US20190105632A1 - Multimodal adsorption medium with multimodal ligands, method for the preparation and use thereof - Google Patents

Multimodal adsorption medium with multimodal ligands, method for the preparation and use thereof Download PDF

Info

Publication number
US20190105632A1
US20190105632A1 US16/092,353 US201716092353A US2019105632A1 US 20190105632 A1 US20190105632 A1 US 20190105632A1 US 201716092353 A US201716092353 A US 201716092353A US 2019105632 A1 US2019105632 A1 US 2019105632A1
Authority
US
United States
Prior art keywords
group
multimodal
unbranched
branched
adsorption medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/092,353
Inventor
Lukas Kupracz
Florian Taft
Louis Villain
Kornelia Kuper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sartorius Stedim Biotech GmbH
Original Assignee
Sartorius Stedim Biotech GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sartorius Stedim Biotech GmbH filed Critical Sartorius Stedim Biotech GmbH
Assigned to SARTORIUS STEDIM BIOTECH GMBH reassignment SARTORIUS STEDIM BIOTECH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Taft, Florian, VILLAIN, Louis, Kupracz, Lukas, Kuper, Kornelia
Publication of US20190105632A1 publication Critical patent/US20190105632A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • B01J20/288Polar phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3847Multimodal interactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • B01J20/289Phases chemically bonded to a substrate, e.g. to silica or to polymers bonded via a spacer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3225Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating involving a post-treatment of the coated or impregnated product
    • B01J20/3227Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating involving a post-treatment of the coated or impregnated product by end-capping, i.e. with or after the introduction of functional or ligand groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3285Coating or impregnation layers comprising different type of functional groups or interactions, e.g. different ligands in various parts of the sorbent, mixed mode, dual zone, bimodal, multimodal, ionic or hydrophobic, cationic or anionic, hydrophilic or hydrophobic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/165Extraction; Separation; Purification by chromatography mixed-mode chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/52Sorbents specially adapted for preparative chromatography

Definitions

  • the present invention relates to a multimodal adsorption medium, in particular a multimodal chromatography medium, a method for its production, and use of the adsorption medium according to the invention or an adsorption medium produced according to the invention for the purification of biomolecules.
  • adsorption medium refers to adsorbents that have functional surface groups, also referred to in the following as “ligands” and/or “chromatographically active centers,” which can selectively form bonds with specified components of fluids.
  • target substance(s) and/or contaminant(s) are referred to as “adsorbates,” wherein this can also refer to a plurality of different substances.
  • Adsorbates can be individual molecules, associations, or particles, wherein these are preferably proteins or other substances of biological origin.
  • the binding of the adsorbates to the adsorbent can be reversible or irreversible, and in any case, it allows them to be separated from the fluids, which for example can be aqueous liquids and are referred to in the following as “media.” Desorption and the accompanying rinsing steps, etc., are combined under the term “elution” and the medium used for elution is the “eluent.”
  • the components may be one or a plurality of target substances and/or one or a plurality of contaminants. “Target substances” are valuable substances that are to be obtained from the medium in enriched or pure form. For example, target substances can be recombinant proteins such as monoclonal antibodies.
  • Contaminants are substances whose absence or removal from the fluid is required or desirable for technical, regulatory, or other reasons.
  • contaminants can be viruses, proteins, amino acids, nucleic acids, endotoxins, protein aggregates, ligands or parts thereof.
  • a process referred to as “negative adsorption” adsorption can (may) be carried out irreversibly if the adsorbent is only to be used once.
  • the process In adsorption of the target substance(s), the process must be carried out reversibly.
  • adsorbents for chromatography are either particulate and are used in columns in the form of packings, or are in the form of adsorption membranes, which are usually located in modules having designs corresponding to those commonly used in membrane filtration (e.g. wound module, stack module, etc.).
  • adsorption membranes which are usually located in modules having designs corresponding to those commonly used in membrane filtration (e.g. wound module, stack module, etc.).
  • the requirement for non-specific adsorption that is as low as possible is ordinarily common to all adsorbents.
  • Binding of the ligand to the carrier can be preceded by “activation” of the carrier, i.e. the introduction of reactive functional groups capable of spontaneously binding the ligand. More rarely, the ligand itself has a reactive group, with an example being the reactive dyes used as dye ligands in the textile industry.
  • Methods for the binding of functional groups are known per se to the person skilled in the art (e.g. Greg T. Hermanson, A. Krishna Mallia, Paul K. Smith, Immobilized Affinity Ligand Techniques, Academic Press, Inc., 1992).
  • Ion-exchange chromatography has also taken on a position of importance in the purification of biomolecules.
  • Cation exchangers comprising mixed-mode or multimodal ligands have long been known in the prior art.
  • U.S. Pat. No. 5,431,807 A discloses a multimodal chromatographic separation medium in which hydrophobic ligands such as benzyl ligands are fixed in pores of a first size range, while ion-exchanging ligands are fixed in pores of a second size range spatially separated from the hydrophobic ligands.
  • EP 0665867 B1 describes a method for pore-size-selective chemical modification of porous materials wherein for example hydrophobic ligands are fixed in pores of a first size range, while cation-exchanging ligands are fixed in pores of a second size range spatially separated from the hydrophobic ligands.
  • US 2012/0202976 A1 discloses a chromatographic separation medium in which both a first type of hydrophobic ligand and a second type of ion-exchanging ligand are bound to the chromatography matrix, the latter via so-called extenders. In these systems, the different functional groups are consequently present in different molecular chains and are spatially separated.
  • a drawback of known cation exchangers is that they can undergo binding only with substances having relatively low ionic strengths, so that the medium must often be diluted before adsorption.
  • the known adsorption media therefore do not tolerate high salt concentrations in binding of substances, thus requiring an additional dilution step and large fluid volumes in correspondingly large-scale chromatography facilities.
  • chromatography matrices are disclosed on which multimodal ligands with cation-exchanging and hydrophobic functional groups are fixed, wherein for example ligands are bound to the surfaces of a carrier material starting from phenylalanine or 6-aminohexanoic acid.
  • U.S. Pat. No. 8,017,740 B2 discloses chromatography matrices based on porous molded bodies, preferably derived from inorganic hydroxy- or fluorapatites on which both hydrophobic and cation-exchanging ligands are fixed, wherein for example CaptoTM MMC, a so-called “mixed mode” ligand, is mentioned.
  • CaptoTM MMC ligand comprises a 2-benzoylaminobutanoic acid residue, which is obtained by reaction of homocysteine thiolactone with benzoyl chloride and subsequent thiolactone opening. Binding of the CaptoTM MMC ligand to the stationary phase then takes place via the thiol group by means of nucleophilic substitution or ring opening.
  • U.S. Pat. No. 6,852,230 B2 discloses chromatography matrices comprising ligands with cation-exchanging and hydrophobic groups, wherein the matrices allow a high recovery rate of bovine serum albumin at high salt concentrations.
  • These multimodal systems are described in greater detail in the relevant publication, B.-L. Johansson et al., Journal of Chromatography A, 1016 (2003), 35-49, wherein ligands are immobilized on activated SepharoseTM 6 Fast Flow by means of two variants.
  • mercaptopropionic acid is first bound to the activated carrier.
  • the acid functional group is then activated with dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS), and the resulting ester is finally reacted with an amino acid derivative in order to introduce a corresponding cation-exchanging functionality.
  • DCC dicyclohexylcarbodiimide
  • NHS N-hydroxysuccinimide
  • Activation of the acid functional group of the sold carrier with a suitable reagent e.g. N-hydroxysuccinimide (NHS)
  • a suitable reagent e.g. N-hydroxysuccinimide (NHS)
  • DCC dicyclohexylcarbodiimide
  • a synthesis method for CaptoTM MMC matrices of prior art comprises in step i) the reaction of e.g. Sepharose with allyl glycidyl ether and the subsequent activation of the resulting product with bromine, followed in step ii) by reaction with a thiolactone.
  • the reaction of the last step in particular does not take place completely, with the result that a product actually having two different ligands is always obtained, which contains a thioether linker containing an acid functional group and resulting from an unsuccessful reaction in step (iii) or (iv), and the desired end product.
  • a chromatographic carrier composed of a mixture of two different ligands can cause multiple problems if it is used in a separation method. As the ratio of the various ligands can fluctuate from batch to batch, the chromatography media produced in this manner possess different properties depending on the batch, so that separation methods that have been developed are not reproducible when the batch is changed. Moreover, use of different separate ligands can result in the drawback of non-homogeneous distribution of the different ligands on the chromatography medium.
  • Another problem associated with the above-described conventional methods is that it is often impossible to obtain a sufficiently high ligand density, which is detrimental in particular to the binding capacity of small proteins.
  • This problem can at least partially be solved using polymeric spacers, which are fixed on the surface of the chromatography matrix and via which additional ligands can be bound to the matrix.
  • the object of the invention is therefore to provide an adsorption medium that can be simply and reproducibly produced and should have a high binding capacity that can be selectively adjusted over a broad salt concentration range.
  • a multimodal adsorption medium in particular a multimodal chromatography medium, comprising a polymeric carrier material C to which multimodal ligands of the following structure -G-(CO 2 H)n are covalently bonded via an —X—(C ⁇ O) group:
  • X denotes —NR—, —O— or —S— and R denotes alkyl, alkenyl, aryl, heteroaryl or hydrogen
  • G denotes a group selected from the group composed of a branched or unbranched C 2-20 alkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a substituted or unsubstituted C 3-10 cycloalkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a branched or unbranched C 2-20 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a substituted or unsubstituted C 6-20 aryl group that can contain one or a plurality of heteroatoms selected from O,
  • the G group is selected from the group composed of a branched or unbranched C 4-20 alkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, and a branched or unbranched C 3-20 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent.
  • the term “multimodal” is understood to mean that the ligands comprise two or more different functional groups, which thus undergo interactions with the target molecules based on different chemical mechanisms, so that the latter are bound to the adsorption medium.
  • the multimodal adsorption medium or the multimodal ligands comprise at least cation-exchanging acidic groups and simultaneously hydrophobic groups.
  • further functional groups can also be integrated that undergo further interactions with the target substances, such as thiophilic interactions, ⁇ - ⁇ -interactions, ion exchange interactions or hydrogen bridge bonds.
  • the adsorption medium according to the invention comprises only one type of multimodal ligand, which means that only identical ligands of the above structure are bound to the polymeric carrier material.
  • the multimodal ligand structure is produced using only one reagent, as will be described in further detail below, the ratio of carboxylic acid groups to G groups, which allow further interactions, remains constant on the adsorption medium according to the invention. For this reason, in contrast to a modification method with two different ligands or incomplete reactions, the result of the production process is always reproducible.
  • the G group is a hydrophobic group that can bind to the target substances via Van der Waals or ⁇ - ⁇ -interactions.
  • the -XH groups are reacted with a ligand precursor so that the resulting ligands are bound to the carrier material via a covalent bond —X—(C ⁇ O) and each have at least one free carboxylic acid group.
  • the —XH groups are functionalized with carboxylic anhydrides, as can be illustrated by means of the following diagram:
  • n is greater than or equal to 2, wherein one of the carboxylic acid groups results from the ring-opening reaction of the carboxylic anhydride with the nucleophilic group —XH.
  • the G groups are hydrophobic groups.
  • the group X—(C ⁇ O) is —NH—(C ⁇ O).
  • the group XH is a primary amino group, so that the resulting -G-(CO 2 H) n ligands are bound to the carrier material via a secondary amide bond —NH—(C ⁇ O).
  • any material that is suitable for chromatographic processes as a carrier material of the stationary phase is suitable as a polymeric carrier material.
  • These groups can already be present on the surface of the carrier material or can be introduced in a suitable manner.
  • a polymeric carrier material that originally comprises functional groups (such as polyester fibers), or a polymeric carrier material into which suitable functional groups can be introduced by means of a surface modification known to the person skilled in the art.
  • surface modifications include substitution and addition reactions, reaction with functional epoxides, activated acids or active esters, activation by means of plasma treatment, e-beam (electron beam treatment), gamma irradiation, coating, hydrolysis, aminolysis, oxidation, reduction, reaction with functional carbenes and/or nitrenes, etc.
  • the polymeric carrier material comprises at least one material selected from the group composed of natural or synthetic fibers, (polymer) membranes, porous, polymeric monolithic molded bodies, polymer gels, films, nonwovens and wovens.
  • polyester fibers such as “Winged Fibers” from the firm Allasso Industries, composed of polyethylene terephthalate (PET) or “4DGTM Fibers” from the firm Fiber Innovation Technology, composed of polyethylene terephthalate
  • fibers comprising cellulose, cellulose derivatives, Nylon, polyethylene (PE), polyamide (PA), sulfone (PES), polyvinylidene difluoride (PVDF), polytetrafluoroethylene (PTFE), polypropylene (PP) and polysulfone as a structuring component, wherein the materials can be used individually or in corresponding combinations.
  • polyester fibers in particular fibers composed of polyethylene terephthalate or polybutylene terephthalate (PBT) and polyamide fibers are used.
  • Examples of (polymer) membranes that can be used as a material for the polymeric carrier material of the adsorption medium according to the invention include membranes comprising cellulose, cellulose derivatives, Nylon, polyester, polyethylene (PE), polyamide (PA), sulfone (PES), polyvinylidene difluoride (PVDF), polytetrafluoroethylene (PTFE), polypropylene (PP) and polysulfone as a structuring component, wherein the materials can be used individually or in corresponding combinations.
  • membranes based on cellulose and cellulose derivatives, in particular cellulose hydrate membranes, or polyethylene membranes are used.
  • a cellulose ester membrane with a pore size of 0.1 to 20 ⁇ m, preferably 0.5 to 15 ⁇ m and more preferably 1 to 10 ⁇ m can be used as a starting membrane that can be saponified and optionally crosslinked by common methods known in the art.
  • the pore size is ordinarily determined by means of a capillary flow porometry test using a Coulter Capillary Flow Porometer 6.0 and the CAPWIN software systems from the firm Porous Materials Inc.
  • polymer gels that can be used as a material for the polymeric carrier material of the adsorption medium according to the invention include agarose, dextran, cellulose, polymethacrylates, polyvinyl ethers, polyacrylamides, polystyrene-divinylbenzene copolymers, silica dextran, agarose acrylamides and dextran acrylamides.
  • films and wovens include films and wovens composed of the above-mentioned polymer materials that can be used for the (polymer) membranes.
  • nonwovens that can be used as a material for the polymeric carrier material of the adsorption medium according to the invention include polyester/polypropylene/polyimide nonwovens (such as “Pluratexx 2317 S” from the firm Freudenberg) and the above polymer materials that can be used for the (polymer) membranes.
  • polymeric spacer elements are preferably bound to the surface of the carrier material, wherein the binding between the surface of the carrier material and the spacer elements preferably takes place or has taken place via the functional groups (originally present or produced by surface modification) of the chromatography matrix.
  • the polymeric spacer elements which in the adsorption medium according to the invention serve as binding units between the chromatography matrix and the multimodal ligands, it is advantageously possible to obtain high ligand densities, which allow high binding capacity for small proteins, such as lysozyme, and high salt tolerance.
  • salt-tolerant media can be produced that show high protein binding capacity even at an elevated salt concentration.
  • polymeric spacer elements (abbreviated as “spacers”) is understood to refer to polymers that can bind the internal and external substances of the chromatography matrix to the multimodal ligands.
  • spacers There are no particular limitations on the polymeric spacer elements of the present invention, provided that they can be (preferably) chemically, but also physically bound to the surface of the chromatography matrix.
  • the polymeric spacer elements can be selected from the group composed of polyamines, polyalcohols, polythiols, poly(meth)acrylates, poly(meth)acrylamides, poly-N-alkyl(meth)acrylamides and copolymers composed of two or more of the above polymers, copolymers composed of one or more of the above polymers and polymers that do not carry any nucleophilic functional groups.
  • the polymeric spacer elements are polyamines with at least one primary amino group, as this obviates the need for further functionalization of the surface of the polymeric carrier material for the further reaction.
  • the primary amino group By means of the primary amino group, an amide bond to the multifunctional ligands is later formed as an X—(C ⁇ O) bond.
  • polyamines within the meaning of the present invention include polyallylamine, polyvinylamine, polyethyleneimine (branched or linear), poly(4-aminostyrene), chitosan, poly-L-lysine, poly(N-methylvinylamine), poly(N-methylallylamine) and poly(oleylamine).
  • polyamines can be used.
  • the polymeric spacer elements particularly preferably have a molar mass of 3,000 to 150,000 g/mol, and more preferably 10,000 to 100,000 g/mol.
  • the polymeric spacer elements are selected from the group of polyallylamines with a molar mass of 3,000 to 150,000 g/mol, and more preferably 10,000 to 100.000 g/mol. In a further preferred embodiment, the polymeric spacer elements are selected from the group of polyvinylamines with a molar mass of 5,000 to 500,000 g/mol, and more preferably 10,000 to 100,000 g/mol.
  • polyallylamine, polyvinylamine and/or polyethyleneimine are particularly preferred.
  • the ligand density of the multimodal ligands of the adsorption medium according to the invention is preferably at least 25 ⁇ mol/ml, preferably 100 ⁇ mol/ml, more preferably at least 150 ⁇ mol/ml and particularly preferably at least 250 ⁇ mol/ml.
  • the ligand density is determined according to the present invention by titration, with details on this being given under method M2 below.
  • the amino group density which is the ligand density of the polyamine functionalized adsorption medium, before the multimodal ligands are immobilized is at least 25 ⁇ mol/ml, preferably at least 150 ⁇ mol/ml, more preferably at least 200 ⁇ mol/ml and particularly preferably at least 400 ⁇ mol/ml.
  • the amino group density is determined according to the present invention by titration, with details on this being given under method M1 below.
  • the multimodal ligands have the following structure:
  • G is preferably selected from the group composed of a branched or unbranched C 2-10 alkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a branched or unbranched C 3-10 cycloalkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a branched or unbranched C 2-10 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a substituted or unsubstituted C 6-14 aryl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and a substituted or unsubstituted C 4-14 heteroaryl group that can contain one or a plurality of heteroatoms selected from O, S, N and
  • the multimodal ligands according to the invention have at least one carboxylic acid group that is bonded to the group G.
  • the multimodal ligands have the following structure:
  • G is a substituted or unsubstituted C 2-3 alkyl group, a substituted or unsubstituted C 3-10 cycloalkyl group, a substituted or unsubstituted C 2-3 alkenyl group, a substituted or unsubstituted C 6 aryl group or a substituted or unsubstituted five-membered or six-membered heteroaromatic group, wherein the substituents are selected from the group composed of a branched or unbranched alkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent, a branched or unbranched C 2-10 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, carboxylic an
  • G is a branched or unbranched C 3-10 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent.
  • the multimodal ligands have one of the following structures:
  • each R′ respectively is selected from the group composed of hydrogen, F, CI, Br, I, —OH, —NH 2 , SH, CO 2 H, a branched or unbranched C 1-10 alkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent, a branched or unbranched C 2-10 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent, a C 6-20 aryl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, or carboxylic anhydride substituent, and a C 4-20 heteroaryl
  • a multimodal ligand of the following structure is preferably not included in the above general structures for the ligand G-(CO 2 H) n :
  • the present invention provides a method for the production of the adsorption medium according to the invention.
  • the above remarks with respect to the adsorption medium according to the invention therefore also apply to the production method according to the invention.
  • the method according to the invention for the production of an adsorption medium comprises the following steps:
  • the covalent bond —X—(C ⁇ O) is a secondary amide bond that is formed by a reaction of a carboxylic anhydride as a precursor of the ligand and amine groups of the carrier material, and the multimodal ligand has at least one free carboxylic acid group.
  • the polymeric spacer elements are immobilized on the surface of the chromatography matrix before step (b), and the multimodal ligands are then immobilized according to step (b) on the —XH-groups of the spacer elements with formation of an —X—(C ⁇ O) 13 bond, particularly preferably a secondary amide bond.
  • a polymeric carrier material as described above is prepared that originally comprises functional groups (such as polyester fibers) or into which functional groups are introduced by surface modification.
  • functional groups such as polyester fibers
  • polymeric spacer elements are immobilized on the surface of the chromatography matrix, i.e. the spacer elements are (preferably) chemically, or also physically, bound to the surface of the chromatography matrix via their functional groups.
  • step of immobilization there are no particular limitations on the step of immobilization according to the invention, and all immobilization methods known to the person skilled in the art, such as substitution or addition reactions, epoxide opening, aminolysis, amide coupling reactions, esterification, reductive amination and insertion reactions, may be used.
  • step (b) of the method according to the invention the at least one —XH-group, which is optionally immobilized on the carrier material by means of spacer elements, is reacted with a precursor of the multimodal ligands such that a —X—(C ⁇ O) bond is formed via which the multimodal ligands are bonded to the carrier material.
  • the —X—(C ⁇ O) bond is preferably a secondary amide bond.
  • the secondary amide group is formed by reaction of a carboxylic anhydride with amino groups of the carrier material.
  • the amino groups are preferably functionalized with carboxylic anhydrides, as can be illustrated by means of the following diagram:
  • G and n are as defined above and wherein —XH ⁇ NH 2 .
  • n is greater than or equal to 2, wherein one of the carboxylic acid groups results from the ring-opening reaction of the carboxylic anhydride with the nucleophilic group —XH.
  • carboxylic anhydride there are so particular limitations on the carboxylic anhydride, provided that multimodal ligands of the above structure can be obtained.
  • suitable carboxylic anhydrides include succinic anhydride, glutaric anhydride, malic anhydride (D- and/or L-isomer), itaconic anhydride, maleic acid anhydride, phthalic anhydride, 1,8-naphthalic anhydride, 1,2,4-benzenetricarboxylic anhydride, quinolinic anhydride, trimellitic anhydride, pyromellitic anhydride, pyridine-3,4-dicarboxylic anhydride, (S)-N-acetyl-L-aspartic anhydride (N-(2,5-dioxotetrahydrofuran-3-yl)acetamide), N-benzoylaspartic anhydride, 3-(p-tolylthio)-succinic anhydride, 4-((2,5-d
  • solvents dimethyl sulfoxide, 2-pyrrolidone, dimethylformamide, dimethylacetamide, tetrahydrofuran or 1,4-dioxane, or other polar, preferably aprotic solvents may be used.
  • the present invention provides use of the adsorption medium according to the invention or an adsorption medium produced according to the method of the invention for the purification of biomolecules.
  • suitable biomolecules to be purified include proteins, such as antibodies, peptides, amino acids, nucleic acids, virus-like particles, viruses and/or endotoxins.
  • salt-tolerant adsorption media can be produced using the method according to the invention that have high protein binding capacity even at an elevated salt concentration of up to 500 mM (NaCl concentration).
  • salt-tolerant adsorption media can be produced using the method according to the invention that have high protein binding capacity even at an elevated salt concentration of up to 500 mM (NaCl concentration).
  • the maximum binding capacity of the cation exchange adsorption media can be selectively adjusted over a broad salt concentration range.
  • the multimodal ligand structure is produced using only one reagent, the ratio of carboxylic acid groups to the groups that allow further interactions remains constant on the adsorption medium. For this reason, compared to a modification method with two different ligands, each of which is fixed separately on the adsorption medium, or incomplete reactions, the result of the production process is always reproducible.
  • the adsorption medium according to the invention is therefore outstandingly suited for the purification of biomolecules, for which there is significant industrial demand.
  • the membrane stack had a membrane area of 15 cm 2 , an inflow area of 5 cm 2 and a bed height (thickness of the membrane stack) of 750 ⁇ m in the membrane holder.
  • the membranes or the membrane stack were then tested for charge density using a test program comprising four steps.
  • the membrane stack had a membrane area of 15 cm 2 , an inflow area of 5 cm 2 and a bed height (thickness of the membrane stack) of 750 ⁇ m in the membrane holder.
  • the membranes or the membrane stack were then tested for charge density using a test program comprising four steps. The four steps of the test program are given below:
  • the membrane stack had a membrane area of 15 cm 2 , an inflow area of 5 cm 2 and a bed height (thickness of the membrane stack) of 900 ⁇ m in the membrane holder.
  • the membranes or the membrane stack were then tested with a test program comprising three steps with respect to lysozyme-binding capacity. The three steps of the test program are given below:
  • the membrane stack had a membrane area of 15 cm 2 , an inflow area of 5 cm 2 and a bed height (thickness of the membrane stack) of 900 ⁇ m in the membrane holder.
  • the membranes or the membrane stack were then tested with a test program comprising three steps with respect to ⁇ -globulin-binding capacity. The three steps of the test program are given below:
  • the spacer immobilization is based on a known protocol, which was described in DE 10 2008055 821 A1 (examples 21 and 22). In this case, spacers with a molar mass of 15,000 g/mol to 150,000 g/mol are used.
  • the cellulose acetate (CA) membrane (3 ⁇ m pore size, Sartorius Stedim Biotech GmbH) was saponified in a 0.6 M aqueous sodium hydroxide solution (4 g/cm 2 ) for 30 min at room temperature and then rinsed three times for 10 min in a 0.25 M sodium hydroxide solution (0.5 g/cm 2 ), The membrane obtained was treated for 30 min with a solution composed of 15% 1,4-butanediol diglycidyl ether and 85% 0.25 M aqueous sodium hydroxide solution (0.5 g/cm 2 ) and then stored for 18 h in a sealed container at room temperature. Finally, rinsing was carried out for 30 min with running water.
  • CA cellulose acetate
  • the membrane thus obtained was treated for 1 h with a 20% solution of polyallylamine in RCS water (1 g/cm 2 ) at 50° C. The membrane was then treated for 5 min at room temperature with 5% sulfuric acid solution and finally rinsed for 10 min with running water.
  • the amino group density on the membrane was determined by titration.
  • Carrier material Amino group density PAA-modified cellulose hydrate membranes 450-550 ⁇ mol/mL
  • Spacer immobilization is carried out based on a known protocol, which was described in DE 102008055 821 A1 (examples 15, 16 and 17).
  • the CA membrane (3 pm pore size, Sartorius Stedim Biotech GmbH) was saponified in a 0.6 M aqueous sodium hydroxide solution (4 g/cm 2 ) for 30 min at room temperature and then rinsed three times for 10 min in a 0.25 M sodium hydroxide solution (0.5 g/cm 2 ).
  • the membrane obtained was treated for 30 min with a solution composed of 15% 1,4-butanediol diglycidyl ether and 85% 0.25 M aqueous sodium hydroxide solution (0.5 g/cm 2 ) and then stored for 18 h in a sealed container at room temperature. Finally, rinsing was carried out for 30 min with running water.
  • the membrane thus obtained was treated for 2 h with a 30% solution of Lupasol WF (polyethyleneimine from BASF AG, molecular mass 25000 g/mol) in RO water (1 g/cm 2 ) at 50° C. The membrane was then rinsed for 30 min with running water, treated for 10 min with 5% sulfuric acid solution, and finally rinsed for 10 min with running water.
  • Lupasol WF polyethyleneimine from BASF AG, molecular mass 25000 g/mol
  • the amino group density on the membrane was determined by titration.
  • Carrier material Amino group density PEI-modified cellulose hydrate membranes 600-650 ⁇ mol/mL
  • Example Anhydride 1 Succinic anhydride 2 Glutaric anhydride 3 Malic anhydride 4 Itaconic anhydride 5 Maleic anhydride 6 Phthalic anhydride 7 Quinolinic anhydride 8 Trimellitic anhydride 9 Pyromellitic anhydride 10 4((2,5-dioxotetrahydrofuran-3-yl)thio)benzoic acid 11 N-(2,5-dioxotetrahydrofuran-3-yl)acetamide 12 N-(2,5-dioxotetrahydrofuran-3-yl)-2,2,2-trifluoroacetamide 13 Maleic anhydride 14 Maleic anhydride 15 Succinic anhydride 16 Maleic anhydride C-1* N-benzoyl-L-aspartic anhydride *Comparison example 1
  • the polyallylamine-functionalized polyethylene membrane Chromasorb (0.65 ⁇ m pore size, EMD Millipore) was used as a starting material for ligand immobilization.
  • 16 g of carboxylic anhydride was dissolved in 64 g of DMSO (20 wt %) and the solution was heated to 60° C.
  • the polyallylamine-functionalized polyethylene membrane was placed in the reaction solution (0.5 g/cm 2 ) and agitated at 60° C. for 1 h.
  • the reaction solution was then filtered off, and the membrane was washed with ethanol (0.5 g/cm 2 ) and a large excess of RO water.
  • FIGS. 1 through 3 The results are summarized in FIGS. 1 through 3 .
  • the membranes according to the invention with the multimodal ligands surprisingly show significantly higher binding capacity to small molecules, such as lysozyme, at comparable ligand density.
  • BC _ ⁇ ( globulin ) BC ⁇ ( globulin , 25 ⁇ ⁇ mM ⁇ ⁇ NaCl ) + BC ⁇ ( globulin , 150 ⁇ ⁇ mM ⁇ ⁇ NaCl ) + BC ⁇ ( globulin , 300 ⁇ ⁇ mM ⁇ ⁇ NaCl ) 3
  • binding indicator BC (total) is defined:
  • BC _ ⁇ ( total ) BC ⁇ ( lysozyme ) + BC _ ⁇ ( globulin ) 2
  • the membranes according to the invention show a significantly higher binding indicator BC (total) compared to the membrane obtained in comparison example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a multimodal adsorption medium, in particular a multimodal chromatography medium, a method for its production, as well as use of the adsorption medium according to the invention or an adsorption medium produced according to the invention for the purification of biomolecules.

Description

  • The present invention relates to a multimodal adsorption medium, in particular a multimodal chromatography medium, a method for its production, and use of the adsorption medium according to the invention or an adsorption medium produced according to the invention for the purification of biomolecules.
  • The term “adsorption medium” refers to adsorbents that have functional surface groups, also referred to in the following as “ligands” and/or “chromatographically active centers,” which can selectively form bonds with specified components of fluids. According to the invention, target substance(s) and/or contaminant(s) are referred to as “adsorbates,” wherein this can also refer to a plurality of different substances. Adsorbates can be individual molecules, associations, or particles, wherein these are preferably proteins or other substances of biological origin.
  • The binding of the adsorbates to the adsorbent can be reversible or irreversible, and in any case, it allows them to be separated from the fluids, which for example can be aqueous liquids and are referred to in the following as “media.” Desorption and the accompanying rinsing steps, etc., are combined under the term “elution” and the medium used for elution is the “eluent.” The components may be one or a plurality of target substances and/or one or a plurality of contaminants. “Target substances” are valuable substances that are to be obtained from the medium in enriched or pure form. For example, target substances can be recombinant proteins such as monoclonal antibodies. “Contaminants” are substances whose absence or removal from the fluid is required or desirable for technical, regulatory, or other reasons. For example, contaminants can be viruses, proteins, amino acids, nucleic acids, endotoxins, protein aggregates, ligands or parts thereof. In order to remove contaminants, a process referred to as “negative adsorption,” adsorption can (may) be carried out irreversibly if the adsorbent is only to be used once. In adsorption of the target substance(s), the process must be carried out reversibly. One can carry out either simple enrichment or separation into multiple target substances, wherein in the latter case, adsorption, desorption or both can take place selectively.
  • This process is referred to as adsorptive substance separation or chromatography. Conventional adsorbents for chromatography are either particulate and are used in columns in the form of packings, or are in the form of adsorption membranes, which are usually located in modules having designs corresponding to those commonly used in membrane filtration (e.g. wound module, stack module, etc.). The requirement for non-specific adsorption that is as low as possible is ordinarily common to all adsorbents.
  • Numerous synthetic and natural ligands are known in the prior art. Binding of the ligand to the carrier can be preceded by “activation” of the carrier, i.e. the introduction of reactive functional groups capable of spontaneously binding the ligand. More rarely, the ligand itself has a reactive group, with an example being the reactive dyes used as dye ligands in the textile industry. Methods for the binding of functional groups are known per se to the person skilled in the art (e.g. Greg T. Hermanson, A. Krishna Mallia, Paul K. Smith, Immobilized Affinity Ligand Techniques, Academic Press, Inc., 1992).
  • The filtration, purification or removal of biomolecules such as proteins, amino acids, nucleic acids, viruses or endotoxins from liquid media is of great importance for the biopharmaceutical industry. Most of the applications in contaminant removal currently use conventional chromatography gels or chromatography membranes.
  • Ion-exchange chromatography has also taken on a position of importance in the purification of biomolecules. Cation exchangers comprising mixed-mode or multimodal ligands have long been known in the prior art. For example, U.S. Pat. No. 5,431,807 A discloses a multimodal chromatographic separation medium in which hydrophobic ligands such as benzyl ligands are fixed in pores of a first size range, while ion-exchanging ligands are fixed in pores of a second size range spatially separated from the hydrophobic ligands. Similarly, EP 0665867 B1 describes a method for pore-size-selective chemical modification of porous materials wherein for example hydrophobic ligands are fixed in pores of a first size range, while cation-exchanging ligands are fixed in pores of a second size range spatially separated from the hydrophobic ligands. US 2012/0202976 A1 discloses a chromatographic separation medium in which both a first type of hydrophobic ligand and a second type of ion-exchanging ligand are bound to the chromatography matrix, the latter via so-called extenders. In these systems, the different functional groups are consequently present in different molecular chains and are spatially separated.
  • A drawback of known cation exchangers is that they can undergo binding only with substances having relatively low ionic strengths, so that the medium must often be diluted before adsorption. The known adsorption media therefore do not tolerate high salt concentrations in binding of substances, thus requiring an additional dilution step and large fluid volumes in correspondingly large-scale chromatography facilities.
  • In U.S. Pat. No. 8,877,904 B2, chromatography matrices are disclosed on which multimodal ligands with cation-exchanging and hydrophobic functional groups are fixed, wherein for example ligands are bound to the surfaces of a carrier material starting from phenylalanine or 6-aminohexanoic acid. U.S. Pat. No. 8,017,740 B2 discloses chromatography matrices based on porous molded bodies, preferably derived from inorganic hydroxy- or fluorapatites on which both hydrophobic and cation-exchanging ligands are fixed, wherein for example Capto™ MMC, a so-called “mixed mode” ligand, is mentioned. Chromatography matrices comparable to this Capto™ MMC ligand are also disclosed in US 2013/0109807 A1. The Capto™ MMC ligand comprises a 2-benzoylaminobutanoic acid residue, which is obtained by reaction of homocysteine thiolactone with benzoyl chloride and subsequent thiolactone opening. Binding of the Capto™ MMC ligand to the stationary phase then takes place via the thiol group by means of nucleophilic substitution or ring opening.
  • U.S. Pat. No. 6,852,230 B2 discloses chromatography matrices comprising ligands with cation-exchanging and hydrophobic groups, wherein the matrices allow a high recovery rate of bovine serum albumin at high salt concentrations. These multimodal systems are described in greater detail in the relevant publication, B.-L. Johansson et al., Journal of Chromatography A, 1016 (2003), 35-49, wherein ligands are immobilized on activated Sepharose 6 Fast Flow by means of two variants. In a multistep synthesis process, mercaptopropionic acid is first bound to the activated carrier. The acid functional group is then activated with dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS), and the resulting ester is finally reacted with an amino acid derivative in order to introduce a corresponding cation-exchanging functionality.
  • The result for the systems known in the prior art is that their production generally comprises complex steps, namely:
  • i) Bringing of a reactive group onto a chromatographic carrier and optimum activation thereof.
  • ii) Reaction of the modified carrier thus produced with a thiol compound containing an acid functional group.
  • iii) Activation of the acid functional group of the sold carrier with a suitable reagent (e.g. N-hydroxysuccinimide (NHS)) in the presence of dicyclohexylcarbodiimide (DCC)) in an organic solvent.
  • iv) Addition of an amino acid derivative that comprises residue R, suitable for producing a complete ligand that is bound to a carrier.
  • For example, a synthesis method for Capto™ MMC matrices of prior art comprises in step i) the reaction of e.g. Sepharose with allyl glycidyl ether and the subsequent activation of the resulting product with bromine, followed in step ii) by reaction with a thiolactone.
  • In this method, the reaction of the last step in particular does not take place completely, with the result that a product actually having two different ligands is always obtained, which contains a thioether linker containing an acid functional group and resulting from an unsuccessful reaction in step (iii) or (iv), and the desired end product. A chromatographic carrier composed of a mixture of two different ligands can cause multiple problems if it is used in a separation method. As the ratio of the various ligands can fluctuate from batch to batch, the chromatography media produced in this manner possess different properties depending on the batch, so that separation methods that have been developed are not reproducible when the batch is changed. Moreover, use of different separate ligands can result in the drawback of non-homogeneous distribution of the different ligands on the chromatography medium.
  • Another problem associated with the above-described conventional methods is that it is often impossible to obtain a sufficiently high ligand density, which is detrimental in particular to the binding capacity of small proteins. This problem can at least partially be solved using polymeric spacers, which are fixed on the surface of the chromatography matrix and via which additional ligands can be bound to the matrix.
  • The object of the invention is therefore to provide an adsorption medium that can be simply and reproducibly produced and should have a high binding capacity that can be selectively adjusted over a broad salt concentration range.
  • This object is achieved by the embodiments of the present invention characterized in the claims.
  • In particular, according to the invention, a multimodal adsorption medium is provided, in particular a multimodal chromatography medium, comprising a polymeric carrier material C to which multimodal ligands of the following structure -G-(CO2H)n are covalently bonded via an —X—(C═O) group:
  • Figure US20190105632A1-20190411-C00001
  • wherein X denotes —NR—, —O— or —S— and R denotes alkyl, alkenyl, aryl, heteroaryl or hydrogen, G denotes a group selected from the group composed of a branched or unbranched C2-20 alkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a substituted or unsubstituted C3-10 cycloalkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a branched or unbranched C2-20 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a substituted or unsubstituted C6-20 aryl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and a substituted or unsubstituted C4-20 heteroaryl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, wherein n is a whole number that is 1 or higher.
  • In a preferred embodiment of the multimodal adsorption medium, the G group is selected from the group composed of a branched or unbranched C4-20 alkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, and a branched or unbranched C3-20 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent.
  • Within the meaning of the present invention, the term “multimodal” is understood to mean that the ligands comprise two or more different functional groups, which thus undergo interactions with the target molecules based on different chemical mechanisms, so that the latter are bound to the adsorption medium. According to the invention, the multimodal adsorption medium or the multimodal ligands comprise at least cation-exchanging acidic groups and simultaneously hydrophobic groups. By selection of the hydrophobic G group, further functional groups can also be integrated that undergo further interactions with the target substances, such as thiophilic interactions, π-π-interactions, ion exchange interactions or hydrogen bridge bonds.
  • Preferably, the adsorption medium according to the invention comprises only one type of multimodal ligand, which means that only identical ligands of the above structure are bound to the polymeric carrier material. Because the multimodal ligand structure is produced using only one reagent, as will be described in further detail below, the ratio of carboxylic acid groups to G groups, which allow further interactions, remains constant on the adsorption medium according to the invention. For this reason, in contrast to a modification method with two different ligands or incomplete reactions, the result of the production process is always reproducible.
  • In a particularly preferred embodiment of the adsorption medium according to the invention, the G group is a hydrophobic group that can bind to the target substances via Van der Waals or π-π-interactions.
  • The production of the adsorption medium according to the invention is based on a novel modification protocol in which a polymeric carrier material with at least one —XH group, where X=—NR—, —O— or —S— and R=alkyl, alkenyl, aryl, heteroaryl or H, is used as a starting material that is reactive with carboxylic acid derivatives while forming a covalent bond —X—(C═O). The -XH groups are reacted with a ligand precursor so that the resulting ligands are bound to the carrier material via a covalent bond —X—(C═O) and each have at least one free carboxylic acid group. Preferably, the —XH groups are functionalized with carboxylic anhydrides, as can be illustrated by means of the following diagram:
  • Figure US20190105632A1-20190411-C00002
  • wherein X, G and n are as defined above. In the G groups, which themselves have no carboxylic acid groups —COOH as substituents, the only carboxylic acid group present in the ligand G-(CO2H)n results from the ring-opening reaction of the carboxylic anhydride with the nucleophilic group —XH, and n is equal to 1.
  • In the G groups, which themselves have at least one carboxylic acid group —COOH as a substituent, n is greater than or equal to 2, wherein one of the carboxylic acid groups results from the ring-opening reaction of the carboxylic anhydride with the nucleophilic group —XH.
  • Particularly preferably, the G groups are hydrophobic groups.
  • According to an embodiment of the present invention, the group X—(C═O) is —NH—(C═O). This means that the group XH is a primary amino group, so that the resulting -G-(CO2H)n ligands are bound to the carrier material via a secondary amide bond —NH—(C═O).
  • According to the invention, any material that is suitable for chromatographic processes as a carrier material of the stationary phase is suitable as a polymeric carrier material. There are no particular limitations on the polymeric carrier material, which can also be referred to a chromatography matrix, provided that is has on its surface —XH groups, where X=—NR—, —O— or —S— and R=alkyl, alkenyl, aryl, heteroaryl or H, to which the multimodal ligands can bind or be bound. These groups can already be present on the surface of the carrier material or can be introduced in a suitable manner. According to the invention, therefore, one can either use a polymeric carrier material that originally comprises functional groups (such as polyester fibers), or a polymeric carrier material into which suitable functional groups can be introduced by means of a surface modification known to the person skilled in the art. In this connection, examples of known surface modifications include substitution and addition reactions, reaction with functional epoxides, activated acids or active esters, activation by means of plasma treatment, e-beam (electron beam treatment), gamma irradiation, coating, hydrolysis, aminolysis, oxidation, reduction, reaction with functional carbenes and/or nitrenes, etc.
  • According to an embodiment of the present invention, the polymeric carrier material comprises at least one material selected from the group composed of natural or synthetic fibers, (polymer) membranes, porous, polymeric monolithic molded bodies, polymer gels, films, nonwovens and wovens.
  • Examples of natural or synthetic fibers that can be used as a material for the polymeric carrier material of the adsorption medium according to the invention include polyester fibers (such as “Winged Fibers” from the firm Allasso Industries, composed of polyethylene terephthalate (PET) or “4DG™ Fibers” from the firm Fiber Innovation Technology, composed of polyethylene terephthalate) and fibers comprising cellulose, cellulose derivatives, Nylon, polyethylene (PE), polyamide (PA), sulfone (PES), polyvinylidene difluoride (PVDF), polytetrafluoroethylene (PTFE), polypropylene (PP) and polysulfone as a structuring component, wherein the materials can be used individually or in corresponding combinations. Preferably, polyester fibers, in particular fibers composed of polyethylene terephthalate or polybutylene terephthalate (PBT) and polyamide fibers are used.
  • Examples of (polymer) membranes that can be used as a material for the polymeric carrier material of the adsorption medium according to the invention include membranes comprising cellulose, cellulose derivatives, Nylon, polyester, polyethylene (PE), polyamide (PA), sulfone (PES), polyvinylidene difluoride (PVDF), polytetrafluoroethylene (PTFE), polypropylene (PP) and polysulfone as a structuring component, wherein the materials can be used individually or in corresponding combinations. Preferably, membranes based on cellulose and cellulose derivatives, in particular cellulose hydrate membranes, or polyethylene membranes are used.
  • In this case, depending on the solution to be purified, known (polymer) membranes with different pore sizes can be used as starting membranes. According to the invention, for example, a cellulose ester membrane with a pore size of 0.1 to 20 μm, preferably 0.5 to 15 μm and more preferably 1 to 10 μm can be used as a starting membrane that can be saponified and optionally crosslinked by common methods known in the art. The pore size is ordinarily determined by means of a capillary flow porometry test using a Coulter Capillary Flow Porometer 6.0 and the CAPWIN software systems from the firm Porous Materials Inc.
  • Examples of polymer gels that can be used as a material for the polymeric carrier material of the adsorption medium according to the invention include agarose, dextran, cellulose, polymethacrylates, polyvinyl ethers, polyacrylamides, polystyrene-divinylbenzene copolymers, silica dextran, agarose acrylamides and dextran acrylamides.
  • Examples of films and wovens include films and wovens composed of the above-mentioned polymer materials that can be used for the (polymer) membranes. Examples of nonwovens that can be used as a material for the polymeric carrier material of the adsorption medium according to the invention include polyester/polypropylene/polyimide nonwovens (such as “Pluratexx 2317 S” from the firm Freudenberg) and the above polymer materials that can be used for the (polymer) membranes.
  • In the adsorption medium according to the invention, polymeric spacer elements are preferably bound to the surface of the carrier material, wherein the binding between the surface of the carrier material and the spacer elements preferably takes place or has taken place via the functional groups (originally present or produced by surface modification) of the chromatography matrix. By means of the polymeric spacer elements, which in the adsorption medium according to the invention serve as binding units between the chromatography matrix and the multimodal ligands, it is advantageously possible to obtain high ligand densities, which allow high binding capacity for small proteins, such as lysozyme, and high salt tolerance.
  • In this manner, because of the high ligand densities and the multimodal interactions, salt-tolerant media can be produced that show high protein binding capacity even at an elevated salt concentration.
  • Within the meaning of the present invention, the term “polymeric spacer elements” (abbreviated as “spacers”) is understood to refer to polymers that can bind the internal and external substances of the chromatography matrix to the multimodal ligands. There are no particular limitations on the polymeric spacer elements of the present invention, provided that they can be (preferably) chemically, but also physically bound to the surface of the chromatography matrix. In general, the polymeric spacer elements can be selected from the group composed of polyamines, polyalcohols, polythiols, poly(meth)acrylates, poly(meth)acrylamides, poly-N-alkyl(meth)acrylamides and copolymers composed of two or more of the above polymers, copolymers composed of one or more of the above polymers and polymers that do not carry any nucleophilic functional groups.
  • According to a preferred embodiment, the polymeric spacer elements are polyamines with at least one primary amino group, as this obviates the need for further functionalization of the surface of the polymeric carrier material for the further reaction. By means of the primary amino group, an amide bond to the multifunctional ligands is later formed as an X—(C═O) bond.
  • Examples of polyamines within the meaning of the present invention include polyallylamine, polyvinylamine, polyethyleneimine (branched or linear), poly(4-aminostyrene), chitosan, poly-L-lysine, poly(N-methylvinylamine), poly(N-methylallylamine) and poly(oleylamine).
  • In this case, all suitable polyamines can be used. Preferred, however, are polyamines with a molar mass of more than 500 g/mol, in particular 800 to 1,000,000 g/mol. The polymeric spacer elements particularly preferably have a molar mass of 3,000 to 150,000 g/mol, and more preferably 10,000 to 100,000 g/mol.
  • In a particularly preferred embodiment, the polymeric spacer elements are selected from the group of polyallylamines with a molar mass of 3,000 to 150,000 g/mol, and more preferably 10,000 to 100.000 g/mol. In a further preferred embodiment, the polymeric spacer elements are selected from the group of polyvinylamines with a molar mass of 5,000 to 500,000 g/mol, and more preferably 10,000 to 100,000 g/mol.
  • According to the invention, polyallylamine, polyvinylamine and/or polyethyleneimine are particularly preferred.
  • In the adsorption medium according to the invention, the polymeric spacer elements, if present, are bound both to the surface of the chromatography matrix and to the multimodal ligands. Binding to the multimodal ligands takes place via covalent bonding of the —XH groups (of either the chromatography matrix or the spacer elements) to the carbonyl group of a carboxylic acid derivative as a precursor stage with formation of a —X—(C═O) bond, where X=—NR—, —O— or —S— and R=alkyl, alkenyl, aryl, heteroaryl or H. In a particularly preferred embodiment, binding to the multimodal ligands takes place via a secondary amide bond, i.e. via a bond of the type —NH—(C═O).
  • The ligand density of the multimodal ligands of the adsorption medium according to the invention is preferably at least 25 μmol/ml, preferably 100 μmol/ml, more preferably at least 150 μmol/ml and particularly preferably at least 250 μmol/ml. The ligand density is determined according to the present invention by titration, with details on this being given under method M2 below.
  • In a particularly preferred embodiment of a polyamine functionalized adsorption medium, the amino group density, which is the ligand density of the polyamine functionalized adsorption medium, before the multimodal ligands are immobilized is at least 25 μmol/ml, preferably at least 150 μmol/ml, more preferably at least 200 μmol/ml and particularly preferably at least 400 μmol/ml. The amino group density is determined according to the present invention by titration, with details on this being given under method M1 below.
  • According to the present invention, the multimodal ligands have the following structure:
  • Figure US20190105632A1-20190411-C00003
  • wherein G is preferably selected from the group composed of a branched or unbranched C2-10 alkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a branched or unbranched C3-10 cycloalkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a branched or unbranched C2-10 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one aromatic substituent, a substituted or unsubstituted C6-14 aryl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and a substituted or unsubstituted C4-14 heteroaryl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens. The multimodal ligands according to the invention have at least one carboxylic acid group that is bonded to the group G. There is no particular upper limit on the number of carboxylic acid groups, but there should preferably be 5 (n is a whole number from 1 to 5), more preferably 4 (n is a whole number from 1 to 4), and particularly preferably 3 (n is a whole number from 1 to 3).
  • In a preferred embodiment of the adsorption medium, the multimodal ligands have the following structure:
  • Figure US20190105632A1-20190411-C00004
  • wherein G is a substituted or unsubstituted C2-3 alkyl group, a substituted or unsubstituted C3-10 cycloalkyl group, a substituted or unsubstituted C2-3 alkenyl group, a substituted or unsubstituted C6 aryl group or a substituted or unsubstituted five-membered or six-membered heteroaromatic group, wherein the substituents are selected from the group composed of a branched or unbranched alkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent, a branched or unbranched C2-10 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent, a C6-20 aryl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, or carboxylic anhydride substituent, a C4-20 heteroaryl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, or carboxylic anhydride substituent, and a hydroxy, thiol or amino group.
  • In a particularly preferred embodiment of the adsorption medium. G is a branched or unbranched C3-10 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent.
  • In a particularly preferred embodiment, the multimodal ligands have one of the following structures:
  • Figure US20190105632A1-20190411-C00005
  • wherein each R′ respectively is selected from the group composed of hydrogen, F, CI, Br, I, —OH, —NH2, SH, CO2H, a branched or unbranched C1-10 alkyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent, a branched or unbranched C2-10 alkenyl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent, a C6-20 aryl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, or carboxylic anhydride substituent, and a C4-20 heteroaryl group that can contain one or a plurality of heteroatoms selected from O, S, N and halogens, and optionally at least one hydroxyl, carbonyl, carboxyl, or carboxylic anhydride substituent, wherein A is a C6 aryl group or a five-membered or six-membered heteroaromatic group, and wherein m is a whole number from 1 to 3. The multimodal ligand particularly preferably has no further amide bond other than the amide bond via which it can be bonded to the polymeric carrier material.
  • The following structures (1) through (15) can be mentioned as particularly preferred ligands:
  • Figure US20190105632A1-20190411-C00006
    Figure US20190105632A1-20190411-C00007
  • According to the present invention, a multimodal ligand of the following structure is preferably not included in the above general structures for the ligand G-(CO2H)n:
  • Figure US20190105632A1-20190411-C00008
  • Moreover, the present invention provides a method for the production of the adsorption medium according to the invention. The above remarks with respect to the adsorption medium according to the invention therefore also apply to the production method according to the invention.
  • The method according to the invention for the production of an adsorption medium comprises the following steps:
  • (a) provision of a polymeric carrier material C, wherein the carrier material C has at least one —XH group that is reactive with carboxylic acid derivatives while forming a covalent bond —X—(C═O), where X denotes —NR—, —O— or —S— and R=alkyl, alkenyl, aryl, heteroaryl or hydrogen; and
  • (b) reaction of the at least one —XH group of the polymeric carrier material C with a carboxylic acid derivative as a precursor of a multimodal ligand such that the covalent bond —X—(C═O) is formed, via which the multimodal ligand is bonded to the carrier material.
  • In a particularly preferred embodiment of the method according to the invention, the covalent bond —X—(C═O) is a secondary amide bond that is formed by a reaction of a carboxylic anhydride as a precursor of the ligand and amine groups of the carrier material, and the multimodal ligand has at least one free carboxylic acid group.
  • According to a preferred embodiment, in which the multimodal ligands are bound to the surface of the carrier material via polymeric spacer elements, the polymeric spacer elements are immobilized on the surface of the chromatography matrix before step (b), and the multimodal ligands are then immobilized according to step (b) on the —XH-groups of the spacer elements with formation of an —X—(C═O)13 bond, particularly preferably a secondary amide bond.
  • In step (a) of the method according to the invention, a polymeric carrier material as described above is prepared that originally comprises functional groups (such as polyester fibers) or into which functional groups are introduced by surface modification. Preferably, in a further step (a*) of the method according to the invention, polymeric spacer elements are immobilized on the surface of the chromatography matrix, i.e. the spacer elements are (preferably) chemically, or also physically, bound to the surface of the chromatography matrix via their functional groups. There are no particular limitations on the step of immobilization according to the invention, and all immobilization methods known to the person skilled in the art, such as substitution or addition reactions, epoxide opening, aminolysis, amide coupling reactions, esterification, reductive amination and insertion reactions, may be used.
  • In step (b) of the method according to the invention, the at least one —XH-group, which is optionally immobilized on the carrier material by means of spacer elements, is reacted with a precursor of the multimodal ligands such that a —X—(C═O) bond is formed via which the multimodal ligands are bonded to the carrier material. The —X—(C═O) bond is preferably a secondary amide bond.
  • According to a preferred embodiment of the present invention, the secondary amide group is formed by reaction of a carboxylic anhydride with amino groups of the carrier material. This means that the amino groups are preferably functionalized with carboxylic anhydrides, as can be illustrated by means of the following diagram:
  • Figure US20190105632A1-20190411-C00009
  • wherein G and n are as defined above and wherein —XH═NH2.
  • In the G groups which themselves have no carboxylic acid groups —COOH as substituents, the only carboxylic acid group present in the ligand G-(CO2H)n results from the ring-opening reaction of the carboxylic anhydride with the nucleophilic group —XH, and n is equal to 1.
  • In the G groups which themselves have at least one carboxylic acid group —COOH as a substituent, n is greater than or equal to 2, wherein one of the carboxylic acid groups results from the ring-opening reaction of the carboxylic anhydride with the nucleophilic group —XH.
  • According to the invention, there are so particular limitations on the carboxylic anhydride, provided that multimodal ligands of the above structure can be obtained. Examples of suitable carboxylic anhydrides include succinic anhydride, glutaric anhydride, malic anhydride (D- and/or L-isomer), itaconic anhydride, maleic acid anhydride, phthalic anhydride, 1,8-naphthalic anhydride, 1,2,4-benzenetricarboxylic anhydride, quinolinic anhydride, trimellitic anhydride, pyromellitic anhydride, pyridine-3,4-dicarboxylic anhydride, (S)-N-acetyl-L-aspartic anhydride (N-(2,5-dioxotetrahydrofuran-3-yl)acetamide), N-benzoylaspartic anhydride, 3-(p-tolylthio)-succinic anhydride, 4-((2,5-dioxotetrahydrofuran-3-yl)thio)benzoic acid, N-trifluoroacetyl-L-aspartic anhydride (N-(2,5-dioxotetrahydrofuran-3-yl)-2,2,2-trifluoroacetamide), cis-1,2,3,6-tetrahydrophthalic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 2,3-thiophenedicarboxylic anhydride, 3,4-thiophenedicarboxylic anhydride, tetrafluorophthalic anhydride, hexafluoroglutaric anhydride, adipic anhydride, derivatives thereof or mixtures thereof, wherein preferably only one of these substances is used.
  • As solvents, dimethyl sulfoxide, 2-pyrrolidone, dimethylformamide, dimethylacetamide, tetrahydrofuran or 1,4-dioxane, or other polar, preferably aprotic solvents may be used.
  • Moreover, the present invention provides use of the adsorption medium according to the invention or an adsorption medium produced according to the method of the invention for the purification of biomolecules. Examples of suitable biomolecules to be purified include proteins, such as antibodies, peptides, amino acids, nucleic acids, virus-like particles, viruses and/or endotoxins.
  • Because of the polymeric spacer elements, which serve in the adsorption medium according to the invention as connecting units between the chromatography matrix and the multimodal ligands, it is advantageously possible to achieve high densities of ligands having a high binding capacity in particular for small proteins, such as lysozyme. By means of the high ligand densities and the multimodal interactions, salt-tolerant adsorption media can be produced using the method according to the invention that have high protein binding capacity even at an elevated salt concentration of up to 500 mM (NaCl concentration). By selecting the anhydride, the maximum binding capacity of the cation exchange adsorption media can be selectively adjusted over a broad salt concentration range. Because the multimodal ligand structure is produced using only one reagent, the ratio of carboxylic acid groups to the groups that allow further interactions remains constant on the adsorption medium. For this reason, compared to a modification method with two different ligands, each of which is fixed separately on the adsorption medium, or incomplete reactions, the result of the production process is always reproducible. The adsorption medium according to the invention is therefore outstandingly suited for the purification of biomolecules, for which there is significant industrial demand.
  • The present invention will be explained in greater detail by means of the following non-limitative examples, wherein the diagrams shown in FIGS. 1 through 3 summarize the binding capacities of the membranes obtained.
  • EXAMPLES Methods M1: Determination of Ligand/Charge Density of Amine-Functionalized Adsorption Media
  • Three membrane layers were clamped into a membrane holder. The membrane stack had a membrane area of 15 cm2, an inflow area of 5 cm2 and a bed height (thickness of the membrane stack) of 750 μm in the membrane holder. The membranes in the membrane holder were flooded with 20 mM TRIS/HCl buffer at pH=7.4 in order to displace the air and then connected to an Äkta Explorer 100 FPLC unit from the firm General Electric Health Care. The membranes or the membrane stack were then tested for charge density using a test program comprising four steps.
  • The four steps of the test program are given below:
  • 1. conditioning of the membrane with 6 ml of 1 M NaCl solution in 20 mM TRIS/HCl at pH=7.4
  • 2. regeneration of the membrane with 6 ml of a 1 M solution of NaOH in RO water
  • 3. washing of the membrane with 100 ml of RO water and
  • 4. loading of the membrane with 135 ml of 10 mM HCl.
  • All of the steps were carried out with a flow rate of 10 mL/min. In all of the steps, conductivity was measured in the detector behind the membrane unit. The area above the curve thus recorded was integrated after subtracting the dead volume, and the charge density was calculated therefrom.
  • M2: Determination of Ligand/Charge Density of Cation Exchange Adsorption Media
  • Three membrane layers were clamped into a membrane holder. The membrane stack had a membrane area of 15 cm2, an inflow area of 5 cm2 and a bed height (thickness of the membrane stack) of 750 μm in the membrane holder. The membranes in the membrane holder were flooded with 20 mM KPi-Puffer at pH=7 in order to displace the air and then connected to an Äkta Explorer 100 FPLC unit from the firm General Electric Health Care. The membranes or the membrane stack were then tested for charge density using a test program comprising four steps. The four steps of the test program are given below:
  • 1. conditioning of the membrane with 6 ml of 1 M NaCl solution in 20 mM KPi at pH=7.0
  • 2. regeneration of the membrane with 6 ml of a 1 M solution of HCl in RO water
  • 3. washing of the membrane with 88 ml of RO water and
  • 4. loading of the membrane with 135 ml of 10 mM NaOH.
  • All of the steps were carried out with a flow rate of 10 mL/min. In all of the steps, conductivity was measured in the detector behind the membrane unit. The area above the curve thus recorded was integrated after subtracting the dead volume, and the charge density was calculated therefrom.
  • M3: Determination of Binding Capacity for Lysozyme of Modified Membranes by Means of Breakthrough Curve
  • Three membrane layers were clamped into a membrane holder. The membrane stack had a membrane area of 15 cm2, an inflow area of 5 cm2 and a bed height (thickness of the membrane stack) of 900 μm in the membrane holder. The membranes in the membrane holder were flooded with 10 mM KR-Puffer at pH=7 in order to displace the air and then connected to an Äkta Explorer 100 FPLC unit from the firm General Electric Health Care. The membranes or the membrane stack were then tested with a test program comprising three steps with respect to lysozyme-binding capacity. The three steps of the test program are given below:
  • 1. conditioning of the membrane with 20 ml of 1 M NaCl solution in 10 mM KPi at pH=7.0
  • 2. equilibration of the membrane with 20 ml of binding buffer (10 mM KPi, pH=7.0)
  • 3. loading of the membrane with 250 ml of lysozyme solution (0.20% lysozyme in binding buffer).
  • All of the steps were carried out with a flow rate of 10 mL/min. In all of the steps, absorption at 280 nm was measured in the detector behind the membrane unit. The area above the curve thus recorded was integrated after subtracting the dead volume, and the amount of bound lysozyme was calculated therefrom.
  • M4: Determination of Binding Capacity for γ-Globulin of Modified Membranes by Means of Breakthrough Curve
  • Three membrane layers were clamped into a membrane holder. The membrane stack had a membrane area of 15 cm2, an inflow area of 5 cm2 and a bed height (thickness of the membrane stack) of 900 μm in the membrane holder. The membranes in the membrane holder were flooded with 20 mM NaAc solution at pH=5 in order to displace the air and then connected to an Äkta Explorer 100 FPLC unit from the firm General Electric Health Care. The membranes or the membrane stack were then tested with a test program comprising three steps with respect to γ-globulin-binding capacity. The three steps of the test program are given below:
  • 1. conditioning of the membrane with 20 ml of 1 M NaCl solution in 20 mM NaAc at pH=5.0
  • 2. equilibration of the membrane with 20 ml of binding buffer (25 mM NaCl in 20 mM NaAc at pH=5.0)
  • 3. loading of the membrane with 250 ml of 1 mg/mL γ-globulin solution in binding buffer.
  • All of the steps were carried out with a flow rate of 10 mL/min. In all of the steps, absorption at 280 nm was measured in the detector behind the membrane unit. The area above the curve thus recorded was integrated after subtracting the dead volume, and the amount of bound y-globulin was calculated therefrom. The measurement was repeated using a fresh membrane sample with 150 mM NaCl and 300 mM NaCl.
  • Modification Protocol for the Immobilization of Carboxylic Anhydrides on Amine-Modified Starting Matrices Modification of Cellulose Hydrate Membranes
  • 1. Polyamine Immobilization
  • 1a) Polyallylamine (PAA)
  • The spacer immobilization is based on a known protocol, which was described in DE 10 2008055 821 A1 (examples 21 and 22). In this case, spacers with a molar mass of 15,000 g/mol to 150,000 g/mol are used. In a typical reaction, the cellulose acetate (CA) membrane (3 μm pore size, Sartorius Stedim Biotech GmbH) was saponified in a 0.6 M aqueous sodium hydroxide solution (4 g/cm2) for 30 min at room temperature and then rinsed three times for 10 min in a 0.25 M sodium hydroxide solution (0.5 g/cm2), The membrane obtained was treated for 30 min with a solution composed of 15% 1,4-butanediol diglycidyl ether and 85% 0.25 M aqueous sodium hydroxide solution (0.5 g/cm2) and then stored for 18 h in a sealed container at room temperature. Finally, rinsing was carried out for 30 min with running water.
  • The membrane thus obtained was treated for 1 h with a 20% solution of polyallylamine in RCS water (1 g/cm2) at 50° C. The membrane was then treated for 5 min at room temperature with 5% sulfuric acid solution and finally rinsed for 10 min with running water.
  • The amino group density on the membrane was determined by titration.
  • Carrier material Amino group density
    PAA-modified cellulose hydrate membranes 450-550 μmol/mL
  • 1b) Polyethyleneimine (PEI)
  • Spacer immobilization is carried out based on a known protocol, which was described in DE 102008055 821 A1 (examples 15, 16 and 17). In a typical reaction, the CA membrane (3 pm pore size, Sartorius Stedim Biotech GmbH) was saponified in a 0.6 M aqueous sodium hydroxide solution (4 g/cm2) for 30 min at room temperature and then rinsed three times for 10 min in a 0.25 M sodium hydroxide solution (0.5 g/cm2). The membrane obtained was treated for 30 min with a solution composed of 15% 1,4-butanediol diglycidyl ether and 85% 0.25 M aqueous sodium hydroxide solution (0.5 g/cm2) and then stored for 18 h in a sealed container at room temperature. Finally, rinsing was carried out for 30 min with running water. The membrane thus obtained was treated for 2 h with a 30% solution of Lupasol WF (polyethyleneimine from BASF AG, molecular mass 25000 g/mol) in RO water (1 g/cm2) at 50° C. The membrane was then rinsed for 30 min with running water, treated for 10 min with 5% sulfuric acid solution, and finally rinsed for 10 min with running water.
  • The amino group density on the membrane was determined by titration.
  • Carrier material Amino group density
    PEI-modified cellulose hydrate membranes 600-650 μmol/mL
  • 2. Ligand Immobilization
  • In a typical reaction, 16 g of carboxylic anhydride was dissolved in 64 g of DMSO (20 wt %) and the solution was heated to 60° C. The PAA-modified cellulose hydrate membrane was placed in the reaction solution (0.5 g/cm2) and agitated at 60° C. for 1 h. The reaction solution was then filtered off, and the membrane was washed with ethanol (0.5 g/cm2) and a large excess of RO water.
  • Ligand Structures:
  • The cation exchangers listed here were produced according to the above-described method, wherein the following carboxylic anhydrides were used. The results are shown in Tables 1 through 3 and FIGS. 1 through 3 below.
  • Example Anhydride
     1 Succinic anhydride
     2 Glutaric anhydride
     3 Malic anhydride
     4 Itaconic anhydride
     5 Maleic anhydride
     6 Phthalic anhydride
     7 Quinolinic anhydride
     8 Trimellitic anhydride
     9 Pyromellitic anhydride
    10 4((2,5-dioxotetrahydrofuran-3-yl)thio)benzoic acid
    11 N-(2,5-dioxotetrahydrofuran-3-yl)acetamide
    12 N-(2,5-dioxotetrahydrofuran-3-yl)-2,2,2-trifluoroacetamide
    13 Maleic anhydride
    14 Maleic anhydride
    15 Succinic anhydride
    16 Maleic anhydride
    C-1* N-benzoyl-L-aspartic anhydride
    *Comparison example 1
  • As a comparison, a strong cation exchanger-membrane adsorber known in the prior art, Sartobind S (strong cation exchanger of cellulose hydrate with sulfonic acid ligands, Sartorius Stedim Biotech GmbH), was tested. The results are marked with “Ref” in Table 4 and FIGS. 1 through 3 below.
  • Moreover, a reaction of N-benzoyl-L-aspartic anhydride with the PAA-modified cellulose hydrate membrane (molar mass of PAA: 15,000 g/mol) was carried out as comparison example 1, thus obtaining a chromatography matrix with a 2-(benzoylamino)butanoic acid ligand in order to recreate the Capto™ MMC ligands known from prior art.
  • TABLE 1
    Polyallylamine spacers (M = 15,000 g/mol)
    Ligand Ligand
    Capacity, Capacity, Capacity, density, density,
    globulin globulin globulin polyamine- anhydride-
    Capacity, 25 mM 150 mM 300 mM functionalized functionalized
    lysozyme NaCl NaCl NaCl membrane membrane
    Polyamine Structure [mg/mL] M3 [mg/mL] M4 [mg/mL] M4 [mg/mL] M4 [μmol/mL] M1 [μmol/mL] M2
     1 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00010
    137.1 60.0 20.0 0.3 494 431
     2 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00011
    191.7 97.2 30.6 0.8 494 438
     3 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00012
    87.5 31.3 21.9 9.4 494 290
     4 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00013
    94.3 22.9 31.4 14.3 550 574
     5 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00014
    123.5 23.5 42.4 23.5 494 441
     6 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00015
    123.7 15.0 15.7 22.0 524 525
     7 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00016
    81.2 29.7 37.1 19.4 494 425
     8 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00017
    61.1 16.0 24.5 25.3 494 760
     9 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00018
    83.3 16.7 30.6 22.2 494 833
    10 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00019
    76.8 13.0 13.3 18.3 546 640
    11 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00020
    111.4 57.1 14.3 16.9 546 437
    12 PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00021
    83.4 39.1 40.7 5.4 546 534
    C-1* PAA (15,000 g/mol)
    Figure US20190105632A1-20190411-C00022
    55.3 15.3 17.1 24.0 494 473
    *Comparison example 1
  • TABLE 2
    Polyallylamine spacers (M = 100,000 g/mol and 150,000 g/mol)
    Ligand density, Ligand density,
    Capacity, Capacity, Capacity, polyamine- anhydride-
    Capacity, globulin globulin globulin functionalized functionalized
    lysozyme 25 mM NaCl 150 mM NaCl 300 mM NaCl membrane membrane
    Polyamine Structure [mg/mL] M3 [mg/mL] M4 [mg/mL] M4 [mg/mL] M4 [μmol/mL] M1 [μmol/mL] M2
    13 PAA (150,000 g/mol)
    Figure US20190105632A1-20190411-C00023
    150.0 26.7 56.7 33.3 843 506
    14 PAA (100,000 g/mol)
    Figure US20190105632A1-20190411-C00024
    120.0 31.4 54.3 25.7 667 345
  • TABLE 3
    Polyethyleneamine spacers (M = 25,000 g/mol)
    Ligand density, Ligand density,
    Capacity, Capacity, Capacity, polyethyleneimin anhydride-
    Capacity, globulin globulin globulin e-functionalized functionalized
    lysozyme 25 mM NaCl 150 mM NaCl 300 mM NaCl membrane membrane
    Polyamine Structure [mg/mL] M3 [mg/mL] M4 [mg/mL] M4 [mg/mL] M4 [μmol/mL] M1 [μmol/mL] M2
    15 PEI (25,000 g/mol)
    Figure US20190105632A1-20190411-C00025
    90.7 6.7 3.3 1.1 650 373
    16 PEI (25,000 g/mol)
    Figure US20190105632A1-20190411-C00026
    61.9 35.5 9.7 2.1 650 548
  • TABLE 4
    Membrane adsorber Sartobind S (strong cation exchanger of cellulose
    hydrate with sulfonic acid ligands, Sartorius Stedim Biotech GmbH)
    Capacity, Capacity, Capacity,
    Capacity, globulin globulin globulin Ligand
    lysozyme 25 mM NaCl 150 mM NaCl 300 mM NaCl density,
    Structure [mg/mL]M3 [mg/mL]M4 [mg/mL]M4 [mg/mL]M4 [μmol/mL]M2
    Ref Sartobind S 46 37 14 2 96
  • Modification of Polyethylene Membranes
  • 1. Ligand Immobilization
  • The polyallylamine-functionalized polyethylene membrane Chromasorb (0.65 μm pore size, EMD Millipore) was used as a starting material for ligand immobilization. In a typical reaction, 16 g of carboxylic anhydride was dissolved in 64 g of DMSO (20 wt %) and the solution was heated to 60° C. The polyallylamine-functionalized polyethylene membrane was placed in the reaction solution (0.5 g/cm2) and agitated at 60° C. for 1 h. The reaction solution was then filtered off, and the membrane was washed with ethanol (0.5 g/cm2) and a large excess of RO water.
  • The cation exchangers listed here were produced according to the above-described method, wherein the following carboxylic anhydrides were used. The results are shown in Table 5 below.
  • Example Anhydride
    17 Succinic anhydride
    18 Maleic anhydride 20
  • TABLE 5
    Ligand density, Ligand density,
    Capacity, Capacity, Capacity, polyamine- anhydride-
    Capacity, globulin globulin globulin functionalized functionalized
    lysozyme 25 mM NaCl 150 mM NaCl 300 mM NaCl membrane membrane
    Structure [mg/mL] M3 [mg/mL] M4 [mg/mL] M4 [mg/mL] M4 [μmol/mL] M1 [μmol/mL] M2
    17
    Figure US20190105632A1-20190411-C00027
    195.8 132.5 58.3 3.3 858 533
    18
    Figure US20190105632A1-20190411-C00028
    141.7 47.5 71.7 33.3 858 500
  • Evaluation of Results
  • The results are summarized in FIGS. 1 through 3. As shown in FIG. 1, compared to the membrane obtained in comparison example 1, the membranes according to the invention with the multimodal ligands surprisingly show significantly higher binding capacity to small molecules, such as lysozyme, at comparable ligand density. The same applies for the strong cation exchanger-membrane adsorber Sartobind S known in the prior art.
  • In addition, all of the examples show favorable binding properties for larger molecules, such as globulin, over a wide salt range (25 mM to 300 mM NaCl). In order to better describe this binding capacity, a mean binding capacity is defined for globulin BC (globulin):
  • BC _ ( globulin ) = BC ( globulin , 25 mM NaCl ) + BC ( globulin , 150 mM NaCl ) + BC ( globulin , 300 mM NaCl ) 3
  • The results are summarized in FIG. 2.
  • In order to allow determination of a result with respect to the performance of the individual examples for numerous applications, the binding capacity for both small molecules (lysozyme) and large molecules (globulin) is taken into account below. For this purpose, a binding indicator BC (total) is defined:
  • BC _ ( total ) = BC ( lysozyme ) + BC _ ( globulin ) 2
  • The results are summarized in FIG. 3. Surprisingly, the membranes according to the invention show a significantly higher binding indicator BC (total) compared to the membrane obtained in comparison example 1. The same applies for the strong cation exchanger-membrane adsorber Sartobind S known in the prior art.

Claims (19)

1. A multimodal adsorption medium, comprising a polymeric carrier material C to which multimodal ligands of the following structure -G-(CO2H)n are covalently bonded via an —X—(C═O) group,
Figure US20190105632A1-20190411-C00029
where X denotes —NR—, —O— or —S— and R denotes alkyl, alkenyl, aryl, heteroaryl or hydrogen, G denotes a group selected from the group composed of a branched or unbranched C2-20 alkyl group, a substituted or unsubstituted C3-10 cycloalkyl group, a branched or unbranched C2-20 alkenyl group, a substituted or unsubstituted C6-20 aryl group, and a substituted or unsubstituted C4-20 heteroaryl group, wherein n is a whole number that is 1 or higher.
2. The multimodal adsorption medium as claimed in claim 1, wherein the —X—(C═O) group is —NH—(C═O),
3. The multimodal adsorption medium as claimed in claim 1, wherein the polymeric carrier material C comprises at least one material selected from the group composed of natural or synthetic fibers, (polymer) membranes, porous, polymeric monolithic molded bodies, polymer gels, films, nonwovens and wovens.
4. The multimodal adsorption medium as claimed in claim 1, wherein the multimodal ligands are bound to the surface of the carrier material C via polymeric spacer elements.
5. The multimodal adsorption medium as claimed in claim 4, wherein the polymeric spacer elements are polyamines with at least one primary amino group, which as an X—(C═O) bond forms an amide bond with the multimodal ligands,
6. The multimodal adsorption medium of claim 1, wherein the G group is a branched or unbranched C4-20 alkyl group or a branched or unbranched C3-20 alkenyl group.
7. The multimodal adsorption medium of claim 1, wherein the multimodal ligands have the following structure:
Figure US20190105632A1-20190411-C00030
wherein G is a substituted or unsubstituted C2-3 alkyl group, a substituted or unsubstituted C3-10 cycloalkyl group, a substituted or unsubstituted C2-3 alkenyl group, a substituted or unsubstituted C6 aryl group or a substituted or unsubstituted five-membered or six-membered heteroaromatic group, wherein the substituents are selected from the group composed of a branched or unbranched C1-10 alkyl group, a branched or unbranched C2-10 alkenyl group, a C6-20 aryl group, and a C4-20 heteroaryl group.
8. The multimodal adsorption medium as claimed in claim 7, wherein G denotes a branched or unbranched C3-10 alkenyl group.
9. The multimodal adsorption medium of claim 1, wherein the multimodal ligands have one of the following structures:
Figure US20190105632A1-20190411-C00031
wherein R′ is selected respectively from the group composed of hydrogen, F, Cl, Br, I, —OH, —NH2, SH, CO2H, a branched or unbranched C1-10 alkyl group, a branched or unbranched C2-10 alkenyl group, a C6-20 aryl group, and a C4-20 heteroaryl group, wherein A is a C6 aryl group or a five-membered or six-membered heteroaromatic group, and wherein m is a whole number from 1 to 3.
10. A method for producing an adsorption medium as claimed in claim 1, comprising the following steps:
(a) providing a polymeric carrier material C, wherein the carrier material C has at least one —XH group that is reactive with carboxylic acid derivatives while forming a covalent bond —X—(C═O), where X denotes —NR—, —O— or —S— and R denotes alkyl, alkenyl, aryl, heteroaryl or hydrogen; and
(b) reacting the at least one —XH group of the polymeric carrier material C with a carboxylic acid derivative as a precursor of a multimodal ligand such that the covalent bond —X—(C═O) is formed via which the multimodal ligand is bonded to the carrier material C.
11. The method as claimed in claim 10, wherein the covalent bond —X—(C═O) is a secondary amide bond that is formed by reacting a carboxylic anhydride as a precursor of the ligand and amine groups of the carrier material C, and wherein the multimodal ligand has at least one free carboxylic acid group.
12. Use of the multimodal adsorption medium of claim 1 or an adsorption medium produced by the method as claimed in claim 10 for the purification of biomolecules.
13. Use as claimed in claim 12, wherein the biomolecules are proteins, peptides, amino acids, nucleic acids, viruses, virus-like particles and/or endotoxins,
14. Use as claimed in claim 13, wherein the proteins are antibodies.
15. The multimodal adsorption medium of claim 1, wherein the G group denotes a group selected from the group composed of a branched or unbranched C2-20 alkyl group that contains one or a plurality of heteroatoms selected from O, S, N and halogens, and/or at least one aromatic substituent, a substituted or unsubstituted C3-10 cycloalkyl group that contains one or a plurality of heteroatoms selected from O, S, N and halogens, and/or at least one aromatic substituent, a branched or unbranched C2-20 alkenyl group that contains one or a plurality of heteroatoms selected from O, S, N and halogens, and/or at least one aromatic substituent, a substituted or unsubstituted C6-20 aryl group that contains one or a plurality of heteroatoms selected from O, S, N and halogens, and a substituted or unsubstituted C4-20 oheteroaryl group that contains one or a plurality of heteroatoms selected from O, S, N and halogens,
16. The multimodal adsorption medium of claim 6, wherein the G group denotes a group selected from the group composed of a branched or unbranched C4-20 alkyl group that contains one or a plurality of heteroatoms selected from O, S, N and halogens, and/or at least one aromatic substituent, and a branched or unbranched C3-20 alkenyl group that contains one or a plurality of heteroatoms selected from O, S, N and halogens, and/or at least one aromatic substituent.
17. The multimodal adsorption medium of claim 7, wherein G is a substituted or unsubstituted C2-3 alkyl group, a substituted or unsubstituted C3-10 cycloalkyl group, a substituted or unsubstituted C2-3 alkenyl group, a substituted or unsubstituted C6 aryl group or a substituted or unsubstituted five-membered or six-membered heteroaromatic group, wherein the substituents are selected from the group composed of a branched or unbranched C1-10 alkyl group containing one or a plurality of heteroatoms selected from O, S, N and halogens, and/or at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent, a branched or unbranched C2-10 alkenyl group containing one or a plurality of heteroatoms selected from O, S, N and halogens, and/or at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent, a C6-20 aryl group containing one or a plurality of heteroatoms selected from O, S, N and halogens, and at least one hydroxyl, carbonyl, carboxyl, or carboxylic anhydride substituent, and a C4-20 heteroaryl group containing one or a plurality of heteroatoms selected from O, S, N and halogens, and at least one hydroxyl, carbonyl, carboxyl, or carboxylic anhydride substituent, and a hydroxy, thiol or amino group.
18. The multimodal adsorption medium as claimed in claim 17, wherein G denotes a branched or unbranched C3-10 alkenyl group that contains one or a plurality of heteroatoms selected from O, S, N and halogens, and/or at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent.
19. The multimodal adsorption medium of claim 9, wherein R′ is selected respectively from the group composed of hydrogen, F, Cl, Br, I, —OH, —NH2, SH, CO2H, a branched or unbranched C1-10 alkyl group containing one or a plurality of heteroatoms selected from O, S, N and halogens, and/or optionally at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent, a branched or unbranched C2-10 alkenyl group containing one or a plurality of heteroatoms selected from O, S, N and halogens, and/or at least one hydroxyl, carbonyl, carboxyl, carboxylic anhydride or aromatic substituent, a C6-20 aryl group containing one or a plurality of heteroatoms selected from O, S, N and halogens, and/or at least one hydroxyl, carbonyl, carboxyl, or carboxylic anhydride substituent, and a C4-20 heteroaryl group containing one or a plurality of heteroatoms selected from O, S, N and halogens, and at least one hydroxyl, carbonyl, carboxyl, or carboxylic anhydride substituent, wherein A is a C6 aryl group or a five-membered or six-membered heteroaromatic group, and wherein m is a whole number from 1 to 3.
US16/092,353 2016-04-12 2017-04-05 Multimodal adsorption medium with multimodal ligands, method for the preparation and use thereof Abandoned US20190105632A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016004432.2A DE102016004432A1 (en) 2016-04-12 2016-04-12 Multimodal adsorption medium with multimodal ligands, process for its preparation and its use
DE102016004432.2 2016-04-12
PCT/EP2017/000430 WO2017178100A1 (en) 2016-04-12 2017-04-05 Multimodal adsorption medium with multimodal ligands, method for the preparation and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/000430 A-371-Of-International WO2017178100A1 (en) 2016-04-12 2017-04-05 Multimodal adsorption medium with multimodal ligands, method for the preparation and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/465,052 Continuation US20220055015A1 (en) 2016-04-12 2021-09-02 Multimodal adsorption medium with multimodal ligands, method for the preparation and use thereof

Publications (1)

Publication Number Publication Date
US20190105632A1 true US20190105632A1 (en) 2019-04-11

Family

ID=58638818

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/092,353 Abandoned US20190105632A1 (en) 2016-04-12 2017-04-05 Multimodal adsorption medium with multimodal ligands, method for the preparation and use thereof
US17/465,052 Pending US20220055015A1 (en) 2016-04-12 2021-09-02 Multimodal adsorption medium with multimodal ligands, method for the preparation and use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/465,052 Pending US20220055015A1 (en) 2016-04-12 2021-09-02 Multimodal adsorption medium with multimodal ligands, method for the preparation and use thereof

Country Status (6)

Country Link
US (2) US20190105632A1 (en)
EP (1) EP3442700B1 (en)
JP (2) JP7034937B2 (en)
CN (1) CN109070051A (en)
DE (1) DE102016004432A1 (en)
WO (1) WO2017178100A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10919986B2 (en) 2016-04-29 2021-02-16 Nanopareil, Llc Porous polymeric cellulose prepared via cellulose crosslinking
WO2021219400A1 (en) * 2020-04-28 2021-11-04 Puridify Limited Separation matrix and method of separation
US11466386B2 (en) 2016-12-12 2022-10-11 Nanopareil, Llc Spinnerets and spinneret arrays for electrospinning and electrospinning machines

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201805058D0 (en) * 2018-03-28 2018-05-09 Customem Ltd Modified polyamines grafted to a particulate, solid support as sorbent materials for remediation of contaminated fluids
CN114618455A (en) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 Reversed phase chromatographic stationary phase embedded by multi-polar functional groups and preparation and application thereof
CN114797804B (en) * 2022-03-29 2023-08-04 翌圣生物科技(上海)股份有限公司 NTA chromatographic medium with long connecting arm and preparation method thereof
CN115850540B (en) * 2022-12-13 2023-11-03 苏州博进生物技术有限公司 Chromatography activation coupling medium and preparation method thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951815A (en) * 1974-09-05 1976-04-20 Universal Oil Products Company Composite semipermeable membranes made from polyethylenimine
US4753983A (en) * 1986-05-07 1988-06-28 Bioprobe International, Inc. Polymeric matrix for affinity chromatography and immobilization of ligands
GB2232984B (en) * 1986-08-19 1991-05-08 Showa Denko Kk Method of adsorbing immunoglobulin by using porous beads of chitosan
JPS6348453A (en) * 1986-08-19 1988-03-01 Showa Denko Kk Carrier for chromatography and its production
ATE161866T1 (en) 1992-10-21 1998-01-15 Cornell Res Foundation Inc SELECTIVE PORE SIZE CHEMICAL MODIFICATION OF POROUS MATERIALS
US5316680A (en) 1992-10-21 1994-05-31 Cornell Research Foundation, Inc. Multimodal chromatographic separation media and process for using same
SE0002688D0 (en) * 2000-07-17 2000-07-17 Amersham Pharm Biotech Ab Adsorption method and ligands
AU2002235795A1 (en) 2000-12-31 2002-07-16 Amersham Biosciences Ab A method for the manufacture of compositions containing low concentrations of salts
AU2005216847B2 (en) * 2004-02-27 2010-04-01 Cytiva Bioprocess R&D Ab A process for the purification of antibodies
US7402243B2 (en) * 2004-09-10 2008-07-22 Dionex Corporation Organosilanes and substrate bonded with same
MY144940A (en) * 2005-01-25 2011-11-30 Avantor Performance Mat Inc Chromatographic media
KR20080007312A (en) * 2005-05-09 2008-01-18 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 Chitosan derivative and method for producing same
JP5017848B2 (en) * 2005-11-25 2012-09-05 Jnc株式会社 Endotoxin adsorbent and method for removing endotoxin using the same
US7691980B2 (en) 2007-01-09 2010-04-06 Bio-Rad Laboratories, Inc. Enhanced capacity and purification of antibodies by mixed mode chromatography in the presence of aqueous-soluble nonionic organic polymers
EP2027875A1 (en) * 2007-08-23 2009-02-25 Octapharma AG A Process for Isolation and Purification of a Target Protein free of Prion Protein (PrPSC)
JP5999899B2 (en) 2008-04-08 2016-09-28 バイオ−ラッド ラボラトリーズ インコーポレーティッド Chromatographic purification of antibodies
DE102008055821A1 (en) 2008-04-14 2009-10-15 Sartorius Stedim Biotech Gmbh Cellulose hydrate membrane, process for its preparation and use thereof
IN2012DN02539A (en) 2009-10-12 2015-08-28 Ge Healthcare Bio Sciences Ab
KR102017649B1 (en) * 2011-05-03 2019-09-03 아반토 퍼포먼스 머티리얼즈, 엘엘씨 A novel chromatographic media based on allylamine and its derivative for protein purification
WO2013062841A1 (en) 2011-10-26 2013-05-02 Bio-Rad Laboratories, Inc. Removal of virucidal agents in mixed mode chromatography
US9310344B2 (en) * 2013-06-14 2016-04-12 Dionex Corporation HILIC/anion-exchange/cation-exchange multimodal media
JP6348453B2 (en) 2015-05-27 2018-06-27 住友重機械建機クレーン株式会社 crane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10919986B2 (en) 2016-04-29 2021-02-16 Nanopareil, Llc Porous polymeric cellulose prepared via cellulose crosslinking
US11560438B2 (en) 2016-04-29 2023-01-24 Nanopareil, Llc Porous polymeric cellulose prepared via cellulose crosslinking
US11466386B2 (en) 2016-12-12 2022-10-11 Nanopareil, Llc Spinnerets and spinneret arrays for electrospinning and electrospinning machines
WO2021219400A1 (en) * 2020-04-28 2021-11-04 Puridify Limited Separation matrix and method of separation

Also Published As

Publication number Publication date
EP3442700A1 (en) 2019-02-20
CN109070051A (en) 2018-12-21
DE102016004432A1 (en) 2017-10-12
JP2021058882A (en) 2021-04-15
JP7263306B2 (en) 2023-04-24
EP3442700B1 (en) 2020-05-20
JP7034937B2 (en) 2022-03-14
WO2017178100A1 (en) 2017-10-19
JP2019513549A (en) 2019-05-30
US20220055015A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
US20220055015A1 (en) Multimodal adsorption medium with multimodal ligands, method for the preparation and use thereof
US9433904B2 (en) Cellulose hydrate membrane, method for the production thereof, and use thereof
JP6195443B2 (en) Specific packing material that binds to protein and peptide, and separation method using the same
US6780327B1 (en) Positively charged membrane
CN108837808B (en) Chromatographic media
US8877904B2 (en) Chromatography purification of antibodies
US8114611B2 (en) Affinity chromatography matrices and methods of making and using the same
Rohani et al. Role of electrostatic interactions during protein ultrafiltration
US20110065900A1 (en) Separation method utilizing polyallylamine ligands
US9387443B2 (en) Hydrophobic cellulose membrane, method for the production thereof, and use of same in hydrophobic interaction chromatography
US20050277741A1 (en) Polymer with superior polar retention for sample pretreatment
JP2013514524A (en) Specific solvent for binding protein and peptide, and separation method using the same
US9375658B2 (en) Polysaccharide matrix having a grafted polymer, method for producing the same and use thereof
US8945389B2 (en) Method for substance separation using a cellulose hydrate membrane in size exclusion chromatography
JP2017515099A (en) Separation matrix for purification of biological particles
WO2013187512A1 (en) Alkali-resistant ion exchange temperature-responsive adsorbent, and method for producing same
Fan et al. Facile preparation of salt-tolerant anion-exchange membrane adsorber using hydrophobic membrane as substrate
US11992825B2 (en) Adsorption medium, method for production thereof, and use thereof for purification of biomolecules
US20180243724A1 (en) Adsorption Medium, Method for Production Thereof, and Use Thereof for Purification of Biomolecules
IJzer Adsorption materials for the recovery and separation of biobased molecules
JP2012211110A (en) Porous adsorption film

Legal Events

Date Code Title Description
AS Assignment

Owner name: SARTORIUS STEDIM BIOTECH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUPRACZ, LUKAS;TAFT, FLORIAN;VILLAIN, LOUIS;AND OTHERS;SIGNING DATES FROM 20181011 TO 20181023;REEL/FRAME:047434/0549

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION