 and a source of the second NMOS transistor M 2 .
  • a gate of the first NMOS transistor M 1 is connected to a source of the third PMOS transistor M 3 , a drain of the fifth PMOS transistor M 5 , a drain of the fourth NMOS transistor M 4 , and a gate of the second NMOS transistor M 2 .
  • a gate of the third PMOS transistor M 3 is configured to receive a switch voltage Vs.
  • a gate of the fourth PMOS transistor M 4 is configured to receive a negative switch voltage (Vsn).
  • a gate of the fifth PMOS transistor M 5 is connected to an output node of the inverter INV.
  • the inverter INV is configured to receive the switch voltage Vs.
  • a drain of the second NMOS transistor M 2 is connected to a negative input node Vinn of the amplifier AMP.
  • the input voltage of the amplifier AMP is designed as 1/2Vdd, which is the common mode voltage (Vcm).
  • the positive input port of the amplifier AMP is configured to receive Vcm, which equals 1/2Vdd. Alternatively, the input voltage of the positive input port of the amplifier AMP may take other values.
  • a second terminal of the first resistor R 1 is configured to receive an input voltage Vin.
  • a gain of the amplifier AMP is adjusted according the switch voltage Vs by switching on or off both the first NMOS transistor M 1 and the second NMOS transistor M 2 together, wherein the gain represents the ratio of an output voltage Vo of the amplifier AMP to the input voltage Vin.
  • the drain of the second NMOS transistor M 2 is further configured to output a switch signal to the negative input node Vinn of the amplifier AMP based on the switch voltage Vs. Note the drain of the second NMOS transistor M 2 is a virtual ground point.
  • both the first NMOS transistor M 1 and the second NMOS transistor M 2 are core devices, and the first NMOS transistor and the second NMOS transistor have a working voltage of about 1.2V.
  • core device can be defined by factories. Core devices are devices that can reach the minimum line width. For example, in 55 nm process, the minimum line width is 55 nm. Therefore the core device can reach the minimum line width of 55 nm. Further, the withstand voltage of the core device is the same as the withstand voltage for the process, that is 1.2V. As the external interface voltage cannot change with the improvement of process, in order to address this situation, IO devices are designed for interface circuit. IO devices have higher withstand voltage, such as 2.5V or 3.3V for 55 nm IO devices.
  • the third PMOS transistor M 3 , the fourth NMOS transistor M 4 and the fifth PMOS transistor M 5 are I/O devices, and third PMOS transistor M 3 , the fourth NMOS transistor M 4 and the fifth PMOS transistor M 5 have a working voltage of about 2V to 3V.
  • the switch voltage Vs is configured to vary between a power source voltage (Vdd) and a ground voltage (0) to adjust a gain of the amplifier AMP by switching on or off the first NMOS transistor M 1 and the second NMOS transistor M 2 .
  • FIG. 2 is a simplified circuit diagram of a circuit 20 including a switch 200 in a switched-on state and an amplifier according to an embodiment of the invention.
  • both the first NMOS transistor M 1 and the second NMOS transistor when both the first NMOS transistor M 1 and the second NMOS transistor is switched on, the voltage on the gate of both the first NMOS transistor M 1 and the second NMOS transistor M 2 is about Vdd(2V), therefore both the first NMOS transistor M 1 and the second NMOS transistor can be switched-on normally and will not cause overvoltage.
  • FIG. 3 is a circuit diagram of a circuit 30 including a switch 300 in a switched-off state and an amplifier according to an embodiment of the invention.
  • FIG. 3 shows the simplified circuit diagram of FIG. 1 by equaling the third PMOS transistor M 3 and the fourth NMOS transistor M 4 to a conductor, and the fifth PMOS transistor M 5 to off (therefore not shown in FIG. 3 ).
  • R 1 is infinite, therefore the gain is 0.
  • the voltage on node N is between Vcm+vth and vth. If the input voltage yin is higher than vcm, the voltage on node N is between Vcm (1/2Vdd) and vdd-vth normally. Since the voltages vgs (voltage between gate and source) of first NMOS transistor M 1 is 0, the first NMOS transistor M 1 is off. If the input voltage Vin is smaller than Vcm, the voltage on node N is between Vcm (1/2Vdd) and with normally. As the gate and source of the second NMOS transistor M 2 are connected, the second NMOS transistor M 2 is off.
  • FIG. 4 is a circuit diagram showing a switch assembly 400 and an amplifier according to an embodiment of the invention.
  • the switch assembly 400 comprises a plurality of switches 1000 - 100 k .
  • the switch assembly 400 comprises k switches.
  • the k switches are connected in parallel between the negative input node Vinn of the amplifier AMP and an input node of the switch that receives the input voltage Vin.
  • the switch assembly 400 further comprises k- 1 switches similar to switch 1000 .
  • switches 1001 , 1002 , . . . , 100 ( k - 2 ), 100 ( k - 1 ) are not shown or described. Only switches 1000 and 100 k are shown in FIG. 4 . k represents an integer.
  • the 100 k switch comprises a 1kth NMOS transistor M 1 k , a 2kth NMOS transistor M 2 k , a 3kth PMOS transistor M 3 k , a 4kth NMOS transistor M 4 k , a 5kth PMOS transistor M 5 k , a 1kth resistor R 1 k , and a kth inverter INVk.
  • a source of the 1kth NMOS transistor M 1 k is connected to a first terminal of the 1kth resistor R 1 k .
  • a drain of the 1kth NMOS transistor is connected to a drain of the 3kth PMOS transistor M 3 k , a source of the 4kth NMOS transistor M 4 k and a source of the 2kth NMOS transistor M 2 k .
  • a gate of the 1kth NMOS transistor M 1 k is connected to a source of the 3kth PMOS transistor M 3 k , a drain of the 5kth PMOS transistor M 5 k , a drain of the 4kth NMOS transistor M 4 k , and a gate of the 2kth NMOS transistor M 2 k.
  • a gate of the 3kth PMOS transistor M 3 k is configured to receive a kth switch voltage (Vsk).
  • a gate of the 4kth PMOS transistor M 4 k is configured to receive a kth negative switch voltage (Vskn).
  • a gate of the 5kth PMOS transistor M 5 k is connected to an output node of the kth inverter INVk, and the kth inverter INVk is configured to receive the switch voltage Vsk.
  • a drain of the 2kth NMOS transistor M 2 k is connected to a negative input node Vinn of the amplifier AMP.
  • a second terminal of the 1kth resistor R 1 k is configured to receive an input voltage Vin.
  • the drain of the 2kth NMOS transistor M 2 k is further configured to output a switch signal based on the kth switch voltage Vsk to the amplifier AMP.
  • the plurality of switches 1000 , 1001 , 1002 , . . . , 100 ( k - 2 ), 100 ( k - 1 ), 100 k are connected in parallel between the input node of the amplifier AMP and an input node of the switch that receives the input voltage Vin.
  • a gain of the amplifier AMP is adjusted according the plurality of switch voltages Vs, Vs 1 , Vs 2 . . . Vsk corresponding to the plurality of switches 1000 , 1001 , 1002 , . . .
  • the gain represents the ratio of an output voltage of the amplifier AMP to the input voltage Vin.
  • the gain may be represented as R 2 /f(R 1 , R 11 , R 12 , R 13 , . . . . R 1 k ), depending on switching on or off of the switches 1000 , 1001 , 1002 , . . .
  • the k switches are adjusted between on and off, so as to control the amount of the input resistances R 1 , R 11 , R 12 , R 13 , . . . . R 1 k , therefore changing the gain of the amplifier AMP.
  • FIG. 5 is a flow chart illustrating a method 500 of controlling a gain of an amplifier according to an embodiment of the invention.
  • the method 500 in a switch for controlling a gain of an amplifier comprises a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter; wherein a source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor, a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor; a gate of the third PMOS transistor is configured to receive a switch voltage (Vs); a gate of the fourth PMOS transistor is configured to receive a negative switch voltage (Vsn); a gate of the fifth PMOS transistor is connected to an output no
  • the method 500 comprises receiving in block 510 , by the inverter, the switch voltage; receiving in block 520 , by a second terminal of the first resistor, input voltage, adjusting in block 530 , according to the switch voltage, a gain of the amplifier by switching on or off the first NMOS transistor and the second NMOS transistor, the gain represents the ratio of an output voltage of the amplifier to the input voltage; and outputting in block 540 , by the drain of the second NMOS transistor to the amplifier, a switch signal based on the switch voltage.
  • the first NMOS transistor and the second NMOS transistor have a working voltage of about 1.2V.
  • the fourth NMOS transistor and the fifth PMOS transistor are I/O devices, and third PMOS transistor, the fourth NMOS transistor and the fifth PMOS transistor have a working voltage of about 2V to 3V.
  • the switch voltage is configured to vary between a power source voltage and a ground voltage to adjust a gain of the amplifier by switching on or off the first NMOS transistor and the second NMOS transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

A switch for controlling a gain of an amplifier comprises a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter. A source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor, a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor; a gate of the third PMOS transistor receives a switch voltage (Vs); a gate of the fourth PMOS transistor receives a negative switch voltage (Vsn).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to Chinese Application number 201711310098.0 entitled “Switch for Controlling a Gain of an Amplifier and Method Thereof,” filed on Dec. 11, 2017 by Beken Corporation, which is incorporated herein by reference.
  • TECHNICAL FIELD
  • The present application relates to a digital circuit and more particularly, but not exclusively, to a switch for controlling a gain of an amplifier and method thereof.
  • BACKGROUND OF THE INVENTION
  • In a conventional amplifier, a switch is used to control a gain or other parameters of the amplifier. The switch may be implemented by a N-channel metal oxide semiconductor field effect transistors (NMOSFET). In some circumstances, the switch may have a too high switched-on voltage to be turned on and work properly. Therefore it is desirable to have a switch for controlling a gain of the amplifier that can work properly.
  • BRIEF DESCRIPTION OF THE INVENTION
  • In an aspect of an embodiment, a switch for controlling a gain of an amplifier, comprising a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter; wherein a source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor, a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor; a gate of the third PMOS transistor is configured to receive a switch voltage (Vs); a gate of the fourth PMOS transistor is configured to receive a negative switch voltage (Vsn); a gate of the fifth PMOS transistor is connected to an output node of the inverter, and the inverter is configured to receive the switch voltage; a drain of the second NMOS transistor is connected to a negative input node of the amplifier; and wherein a second terminal of the first resistor is configured to receive an input voltage, and a gain of the amplifier is adjusted according the switch voltage by switching on or off both the first NMOS transistor and the second NMOS transistor together, wherein the gain represents the ratio of an output voltage of the amplifier to the input voltage; wherein the drain of the second NMOS transistor is further configured to output a switch signal based on the switch voltage to the amplifier.
  • In another aspect of an embodiment, a switch assembly for controlling a gain of an amplifier, wherein the switch assembly including a plurality of switches, each switch comprises a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter; wherein a source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor, a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor; a gate of the third PMOS transistor is configured to receive a switch voltage (Vs); a gate of the fourth PMOS transistor is configured to receive a negative switch voltage (Vsn); a gate of the fifth PMOS transistor is connected to an output node of the inverter, and the inverter is configured to receive the switch voltage; a drain of the second NMOS transistor is connected to a negative input node of the amplifier; and wherein a second terminal of the first resistor is configured to receive an input voltage (Vin), the drain of the second NMOS transistor is further configured to output a switch signal based on the switch voltage to the amplifier; wherein the plurality of switches are connected in parallel between the input node of the amplifier and an input node of the switch that receives the input voltage, and a gain of the amplifier is adjusted according the plurality of switch voltages corresponding to the plurality of switches in the switch assembly by switching on or off both the first NMOS transistor and the second NMOS transistor together in each of the switch, wherein the gain represents the ratio of an output voltage of the amplifier to the input voltage.
  • In another aspect of an embodiment, a method in a switch for controlling a gain of an amplifier, where the switch comprises a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter; wherein a source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor, a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor; a gate of the third PMOS transistor is configured to receive a switch voltage (Vs); a gate of the fourth PMOS transistor is configured to receive a negative switch voltage (Vsn); a gate of the fifth PMOS transistor is connected to an output node of the inverter, and the inverter is configured to receive the switch voltage; a drain of the second NMOS transistor is connected to a negative input node of the amplifier; and wherein the method comprises: receiving, by a second terminal of the first resistor, input voltage, and adjusting, according to the switch voltage, a gain of the amplifier by switching on or off the first NMOS transistor and the second NMOS transistor, the gain represents the ratio of an output voltage of the amplifier to the input voltage; and outputting, by the drain of the second NMOS transistor to the amplifier, a switch signal based on the switch voltage.
  • According to an embodiment, the switch will be turned on properly and will not be overvoltage, therefore can work properly.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
  • FIG. 1 is a circuit diagram including a switch and an amplifier according to an embodiment of the invention.
  • FIG. 2 is a simplified circuit diagram including a switch in a switched-on state and an amplifier according to an embodiment of the invention.
  • FIG. 3 is a circuit diagram including a switch in a switched-off state and an amplifier according to an embodiment of the invention.
  • FIG. 4 is a circuit diagram including a switch assembly and an amplifier according to an embodiment of the invention.
  • FIG. 5 is a flow chart illustrating a method of controlling a gain of an amplifier according to an embodiment of the invention.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • Various aspects and examples of the invention will now be described. The following description provides specific details for a thorough understanding and enabling description of these examples. Those skilled in the art will understand, however, that the invention may be practiced without many of these details.
  • Additionally, some well-known structures or functions may not be shown or described in detail, so as to avoid unnecessarily obscuring the relevant description.
  • The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific examples of the invention. Certain terms may even be emphasized below, however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.
  • FIG. 1 is a circuit diagram of a circuit 10 including a switch 100 and an amplifier according to an embodiment of the invention. The switch 100 comprises a first NMOS transistor M1, a second NMOS transistor M2, a third PMOS transistor M3, a fourth NMOS transistor M4, a fifth PMOS transistor M5, a first resistor R1, and an inverter INV. The source of the first NMOS transistor M1 is connected to a first terminal of the first resistor R1. A drain of the first NMOS transistor M1 is connected to a drain of the third PMOS transistor M3, a source of the fourth NMOS transistor M4 and a source of the second NMOS transistor M2. A gate of the first NMOS transistor M1 is connected to a source of the third PMOS transistor M3, a drain of the fifth PMOS transistor M5, a drain of the fourth NMOS transistor M4, and a gate of the second NMOS transistor M2.
  • A gate of the third PMOS transistor M3 is configured to receive a switch voltage Vs. A gate of the fourth PMOS transistor M4 is configured to receive a negative switch voltage (Vsn). A gate of the fifth PMOS transistor M5 is connected to an output node of the inverter INV. The inverter INV is configured to receive the switch voltage Vs. A drain of the second NMOS transistor M2 is connected to a negative input node Vinn of the amplifier AMP. The input voltage of the amplifier AMP is designed as 1/2Vdd, which is the common mode voltage (Vcm). The positive input port of the amplifier AMP is configured to receive Vcm, which equals 1/2Vdd. Alternatively, the input voltage of the positive input port of the amplifier AMP may take other values.
  • A second terminal of the first resistor R1 is configured to receive an input voltage Vin. A gain of the amplifier AMP is adjusted according the switch voltage Vs by switching on or off both the first NMOS transistor M1 and the second NMOS transistor M2 together, wherein the gain represents the ratio of an output voltage Vo of the amplifier AMP to the input voltage Vin. The drain of the second NMOS transistor M2 is further configured to output a switch signal to the negative input node Vinn of the amplifier AMP based on the switch voltage Vs. Note the drain of the second NMOS transistor M2 is a virtual ground point.
  • Alternatively or additionally, both the first NMOS transistor M1 and the second NMOS transistor M2 are core devices, and the first NMOS transistor and the second NMOS transistor have a working voltage of about 1.2V. For example, core device can be defined by factories. Core devices are devices that can reach the minimum line width. For example, in 55 nm process, the minimum line width is 55 nm. Therefore the core device can reach the minimum line width of 55 nm. Further, the withstand voltage of the core device is the same as the withstand voltage for the process, that is 1.2V. As the external interface voltage cannot change with the improvement of process, in order to address this situation, IO devices are designed for interface circuit. IO devices have higher withstand voltage, such as 2.5V or 3.3V for 55 nm IO devices.
  • Alternatively or additionally, the third PMOS transistor M3, the fourth NMOS transistor M4 and the fifth PMOS transistor M5 are I/O devices, and third PMOS transistor M3, the fourth NMOS transistor M4 and the fifth PMOS transistor M5 have a working voltage of about 2V to 3V.
  • Alternatively or additionally, the switch voltage Vs is configured to vary between a power source voltage (Vdd) and a ground voltage (0) to adjust a gain of the amplifier AMP by switching on or off the first NMOS transistor M1 and the second NMOS transistor M2.
  • FIG. 2 is a simplified circuit diagram of a circuit 20 including a switch 200 in a switched-on state and an amplifier according to an embodiment of the invention.
  • In FIG. 2, when the switch voltage Vs=1 which means vdd, gates of the first NMOS transistor M1 and the second NMOS transistor M2 receive vdd, therefore the first NMOS transistor M1 and the second NMOS transistor M2 are on. Referring back to FIG. 1, further, when the switch voltage Vs=1, the third PMOS transistor M3 and the fourth NMOS transistor M4 are off, and the fifth PMOS transistor is on. FIG. 2 shows the simplified circuit diagram of FIG. 1 by equaling the third PMOS transistor M3 and the fourth NMOS transistor M4 to off (therefore not shown in FIG. 2), and the fifth PMOS transistor M5 to a conductor. Therefore the output voltage Vo of the amplifier AMP can be represented as Vo=−R2/R1*vin, and the gain of the amplifier AMP can be represented as R2/R1.
  • In FIG. 2, when both the first NMOS transistor M1 and the second NMOS transistor is switched on, the voltage on the gate of both the first NMOS transistor M1 and the second NMOS transistor M2 is about Vdd(2V), therefore both the first NMOS transistor M1 and the second NMOS transistor can be switched-on normally and will not cause overvoltage.
  • FIG. 3 is a circuit diagram of a circuit 30 including a switch 300 in a switched-off state and an amplifier according to an embodiment of the invention.
  • In FIG. 3, when the switch voltage Vs=0 which means ground (gnd), then the first NMOS transistor M1 and the second NMOS transistor M2 are off. Referring back to FIG. 1, further, when the switch voltage Vs=0, the third PMOS transistor M3 and the fourth NMOS transistor M4 are on, and the fifth PMOS transistor is off. FIG. 3 shows the simplified circuit diagram of FIG. 1 by equaling the third PMOS transistor M3 and the fourth NMOS transistor M4 to a conductor, and the fifth PMOS transistor M5 to off (therefore not shown in FIG. 3). As the first NMOS transistor M1 and the second NMOS transistor M2 are off, it is equivalent that R1 is infinite, therefore the gain is 0.
  • In FIG. 3, the voltage on node N is between Vcm+vth and vth. If the input voltage yin is higher than vcm, the voltage on node N is between Vcm (1/2Vdd) and vdd-vth normally. Since the voltages vgs (voltage between gate and source) of first NMOS transistor M1 is 0, the first NMOS transistor M1 is off. If the input voltage Vin is smaller than Vcm, the voltage on node N is between Vcm (1/2Vdd) and with normally. As the gate and source of the second NMOS transistor M2 are connected, the second NMOS transistor M2 is off.
  • FIG. 4 is a circuit diagram showing a switch assembly 400 and an amplifier according to an embodiment of the invention.
  • The switch assembly 400 comprises a plurality of switches 1000-100 k. For example, the switch assembly 400 comprises k switches. The k switches are connected in parallel between the negative input node Vinn of the amplifier AMP and an input node of the switch that receives the input voltage Vin. In addition to the circuit already discussed with respect to FIG. 1, the switch assembly 400 further comprises k-1 switches similar to switch 1000. For ease of description, switches 1001, 1002, . . . , 100(k-2), 100(k-1) are not shown or described. Only switches 1000 and 100 k are shown in FIG. 4. k represents an integer. For example, the 100 k switch comprises a 1kth NMOS transistor M1 k, a 2kth NMOS transistor M2 k, a 3kth PMOS transistor M3 k, a 4kth NMOS transistor M4 k, a 5kth PMOS transistor M5 k, a 1kth resistor R1 k, and a kth inverter INVk. A source of the 1kth NMOS transistor M1 k is connected to a first terminal of the 1kth resistor R1 k. A drain of the 1kth NMOS transistor is connected to a drain of the 3kth PMOS transistor M3 k, a source of the 4kth NMOS transistor M4 k and a source of the 2kth NMOS transistor M2 k. A gate of the 1kth NMOS transistor M1 k is connected to a source of the 3kth PMOS transistor M3 k, a drain of the 5kth PMOS transistor M5 k, a drain of the 4kth NMOS transistor M4 k, and a gate of the 2kth NMOS transistor M2 k.
  • A gate of the 3kth PMOS transistor M3 k is configured to receive a kth switch voltage (Vsk). A gate of the 4kth PMOS transistor M4 k is configured to receive a kth negative switch voltage (Vskn). A gate of the 5kth PMOS transistor M5 k is connected to an output node of the kth inverter INVk, and the kth inverter INVk is configured to receive the switch voltage Vsk. A drain of the 2kth NMOS transistor M2 k is connected to a negative input node Vinn of the amplifier AMP. A second terminal of the 1kth resistor R1 k is configured to receive an input voltage Vin. The drain of the 2kth NMOS transistor M2 k is further configured to output a switch signal based on the kth switch voltage Vsk to the amplifier AMP.
  • In general, the plurality of switches 1000, 1001, 1002, . . . ,100(k-2), 100(k-1), 100 k are connected in parallel between the input node of the amplifier AMP and an input node of the switch that receives the input voltage Vin. A gain of the amplifier AMP is adjusted according the plurality of switch voltages Vs, Vs1, Vs2 . . . Vsk corresponding to the plurality of switches 1000, 1001, 1002, . . . ,100(k-2), 100(k-1) and 100 k in the switch assembly 400 by switching on or off both the first NMOS transistor and the second NMOS transistor together (M1, M2), (M11, M21), (M12, M22), . . . (M1 k, M2 k) in each of the switch. The gain represents the ratio of an output voltage of the amplifier AMP to the input voltage Vin. For example, the gain may be represented as R2/f(R1, R11, R12, R13, . . . . R1 k), depending on switching on or off of the switches 1000, 1001, 1002, . . . . 100 k. The k switches are adjusted between on and off, so as to control the amount of the input resistances R1, R11, R12, R13, . . . . R1 k, therefore changing the gain of the amplifier AMP.
  • FIG. 5 is a flow chart illustrating a method 500 of controlling a gain of an amplifier according to an embodiment of the invention.
  • The method 500 in a switch for controlling a gain of an amplifier, where the switch comprises a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter; wherein a source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor, a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor; a gate of the third PMOS transistor is configured to receive a switch voltage (Vs); a gate of the fourth PMOS transistor is configured to receive a negative switch voltage (Vsn); a gate of the fifth PMOS transistor is connected to an output node of the inverter, a drain of the second NMOS transistor is connected to a negative input node of the amplifier. The method 500 comprises receiving in block 510, by the inverter, the switch voltage; receiving in block 520, by a second terminal of the first resistor, input voltage, adjusting in block 530, according to the switch voltage, a gain of the amplifier by switching on or off the first NMOS transistor and the second NMOS transistor, the gain represents the ratio of an output voltage of the amplifier to the input voltage; and outputting in block 540, by the drain of the second NMOS transistor to the amplifier, a switch signal based on the switch voltage.
  • Alternatively or additionally, the first NMOS transistor and the second NMOS transistor have a working voltage of about 1.2V.
  • Alternatively or additionally, the fourth NMOS transistor and the fifth PMOS transistor are I/O devices, and third PMOS transistor, the fourth NMOS transistor and the fifth PMOS transistor have a working voltage of about 2V to 3V.
  • Alternatively or additionally, the switch voltage is configured to vary between a power source voltage and a ground voltage to adjust a gain of the amplifier by switching on or off the first NMOS transistor and the second NMOS transistor.
  • Features and aspects of various embodiments may be integrated into other embodiments, and embodiments illustrated in this document may be implemented without all of the features or aspects illustrated or described. One skilled in the art will appreciate that although specific examples and embodiments of the system and methods have been described for purposes of illustration, various modifications can be made without deviating from the spirit and scope of the present invention. Moreover, features of one embodiment may be incorporated into other embodiments, even where those features are not described together in a single embodiment within the present document. Accordingly, the invention is described by the appended claims.

Claims (9)

1. A switch for controlling a gain of an amplifier, comprising a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter; wherein
a source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor, a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor;
a gate of the third PMOS transistor is configured to receive a switch voltage (Vs);
a gate of the fourth PMOS transistor is configured to receive a negative switch voltage (Vsn);
a gate of the fifth PMOS transistor is connected to an output node of the inverter, and the inverter is configured to receive the switch voltage;
a drain of the second NMOS transistor is connected to a negative input node of the amplifier; and
wherein a second terminal of the first resistor is configured to receive an input voltage, and a gain of the amplifier is adjusted according the switch voltage by switching on or off both the first NMOS transistor and the second NMOS transistor together, wherein the gain represents a ratio of an output voltage of the amplifier to the input voltage; wherein
the drain of the second NMOS transistor is further configured to output a switch signal based on the switch voltage to the amplifier.
2. The switch of claim 1, wherein both the first NMOS transistor and the second NMOS transistor are core devices, and the first NMOS transistor and the second NMOS transistor have a working voltage of about 1.2V.
3. The switch of claim 1, wherein the third PMOS transistor, the fourth NMOS transistor and the fifth PMOS transistor are I/O devices, and third PMOS transistor, the fourth NMOS transistor and the fifth PMOS transistor have a working voltage of about 2V to 3V.
4. The switch of claim 1, wherein the switch voltage is configured to vary between a power source voltage and a ground voltage to adjust the gain of the amplifier by switching on or off the first NMOS transistor and the second NMOS transistor.
5. A switch assembly for controlling a gain of an amplifier, wherein the switch assembly including a plurality of switches, each switch comprises a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter; wherein
a source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor, a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor;
a gate of the third PMOS transistor is configured to receive a switch voltage (Vs);
a gate of the fourth PMOS transistor is configured to receive a negative switch voltage (Vsn);
a gate of the fifth PMOS transistor is connected to an output node of the inverter, and the inverter is configured to receive the switch voltage;
a drain of the second NMOS transistor is connected to a negative input node of the amplifier; and
wherein a second terminal of the first resistor is configured to receive an input voltage (Vin),
the drain of the second NMOS transistor is further configured to output a switch signal based on the switch voltage to the amplifier;
wherein the plurality of switches are connected in parallel between the input node of the amplifier and an input node of the switch that receives the input voltage, and the gain of the amplifier is adjusted according the plurality of switch voltages corresponding to the plurality of switches in the switch assembly by switching on or off both the first NMOS transistor and the second NMOS transistor together in each of the switch, wherein the gain represents a ratio of an output voltage of the amplifier to the input voltage.
6. A method in a switch for controlling a gain of an amplifier, where the switch comprises a first NMOS transistor, a second NMOS transistor, a third PMOS transistor, a fourth NMOS transistor, a fifth PMOS transistor, a first resistor, and an inverter; wherein
a source of the first NMOS transistor is connected to a first terminal of the first resistor, a drain of the first NMOS transistor is connected to a drain of the third PMOS transistor; a source of the fourth NMOS transistor and a source of the second NMOS transistor, a gate of the first NMOS transistor is connected to a source of the third PMOS transistor, a drain of the fifth PMOS transistor, a drain of the fourth NMOS transistor, and a gate of the second NMOS transistor;
a gate of the third PMOS transistor is configured to receive a switch voltage (Vs);
a gate of the fourth PMOS transistor is configured to receive a negative switch voltage (Vsn);
a gate of the fifth PMOS transistor is connected to an output node of the inverter, and the inverter is configured to receive the switch voltage;
a drain of the second NMOS transistor is connected to a negative input node of the amplifier; and
wherein the method comprises:
receiving, by a second terminal of the first resistor, input voltage, and
adjusting, according to the switch voltage, the gain of the amplifier by switching on or off the first NMOS transistor and the second NMOS transistor, the gam represents a ratio of an output voltage of the amplifier to the input voltage; and
outputting, by the drain of the second NMOS transistor to the amplifier, a switch signal based on the switch voltage.
7. The method of claim 6, wherein the first NMOS transistor and the second NMOS transistor have a working voltage of about 1.2V
8. The method of claim 6, wherein the third PMOS transistor, the fourth NMOS transistor and the fifth PMOS transistor are I/O devices, and third PMOS transistor, the fourth NMOS transistor and the fifth PMOS transistor have a working voltage of about 2V to 3V.
9. The method of claim 6, wherein the switch voltage is configured to vary between a power source voltage and a ground voltage to adjust the gain of the amplifier by switching on or off the first NMOS transistor and the second NMOS transistor.
US15/853,960 2017-12-11 2017-12-26 Switch for controlling a gain of an amplifier and method thereof Active US10320351B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201711310098.0 2017-12-11
CN201711310098.0A CN109905110B (en) 2017-12-11 2017-12-11 Switch and method for controlling gain of amplifier
CN201711310098 2017-12-11

Publications (2)

Publication Number Publication Date
US10320351B1 US10320351B1 (en) 2019-06-11
US20190181820A1 true US20190181820A1 (en) 2019-06-13

Family

ID=66696492

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/853,960 Active US10320351B1 (en) 2017-12-11 2017-12-26 Switch for controlling a gain of an amplifier and method thereof

Country Status (2)

Country Link
US (1) US10320351B1 (en)
CN (1) CN109905110B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724980B (en) * 2020-10-14 2021-04-11 立積電子股份有限公司 Amplification circuit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499663B1 (en) * 1997-11-04 2002-12-31 Hitachi, Ltd. Image input system
AU3643199A (en) * 1998-04-15 1999-11-01 Ess Technology, Inc. Attenuating volume control
EP1052832A1 (en) * 1999-05-14 2000-11-15 STMicroelectronics S.r.l. Receiving section of a telephone
JPWO2003028210A1 (en) * 2001-09-20 2005-01-13 三菱電機株式会社 Low power variable gain amplifier
JP2006140561A (en) * 2004-11-10 2006-06-01 Sony Corp Composite cmos circuit and variable gain amplifying circuit
TWI275243B (en) * 2005-09-14 2007-03-01 Princeton Technology Corp Voltage controlled amplifier for a signal processing system
US7427897B2 (en) * 2006-02-08 2008-09-23 Fairchild Semiconductor Corporation Power amplifier with close-loop adaptive voltage supply
CN202026282U (en) * 2011-03-30 2011-11-02 大连交通大学 Numerical control gain direct current amplifier

Also Published As

Publication number Publication date
CN109905110A (en) 2019-06-18
CN109905110B (en) 2022-11-18
US10320351B1 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
CN108075737B (en) Low output impedance, high speed, high voltage generator for driving capacitive loads
US7268623B2 (en) Low voltage differential signal driver circuit and method for controlling the same
US8742819B2 (en) Current limiting circuitry and method for pass elements and output stages
JP6871514B2 (en) Negative power control circuit and power supply
US8368429B2 (en) Hysteresis comparator
US20050218935A1 (en) Data output circuit with improved overvoltage/surge protection
US10627847B2 (en) Bias current circuit operating at high and low voltages
US9798341B2 (en) Voltage regulator and semiconductor device
US7755392B1 (en) Level shift circuit without high voltage stress of transistors and operating at low voltages
JP4958434B2 (en) Voltage selection circuit
JP2008288900A (en) Differential amplifier
JP2016206852A (en) Current detection circuit
US20160187900A1 (en) Voltage regulator circuit and method for limiting inrush current
US9473119B2 (en) Latch and frequency divider
US9811105B2 (en) Reference voltage circuit
US10320351B1 (en) Switch for controlling a gain of an amplifier and method thereof
US9798346B2 (en) Voltage reference circuit with reduced current consumption
EP3041141B1 (en) I/o driving circuit and control signal generating circuit
US8482317B2 (en) Comparator and method with adjustable speed and power consumption
US20140253194A1 (en) Load switch
TW201339794A (en) Voltage regulator
US9356513B2 (en) Sequence circuit
CN107733423B (en) Buffer circuit and voltage generator using same
US10148236B1 (en) Output stage of operational amplifier and method in the operational amplifier
US10033358B2 (en) Buffer circuit and voltage generator using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEKEN CORPORATION, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, JIAZHOU;GAO, DONGHUI;REEL/FRAME:044480/0324

Effective date: 20171225

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4