US20190125559A1 - Stents with metallic covers and methods of making same - Google Patents

Stents with metallic covers and methods of making same Download PDF

Info

Publication number
US20190125559A1
US20190125559A1 US16/222,286 US201816222286A US2019125559A1 US 20190125559 A1 US20190125559 A1 US 20190125559A1 US 201816222286 A US201816222286 A US 201816222286A US 2019125559 A1 US2019125559 A1 US 2019125559A1
Authority
US
United States
Prior art keywords
tubular
medical device
cover member
stent
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/222,286
Inventor
Christopher E. Banas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vactronix Scientific LLC
Original Assignee
Vactronix Scientific LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/443,929 external-priority patent/US6379383B1/en
Priority claimed from US09/532,164 external-priority patent/US6537310B1/en
Priority claimed from US10/936,883 external-priority patent/US20060052865A1/en
Application filed by Vactronix Scientific LLC filed Critical Vactronix Scientific LLC
Priority to US16/222,286 priority Critical patent/US20190125559A1/en
Assigned to VACTRONIX SCIENTIFIC, LLC reassignment VACTRONIX SCIENTIFIC, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BANAS, CHRISTOPHER E.
Publication of US20190125559A1 publication Critical patent/US20190125559A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0058Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded

Definitions

  • the present invention pertains generally to the field of medical devices intended to maintain patency of anatomical passageways, such as those found in the cardiovascular, lymphatic, endocrine, renal, gastrointestinal and/or reproductive systems of mammals. More particularly, the present invention relates to stents, stent-grafts and covered stents that are designed for endoluminal delivery using a delivery catheter and minimally invasive surgical techniques.
  • the present invention generally comprises stent-graft or covered stent type devices that are fabricated entirely of biocompatible metals or of biocompatible materials that exhibit biological response and material characteristics substantially the same as biocompatible metals, such as, for example, composite materials.
  • the terms “stent-graft” and “covered stent” are used interchangeably.
  • endovascular stents which are introduced to a site of disease or trauma within the body's vasculature from an introductory location remote from the disease or trauma site using an introductory catheter, passed through the vasculature communicating between the remote introductory location and the disease or trauma site, and released from the introductory catheter at the disease or trauma site to maintain patency of the blood vessel at the site of disease or trauma.
  • Stent-grafts are delivered and deployed under similar circumstances and are utilized to maintain patency of an anatomic passageway, for example, by reducing restenosis following angioplasty, or when used to exclude an aneurysm, such as in aortic aneurysm exclusion applications.
  • endoluminal stents While the use of endoluminal stents has successfully decreased the rate of restenosis in angioplasty patients, it has been found that a significant restenosis rate continues to exist even with the use of endoluminal stents. It is generally believed that the post-stenting restenosis rate is due, in major part, to the non-regrowth of a healthy endothelial layer over the stent and the incidence of smooth muscle cell-related neointimal growth on the luminal surfaces of the stent. Damage to the endothelium, the natural nonthrombogenic lining of the arterial lumen, is a significant factor contributing to restenosis at the situs of a stent.
  • Endothelial loss exposes thrombogenic arterial wall proteins, which, along with the generally thrombogenic nature of many prosthetic materials, such as stainless steel, titanium, tantalum, nitinol, etc., customarily used in manufacturing stents, initiates platelet deposition and activation of the coagulation cascade, which results in thrombus formation, ranging from partial covering of the luminal surface of the stent to an occlusive thrombus. Additionally, endothelial loss at the site of the stent has been implicated in the development of neointimal hyperplasia at the stent situs.
  • endoluminal stents are manufactured of either stainless steel or nickel-titanium alloy, both of which are known to be thrombogenic.
  • most stents minimize the metal surface area that contacts blood in order to minimize thrombus formation after implantation.
  • Stent-grafts are essentially endoluminal stents with a discrete covering on either or both of the luminal and abluminal surfaces of the stent that occludes the open spaces, or interstices, between adjacent structural members of the endoluminal stent. It is known in the art to fabricate stent-grafts by covering the stent with endogenous vein or a synthetic material, such as woven polyester known as DACRON®, or with expanded polytetrafluoroethylene. Additionally, it is known in the art to cover the stent with a biological material, such as a xenograft or collagen.
  • a primary purpose for covering stents is to reduce the thrombogenic effect of the stent material and reduce particulate extrusion through interstices of the stent and into the bloodstream.
  • Conventional graft materials have not proven to be a complete solution to enhancing the healing response of conventional stents.
  • a stent-graft device in which a structural component, such as a stent, and a graft component are each fabricated of biocompatible metals or of biocompatible materials which exhibit in vivo biological and mechanical responses substantially the same as biocompatible metals (hereinafter synonymously referred to as “pseudometals” or “pseudometallic materials”).
  • the present invention provides a stent-graft type device fabricated entirely of biocompatible metals and/or pseudometallic materials. That is, the inventive stent-graft type device comprises generally of a structural component, e.g., a stent, a plurality of stents, or a plurality of support structures, and a covering component, e.g., a graft, each of which is formed of a metal or pseudometal.
  • a structural component e.g., a stent, a plurality of stents, or a plurality of support structures
  • a covering component e.g., a graft, each of which is formed of a metal or pseudometal.
  • the structural component will be termed a “stent”, while the covering component will similarly be termed a “graft”.
  • the stent may comprise of any type of structural member which is preferably generally tubular in configuration and has an inner or luminal wall and an outer or abluminal wall and a central lumen passing along the longitudinal axis of the stent.
  • the stent may be comprised of a wide variety of geometric configurations and constructions, as are known in the art.
  • the stent may assume a balloon expandable slotted configuration of U.S. Pat. No. 4,733,665, 4,739,762, 4,776,337 or 5,102,417, or the stent may be configured as a plurality of self-expanding interwoven wire members, or it may assume any of the wall geometries disclosed in Serruys, P. W., Kutryk, M. J.
  • stent designs e.g., balloon expandable, self-expanding by spring tension of the material, self-expanding by shape memory properties of the stent material, or self-expanding by superelastic properties of the stent material are well known to one of ordinary skill in the art and may be used with the stent-graft of the present invention.
  • the covering component, or the graft of the present invention may be employed on either or both of the luminal wall and/or the abluminal wall of the stent and may cover all or a portion of either or both of the luminal and/or abluminal walls of the stent.
  • the graft may be formed as a planar film of material that is applied to the stent by wrapping about the stent or formed into a tubular structure and coupled to the stent.
  • the graft may be formed as an integral tubular member that is coupled to the stent.
  • the graft may also be fashioned as at least two graft members, with a first graft member covering a luminal wall surface of the stent and a second graft member covering an abluminal wall surface of the stent.
  • the graft may be formed as a single member that covers both a luminal wall surface and an abluminal wall surface of the stent and is everted over either or both ends of the stent.
  • the graft member may be joined to the stent, or where a graft covers both the luminal and abluminal wall surfaces of the stent, the graft may be joined to an opposing graft surface through interstices in the stent.
  • the juncture between the graft and the stent or between the graft and the graft through the stent may be accomplished by chemical, mechanical or thermal means such as by welding, adhesion using biocompatible adhesives, interference fits, interlocking or interfacing couplings, such as an interfacing detent and trough combination, or such other methods of joining or coupling a metallic and pseudometallic material to itself or such materials to one another as are known in the art.
  • an interfacing detent-trough combination may be a direct interface or it may serve to lock the graft material into a fixed position relative to the structural support members. Further, in order to minimize percent strain resulting from the coupling of a trough and detent, it is desirable that the detent and trough have radiused surfaces.
  • the structural support component and the covering component are preferably fabricated entirely of self-supporting films made of biocompatible metals or biocompatible pseudometals.
  • the metal films may either be single layer metal films or plural layer films.
  • the terms “metal film,” “thin metallic film” and “metal thin film” are used in this application synonymously to refer to single or plural layer films fabricated of biocompatible metals or biocompatible pseudometals having thicknesses greater than 0 ⁇ m and less than about 125 ⁇ m.
  • the thin metallic film When used as the structural support component, the thin metallic film preferably has a thickness greater than about 25 ⁇ m and when used as the covering component, the thin metallic film preferably has a thickness between about 0.1 ⁇ m and about 25 ⁇ m and most preferably between about 0.1 ⁇ m and about 10 ⁇ m.
  • a first embodiment consists of a stent covered by graft material on each of the luminal and abluminal wall surfaces of the stent.
  • a second embodiment consists of first and second stent members concentrically positioned coaxial with one another, with at least one graft member concentrically positioned intermediate the first and second stent members. In this second embodiment, the at least one graft member may further encapsulate one or both of the first and second stent members.
  • At least one discrete graft member may be conjoined with a plurality of structural members, such as a stent, by joining or coupling the graft member to regions of the structural members.
  • the joined regions may be at a proximal and/or a distal end of the device, or may be at intermediate regions along the longitudinal and circumferential axes of the device.
  • the graft member or members may be mechanically joined to one another through interstices formed between adjacent pairs of structural members.
  • An alternative method for making the inventive stent-graft includes employing vacuum deposition methodologies, such as those employed in the microelectronics fabrication arts. For example, sputtering, physical vapor deposition, ion beam-assisted evaporative deposition or the like, may be used to create either or both of the graft and the stent components of the inventive stent-graft device. In ion beam-assisted evaporative deposition, it is preferable to employ dual and simultaneous thermal electron beam evaporation with simultaneous ion bombardment of the material being deposited using an inert gas, such as argon, xenon, nitrogen or neon.
  • an inert gas such as argon, xenon, nitrogen or neon.
  • Bombardment with inert gas ions during deposition serves to reduce void content by increasing the atomic packing density in the deposited material.
  • the reduced void content in the deposited material allows the mechanical properties of that deposited material to be similar to the bulk material properties. Deposition rates up to 20 nm/sec are achievable using ion beam-assisted evaporative deposition techniques.
  • a 200-micron thick stainless steel film may be deposited within about four hours of deposition time. Thinner films may be achieved by using shorter deposition times.
  • a cylindrical sputtering target it is preferable to employ a cylindrical sputtering target, a single circumferential source that concentrically surrounds the substrate that is held in a coaxial position within the source.
  • various deposition process parameters including, without limitation, target composition, target temperature, chamber pressure, deposition pressure, deposition rate, target configuration, target-to-source distance, bias or partial pressure of the process gases are controlled to optimize deposition of the desired species onto the substrate.
  • target composition target temperature, chamber pressure, deposition pressure, deposition rate, target configuration, target-to-source distance, bias or partial pressure of the process gases
  • both the reactive and non-reactive gases are controlled and the inert or non-reactive gaseous species introduced into the deposition chamber is typically argon.
  • the substrate may be either stationary or moveable; either rotated about its longitudinal axis, moved in an X-Y plane, planatarily or rotationally moved within the deposition chamber to facilitate deposition or patterning of the deposited material onto the substrate.
  • the deposited material may be deposited either as a uniform solid film onto the substrate, or patterned by (a) imparting either a positive or negative pattern onto the substrate, such as by etching or photolithography techniques applied to the substrate surface to create a positive or negative image of the desired pattern or (b) using a mask or set of masks which are either stationary or moveable relative to the substrate to define the pattern applied to the substrate. Patterning may be employed to achieve complex finished geometries of the resultant structural supports, web-regions or graft, both in the context of spatial orientation of patterns of regions of relative thickness and thinness, such as by varying the thickness of the film over its length to impart different mechanical characteristics under different delivery, deployment or in vivo environmental conditions.
  • the device may be removed from the substrate after device formation by any of a variety of methods.
  • the substrate may be removed by chemical means, such as etching or dissolution, by ablation, by machining or by ultrasonic energy.
  • a sacrificial layer of a material such as carbon, aluminum or organic based materials, such as photoresists, may be deposited intermediate the substrate and the stent and the sacrificial layer removed by melting, chemical means, ablation, machining or other suitable means to free the stent from the substrate.
  • the resulting device may then be subjected to post-deposition processing to modify the crystalline structure, such as by annealing, or to modify the surface topography, such as by etching to expose a heterogeneous surface of the device.
  • Alternate deposition processes which may be employed to form the stent in accordance with the present invention are cathodic arc, laser ablation, and direct ion beam deposition.
  • the crystalline structure of the deposited film affects the mechanical properties of the deposited film. These mechanical properties of the deposited film may be modified by post-process treatment, such as by, for example, annealing.
  • Materials to make the inventive graft, stent-graft and web-stent are chosen for their biocompatibility, mechanical properties, i.e., tensile strength, yield strength, and their ease of deposition and include, without limitation, the following: elemental titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, niobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, such as zirconium-titanium-tantalum alloys, nitinol, and stainless steel.
  • the inventive stent-graft type device of the present invention is formed entirely of metal or pseudometallic material that exhibits improved endothelialization and healing response as compared to that associated with using conventional synthetic polymeric graft materials.
  • FIG. 1 is a perspective view of a first embodiment of the stent-graft of the present invention.
  • FIG. 2 is a cross-sectional view taken along line 2 - 2 of FIG. 1 .
  • FIG. 3A is a cross-sectional view taken along line 3 - 3 of FIG. 1 .
  • FIG. 3B is a cross-sectional view of a variation of a first embodiment of the stent-graft of the present invention.
  • FIG. 3C is a cross-sectional view of another variation of a first embodiment of the stent-graft of the present invention.
  • FIG. 4A is a cross-sectional view of a second embodiment of the stent-graft of the present invention.
  • FIG. 4B is a cross-sectional view of a variation of a second embodiment of the stent-graft of the present invention.
  • FIG. 4C is a cross-sectional view of another variation of a second embodiment of the stent-graft of the present invention.
  • FIG. 5 is a cross-sectional view of a third embodiment of the stent-graft of the present invention.
  • FIG. 6 is a perspective view of a fourth embodiment of the stent-graft of the present invention.
  • FIG. 7 is a cross-sectional view taken along line 7 - 7 of FIG. 6 .
  • FIG. 8 is a cross-sectional view taken along line 8 - 8 of FIG. 6 .
  • FIG. 9 is a cross-sectional view of a fifth embodiment of the stent-graft of the present invention.
  • FIG. 10 is a cross-sectional view of a sixth embodiment of the stent-graft of the present invention.
  • FIG. 11 is a flow diagram illustrating fabrication methodologies for making the inventive stent-graft of the present invention.
  • a first embodiment generally comprises a structural support member, such as a stent, that has first and second opposing wall surfaces thereof that are bounded by metallic or pseudometallic covers. The covers are positioned adjacent the first and second opposing wall surfaces and are either coupled to the structural support member or are coupled to one another through interstitial openings passing through the structural support member.
  • a second embodiment generally comprises at least one metallic or pseudometallic cover that is positioned intermediate two adjacent structural support members, e.g., stents.
  • pseudometallic and “pseudometallic” are intended to mean a biocompatible material which exhibits biological response and material characteristics substantially the same as biocompatible metals.
  • pseudometallic materials include, for example, composite materials, ceramics, quartz, and borosilicate.
  • Composite materials are composed of a matrix material reinforced with any of a variety of fibers made from ceramics, metals, or polymers. The reinforcing fibers are the primary load carriers of the material, with the matrix component transferring the load from fiber to fiber. Reinforcement of the matrix material may be achieved in a variety of ways. Fibers may be either continuous or discontinuous. Reinforcement may also be in the form of particles.
  • composite materials include those made of carbon fibers, boron fibers, boron carbide fibers, carbon and graphite fibers, carbon nanotubes, silicon carbide fibers, steel fibers, tungsten fibers, graphite/copper fibers, titanium and silicon carbide/titanium fibers.
  • the structural support member and the covering member are preferably fabricated entirely of self-supporting films made of biocompatible metals or biocompatible pseudometals.
  • the metal films may either be single layer metal films or plural layer films.
  • the terms “metal film,” “thin metallic film” and “metal thin film” are used in this application synonymously to refer to single or plural layer films fabricated of biocompatible metals or biocompatible pseudometals having thicknesses greater than 0 ⁇ m and less than about 125 ⁇ m.
  • FIGS. 1-5 illustrate the first embodiment of the present invention and variations thereof.
  • FIG. 1 illustrates one embodiment of a stent-graft of the present invention.
  • FIG. 2 is a cross-sectional view taken along line 2 - 2 of FIG. 1
  • FIG. 3A is a cross-sectional view taken along line 3 - 3 of FIG. 1 .
  • the inventive stent-graft 10 consists generally of at least one structural support member 12 having a first wall surface 12 a and a second wall surface 12 b opposing one another, a first cover member 14 and a second cover member 16 .
  • the first cover member 14 is positioned adjacent the first wall surface 12 a while the second cover member 16 is positioned adjacent the second wall surface 12 b of the structural support member 12 .
  • the first cover member 14 and the second cover 16 may be coupled either to the structural support member 12 or to one another through interstitial openings 20 passing through the structural support member 12 .
  • Coupling of the first cover member 14 and/or the second cover member 16 may be achieved by creating junctions 18 such as by chemical, mechanical or thermal means.
  • the junctions 18 may be formed by welding, adhering using a biocompatible adhesive, or by forming interlocking or interfacing members on opposing surfaces of the support structure 12 , the first cover member 14 and/or the second cover member 16 depending upon the surfaces to be coupled.
  • junction 18 may be formed by mechanical interference between the support structure 12 and the first cover member 14 and/or the second cover member 16 .
  • first cover member 14 and the second cover member 16 may consist of dual discrete members as depicted in FIGS. 4A, 4B, and 4C .
  • each of the first cover member 14 and the second cover member 16 terminate with opposing proximal 24 and distal 26 ends of the respective first cover member 14 and second cover member 16 .
  • Junctions 18 may be provided either between the structural support member 12 and the proximal 24 and distal 26 ends of the first 14 and second 16 cover members, between opposing wall surfaces of the first 14 and second 16 cover members and through interstitial spaces in the structural support member 12 , or both. Junctions 18 may also be provided between the structural support member 12 and the first 14 and second 16 cover members.
  • FIG. 4A illustrates an embodiment in which junctions 18 are provided between opposing wall surfaces of the first 14 and second 16 cover members and through interstitial spaces in the structural support member 12 .
  • FIG. 4B illustrates an embodiment in which junctions 18 are provided only at the proximal 24 and distal 26 ends of the first 14 and second 16 cover members.
  • FIG. 4C illustrates an embodiment in which junctions 18 are provided directly between the structural support members 12 and the first 14 and second 16 cover members. Thus, the junctions 18 may occur between the cover members 14 , 16 and the structural support member 12 , between the cover members 14 , 16 only, or both.
  • the first cover member 14 and the second cover member 16 may comprise of a single cover member that is positioned adjacent both the first and second wall surfaces of the structural support member 12 and has an eversion region 22 positioned at either a proximal or distal end of the structural support member, or at both the proximal and distal ends of the structural support member 12 .
  • dual cover members may be employed with a junction between the first cover member 14 and the second cover member 16 being formed therebetween at the eversion region 22 .
  • FIG. 3A illustrates an embodiment in which the first cover member 14 and the second cover member 16 comprise of a single cover member that is positioned adjacent both the first and second wall surfaces of the structural support member 12 and has an eversion region 22 positioned at either a proximal or distal end of the structural support member.
  • FIG. 3B illustrates an embodiment in which the first cover member 14 and the second cover member 16 comprise of a single cover member that is positioned adjacent at least a portion of both the first and second wall surfaces of the structural support member 12 and has an eversion region 22 positioned at both the proximal and distal end of the structural support member 12 .
  • FIG. 3A illustrates an embodiment in which the first cover member 14 and the second cover member 16 comprise of a single cover member that is positioned adjacent both the first and second wall surfaces of the structural support member 12 and has an eversion region 22 positioned at both the proximal and distal end of the structural support member 12 .
  • FIG. 3B also illustrates an embodiment in which junctions 18 are provided between opposing wall surfaces of the first 14 and second 16 cover members and through interstitial spaces in the structural support member 12 .
  • FIG. 3C illustrates an embodiment in which the first cover member 14 and the second cover member 16 comprise of a single cover member that is positioned adjacent at least a portion of both the first and second wall surfaces of the structural support member 12 and has an eversion region 22 positioned at both the proximal and distal end of the structural support member 12 .
  • FIG. 3C also illustrates an embodiment in which junctions 18 are provided directly between the structural support members 12 and the first 14 and second 16 cover members.
  • the first cover member 14 and the second cover member 16 may consist of a single cover member 14 that is everted over both the distal end 22 of the structural support member 12 and over the proximal end 28 of the structural support member 12 , thereby forming distal and proximal eversion regions 22 , 28 , and opposing ends 30 , 32 of the first cover member 14 are either conjoined to one another, coupled to the structural support member 12 or joined at a junction region 18 to an opposing surface of the first cover member 14 .
  • Each of the first 14 and second 16 cover members preferably has a plurality of openings 15 passing there through.
  • the plurality of openings 15 and 45 are shown in one region of the first 14 and second 16 cover members and the metallic cover member 46 for illustrative purposes only. It is contemplated that the plurality of openings 15 and 45 may be present throughout the first 14 and second 16 cover members and the metallic cover member 46 or may be in present in various areas of the first 14 and second 16 cover members and the metallic cover member 46 .
  • Each of the plurality of openings 15 preferably has a pore size within the range of about 0.1 ⁇ m to about 1000 ⁇ m in at least one of an x or y-axis of the opening, with the total open surface area of the first 14 and second 16 cover being between 0.001 to 90% and which permit cellular and sub-cellular physiological matter, such as proteins, to pass through the openings 15 without permitting fluid seepage there through.
  • the term “pore size” is intended to connote a dimension in at least one of an x-axis or a y-axis of the opening 15 .
  • the total open surface area of the first 14 or second 16 cover may be calculated by dividing the surface area of each the plurality of openings 15 by the total surface area on either the luminal or abluminal surface of the first 14 or second 16 cover member.
  • the plurality of openings 15 also impart dimensional flexibility to the first 14 and second 16 cover members and permits flexibility, compressibility and expandability along the longitudinal axis of the stent-graft device 10 , while also permitting compliance, foldabilty and expandability in the radial axis of the stent-graft device 10 .
  • the plurality of openings 15 are preferably provided in a pattern array in order to maximize the physical properties of the first 14 and second 16 cover members and, hence, the resulting inventive stent-graft 10 .
  • the pattern array may be provided to selectively enhance longitudinal flexibility while reinforcing against radial compliance.
  • FIG. 6 is a perspective view of one embodiment of the stent-graft of the present invention.
  • FIG. 7 is a cross-sectional view taken along line 7 - 7 of FIG. 6
  • FIG. 8 is a cross-sectional view taken along line 8 - 8 of FIG. 6 .
  • Stent-graft 40 consists generally of at least a first structural support member 42 and a second structural support member 44 , which are, for example, tubular stent members, and a metallic cover member 46 having a plurality of openings 45 .
  • the at least two structural support members 42 , 44 for ease of reference, will be referred to as stent members 42 , 44 .
  • Stent members 42 , 44 are preferably generally tubular in configuration, and may be formed as tubular members or initially as planar members that are rolled into a tubular configuration.
  • the first and second structural support members 42 , 44 may be configured to define alternative geometries suitable for a particular application.
  • Such alternative geometries may include, for example, planar geometries for use as patches, frustroconical geometries such as for use as anchors for dental implants or other complex geometries such as for osteal implants.
  • first structural support member 42 and the second structural support member 44 are selected as stents
  • the stent members 42 , 44 are preferably positioned concentrically relative to one another.
  • the metallic cover member 46 is then positioned concentrically intermediate the first and second stent members 42 , 44 along at least a portion of a longitudinal axis of the first and second stent members 42 , 44 .
  • the first 42 and second 44 structural support members may either be joined, as described above, to the metallic cover member 46 or may be joined to one another outside the surface area of the metallic cover member 46 .
  • a multilayered construction may be formed by extending the metallic cover member 46 and everting the metallic cover member 46 over one or both of the proximal 52 and/or distal 54 ends of the stent-graft.
  • the eversion regions 48 , 50 may be positioned at the proximal 52 or distal 54 ends of the metallic cover member 46 , or both.
  • a plurality of openings 45 is provided and passes through the thickness of the cover member 46 .
  • each of the plurality of openings 45 preferably has an pore size within the range of 0.1 ⁇ m to 1000 ⁇ m, with the total open surface area of the graft being between 0.001 to 90% and which permit cellular and sub-cellular physiological matter, such as proteins, to pass through the openings 45 without permitting fluid seepage there through.
  • Both the pore size of the openings 45 and the total open area of the cover member 46 may be selected in view of the following non-exclusive factors: the desired flexibility of the cover member 46 , the desired hoop strength of the cover member 46 , the desired degree of geometric enlargement due to deformation of the openings 45 and the desired delivery profile size.
  • the inventive cover member 46 may be fabricated of pre-existing conventionally produced wrought materials, such as stainless steel or nitinol hypotubes, or may be fabricated by thin film vacuum deposition techniques.
  • inventive grafts may be comprised of a monolayer of biocompatible material or of a plurality of layers of biocompatible materials formed upon one another into a self-supporting laminate structure.
  • Laminate structures are generally known to increase the mechanical strength of sheet materials, such as wood or paper products. Laminates are used in the field of thin film fabrication also to increase the mechanical properties of the thin film, specifically hardness and toughness.
  • Laminate metal foils have not been used or developed because the standard metal forming technologies, such as rolling and extrusion, for example, do not readily lend themselves to producing laminate structures. Vacuum deposition technologies can be developed to yield laminate metal structures with improved mechanical properties. In addition, laminate structures can be designed to provide special qualities by including layers that have special properties such as superelasticity, shape memory, radio-opacity, corrosion resistance etc.
  • the graft is fabricated of vacuum deposited metallic and/or pseudometallic films.
  • the fabrication method 100 of the present invention is illustrated.
  • a precursor blank of a conventionally fabricated biocompatible metal or pseudometallic material may be employed at step 102 .
  • a precursor blank of a vacuum deposited metal or pseudometallic film may be employed at step 104 .
  • a decision 105 is made whether to process the precursor blank from step 102 or step 104 by either subtractive or additive processing is made.
  • the precursor blank material obtained either from step 102 or step 104 may then be masked at step 108 leaving exposed only those regions which will define a plurality of openings and which will be removed to form the openings.
  • the exposed regions from step 108 are then subjected to removal at step 110 , either by etching, such as by wet or dry chemical etching processing, with the etchant being selected based upon the material of the precursor blank, or by machining, such as by laser ablation or EDM.
  • a pattern mask corresponding to the plurality of openings to be formed later and with openings to permit deposition of the graft material through the mask may be interposed at step 106 between the target and the source and the metal or pseudometal deposited at step 112 through the pattern mask to form the graft material with openings corresponding to the masked regions.
  • plural film layers maybe deposited to form a laminate film structure of the film prior to or concurrently with forming the plurality of openings.
  • the width of the interface region may be defined as the range within which extensive thermodynamic parameters change. This range can depend on the interface area considered and it may mean the extent of interface microroughness. In other words, adhesion may be promoted by increased interfacial microroughness between adjacent layers within the film.
  • the microroughness may be imparted by chemical or mechanical means, such as chemical etching or laser ablation, or may be included as a process step during vacuum deposition by selectively depositing a metal or pseudometallic species to form the microroughness.
  • the present invention provides a new metallic and/or pseudometallic implantable graft that is biocompatible, geometrically changeable either by folding and unfolding or by application of a plastically deforming force, and capable of endoluminal delivery with a suitably small delivery profile.
  • Suitable metal materials to fabricate the inventive covers are chosen for their biocompatibility, mechanical properties, i.e., tensile strength, yield strength, and their ease of deposition include, without limitation, the following: titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, niobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, such as chromium-cobalt alloy, zirconium-titanium-tantalum alloys, nickel-titanium, and stainless steel.
  • pseudometallic materials potentially useful with the present invention include, for example, composite materials, ceramics, quartz, and borosilicate.
  • the present invention also provides a method of making the inventive stent-graft devices by vacuum deposition of a graft-forming metal or pseudometal and formation of the openings either by removing sections of deposited material, such as by etching, EDM, ablation, or other similar methods, or by interposing a pattern mask, corresponding to the openings, between the target and the source during deposition processing.
  • a pre-existing metal and/or pseudometallic film manufactured by conventional non-vacuum deposition methodologies, such as wrought hypotube may be obtained, and the openings formed in the pre-existing metal and/or pseudometallic film by removing sections of the film, such as by etching, EDM, ablation, or other similar methods.
  • an advantage of employing laminated film structures to form the inventive graft is that differential functionalities may be imparted in the discrete layers.
  • a radiopaque material such as tantalum may form one layer of a structure while other layers are chosen to provide the graft with its desired mechanical and structural properties.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Prostheses (AREA)

Abstract

All metal stent grafts and covered stents having either a single structural supporting stent member with concentrically positioned graft members on the luminal and abluminal surfaces of the stent member or a single graft member with concentrically positioned structural supporting stent members on the luminal and abluminal surfaces of the graft member are provided.

Description

    CROSS-REFERENCE TO RELATED INVENTIONS
  • This application is a continuation of co-pending U.S. patent application Ser. No. 12/210,789 filed Sep. 15, 2008; which is a continuation-in-part of U.S. patent application Ser. No. 10/936,883, filed on Sep. 9, 2004, now abandoned, and also a continuation-in-part of U.S. patent application Ser. No. 10/289,974, filed on Nov. 6, 2002, now U.S. Pat. No. 7,491,226; which is a continuation of U.S. patent application Ser. No. 09/532,164, filed on Mar. 20, 2000, now U.S. Pat. No. 6,537,310; which is a continuation-in-part of U.S. patent application Ser. No. 09/443,929, filed on Nov. 19, 1999, now U.S. Pat. No. 6,379,383, each of which is hereby incorporated by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • The present invention pertains generally to the field of medical devices intended to maintain patency of anatomical passageways, such as those found in the cardiovascular, lymphatic, endocrine, renal, gastrointestinal and/or reproductive systems of mammals. More particularly, the present invention relates to stents, stent-grafts and covered stents that are designed for endoluminal delivery using a delivery catheter and minimally invasive surgical techniques. The present invention generally comprises stent-graft or covered stent type devices that are fabricated entirely of biocompatible metals or of biocompatible materials that exhibit biological response and material characteristics substantially the same as biocompatible metals, such as, for example, composite materials. For purposes of the present application, the terms “stent-graft” and “covered stent” are used interchangeably.
  • Conventional endoluminal stents and stent-grafts are frequently used in conjunction with a procedure which dilitates an occluded, obstructed or diseased anatomical passageway to provide structural support and maintain the patency of the anatomical passageway. An example of this is the post-angioplasty use of intravascular stents to provide a structural support for a blood vessel and reduce the incidence of restenosis. Principal, but non-limiting, examples of the present invention include endovascular stents which are introduced to a site of disease or trauma within the body's vasculature from an introductory location remote from the disease or trauma site using an introductory catheter, passed through the vasculature communicating between the remote introductory location and the disease or trauma site, and released from the introductory catheter at the disease or trauma site to maintain patency of the blood vessel at the site of disease or trauma. Stent-grafts are delivered and deployed under similar circumstances and are utilized to maintain patency of an anatomic passageway, for example, by reducing restenosis following angioplasty, or when used to exclude an aneurysm, such as in aortic aneurysm exclusion applications.
  • While the use of endoluminal stents has successfully decreased the rate of restenosis in angioplasty patients, it has been found that a significant restenosis rate continues to exist even with the use of endoluminal stents. It is generally believed that the post-stenting restenosis rate is due, in major part, to the non-regrowth of a healthy endothelial layer over the stent and the incidence of smooth muscle cell-related neointimal growth on the luminal surfaces of the stent. Injury to the endothelium, the natural nonthrombogenic lining of the arterial lumen, is a significant factor contributing to restenosis at the situs of a stent. Endothelial loss exposes thrombogenic arterial wall proteins, which, along with the generally thrombogenic nature of many prosthetic materials, such as stainless steel, titanium, tantalum, nitinol, etc., customarily used in manufacturing stents, initiates platelet deposition and activation of the coagulation cascade, which results in thrombus formation, ranging from partial covering of the luminal surface of the stent to an occlusive thrombus. Additionally, endothelial loss at the site of the stent has been implicated in the development of neointimal hyperplasia at the stent situs. Accordingly, rapid re-endothelialization of the arterial wall with concomitant endothelialization of the body fluid or blood contacting surfaces of the implanted device is important for maintaining vasculature patency and preventing low-flow thrombosis.
  • At present, most endoluminal stents are manufactured of either stainless steel or nickel-titanium alloy, both of which are known to be thrombogenic. In order to reduce the thrombogenicity of the stainless steel and to maintain sufficient dimensional profiles for catheter delivery, most stents minimize the metal surface area that contacts blood in order to minimize thrombus formation after implantation. Thus, in order to reduce the thrombogenic response to stent implantation, as well as to reduce the formation of neointimal hyperplasia, it would be advantageous to increase the rate at which endothelial cells form endothelium proximal and distal to the stent situs, migrate onto, and provide endothelial coverage of the luminal surface of the stent which is in contact with blood flow through the vasculature.
  • Stent-grafts are essentially endoluminal stents with a discrete covering on either or both of the luminal and abluminal surfaces of the stent that occludes the open spaces, or interstices, between adjacent structural members of the endoluminal stent. It is known in the art to fabricate stent-grafts by covering the stent with endogenous vein or a synthetic material, such as woven polyester known as DACRON®, or with expanded polytetrafluoroethylene. Additionally, it is known in the art to cover the stent with a biological material, such as a xenograft or collagen. A primary purpose for covering stents is to reduce the thrombogenic effect of the stent material and reduce particulate extrusion through interstices of the stent and into the bloodstream. Conventional graft materials have not proven to be a complete solution to enhancing the healing response of conventional stents.
  • Heretofore, the art has not provided a stent-graft device in which a structural component, such as a stent, and a graft component are each fabricated of biocompatible metals or of biocompatible materials which exhibit in vivo biological and mechanical responses substantially the same as biocompatible metals (hereinafter synonymously referred to as “pseudometals” or “pseudometallic materials”).
  • SUMMARY OF THE INVENTION
  • In one aspect, the present invention provides a stent-graft type device fabricated entirely of biocompatible metals and/or pseudometallic materials. That is, the inventive stent-graft type device comprises generally of a structural component, e.g., a stent, a plurality of stents, or a plurality of support structures, and a covering component, e.g., a graft, each of which is formed of a metal or pseudometal. For ease of reference, the structural component will be termed a “stent”, while the covering component will similarly be termed a “graft”. Those of ordinary skill in the art will appreciate, however, that the terms “structural component” and “covering component” have broader meaning and encompass a wide variety of structures other than stents or grafts.
  • The stent may comprise of any type of structural member which is preferably generally tubular in configuration and has an inner or luminal wall and an outer or abluminal wall and a central lumen passing along the longitudinal axis of the stent. The stent may be comprised of a wide variety of geometric configurations and constructions, as are known in the art. For example, the stent may assume a balloon expandable slotted configuration of U.S. Pat. No. 4,733,665, 4,739,762, 4,776,337 or 5,102,417, or the stent may be configured as a plurality of self-expanding interwoven wire members, or it may assume any of the wall geometries disclosed in Serruys, P. W., Kutryk, M. J. B., Handbook of Coronary Stents, 3rd Ed. (2000). Each of the stent designs, stent materials, stent material characteristics, e.g., balloon expandable, self-expanding by spring tension of the material, self-expanding by shape memory properties of the stent material, or self-expanding by superelastic properties of the stent material are well known to one of ordinary skill in the art and may be used with the stent-graft of the present invention.
  • The covering component, or the graft of the present invention may be employed on either or both of the luminal wall and/or the abluminal wall of the stent and may cover all or a portion of either or both of the luminal and/or abluminal walls of the stent. The graft may be formed as a planar film of material that is applied to the stent by wrapping about the stent or formed into a tubular structure and coupled to the stent. Alternatively, the graft may be formed as an integral tubular member that is coupled to the stent. The graft may also be fashioned as at least two graft members, with a first graft member covering a luminal wall surface of the stent and a second graft member covering an abluminal wall surface of the stent. Alternatively, the graft may be formed as a single member that covers both a luminal wall surface and an abluminal wall surface of the stent and is everted over either or both ends of the stent. Further, the graft member may be joined to the stent, or where a graft covers both the luminal and abluminal wall surfaces of the stent, the graft may be joined to an opposing graft surface through interstices in the stent. The juncture between the graft and the stent or between the graft and the graft through the stent may be accomplished by chemical, mechanical or thermal means such as by welding, adhesion using biocompatible adhesives, interference fits, interlocking or interfacing couplings, such as an interfacing detent and trough combination, or such other methods of joining or coupling a metallic and pseudometallic material to itself or such materials to one another as are known in the art. Where an interfacing detent-trough combination is employed as a coupling, it may be a direct interface or it may serve to lock the graft material into a fixed position relative to the structural support members. Further, in order to minimize percent strain resulting from the coupling of a trough and detent, it is desirable that the detent and trough have radiused surfaces.
  • The structural support component and the covering component are preferably fabricated entirely of self-supporting films made of biocompatible metals or biocompatible pseudometals. The metal films may either be single layer metal films or plural layer films. The terms “metal film,” “thin metallic film” and “metal thin film” are used in this application synonymously to refer to single or plural layer films fabricated of biocompatible metals or biocompatible pseudometals having thicknesses greater than 0 μm and less than about 125 μm. When used as the structural support component, the thin metallic film preferably has a thickness greater than about 25 μm and when used as the covering component, the thin metallic film preferably has a thickness between about 0.1 μm and about 25 μm and most preferably between about 0.1 μm and about 10 μm.
  • There are generally two embodiments of the inventive stent-graft. A first embodiment consists of a stent covered by graft material on each of the luminal and abluminal wall surfaces of the stent. A second embodiment consists of first and second stent members concentrically positioned coaxial with one another, with at least one graft member concentrically positioned intermediate the first and second stent members. In this second embodiment, the at least one graft member may further encapsulate one or both of the first and second stent members.
  • In accordance with an inventive method for making the inventive stent-graft, at least one discrete graft member may be conjoined with a plurality of structural members, such as a stent, by joining or coupling the graft member to regions of the structural members. The joined regions may be at a proximal and/or a distal end of the device, or may be at intermediate regions along the longitudinal and circumferential axes of the device. Alternatively, where the graft member or members cover both the luminal and abluminal wall surfaces of the structural members, the graft member or members may be mechanically joined to one another through interstices formed between adjacent pairs of structural members. An alternative method for making the inventive stent-graft includes employing vacuum deposition methodologies, such as those employed in the microelectronics fabrication arts. For example, sputtering, physical vapor deposition, ion beam-assisted evaporative deposition or the like, may be used to create either or both of the graft and the stent components of the inventive stent-graft device. In ion beam-assisted evaporative deposition, it is preferable to employ dual and simultaneous thermal electron beam evaporation with simultaneous ion bombardment of the material being deposited using an inert gas, such as argon, xenon, nitrogen or neon. Bombardment with inert gas ions during deposition serves to reduce void content by increasing the atomic packing density in the deposited material. The reduced void content in the deposited material allows the mechanical properties of that deposited material to be similar to the bulk material properties. Deposition rates up to 20 nm/sec are achievable using ion beam-assisted evaporative deposition techniques.
  • When sputtering techniques are employed, a 200-micron thick stainless steel film may be deposited within about four hours of deposition time. Thinner films may be achieved by using shorter deposition times. With the sputtering technique, it is preferable to employ a cylindrical sputtering target, a single circumferential source that concentrically surrounds the substrate that is held in a coaxial position within the source.
  • During deposition, various deposition process parameters, including, without limitation, target composition, target temperature, chamber pressure, deposition pressure, deposition rate, target configuration, target-to-source distance, bias or partial pressure of the process gases are controlled to optimize deposition of the desired species onto the substrate. As is known in the microelectronic fabrication, nano-fabrication and vacuum coating arts, both the reactive and non-reactive gases are controlled and the inert or non-reactive gaseous species introduced into the deposition chamber is typically argon. The substrate may be either stationary or moveable; either rotated about its longitudinal axis, moved in an X-Y plane, planatarily or rotationally moved within the deposition chamber to facilitate deposition or patterning of the deposited material onto the substrate. The deposited material may be deposited either as a uniform solid film onto the substrate, or patterned by (a) imparting either a positive or negative pattern onto the substrate, such as by etching or photolithography techniques applied to the substrate surface to create a positive or negative image of the desired pattern or (b) using a mask or set of masks which are either stationary or moveable relative to the substrate to define the pattern applied to the substrate. Patterning may be employed to achieve complex finished geometries of the resultant structural supports, web-regions or graft, both in the context of spatial orientation of patterns of regions of relative thickness and thinness, such as by varying the thickness of the film over its length to impart different mechanical characteristics under different delivery, deployment or in vivo environmental conditions.
  • The device may be removed from the substrate after device formation by any of a variety of methods. For example, the substrate may be removed by chemical means, such as etching or dissolution, by ablation, by machining or by ultrasonic energy. Alternatively, a sacrificial layer of a material, such as carbon, aluminum or organic based materials, such as photoresists, may be deposited intermediate the substrate and the stent and the sacrificial layer removed by melting, chemical means, ablation, machining or other suitable means to free the stent from the substrate.
  • Optionally, the resulting device may then be subjected to post-deposition processing to modify the crystalline structure, such as by annealing, or to modify the surface topography, such as by etching to expose a heterogeneous surface of the device.
  • Alternate deposition processes which may be employed to form the stent in accordance with the present invention are cathodic arc, laser ablation, and direct ion beam deposition. As known in the metal fabrication arts, the crystalline structure of the deposited film affects the mechanical properties of the deposited film. These mechanical properties of the deposited film may be modified by post-process treatment, such as by, for example, annealing.
  • Materials to make the inventive graft, stent-graft and web-stent are chosen for their biocompatibility, mechanical properties, i.e., tensile strength, yield strength, and their ease of deposition and include, without limitation, the following: elemental titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, niobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, such as zirconium-titanium-tantalum alloys, nitinol, and stainless steel.
  • The inventive stent-graft type device of the present invention is formed entirely of metal or pseudometallic material that exhibits improved endothelialization and healing response as compared to that associated with using conventional synthetic polymeric graft materials.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a first embodiment of the stent-graft of the present invention.
  • FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1.
  • FIG. 3A is a cross-sectional view taken along line 3-3 of FIG. 1.
  • FIG. 3B is a cross-sectional view of a variation of a first embodiment of the stent-graft of the present invention.
  • FIG. 3C is a cross-sectional view of another variation of a first embodiment of the stent-graft of the present invention.
  • FIG. 4A is a cross-sectional view of a second embodiment of the stent-graft of the present invention.
  • FIG. 4B is a cross-sectional view of a variation of a second embodiment of the stent-graft of the present invention.
  • FIG. 4C is a cross-sectional view of another variation of a second embodiment of the stent-graft of the present invention.
  • FIG. 5 is a cross-sectional view of a third embodiment of the stent-graft of the present invention.
  • FIG. 6 is a perspective view of a fourth embodiment of the stent-graft of the present invention.
  • FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. 6.
  • FIG. 8 is a cross-sectional view taken along line 8-8 of FIG. 6.
  • FIG. 9 is a cross-sectional view of a fifth embodiment of the stent-graft of the present invention.
  • FIG. 10 is a cross-sectional view of a sixth embodiment of the stent-graft of the present invention.
  • FIG. 11 is a flow diagram illustrating fabrication methodologies for making the inventive stent-graft of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In accordance with the present invention, there are generally two preferred embodiments of the inventive covered stent assembly. A first embodiment generally comprises a structural support member, such as a stent, that has first and second opposing wall surfaces thereof that are bounded by metallic or pseudometallic covers. The covers are positioned adjacent the first and second opposing wall surfaces and are either coupled to the structural support member or are coupled to one another through interstitial openings passing through the structural support member. A second embodiment generally comprises at least one metallic or pseudometallic cover that is positioned intermediate two adjacent structural support members, e.g., stents. For purposes of this application, the terms “pseudometal” and “pseudometallic” are intended to mean a biocompatible material which exhibits biological response and material characteristics substantially the same as biocompatible metals. Examples of pseudometallic materials include, for example, composite materials, ceramics, quartz, and borosilicate. Composite materials are composed of a matrix material reinforced with any of a variety of fibers made from ceramics, metals, or polymers. The reinforcing fibers are the primary load carriers of the material, with the matrix component transferring the load from fiber to fiber. Reinforcement of the matrix material may be achieved in a variety of ways. Fibers may be either continuous or discontinuous. Reinforcement may also be in the form of particles. Examples of composite materials include those made of carbon fibers, boron fibers, boron carbide fibers, carbon and graphite fibers, carbon nanotubes, silicon carbide fibers, steel fibers, tungsten fibers, graphite/copper fibers, titanium and silicon carbide/titanium fibers.
  • The structural support member and the covering member are preferably fabricated entirely of self-supporting films made of biocompatible metals or biocompatible pseudometals. The metal films may either be single layer metal films or plural layer films. The terms “metal film,” “thin metallic film” and “metal thin film” are used in this application synonymously to refer to single or plural layer films fabricated of biocompatible metals or biocompatible pseudometals having thicknesses greater than 0 μm and less than about 125 μm.
  • Turning now to the accompanying figures, FIGS. 1-5 illustrate the first embodiment of the present invention and variations thereof. FIG. 1 illustrates one embodiment of a stent-graft of the present invention. FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1, and FIG. 3A is a cross-sectional view taken along line 3-3 of FIG. 1. With particular reference to FIGS. 1 and 2, the inventive stent-graft 10 consists generally of at least one structural support member 12 having a first wall surface 12 a and a second wall surface 12 b opposing one another, a first cover member 14 and a second cover member 16. The first cover member 14 is positioned adjacent the first wall surface 12 a while the second cover member 16 is positioned adjacent the second wall surface 12 b of the structural support member 12. The first cover member 14 and the second cover 16 may be coupled either to the structural support member 12 or to one another through interstitial openings 20 passing through the structural support member 12. Coupling of the first cover member 14 and/or the second cover member 16 may be achieved by creating junctions 18 such as by chemical, mechanical or thermal means. For example, the junctions 18 may be formed by welding, adhering using a biocompatible adhesive, or by forming interlocking or interfacing members on opposing surfaces of the support structure 12, the first cover member 14 and/or the second cover member 16 depending upon the surfaces to be coupled. Additionally, junction 18 may be formed by mechanical interference between the support structure 12 and the first cover member 14 and/or the second cover member 16.
  • As illustrated with more particularity with reference to FIGS. 3-5, the first cover member 14 and the second cover member 16 may consist of dual discrete members as depicted in FIGS. 4A, 4B, and 4C. In this version of the first embodiment, each of the first cover member 14 and the second cover member 16 terminate with opposing proximal 24 and distal 26 ends of the respective first cover member 14 and second cover member 16. Junctions 18 may be provided either between the structural support member 12 and the proximal 24 and distal 26 ends of the first 14 and second 16 cover members, between opposing wall surfaces of the first 14 and second 16 cover members and through interstitial spaces in the structural support member 12, or both. Junctions 18 may also be provided between the structural support member 12 and the first 14 and second 16 cover members.
  • FIG. 4A illustrates an embodiment in which junctions 18 are provided between opposing wall surfaces of the first 14 and second 16 cover members and through interstitial spaces in the structural support member 12. FIG. 4B illustrates an embodiment in which junctions 18 are provided only at the proximal 24 and distal 26 ends of the first 14 and second 16 cover members. FIG. 4C illustrates an embodiment in which junctions 18 are provided directly between the structural support members 12 and the first 14 and second 16 cover members. Thus, the junctions 18 may occur between the cover members 14, 16 and the structural support member 12, between the cover members 14, 16 only, or both.
  • Alternatively, as depicted in FIGS. 3A, 3B, and 3C, the first cover member 14 and the second cover member 16 may comprise of a single cover member that is positioned adjacent both the first and second wall surfaces of the structural support member 12 and has an eversion region 22 positioned at either a proximal or distal end of the structural support member, or at both the proximal and distal ends of the structural support member 12. Alternatively, dual cover members may be employed with a junction between the first cover member 14 and the second cover member 16 being formed therebetween at the eversion region 22.
  • FIG. 3A illustrates an embodiment in which the first cover member 14 and the second cover member 16 comprise of a single cover member that is positioned adjacent both the first and second wall surfaces of the structural support member 12 and has an eversion region 22 positioned at either a proximal or distal end of the structural support member. FIG. 3B illustrates an embodiment in which the first cover member 14 and the second cover member 16 comprise of a single cover member that is positioned adjacent at least a portion of both the first and second wall surfaces of the structural support member 12 and has an eversion region 22 positioned at both the proximal and distal end of the structural support member 12. FIG. 3B also illustrates an embodiment in which junctions 18 are provided between opposing wall surfaces of the first 14 and second 16 cover members and through interstitial spaces in the structural support member 12. FIG. 3C illustrates an embodiment in which the first cover member 14 and the second cover member 16 comprise of a single cover member that is positioned adjacent at least a portion of both the first and second wall surfaces of the structural support member 12 and has an eversion region 22 positioned at both the proximal and distal end of the structural support member 12. FIG. 3C also illustrates an embodiment in which junctions 18 are provided directly between the structural support members 12 and the first 14 and second 16 cover members.
  • In accordance with yet another variation of the first embodiment of the invention illustrated in FIG. 5, the first cover member 14 and the second cover member 16 may consist of a single cover member 14 that is everted over both the distal end 22 of the structural support member 12 and over the proximal end 28 of the structural support member 12, thereby forming distal and proximal eversion regions 22, 28, and opposing ends 30, 32 of the first cover member 14 are either conjoined to one another, coupled to the structural support member 12 or joined at a junction region 18 to an opposing surface of the first cover member 14.
  • Each of the first 14 and second 16 cover members preferably has a plurality of openings 15 passing there through. In FIGS. 1 and 6, the plurality of openings 15 and 45, respectively, are shown in one region of the first 14 and second 16 cover members and the metallic cover member 46 for illustrative purposes only. It is contemplated that the plurality of openings 15 and 45 may be present throughout the first 14 and second 16 cover members and the metallic cover member 46 or may be in present in various areas of the first 14 and second 16 cover members and the metallic cover member 46. Each of the plurality of openings 15 preferably has a pore size within the range of about 0.1 μm to about 1000 μm in at least one of an x or y-axis of the opening, with the total open surface area of the first 14 and second 16 cover being between 0.001 to 90% and which permit cellular and sub-cellular physiological matter, such as proteins, to pass through the openings 15 without permitting fluid seepage there through. As used herein, the term “pore size” is intended to connote a dimension in at least one of an x-axis or a y-axis of the opening 15. The total open surface area of the first 14 or second 16 cover may be calculated by dividing the surface area of each the plurality of openings 15 by the total surface area on either the luminal or abluminal surface of the first 14 or second 16 cover member. The plurality of openings 15 also impart dimensional flexibility to the first 14 and second 16 cover members and permits flexibility, compressibility and expandability along the longitudinal axis of the stent-graft device 10, while also permitting compliance, foldabilty and expandability in the radial axis of the stent-graft device 10. The plurality of openings 15 are preferably provided in a pattern array in order to maximize the physical properties of the first 14 and second 16 cover members and, hence, the resulting inventive stent-graft 10. For example, the pattern array may be provided to selectively enhance longitudinal flexibility while reinforcing against radial compliance.
  • A second embodiment of the inventive stent-graft 40 is illustrated with reference to FIGS. 6-10. FIG. 6 is a perspective view of one embodiment of the stent-graft of the present invention. FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. 6, and FIG. 8 is a cross-sectional view taken along line 8-8 of FIG. 6. Stent-graft 40 consists generally of at least a first structural support member 42 and a second structural support member 44, which are, for example, tubular stent members, and a metallic cover member 46 having a plurality of openings 45. The at least two structural support members 42, 44, for ease of reference, will be referred to as stent members 42, 44. Stent members 42, 44 are preferably generally tubular in configuration, and may be formed as tubular members or initially as planar members that are rolled into a tubular configuration. Alternatively, where it is desirable that the first and second structural support members 42, 44 not constitute stents, the first and second structural support members 42, 44 may be configured to define alternative geometries suitable for a particular application. Such alternative geometries may include, for example, planar geometries for use as patches, frustroconical geometries such as for use as anchors for dental implants or other complex geometries such as for osteal implants.
  • Where the first structural support member 42 and the second structural support member 44 are selected as stents, the stent members 42, 44 are preferably positioned concentrically relative to one another. The metallic cover member 46 is then positioned concentrically intermediate the first and second stent members 42, 44 along at least a portion of a longitudinal axis of the first and second stent members 42, 44. The first 42 and second 44 structural support members may either be joined, as described above, to the metallic cover member 46 or may be joined to one another outside the surface area of the metallic cover member 46.
  • As depicted in FIGS. 9 and 10, a multilayered construction may be formed by extending the metallic cover member 46 and everting the metallic cover member 46 over one or both of the proximal 52 and/or distal 54 ends of the stent-graft. The eversion regions 48, 50 may be positioned at the proximal 52 or distal 54 ends of the metallic cover member 46, or both.
  • A plurality of openings 45 is provided and passes through the thickness of the cover member 46. As with the first embodiment of the invention, each of the plurality of openings 45 preferably has an pore size within the range of 0.1 μm to 1000 μm, with the total open surface area of the graft being between 0.001 to 90% and which permit cellular and sub-cellular physiological matter, such as proteins, to pass through the openings 45 without permitting fluid seepage there through. Both the pore size of the openings 45 and the total open area of the cover member 46 may be selected in view of the following non-exclusive factors: the desired flexibility of the cover member 46, the desired hoop strength of the cover member 46, the desired degree of geometric enlargement due to deformation of the openings 45 and the desired delivery profile size.
  • The inventive cover member 46 may be fabricated of pre-existing conventionally produced wrought materials, such as stainless steel or nitinol hypotubes, or may be fabricated by thin film vacuum deposition techniques. In addition to wrought materials that are made of a single metal or metal alloy, the inventive grafts may be comprised of a monolayer of biocompatible material or of a plurality of layers of biocompatible materials formed upon one another into a self-supporting laminate structure. Laminate structures are generally known to increase the mechanical strength of sheet materials, such as wood or paper products. Laminates are used in the field of thin film fabrication also to increase the mechanical properties of the thin film, specifically hardness and toughness. Laminate metal foils have not been used or developed because the standard metal forming technologies, such as rolling and extrusion, for example, do not readily lend themselves to producing laminate structures. Vacuum deposition technologies can be developed to yield laminate metal structures with improved mechanical properties. In addition, laminate structures can be designed to provide special qualities by including layers that have special properties such as superelasticity, shape memory, radio-opacity, corrosion resistance etc.
  • According to the preferred method of making the graft of the present invention, the graft is fabricated of vacuum deposited metallic and/or pseudometallic films. With particular reference to FIG. 11, the fabrication method 100 of the present invention is illustrated. A precursor blank of a conventionally fabricated biocompatible metal or pseudometallic material may be employed at step 102. Alternatively, a precursor blank of a vacuum deposited metal or pseudometallic film may be employed at step 104. A decision 105 is made whether to process the precursor blank from step 102 or step 104 by either subtractive or additive processing is made. If a subtractive process is to be employed, the precursor blank material obtained either from step 102 or step 104 may then be masked at step 108 leaving exposed only those regions which will define a plurality of openings and which will be removed to form the openings. The exposed regions from step 108 are then subjected to removal at step 110, either by etching, such as by wet or dry chemical etching processing, with the etchant being selected based upon the material of the precursor blank, or by machining, such as by laser ablation or EDM. Alternatively, when employing the vacuum deposition step 104, a pattern mask corresponding to the plurality of openings to be formed later and with openings to permit deposition of the graft material through the mask, may be interposed at step 106 between the target and the source and the metal or pseudometal deposited at step 112 through the pattern mask to form the graft material with openings corresponding to the masked regions. Further, when employing the vacuum deposition step 104, plural film layers maybe deposited to form a laminate film structure of the film prior to or concurrently with forming the plurality of openings.
  • Where a laminate film is fabricated as the graft, it is necessary to provide for good adhesion between the layers. This may be achieved by providing for a relatively broad interfacial region rather than for an abrupt interface. The width of the interface region may be defined as the range within which extensive thermodynamic parameters change. This range can depend on the interface area considered and it may mean the extent of interface microroughness. In other words, adhesion may be promoted by increased interfacial microroughness between adjacent layers within the film. The microroughness may be imparted by chemical or mechanical means, such as chemical etching or laser ablation, or may be included as a process step during vacuum deposition by selectively depositing a metal or pseudometallic species to form the microroughness.
  • Thus, the present invention provides a new metallic and/or pseudometallic implantable graft that is biocompatible, geometrically changeable either by folding and unfolding or by application of a plastically deforming force, and capable of endoluminal delivery with a suitably small delivery profile. Suitable metal materials to fabricate the inventive covers are chosen for their biocompatibility, mechanical properties, i.e., tensile strength, yield strength, and their ease of deposition include, without limitation, the following: titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, niobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, such as chromium-cobalt alloy, zirconium-titanium-tantalum alloys, nickel-titanium, and stainless steel. Examples of pseudometallic materials potentially useful with the present invention include, for example, composite materials, ceramics, quartz, and borosilicate.
  • The present invention also provides a method of making the inventive stent-graft devices by vacuum deposition of a graft-forming metal or pseudometal and formation of the openings either by removing sections of deposited material, such as by etching, EDM, ablation, or other similar methods, or by interposing a pattern mask, corresponding to the openings, between the target and the source during deposition processing. Alternatively, a pre-existing metal and/or pseudometallic film manufactured by conventional non-vacuum deposition methodologies, such as wrought hypotube, may be obtained, and the openings formed in the pre-existing metal and/or pseudometallic film by removing sections of the film, such as by etching, EDM, ablation, or other similar methods. An advantage of employing laminated film structures to form the inventive graft is that differential functionalities may be imparted in the discrete layers. For example, a radiopaque material such as tantalum may form one layer of a structure while other layers are chosen to provide the graft with its desired mechanical and structural properties.
  • While the present invention has been described with reference to its preferred embodiments, those of ordinary skill in the art will understand and appreciate that variations in materials, dimensions, geometries, and fabrication methods may be or become known in the art, yet still remain within the scope of the present invention which is limited only by the claims appended hereto.

Claims (33)

What is claimed is:
1. A tubular medical device having an inner luminal surface and outer abluminal surface, comprising:
a) a structural support member having first and second wall surfaces thereof, the structural support member surfaces, and being comprised of at least one of a metallic and pseudometallic material; and
b) at least one tubular cover member made of at least one of a metallic and pseudometallic material, the at least one tubular cover member being positioned adjacent against at least a portion of both the luminal and abluminal surfaces of the medical device in both a diametrically expanded and a diametrically unexpanded state.
2. The tubular medical device according to claim 1, wherein the tubular cover further comprises first and second tubular laminate film covers, the first tubular laminate film cover being positioned adjacent against the luminal surface of the tubular medical device and the second tubular laminate film cover being positioned against the abluminal surface of the tubular medical device.
3. The tubular medical device according to claim 2, wherein the first and second tubular laminate film covers are joined to each other through a plurality of interstices of the structural support member.
4. The tubular medical device according to claim 1, wherein the film cover is selected from the group consisting of titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, niobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, chromium-cobalt alloy, zirconium-titanium-tantalum alloy, nickel-titanium alloy, and stainless steel.
5. The tubular medical device according to claim 1, wherein the film cover further comprises a pseudometallic material selected from the group consisting of ceramic, quartz, borosilicate, carbon fibers, boron fibers, boron carbide fibers, carbon nanotubes, carbon and graphite fibers, silicon carbide fibers, steel fibers, tungsten fibers, graphite/copper fibers, titanium fibers, and silicon carbide/titanium fibers.
6. The tubular medical device according to claim 1, wherein the film cover further comprises a plurality of openings passing through the tubular cover member.
7. The tubular medical device according to claim 4, wherein each of the plurality of openings has a pore size between about 0.1 μm to about 1000 μm in either an x-axis or a y-axis of the opening.
8. The tubular medical device according to claim 4, wherein the plurality of openings form a total open surface area in the tubular cover member between about 0.001 to about 90% of the area of one of a first or a second surface of the tubular cover member.
9. The tubular medical device according to claim 1, wherein the film cover is coupled to at least one of a proximal and distal end of the structural support member.
10. The tubular medical device according to claim 1, further comprising at least one affixation junction between the at least one tubular cover member and the structural support member or the at least one tubular cover member.
11. The tubular medical device according to claim 10, wherein the at least one affixation junction is selected from the group consisting a chemical, mechanical and thermal affixation junction.
12. The tubular medical device according to claim 11, wherein the mechanical affixation junction further comprises an interference fit.
13. The tubular medical device according to claim 11, wherein the mechanical affixation junction further comprises an interfacing detent and trough.
14. The tubular medical device according to claim 7, wherein the at least one tubular cover member is coupled to the at least one of a proximal and distal end of the structural support member by at least one of a chemical, thermal or mechanical junction.
15. The tubular medical device according to claim 8, wherein the open space is capable of geometric deformation about the attachment between the first and second tubular cover members.
16. The tubular medical device according to claim 1, further comprising a defined junction region on each of the structural support member and the at least one tubular cover member in alignment with one another and a junction formed therebetween.
17. A covered stent device, comprising:
a) a diametrically expandable stent having a luminal and an abluminal wall surface and a wall thickness therebetween; and
b) at least one tubular cover member having a plurality of openings passing therethrough, and positioned concentrically adjacent to and covering an entire circumferential aspect of the diametrically expandable stent and the at least one tubular cover member being radially expandable configured to radially expand with and remain concentrically adjacent to and cover the diametrically expandable stent.
18. The covered stent device, according to claim 17, wherein the at least one tubular cover member comprises thin metallic laminate film is selected from the group consisting of titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, niobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, such as chromium-cobalt alloy, zirconium-titanium-tantalum alloys, nickel-titanium alloy, and stainless steel.
19. The covered stent device according to claim 17, wherein at least a portion of the at least one tubular cover member is concentrically carried adjacent each of the luminal and abluminal wall surfaces of the diametrically expandable stent, wherein the portion of the at least one tubular cover member adjacent the luminal wall surface is coupled to the portion of the at least one tubular cover member adjacent the abluminal wall surface through the at least one open space of the diametrically expandable stent in such a manner as to permit geometric deformation of the at least one open space.
20. The covered stent device according to claim 17, wherein the at least one tubular cover member is coupled to at least one of a proximal and a distal end of the diametrically expandable stent.
21. The covered stent device according to claim 19, wherein the coupling further comprises at least one of a chemical, thermal or mechanical junction.
22. The covered stent device according to claim 20, wherein the coupling further comprises at least one of a chemical, thermal and mechanical junction.
23. The covered stent according to claim 21, wherein each of the plurality of openings of the at least one tubular cover member has a pore size between about 0.01 μm to about 1000 μm.
24. The covered stent according to claim 17, wherein the plurality of openings of the at least one tubular cover member form a total open surface area of the tubular cover member between about 0.001 to about 90% of the area of one of an abluminal or luminal surface of the tubular cover member.
25. The covered stent device according to claim 17, further comprising a polymeric material capable of releasing a pharmacologically active agent therefrom disposed on at least one of the diametrically expandable stent or the at least one tubular cover member, whereby the polymeric material does not subtend the openings in the at least one tubular cover member or the at least one open space of the diametrically expandable stent.
26. A medical device, comprising:
a) A body member consisting of a metallic or pseudometallic laminate film having a first and a second wall surface and thereof; and
b) at least two structural support members, the first structural support member being positioned concentrically adjacent the first wall surface of the body member and the second structural support member being positioned concentrically adjacent the second wall surface of the body member, wherein the body member is bound between the first and second structural members.
27. The medical device according to claim 26, wherein the metallic or pseudometallic laminate film is selected from the group consisting of titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, niobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, chromium-cobalt alloy, zirconium-titanium-tantalum alloy, nickel-titanium alloy, and stainless steel.
28. The medical device according to claim 26, wherein the laminate film comprised of at least one of a metallic and pseudometallic material further comprises a thin film laminate comprised of a pseudometallic material selected from the group consisting of ceramic, quartz, borosilicate, carbon fibers, boron fibers, boron carbide fibers, carbon and graphite fibers, carbon nanotubes, silicon carbide fibers, steel fibers, tungsten fibers, graphite/copper fibers, titanium fibers, and silicon carbide/titanium fibers.
29. The medical device according to claim 26, wherein the body member further comprises a plurality of openings passing through the first and second wall surfaces of the body member.
30. The medical device according to claim 26, wherein at least one of the two structural support members is coupled to the body member at least at one of a proximal and distal end of the body member.
31. The medical device according to claim 29, wherein each of the plurality of openings of the body member has a dimension between about 0.1 μm to 1000 μm in either of an x-axis or y-axis of the opening.
32. The medical device according to claim 29, wherein the plurality of openings of the body member form a total open surface area in the body member between about 0.001 to about 90% of the surface area of the body member.
33. The medical device according to claim 26, wherein the body member has a thickness between about 0.3 μm and 125 μm.
US16/222,286 1999-11-19 2018-12-17 Stents with metallic covers and methods of making same Abandoned US20190125559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/222,286 US20190125559A1 (en) 1999-11-19 2018-12-17 Stents with metallic covers and methods of making same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US09/443,929 US6379383B1 (en) 1999-11-19 1999-11-19 Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US09/532,164 US6537310B1 (en) 1999-11-19 2000-03-20 Endoluminal implantable devices and method of making same
US10/289,974 US7491226B2 (en) 1999-11-19 2002-11-06 Endoluminal implantable stent-grafts
US10/936,883 US20060052865A1 (en) 2004-09-09 2004-09-09 Stents with metallic covers and methods of making same
US12/210,789 US10172730B2 (en) 1999-11-19 2008-09-15 Stents with metallic covers and methods of making same
US16/222,286 US20190125559A1 (en) 1999-11-19 2018-12-17 Stents with metallic covers and methods of making same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/210,789 Continuation US10172730B2 (en) 1999-11-19 2008-09-15 Stents with metallic covers and methods of making same

Publications (1)

Publication Number Publication Date
US20190125559A1 true US20190125559A1 (en) 2019-05-02

Family

ID=40642793

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/210,789 Expired - Lifetime US10172730B2 (en) 1999-11-19 2008-09-15 Stents with metallic covers and methods of making same
US16/222,286 Abandoned US20190125559A1 (en) 1999-11-19 2018-12-17 Stents with metallic covers and methods of making same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/210,789 Expired - Lifetime US10172730B2 (en) 1999-11-19 2008-09-15 Stents with metallic covers and methods of making same

Country Status (1)

Country Link
US (2) US10172730B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8458879B2 (en) * 2001-07-03 2013-06-11 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Method of fabricating an implantable medical device
US8435285B2 (en) * 2003-11-25 2013-05-07 Boston Scientific Scimed, Inc. Composite stent with inner and outer stent elements and method of using the same
US20060142838A1 (en) * 2004-12-29 2006-06-29 Masoud Molaei Medical devices including metallic films and methods for loading and deploying same
US8998973B2 (en) * 2004-03-02 2015-04-07 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8632580B2 (en) * 2004-12-29 2014-01-21 Boston Scientific Scimed, Inc. Flexible medical devices including metallic films
US7901447B2 (en) * 2004-12-29 2011-03-08 Boston Scientific Scimed, Inc. Medical devices including a metallic film and at least one filament
US8591568B2 (en) * 2004-03-02 2013-11-26 Boston Scientific Scimed, Inc. Medical devices including metallic films and methods for making same
US8992592B2 (en) * 2004-12-29 2015-03-31 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8500751B2 (en) * 2004-03-31 2013-08-06 Merlin Md Pte Ltd Medical device
US8915952B2 (en) * 2004-03-31 2014-12-23 Merlin Md Pte Ltd. Method for treating aneurysms
US8715340B2 (en) * 2004-03-31 2014-05-06 Merlin Md Pte Ltd. Endovascular device with membrane
US7854760B2 (en) * 2005-05-16 2010-12-21 Boston Scientific Scimed, Inc. Medical devices including metallic films
ES2943709T3 (en) 2012-04-06 2023-06-15 Merlin Md Pte Ltd Devices to treat an aneurysm
US10154918B2 (en) 2012-12-28 2018-12-18 Cook Medical Technologies Llc Endoluminal prosthesis with fiber matrix
WO2016168765A1 (en) * 2015-04-16 2016-10-20 Nsvascular, Inc. Thin-film cuff for endothelialization of endovascular grafts
US10869748B2 (en) * 2016-05-03 2020-12-22 Regents Of The University Of Minnesota Active monitoring pressure sensitive vascular graft
DE102019135453A1 (en) * 2019-12-20 2021-06-24 Malte Neuss Multiple stent with membrane

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5713947A (en) * 1989-12-21 1998-02-03 Smith & Nephew, Inc. Cardiovascular implants of enhanced biocompatibility
US5769884A (en) * 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US6139573A (en) * 1997-03-05 2000-10-31 Scimed Life Systems, Inc. Conformal laminate stent device
US20010032014A1 (en) * 1999-07-02 2001-10-18 Scimed Life Sciences, Inc. Stent coating
US20010032013A1 (en) * 1999-11-19 2001-10-18 Denes Marton Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same
US6334868B1 (en) * 1999-10-08 2002-01-01 Advanced Cardiovascular Systems, Inc. Stent cover
US6582461B1 (en) * 1994-05-19 2003-06-24 Scimed Life Systems, Inc. Tissue supporting devices
US6652582B1 (en) * 1997-08-01 2003-11-25 Boston Scientific Scimed, Inc. Bioabsorbable endoprosthesis having porosity for by-product collection

Family Cites Families (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1452370C3 (en) 1965-06-26 1974-03-21 Hans Georg 6331 Hermannstein Forrer Process for the production of small cross-section tubes
JPS5155724A (en) 1974-11-12 1976-05-17 Tokuriki Shoten Goshi Shikayokingokin oyobi sonoseizohoho
JPS55113904A (en) * 1979-02-26 1980-09-02 Hitachi Ltd Method of zero point temperature compensation for strain-electric signal transducer
DE3133871A1 (en) 1981-08-27 1983-03-10 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München METHOD FOR PRODUCING HOMOGENOUS COATINGS FROM TWO OR MORE METALS AND / OR METAL COMPOUNDS
US5387247A (en) 1983-10-25 1995-02-07 Sorin Biomedia S.P.A. Prosthetic device having a biocompatible carbon film thereon and a method of and apparatus for forming such device
US5104399A (en) 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
JPS6188135A (en) 1984-10-05 1986-05-06 Nec Corp Production of semiconductor biosensor
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5084151A (en) 1985-11-26 1992-01-28 Sorin Biomedica S.P.A. Method and apparatus for forming prosthetic device having a biocompatible carbon film thereon
JPS62156938A (en) 1985-12-28 1987-07-11 航空宇宙技術研究所 Manufacture of leaning-function material
US4846834A (en) 1986-05-27 1989-07-11 Clemson University Method for promoting tissue adhesion to soft tissue implants
US5133845A (en) 1986-12-12 1992-07-28 Sorin Biomedica, S.P.A. Method for making prosthesis of polymeric material coated with biocompatible carbon
IT1196836B (en) 1986-12-12 1988-11-25 Sorin Biomedica Spa Polymeric or metal alloy prosthesis with biocompatible carbon coating
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US5047031A (en) * 1988-04-20 1991-09-10 Norian Corporation In situ calcium phosphate minerals method
JPH01312851A (en) 1988-06-10 1989-12-18 Fujitsu Ltd Manufacture of semiconductor device
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US5207706A (en) 1988-10-05 1993-05-04 Menaker M D Gerald Method and means for gold-coating implantable intravascular devices
GB8912498D0 (en) 1989-05-31 1989-07-19 De Beers Ind Diamond Diamond growth
US5061914A (en) 1989-06-27 1991-10-29 Tini Alloy Company Shape-memory alloy micro-actuator
US5611347A (en) 1989-07-25 1997-03-18 Smith & Nephew, Inc. Zirconium oxide and zirconium nitride coated percutaneous devices
US6344053B1 (en) 1993-12-22 2002-02-05 Medtronic Ave, Inc. Endovascular support device and method
US5422864A (en) * 1989-09-15 1995-06-06 James Lorello Minute clocks
CA2034440A1 (en) 1990-02-13 1991-08-14 Thomas R. Anthony Cvd diamond workpieces and their fabrication
US5158750A (en) 1990-06-06 1992-10-27 Praxair S.T. Technology, Inc. Boron nitride crucible
IL98530A (en) 1990-06-25 1996-06-18 Lanxide Technology Co Ltd Methods for making selfsupporting composite bodies and articles produced thereby using vapor-phase parent metals and solid oxidants
US5242710A (en) 1990-06-25 1993-09-07 Lanxide Technology Company, Lp Methods for making self-supporting composite bodies and articles produced thereby
US5330500A (en) * 1990-10-18 1994-07-19 Song Ho Y Self-expanding endovascular stent with silicone coating
KR950009939B1 (en) 1990-11-30 1995-09-01 가부시끼가이샤 히다찌세이사꾸쇼 Thin film forming method and semiconductor device thereby
US5179993A (en) 1991-03-26 1993-01-19 Hughes Aircraft Company Method of fabricating anisometric metal needles and birefringent suspension thereof in dielectric fluid
US5304220A (en) 1991-07-03 1994-04-19 Maginot Thomas J Method and apparatus for implanting a graft prosthesis in the body of a patient
JP2981804B2 (en) 1991-07-31 1999-11-22 キヤノン株式会社 Information processing apparatus, electrode substrate used therein, and information recording medium
US5693084A (en) 1991-10-25 1997-12-02 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5456713A (en) 1991-10-25 1995-10-10 Cook Incorporated Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting
CA2079417C (en) 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
US5316023A (en) 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5599352A (en) * 1992-03-19 1997-02-04 Medtronic, Inc. Method of making a drug eluting stent
US5685961A (en) 1992-03-27 1997-11-11 P & D Medical Coatings, Inc. Method for fabrication of metallized medical devices
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
RU2124986C1 (en) * 1993-01-25 1999-01-20 Дайкин Индастриз Лтд. Porous polytetrafluoroethylene film and method of manufacturing thereof
NL9300500A (en) * 1993-03-22 1994-10-17 Industrial Res Bv Expandable hollow sleeve for locally supporting and / or strengthening a body vessel, as well as a method for manufacturing it.
US5607463A (en) * 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US6159565A (en) 1993-08-18 2000-12-12 W. L. Gore & Associates, Inc. Thin-wall intraluminal graft
JP2703510B2 (en) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
US5507769A (en) 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
ES2141576T5 (en) 1994-02-25 2006-08-01 Robert E. Fischell VASCULAR EXTENSIONER
US5798042A (en) 1994-03-07 1998-08-25 Regents Of The University Of California Microfabricated filter with specially constructed channel walls, and containment well and capsule constructed with such filters
US5843120A (en) 1994-03-17 1998-12-01 Medinol Ltd. Flexible-expandable stent
US5605714A (en) 1994-03-29 1997-02-25 Southwest Research Institute Treatments to reduce thrombogeneticity in heart valves made from titanium and its alloys
US5725573A (en) 1994-03-29 1998-03-10 Southwest Research Institute Medical implants made of metal alloys bearing cohesive diamond like carbon coatings
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US6001123A (en) 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
US6475232B1 (en) 1996-12-10 2002-11-05 Purdue Research Foundation Stent with reduced thrombogenicity
DE69527141T2 (en) * 1994-04-29 2002-11-07 Scimed Life Systems Inc STENT WITH COLLAGEN
US5765418A (en) 1994-05-16 1998-06-16 Medtronic, Inc. Method for making an implantable medical device from a refractory metal
US5629077A (en) * 1994-06-27 1997-05-13 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
US5522881A (en) * 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
US5984905A (en) 1994-07-11 1999-11-16 Southwest Research Institute Non-irritating antimicrobial coating for medical implants and a process for preparing same
DE4429380C1 (en) 1994-08-15 1996-04-25 Biotronik Mess & Therapieg Method for producing a non-collapsing intravascular vascular prosthesis (stent)
US6015429A (en) 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5702419A (en) 1994-09-21 1997-12-30 Wake Forest University Expandable, intraluminal stents
US5545210A (en) 1994-09-22 1996-08-13 Advanced Coronary Technology, Inc. Method of implanting a permanent shape memory alloy stent
US5522882A (en) 1994-10-21 1996-06-04 Impra, Inc. Method and apparatus for balloon expandable stent-graft delivery
AU3783195A (en) * 1994-11-15 1996-05-23 Advanced Cardiovascular Systems Inc. Intraluminal stent for attaching a graft
CA2301351C (en) 1994-11-28 2002-01-22 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
US5591226A (en) 1995-01-23 1997-01-07 Schneider (Usa) Inc. Percutaneous stent-graft and method for delivery thereof
US5556414A (en) 1995-03-08 1996-09-17 Wayne State University Composite intraluminal graft
CA2215027C (en) 1995-03-10 2007-04-10 Impra, Inc. Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
US6124523A (en) 1995-03-10 2000-09-26 Impra, Inc. Encapsulated stent
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US6039755A (en) 1997-02-05 2000-03-21 Impra, Inc., A Division Of C.R. Bard, Inc. Radially expandable tubular polytetrafluoroethylene grafts and method of making same
AU720963B2 (en) 1995-05-26 2000-06-15 Surmodics, Inc. Method and implantable article for promoting endothelialization
US5593442A (en) 1995-06-05 1997-01-14 Localmed, Inc. Radially expansible and articulated vessel scaffold
CA2178541C (en) 1995-06-07 2009-11-24 Neal E. Fearnot Implantable medical device
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5855955A (en) 1995-06-07 1999-01-05 Lanxide Technology Company L.P. Method for making self-supporting composite bodies
GB9516927D0 (en) 1995-08-18 1995-10-18 Secr Defence Preparation of structural materials by nanoscale laminar pvd process
US5607475A (en) 1995-08-22 1997-03-04 Medtronic, Inc. Biocompatible medical article and method
ES2224132T3 (en) 1995-08-24 2005-03-01 Bard Peripheral Vascular, Inc. ASSEMBLY METHOD OF A COVERED ENDOLUMINAL STENT.
US5824036A (en) 1995-09-29 1998-10-20 Datascope Corp Stent for intraluminal grafts and device and methods for delivering and assembling same
US5776161A (en) 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5628788A (en) 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
US6348066B1 (en) 1995-11-07 2002-02-19 Corvita Corporation Modular endoluminal stent-grafts and methods for their use
US5788558A (en) 1995-11-13 1998-08-04 Localmed, Inc. Apparatus and method for polishing lumenal prostheses
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US5913896A (en) 1995-11-28 1999-06-22 Medtronic, Inc. Interwoven dual sinusoidal helix stent
US5840009A (en) 1995-12-05 1998-11-24 Isostent, Inc. Radioisotope stent with increased radiation field strength at the ends of the stent
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
EP0950385A3 (en) 1995-12-14 1999-10-27 Prograft Medical, Inc. Stent-graft deployment apparatus and method
US5843289A (en) 1996-01-22 1998-12-01 Etex Corporation Surface modification of medical implants
US5938682A (en) 1996-01-26 1999-08-17 Cordis Corporation Axially flexible stent
US5895406A (en) 1996-01-26 1999-04-20 Cordis Corporation Axially flexible stent
DE69716779T2 (en) 1996-01-30 2003-07-17 Medtronic Inc PRODUCTS AND METHOD FOR PRODUCING DILATERS
US5843117A (en) 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
US5772864A (en) 1996-02-23 1998-06-30 Meadox Medicals, Inc. Method for manufacturing implantable medical devices
CA2199890C (en) 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
ES2159862T3 (en) * 1996-03-29 2001-10-16 Ruesch Willy Ag EXTENSIONER
US6019784A (en) 1996-04-04 2000-02-01 Electroformed Stents, Inc. Process for making electroformed stents
FR2747301B1 (en) 1996-04-10 1998-09-18 Nycomed Lab Sa IMPLANTABLE DEVICE FOR MAINTAINING OR RE-ESTABLISHING THE NORMAL PASSAGE SECTION OF A BODY DUCT, AS WELL AS A SYSTEM FOR ITS PLACEMENT
NZ331269A (en) 1996-04-10 2000-01-28 Advanced Cardiovascular System Expandable stent, its structural strength varying along its length
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
AU3957197A (en) 1996-05-09 1997-12-09 President And Fellows Of Harvard College Fabrication of small-scale coils and bands as photomasks on optical fibers for generation of in-fiber gratings, electromagnets as micro-nmr coils, microtransformers, and intra-vascular stents
US5951881A (en) 1996-07-22 1999-09-14 President And Fellows Of Harvard College Fabrication of small-scale cylindrical articles
US5855802A (en) 1996-05-30 1999-01-05 International Business Machines Corporation Method and apparatus for forming a tubular article having a perforated annular wall
US5811151A (en) 1996-05-31 1998-09-22 Medtronic, Inc. Method of modifying the surface of a medical device
EP0906129B1 (en) 1996-06-04 2002-08-28 Cook Incorporated Implantable medical device
US5928279A (en) 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
US5954764A (en) 1996-09-20 1999-09-21 Parodi; Juan Carlos Device for concurrently placing an endovascular expander with an endovascular prosthesis
GB9619856D0 (en) 1996-09-24 1996-11-06 Fotomechanix Ltd Channel forming method
WO1998014137A1 (en) 1996-10-01 1998-04-09 Numed, Inc. Expandable stent
US5824045A (en) * 1996-10-21 1998-10-20 Inflow Dynamics Inc. Vascular and endoluminal stents
US6387121B1 (en) 1996-10-21 2002-05-14 Inflow Dynamics Inc. Vascular and endoluminal stents with improved coatings
ZA9710342B (en) 1996-11-25 1998-06-10 Alza Corp Directional drug delivery stent and method of use.
US5868782A (en) 1996-12-24 1999-02-09 Global Therapeutics, Inc. Radially expandable axially non-contracting surgical stent
US5788556A (en) * 1997-01-03 1998-08-04 Western Trimming Corporation Illuminated stacked bead art toy
US5858556A (en) * 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
US5957974A (en) 1997-01-23 1999-09-28 Schneider (Usa) Inc Stent graft with braided polymeric sleeve
US5824054A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet graft stent and methods of making and use
US5902475A (en) 1997-04-08 1999-05-11 Interventional Technologies, Inc. Method for manufacturing a stent
US6033433A (en) 1997-04-25 2000-03-07 Scimed Life Systems, Inc. Stent configurations including spirals
DE19720115C2 (en) * 1997-05-14 1999-05-20 Jomed Implantate Gmbh Stent graft
JPH1142284A (en) 1997-07-25 1999-02-16 Ube Ind Ltd Artificial blood vessel with stent
US5891507A (en) 1997-07-28 1999-04-06 Iowa-India Investments Company Limited Process for coating a surface of a metallic stent
US5855600A (en) 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US5899935A (en) 1997-08-04 1999-05-04 Schneider (Usa) Inc. Balloon expandable braided stent with restraint
US5897911A (en) 1997-08-11 1999-04-27 Advanced Cardiovascular Systems, Inc. Polymer-coated stent structure
US6306164B1 (en) * 1997-09-05 2001-10-23 C. R. Bard, Inc. Short body endoprosthesis
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US5972027A (en) 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
WO1999023977A1 (en) 1997-11-07 1999-05-20 Expandable Grafts Partnership Intravascular stent and method for manufacturing an intravascular stent
US5955588A (en) 1997-12-22 1999-09-21 Innerdyne, Inc. Non-thrombogenic coating composition and methods for using same
US6106642A (en) 1998-02-19 2000-08-22 Boston Scientific Limited Process for the improved ductility of nitinol
US6488701B1 (en) 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6210910B1 (en) * 1998-03-02 2001-04-03 Trustees Of Tufts College Optical fiber biosensor array comprising cell populations confined to microcavities
US5938697A (en) 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6129756A (en) 1998-03-16 2000-10-10 Teramed, Inc. Biluminal endovascular graft system
JPH11267462A (en) 1998-03-20 1999-10-05 Hitachi Ltd Plasma potential fixing device and plasma potential fixing method
US6264689B1 (en) * 1998-03-31 2001-07-24 Scimed Life Systems, Incorporated Low profile medical stent
US6086773A (en) 1998-05-22 2000-07-11 Bmc Industries, Inc. Method and apparatus for etching-manufacture of cylindrical elements
US6066169A (en) 1998-06-02 2000-05-23 Ave Connaught Expandable stent having articulated connecting rods
US6036725A (en) * 1998-06-10 2000-03-14 General Science And Technology Expandable endovascular support device
US6096175A (en) 1998-07-17 2000-08-01 Micro Therapeutics, Inc. Thin film stent
US6264598B1 (en) 1998-08-06 2001-07-24 Implant Sciences Corporation Palladium coated implant
US6156064A (en) 1998-08-14 2000-12-05 Schneider (Usa) Inc Stent-graft-membrane and method of making the same
US6159239A (en) 1998-08-14 2000-12-12 Prodesco, Inc. Woven stent/graft structure
US6143022A (en) 1998-08-24 2000-11-07 Medtronic Ave, Inc. Stent-graft assembly with dual configuration graft component and method of manufacture
US6245104B1 (en) * 1999-02-28 2001-06-12 Inflow Dynamics Inc. Method of fabricating a biocompatible stent
US6042597A (en) 1998-10-23 2000-03-28 Scimed Life Systems, Inc. Helical stent design
US6322585B1 (en) 1998-11-16 2001-11-27 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with slidable exo-skeleton
US20020123789A1 (en) * 1998-12-04 2002-09-05 Francis Ralph T. Stent cover
US6059824A (en) * 1998-12-23 2000-05-09 Taheri; Syde A. Mated main and collateral stent and method for treatment of arterial disease
US6620192B1 (en) 1999-03-16 2003-09-16 Advanced Cardiovascular Systems, Inc. Multilayer stent
US6398802B1 (en) 1999-06-21 2002-06-04 Scimed Life Systems, Inc. Low profile delivery system for stent and graft deployment
US6428569B1 (en) 1999-11-09 2002-08-06 Scimed Life Systems Inc. Micro structure stent configurations
US6537310B1 (en) * 1999-11-19 2003-03-25 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable devices and method of making same
US6379383B1 (en) 1999-11-19 2002-04-30 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US6355058B1 (en) 1999-12-30 2002-03-12 Advanced Cardiovascular Systems, Inc. Stent with radiopaque coating consisting of particles in a binder
AU2001231099A1 (en) 2000-01-24 2001-07-31 Smart Therapeutics, Inc. Thin-film shape memory alloy device and method
EP1264001A1 (en) 2000-01-25 2002-12-11 Boston Scientific Limited Manufacturing medical devices by vapor deposition
US6312463B1 (en) 2000-02-01 2001-11-06 Endotex Interventional Systems, Inc. Micro-porous mesh stent with hybrid structure
US6586110B1 (en) 2000-07-07 2003-07-01 Delphi Technologies, Inc. Contoured metal structural members and methods for making the same
US6730119B1 (en) * 2000-10-06 2004-05-04 Board Of Regents Of The University Of Texas System Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity
US20030225448A1 (en) * 2002-05-28 2003-12-04 Scimed Life Systems, Inc. Polar radiopaque marker for stent
US20040054399A1 (en) 2002-09-17 2004-03-18 Roth Noah M. Anti-galvanic stent coating
CA2499961C (en) * 2002-09-26 2014-12-30 Advanced Bio Prosthetic Surfaces, Ltd. High strength vacuum deposited nitinol alloy films, medical thin film graft materials and method of making same
GB0322511D0 (en) * 2003-09-25 2003-10-29 Angiomed Ag Lining for bodily lumen
TWM304715U (en) * 2006-06-23 2007-01-11 Quanta Comp Inc Hinge device with auto-lock function

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713947A (en) * 1989-12-21 1998-02-03 Smith & Nephew, Inc. Cardiovascular implants of enhanced biocompatibility
US6582461B1 (en) * 1994-05-19 2003-06-24 Scimed Life Systems, Inc. Tissue supporting devices
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5769884A (en) * 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US6139573A (en) * 1997-03-05 2000-10-31 Scimed Life Systems, Inc. Conformal laminate stent device
US6652582B1 (en) * 1997-08-01 2003-11-25 Boston Scientific Scimed, Inc. Bioabsorbable endoprosthesis having porosity for by-product collection
US20010032014A1 (en) * 1999-07-02 2001-10-18 Scimed Life Sciences, Inc. Stent coating
US6334868B1 (en) * 1999-10-08 2002-01-01 Advanced Cardiovascular Systems, Inc. Stent cover
US20010032013A1 (en) * 1999-11-19 2001-10-18 Denes Marton Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same

Also Published As

Publication number Publication date
US10172730B2 (en) 2019-01-08
US20090132022A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US20190125559A1 (en) Stents with metallic covers and methods of making same
US20060052865A1 (en) Stents with metallic covers and methods of making same
US10363125B2 (en) Method of making implantable medical devices having controlled surface properties
US10465274B2 (en) Implantable graft and methods of making same
US9375330B2 (en) Methods of making medical devices
US8641754B2 (en) Endoluminal stent, self-supporting endoluminal graft and methods of making same
AU2001245884A1 (en) Endoluminal implantable devices and method of making same

Legal Events

Date Code Title Description
AS Assignment

Owner name: VACTRONIX SCIENTIFIC, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BANAS, CHRISTOPHER E.;REEL/FRAME:047796/0942

Effective date: 20181211

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION