US20190099809A1 - Method and apparatus for additive manufacturing - Google Patents

Method and apparatus for additive manufacturing Download PDF

Info

Publication number
US20190099809A1
US20190099809A1 US16/103,686 US201816103686A US2019099809A1 US 20190099809 A1 US20190099809 A1 US 20190099809A1 US 201816103686 A US201816103686 A US 201816103686A US 2019099809 A1 US2019099809 A1 US 2019099809A1
Authority
US
United States
Prior art keywords
powder
support structure
energy beam
dimensional article
powder layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/103,686
Inventor
Calle Hellestam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arcam AB
Original Assignee
Arcam AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arcam AB filed Critical Arcam AB
Priority to US16/103,686 priority Critical patent/US20190099809A1/en
Priority to JP2020517514A priority patent/JP7404232B2/en
Priority to CN201880063072.7A priority patent/CN111565871B/en
Priority to PCT/EP2018/075745 priority patent/WO2019063459A1/en
Priority to EP18774035.2A priority patent/EP3687719B1/en
Publication of US20190099809A1 publication Critical patent/US20190099809A1/en
Assigned to ARCAM AB reassignment ARCAM AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HELLESTAM, Calle
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • B22F3/1055
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/37Rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/241Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/52Hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • B22F2003/1057
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method and apparatus for additive manufacturing of 3-dimensional objects.
  • Freeform fabrication or additive manufacturing is a method for forming three-dimensional articles through successive fusion of chosen parts of powder layers applied to a work plate.
  • Such an apparatus may comprise a work plate on which the three-dimensional article is to be formed, a powder dispenser, arranged to lay down a thin layer of powder on the work plate for the formation of a powder bed, a laser beam source for delivering energy to the powder whereby fusion of the powder takes place, elements for control of the laser beam source over the powder bed for the formation of a cross section of the three-dimensional article through fusion of parts of the powder bed, and a controlling computer, in which information is stored concerning consecutive cross sections of the three-dimensional article.
  • a three-dimensional article is formed through consecutive fusions of consecutively formed cross sections of powder layers, successively laid down by the powder dispenser.
  • FIG. 1 illustrates schematically an additive manufacturing apparatus comprising a laser source 1 directed by scanning optics 2 such that the beam 3 defines a 2-dimensional pattern in a thin bed of metal powder 4 .
  • the powder is fused to form a solid layer 5 bonded to a base plate 6 .
  • the build plate is indexed down by the elevator mechanism 7 .
  • the powder bed is then replenished to the original level by the powder distributor 8 which scans horizontally so as to scrape powder from powder supply hopper 9 and deposit a uniform layer above the previously scanned layer.
  • the second layer of powder is then scanned so as to fuse the required areas of powder onto the previously fused layer 5 .
  • a 3-dimensional article is progressively build up, being composed of multiple 2-dimensional layers 5 .
  • a problem with the prior art is the difficulty of providing a layer of metal powder with equal thickness over the full build envelope.
  • a variation of the powder layer thickness may be revealed by dimensional inaccuracy of the final product.
  • An object of the present invention is to provide an additive manufacturing apparatus and method suitable for additive manufacturing of three-dimensional parts which is capable of efficiently building higher quality parts than prior art machines without sacrificing material properties of the final product.
  • a method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure comprising the steps of: providing at least one model of the three-dimensional article, lowering the support structure a predetermined distance and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, rotating the support structure the predetermined angle in a second direction opposite to the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer, directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, repeating the steps of lowering and rotating until the three-dimensional article is finished.
  • An exemplary advantage of at least these embodiments is that additive manufacturing may be performed with higher yield. This is due to the fact that the angle of the manufactured part(s) relative to the powder distributor is not constant but changed from one layer to another. This will help removing repetitive errors that may arise when using a static angle between the parts that is to be manufactured and the powder distributor.
  • By changing the angle of the powder distribution mechanism and the support structure onto which the three-dimensional article is manufactured may also remove errors in the powder distribution process independently of what is manufactured, i.e., powder distribution errors are distributed more evenly over the manufacturing area compared to when using a fixed angle of the powder distribution process and support structure. In the latter case, errors may be stacked onto each other from one layer to another, which in the end may cause not only dimension errors but also reduced mechanical properties of the final article.
  • the predetermined angle which the support structure is rotated is equal or unequal from one layer to another.
  • An exemplary advantage of using unequal rotational angle from one layer to another is that errors emanating from the powder distribution process is spread out at a larger area where they have no impact on the final article or eliminated due to the fact that the angle between the powder distributor and the previously built three-dimensional layer will not cause any powder layer inhomogeneities.
  • An exemplary advantage of using an equal rotational angle for a predetermined number of layers is that the angle is known beforehand not to cause any powder layer inhomogeneities for the-three dimensional cross sections which is to be built. Another fixed rotational angle may be used for a predetermined number of layers if the other rotational angle gives a better powder layer homogeneity than the previously used rotational angle. A more favourable rotational angle may arise if the cross sections which has been built is altered.
  • the support structure is rotated by rotating the support structure alone and/or a build tank in which the support structure is arranged.
  • An exemplary advantage of rotating the support structure alone and keeping the position of the build tank fixed is that it reduces the mechanical complexity of the machine.
  • An exemplary advantage of rotating the build tank is that it may reduce the leakage of powder between the support structure and the build tank.
  • An advantage of various example embodiments of the present invention is that any type of powder distribution process may be used.
  • the rotation of the support structure a predetermined angle before powder application and then reposition to the original position before fusion takes place may reduce powder distribution related errors irrespective of how the powder distribution is made.
  • an apparatus for forming a three-dimensional article through successive fusion of parts of a powder bed, which parts corresponds to successive cross sections of the three-dimensional article comprising: a. a control unit having stored thereon a computer model of the three-dimensional article, b. a control unit configured for moving a support structure a predetermined distance in z-direction and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, c.
  • control unit configured for rotating the support structure the predetermined angle in a second direction opposite to the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer, d. a control unit configured for directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, and e. a control unit configured for repeating step b-d until the three-dimensional article is finished.
  • An exemplary advantage of at least these embodiments is that it provides for an additive manufacturing apparatus with higher yield. This is due to the fact that the angle of the manufactured part(s) relative to the powder distributor is not constant but changed from one layer to another. This will help removing repetitive errors that may arise when using a static angle between the parts that is to be manufactured and the powder distributor.
  • By changing the angle of the powder distribution mechanism and the support structure onto which the three-dimensional article is manufactured may also remove errors in the powder distribution process independently of what is manufactured, i.e., powder distribution errors are distributed more evenly over the manufacturing area compared to when using a fixed angle of the powder distribution process and support structure. In the latter case, errors may be stacked onto each other from one layer to another, which in the end may cause not only dimension errors but also reduced mechanical properties of the final article.
  • Another exemplary advantage of these embodiments is that it is equally applicable for any powder distribution mechanism and they are also independent of the energy beam source used for fusing the powder material.
  • a method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure which parts correspond to successive portions of the three-dimensional article.
  • the method comprises the steps of: providing at least one model of the three-dimensional article, lowering the support structure a predetermined distance and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, rotating the at least one model by the predetermined angle in the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer, directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, and repeating at least the lowering and the rotating steps until the three-dimensional article is finished.
  • Exemplary advantages of this method mirror those previously detailed herein, although the
  • a computer program product comprising at least one non-transitory computer-readable storage medium having computer-readable program code portions embodied therein, the computer-readable program code portions comprising one or more executable portions configured for: upon receipt of at least one model of a three-dimensional article, lowering a support structure a predetermined distance and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, rotating the at least one model by the predetermined angle in the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer, directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, and repeating the lowering, rotating, and directing steps until the three-dimensional article is finished.
  • Exemplary advantages of this computer program product mirror
  • an apparatus for forming a three-dimensional article through successive fusion of parts of a powder bed, which parts corresponds to successive cross sections of the three-dimensional article comprising: a selectively rotatable support structure; at least one first energy beam; at least one control unit with a computer model of the three-dimensional article stored thereon, the control unit being configured for: moving the support structure a predetermined distance in z-direction and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, rotating the computer model by the predetermined angle in the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer, directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, and repeating the moving, rotating
  • FIG. 1 presents a first schematic side view of an additive manufacturing apparatus according to prior art
  • FIG. 2 presents a second schematic side view of an additive manufacturing apparatus according to prior art
  • FIGS. 3A-3D show respective side views of an additive manufacturing machine in different manufacturing stages according to certain embodiments of the present invention
  • FIGS. 3E-G show respective side views of an additive manufacturing machine in different manufacturing stages according to certain additional embodiments of the present invention.
  • FIGS. 4A-B show exemplary schematic flow charts according to various embodiments of the present invention.
  • FIG. 5 is a block diagram of an exemplary system 1020 according to various embodiments.
  • FIG. 6A is a schematic block diagram of a server 1200 according to various embodiments.
  • FIG. 6B is a schematic block diagram of an exemplary mobile device 1300 according to various embodiments.
  • three-dimensional structures and the like as used herein refer generally to intended or actually fabricated three-dimensional configurations (e.g. of structural material or materials) that are intended to be used for a particular purpose. Such structures, etc. may, for example, be designed with the aid of a three-dimensional CAD system.
  • two-dimensional structures and the like as used herein refer generally to substantially planar structures that may be considered as respective “layers” that when taken as a whole define or otherwise form the “three-dimensional structures” defined above. While referred to as “two-dimensional structures” it should be understood that each includes an accompanying thickness in a third dimension, albeit such that the structures remain substantially two-dimensional in nature. As a non-limiting example, a plurality of two-dimensional structures would have to be stacked atop one another so as to achieve a thickness comparable to that of the “three-dimensional structures” defined above and described elsewhere herein.
  • electron beam refers to any charged particle beam.
  • the sources of a charged particle beam can include an electron gun, a linear accelerator and so on.
  • Various embodiments of the invention relate to a method for producing three-dimensional objects by powder additive manufacturing, for instance Electron Beam Melting (EBM) and/or selective laser sintering SLS or selective laser melting SLM.
  • EBM Electron Beam Melting
  • the object may be wider than the sum of the beam scanning area from the energy beam sources.
  • FIG. 2 depicts an embodiment of a freeform fabrication or additive manufacturing apparatus 21 according to prior art.
  • the apparatus 21 comprises an electron beam gun 6 ; deflection coils 7 ; two powder hoppers 4 , 14 ; a build platform 2 ; a build chamber 10 ; a powder distributor 28 ; a powder bed 5 ; a vacuum chamber 20 and a control unit 8 .
  • the vacuum chamber 20 is capable of maintaining a vacuum environment by means of a vacuum system, which system may comprise a turbomolecular pump, a scroll pump, an ion pump and one or more valves which are well known to a skilled person in the art and therefore need no further explanation in this context.
  • the vacuum system is controlled by the control unit 8 .
  • the electron beam gun 6 is generating an electron beam which is used for melting or fusing together powder material provided on the build platform 2 .
  • the control unit 8 may be used for controlling and managing the electron beam emitted from the electron beam gun 6 .
  • At least one focusing coil (not shown), at least one deflection coil 7 , an optional coil for astigmatic correction (not shown) and an electron beam power supply (not shown) may be electrically connected to the control unit 8 .
  • the electron beam gun 6 generates a focusable electron beam with an accelerating voltage of about 15-120 kV and with a beam power in the range of 3-10 Kw.
  • the pressure in the vacuum chamber may be 1 ⁇ 10 ⁇ 3 mbar or lower when building the three-dimensional article 3 by fusing the powder layer by layer with the energy beam.
  • a laser beam may be used for melting or fusing the powder material.
  • tiltable mirrors may be used in the beam path in order to deflect the laser beam to a predetermined position.
  • the powder hoppers 4 , 14 comprise the powder material to be provided on the build platform 2 in the build chamber 10 .
  • the powder material may for instance be pure metals or metal alloys such as titanium, titanium alloys, aluminum, aluminum alloys, stainless steel, Co—Cr alloys, nickel based superalloys, etc., and the like.
  • the powder distributor 28 is arranged to lay down a thin layer of the powder material on the build platform 2 .
  • the build platform 2 will be lowered successively in relation to a fixed point in the vacuum chamber.
  • the build platform 2 is in one embodiment of the invention arranged movably in vertical direction, i.e., in the direction indicated by arrow P. This means that the build platform 2 starts in an initial position, in which a first powder material layer of necessary thickness has been laid down.
  • Means for lowering the build platform 2 may for instance be through a servo engine equipped with a gear, adjusting screws, etc., and the like
  • An electron beam may be directed over the build platform 2 causing the first powder layer to fuse in selected locations to form a first cross section of the three-dimensional article 3 .
  • the beam is directed over the build platform 2 from instructions given by the control unit 8 .
  • instructions for how to control the electron beam for each layer of the three-dimensional article is stored.
  • a second powder layer is provided on the build platform 2 .
  • the second powder layer is preferably distributed according to the same manner as the previous layer. However, there might be other methods in the same additive manufacturing machine for distributing powder onto the build platform 2 .
  • the energy beam is directed over the build platform 2 causing the second powder layer to fuse in selected locations to form a second cross section of the three-dimensional article.
  • Fused portions in the second layer may be bonded to fused portions of the first layer.
  • the fused portions in the first and second layer may be melted together by melting not only the powder in the uppermost layer but also remelting at least a fraction of a thickness of a layer directly below the uppermost layer.
  • An optional preheating of the powder layer to a temperature below the melting point of the powders may be performed before the actual fusing of the powder takes place at selected areas.
  • the build platform 2 may be provided in an enclosable chamber provided with ambient air and atmosphere pressure.
  • the work plate may be provided in open air.
  • the high energy beam fusing the powder material may be one or a plurality of laser beams.
  • FIGS. 3A-3D show respective side views of an additive manufacturing machine in different manufacturing stages according to the present invention.
  • FIG. 3A comprises a first powder hopper 4 with powder 67 , a second powder hopper 14 with powder 167 , a powder distributor 28 , a powder table 40 , a build chamber 10 , a build platform 2 .
  • the energy beam(s) and its energy beam source(s) and beam deflection mechanism for fusing the powder layers have been left out for clarity reasons only.
  • a predetermined amount of powder 68 from the first powder hopper 4 may be provided on the powder table 40 between the powder distributor 28 and the build chamber 10 .
  • This predetermined amount of powder 68 may be provided on the powder table 40 by raising a floor 65 in the powder hopper 4 a predetermined distance. In FIG. 3A the predetermined amount of powder is created by raising the floor 65 from a position C to a position D.
  • the predetermined amount of powder 68 then provided above the top surface A of the powder table 40 in the powder hopper 4 , may be raked off by the powder distributor 28 from the powder hopper 4 to the powder table 40 .
  • the predetermined amount of powder 68 may be raked off from the first powder hopper 4 to an area between the powder hopper 4 and the build chamber 10 , i,e, onto the powder table 40 , or directly to the build chamber 10 if there is no space between the build chamber 10 and the first powder hopper 4 .
  • the build platform 2 is arranged at a position denoted by B, which is lower than a position of the powder table 40 which is denoted by A.
  • the difference in height between the powder table 40 and the top surface of the build platform 2 or a previous partly fused powder layer will represent the thickness of the powder layer which is to be fused in selected location according to the model stored in the control unit.
  • the build platform 2 Before a new layer of powder material is applied on top of the build platform 2 , the build platform 2 is not only lowered in order to create the space for a new powder layer but also rotated a predetermined angle denoted by arrow 80 in FIG. 3A .
  • the angle of rotation may be between 0°-90° from its original position in a clockwise direction or 0°-90° in a counter clockwise direction. In an example embodiment the angle is 72 degrees either clockwise or counter clockwise. In another example embodiment the angle is 40 degrees either clockwise or counter clockwise.
  • the build platform 2 By rotating the build platform 2 a predetermined angle before applying the powder layer instead of always keeping the build platform 2 at a fixed angular position will decrease the likelihood of dimensional instability due to the fact that possible powder distribution errors from one layer may not add up with powder distribution errors in another layer.
  • the powder distribution errors may arise from previously fused areas having a different height compared to the non-fused areas.
  • the build platform is rotated the predetermined angle with respect to the powder distribution mechanism in a clockwise or counter clockwise direction from its original position before the powder application is started.
  • the rotation of the build platform 2 may be with a first predetermined angle before a first layer is to be applied and a second predetermined angle before a second layer is to be applied.
  • the first and second angles may be different.
  • the first predetermined angle of rotation may be in a clockwise direction and the second predetermined angle of rotation may be in a counter clockwise direction.
  • the predetermined angle is randomly selected to be any angle between 0-90 degrees for a predetermined number of layers in either clockwise direction or counter clockwise direction.
  • the build platform 2 may be rotated by rotating the axis 90 supporting the build platform 2 .
  • the build platform 2 may be rotated by rotating the build tank 10 together with the build platform 2 .
  • FIG. 3B illustrates the process step in which the powder taken from the powder hopper 4 is distributed over the build platform 2 . While distributing the powder material over the build platform 2 , the build platform 2 is in a stationary condition, i.e., neither moving downwards nor rotating.
  • FIG. 3C illustrates a step made after the powder layer has been applied but before the powder layer is irradiated with a high energy beam for fusing the powder in selected locations.
  • the build platform 2 is rotated back to its original position by rotating the build platform 2 the predetermined angle in an opposite direction compared to the direction the build platform 2 was rotated prior to applying the powder layer.
  • the rotation one makes sure that the coordinate system of the high energy beam and the coordinate system of the build platform 2 are aligned to each other.
  • one or a plurality of alignment marks may be used for returning the build platform 2 to its original position. The alignment marks may be detected by a camera system.
  • the detected alignment marks may either be compared with a reference position or alternatively a first alignment mark may be provided on the build platform 2 and a second alignment mark may be arranged in a fixed position.
  • the fixed alignment mark and the alignment mark on the build platform 2 should be arranged in a predetermined way when the build platform 2 is in its original position. Other means for making sure the build platform 2 is returning to the same position is also possible, such as alignment marks detected by camera or illuminated by laser light are also possible.
  • the alignment marks may be arranged on the backside of the build platform 2 .
  • the original position may be validated by detecting an electrical device rotating the build platform 2 or build platform 2 together with the build tank.
  • the electrical device making the rotation may for instance be a step motor having a gear adapted to and engaging with a gear on the build platform 2 or the build tank 10 .
  • the powder layer is radiated in selected locations by the high energy beam 75 for heating and/or melting the powder layer 33 .
  • the build platform 2 is stationary in its original position while melting the powder layer at the selected locations.
  • two or more high energy beams may also be used in the heating and/or melting process.
  • the one or plurality of beams may be of the same type or of different type.
  • Laser beams and/or electron beams may be used for melting and/or heating the powder layer 33 .
  • FIGS. 3E-G show respective side views of an additive manufacturing machine in different manufacturing stages according to another embodiment of the present invention.
  • FIG. 3E comprises a first powder hopper 4 with powder 67 , a second powder hopper 14 with powder 167 , a powder distributor 28 , a powder table 40 , a build chamber 10 , a build platform 2 .
  • the energy beam(s) and its energy beam source(s) and beam deflection mechanism for fusing the powder layers have been left out for clarity reasons only.
  • a predetermined amount of powder 68 from the first powder hopper 4 may be provided on the powder table 40 between the powder distributor 28 and the build chamber 10 .
  • This predetermined amount of powder 68 may be provided on the powder table 40 by raising a floor 65 in the powder hopper 4 a predetermined distance. In FIG. 3E the predetermined amount of powder is created by raising the floor 65 from a position C to a position D.
  • the predetermined amount of powder 68 then provided above the top surface A of the powder table 40 in the powder hopper 4 , may be raked off by the powder distributor 28 from the powder hopper 4 to the powder table 40 .
  • the predetermined amount of powder 68 may be raked off from the first powder hopper 4 to an area between the powder hopper 4 and the build chamber 10 , i,e, onto the powder table 40 , or directly to the build chamber 10 if there is no space between the build chamber 10 and the first powder hopper 4 .
  • the build platform 2 is arranged at a position denoted by B, which is lower than a position of the powder table 40 which is denoted by A.
  • the difference in height between the powder table 40 and the top surface of the build platform 2 or a previous partly fused powder layer will represent the thickness of the powder layer which is to be fused in selected location according to the model stored in the control unit.
  • the build platform 2 Before a new layer of powder material is applied on top of the build platform 2 , the build platform 2 is not only lowered in order to create the space for a new powder layer but also rotated a predetermined angle denoted by arrow 80 in FIG. 3E .
  • the angle of rotation may be between 0°-90° from its original position in a clockwise direction or 0°-90° in a counter clockwise direction. In an example embodiment the angle is 72 degrees either clockwise or counter clockwise. In another example embodiment the angle is 20 degrees either clockwise or counter clockwise.
  • the likelihood of dimensional instability is decreased due to the fact that possible powder distribution errors from one layer may not add up with powder distribution errors in another layer.
  • the powder distribution errors may arise from previously fused areas having a different height compared to the non-fused areas.
  • the build platform is rotated the predetermined angle with respect to the powder distribution mechanism in a clockwise or counter clockwise direction from its original position before the powder application is started.
  • the rotation of the build platform 2 may be with a first predetermined angle before a first layer is to be applied and a second predetermined angle before a second layer is to be applied.
  • the first and second angles may be different.
  • the first predetermined angle of rotation may be in a clockwise direction and the second predetermined angle of rotation may be in a counter clockwise direction.
  • the predetermined angle is randomly selected to be any angle between 0-90 degrees for a predetermined number of layers in either clockwise direction or counter clockwise direction.
  • the build platform 2 may be rotated by rotating the axis 90 supporting the build platform 2 .
  • the build platform 2 may be rotated by rotating the build tank 10 together with the build platform 2 .
  • FIG. 3F illustrates the process step in which the powder taken from the powder hopper 4 is distributed over the build platform 2 . While distributing the powder material over the build platform 2 , the build platform 2 is in a stationary condition, i.e., neither moving downwards nor rotating.
  • the powder layer is next radiated in selected locations by the high energy beam 75 for heating and/or melting the powder layer 33 .
  • the build platform 2 remains stationary in the same position as in FIG. 3F while melting the powder layer at the selected locations.
  • FIG. 3G only one beam is illustrated, but two or more high energy beams may also be used in the heating and/or melting process.
  • the one or plurality of beams may be of the same type or of different type.
  • Laser beams and/or electron beams may be used for melting and/or heating the powder layer 33 .
  • the build platform 2 is not prior (as in FIG. 3C ) rotated back to its original position. Instead, in FIG. 3G , the build platform remains in the rotated position achieved in FIG. 3F .
  • the at least one model of the three-dimensional article that is provided e.g., via a CAD (Computer Aided Design) tool, as described elsewhere herein
  • Rotation of the CAD file or model may be clockwise or counter-clockwise.
  • the rotation of the CAD file may also be different for different layers, much like the rotation of the build platform 2 . It is also possible to rotate the CAD and/or the build platform 2 in clockwise and counter-clockwise directions in the same build of a three-dimensional multi-layer object, provided that the CAD file is always rotated in the same direction as the build platform 2 for any particular layer.
  • Various embodiments of this invention concern the provision of a rotation of the build platform 2 from its original position prior to applying a new powder layer and then rotating an associated CAD file (i.e., model) in a corresponding manner when the powder layer has been applied but before the powder layer is radiated by the high energy beam for fusing and/or heating at selected locations.
  • the axis of rotation may be vertical and the build platform 2 may be annular.
  • the build platform 2 may either be rotated by rotating the axis 90 supporting the build platform 2 or rotating the build tank 10 together with the build platform 2 with respect to a powder distribution mechanism.
  • a rotation of the build tank 10 may be applied from its outside.
  • a position of the build tank 10 and work plate 2 may be measured and feedback to the control unit 8 .
  • the present invention is potentially applicable to any type of layer wise rapid prototyping and additive manufacturing machines, and to other machines using the layer-on-layer fabrication technique, including non-metallic material.
  • the electron beam source generating an electron beam may be used for melting or fusing together powder material 33 provided on the work plate 2 .
  • the control unit 8 may be used for controlling and managing the electron and/or laser beams emitted from at least one electron beam source and/or at least one laser beam source.
  • the electron beams and/or laser beams may be deflected between its first extreme position and its second extreme position.
  • the powder storage 4 , 14 may comprise the metal powder material 67 , 167 to be provided on the work plate 2 .
  • the metal powder material may for instance be pure metals or metal alloys such as titanium, titanium alloys, aluminum, aluminum alloys, stainless steel, Co—Cr—W alloy, Ni-based alloys, Titanium aluminides, Niobium, silicon nitride, molybdenum disilicide and the like.
  • FIG. 4A it is depicted a flow chart of an example embodiment of a method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure, which parts correspond to successive portions of the three-dimensional article.
  • a first step denoted 410 at least one model of the three-dimensional article is provided.
  • the model may be generated by a CAD (Computer Aided Design) tool.
  • the model may be sliced into a number of slices representing the fused powder layers which is going to form the physical three-dimensional article.
  • a second step denoted 420 the support structure is lowered a predetermined distance and rotated a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure.
  • the rotation may be performed with respect to a powder distribution mechanism.
  • the predetermined angle may be between 0°-90° in a clockwise direction or 0°-90° in a counter clockwise direction.
  • the predetermined angle is 0-180 degrees from the original position. When using 0-180 degrees it will take longer time to go to the extreme position 180 and back from the extreme position to the original position compared to if using 0-90 in clockwise direction and 0-90 in counter clockwise direction.
  • a third step denoted by 430 the support structure is rotated the predetermined angle in a second direction opposite to the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer.
  • the support structure 2 is rotated back to the original position, which position is aligned with the high energy beam coordinate system.
  • the at least one first energy beam is directed from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article.
  • the at least one first energy beam may be at least one laser beam and/or at least one electron beam.
  • step 420 to 440 is repeated until the three-dimensional article is finished.
  • FIG. 4B it is depicted a flow chart of another example embodiment of a method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure, which parts correspond to successive portions of the three-dimensional article.
  • a first step denoted 510 at least one model of the three-dimensional article is provided.
  • the model may be generated by a CAD (Computer Aided Design) tool.
  • the model may be sliced into a number of slices representing the fused powder layers which is going to form the physical three-dimensional article.
  • a second step denoted 520 the support structure is lowered a predetermined distance and rotated a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure.
  • the rotation may be performed with respect to a powder distribution mechanism.
  • the predetermined angle may be between 0°-90° in a clockwise direction or 0°-90° in a counter clockwise direction.
  • the predetermined angle is 0-180 degrees from the original position. When using 0-180 degrees it will take longer time to go to the extreme position 180 and back from the extreme position to the original position compared to if using 0-90 in clockwise direction and 0-90 in counter clockwise direction.
  • a third step denoted by 530 the support structure remains in the position obtained during step 520 (i.e., it is not further rotated). Instead, as compared to step 430 , during step 530 the at least one model of the three-dimensional article provided in step 510 is electronically rotated. Rotation of the model, as generated by a CAD (Computer Aided Design) tool, is done by an angle corresponding in value and direction to the rotation of the support structure in step 520 .
  • CAD Computer Aided Design
  • the at least one first energy beam is directed from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article.
  • the at least one first energy beam may be at least one laser beam and/or at least one electron beam.
  • step 520 to 540 is repeated until the three-dimensional article is finished.
  • Preheating of the powder with the purpose of heating the powder particles to a predetermined temperature below its melting temperature may be performed at any stage, i.e., during powder application, during rotation and/or lowering of the support structure and/or during fusion of the powder particles but at other regions where fusion is not taking place.
  • a program element configured and arranged when executed on a computer to implement a method for forming at least one three-dimensional article through successive fusion of parts of a powder bed, which parts correspond to successive portions of the three-dimensional article.
  • the program element may be installed in a computer readable storage medium.
  • the computer readable storage medium may be the control unit 10 or another and separate control unit, as may be desirable.
  • the computer readable storage medium and the program element, which may comprise computer-readable program code portions embodied therein, may further be contained within a non-transitory computer program product. Further details regarding these features and configurations are provided, in turn, below.
  • a computer program product may include a non-transitory computer-readable storage medium storing applications, programs, program modules, scripts, source code, program code, object code, byte code, compiled code, interpreted code, machine code, executable instructions, and/or the like (also referred to herein as executable instructions, instructions for execution, program code, and/or similar terms used herein interchangeably).
  • Such non-transitory computer-readable storage media include all computer-readable media (including volatile and non-volatile media).
  • a non-volatile computer-readable storage medium may include a floppy disk, flexible disk, hard disk, solid-state storage (SSS) (e.g., a solid state drive (SSD), solid state card (SSC), solid state module (SSM)), enterprise flash drive, magnetic tape, or any other non-transitory magnetic medium, and/or the like.
  • SSD solid state drive
  • SSC solid state card
  • SSM solid state module
  • a non-volatile computer-readable storage medium may also include a punch card, paper tape, optical mark sheet (or any other physical medium with patterns of holes or other optically recognizable indicia), compact disc read only memory (CD-ROM), compact disc compact disc-rewritable (CD-RW), digital versatile disc (DVD), Blu-ray disc (BD), any other non-transitory optical medium, and/or the like.
  • CD-ROM compact disc read only memory
  • CD-RW compact disc compact disc-rewritable
  • DVD digital versatile disc
  • BD Blu-ray disc
  • Such a non-volatile computer-readable storage medium may also include read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory (e.g., Serial, NAND, NOR, and/or the like), multimedia memory cards (MMC), secure digital (SD) memory cards, SmartMedia cards, CompactFlash (CF) cards, Memory Sticks, and/or the like.
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory e.g., Serial, NAND, NOR, and/or the like
  • MMC multimedia memory cards
  • SD secure digital
  • SmartMedia cards SmartMedia cards
  • CompactFlash (CF) cards Memory Sticks, and/or the like.
  • a non-volatile computer-readable storage medium may also include conductive-bridging random access memory (CBRAM), phase-change random access memory (PRAM), ferroelectric random-access memory (FeRAM), non-volatile random-access memory (NVRAM), magnetoresistive random-access memory (MRAM), resistive random-access memory (RRAM), Silicon-Oxide-Nitride-Oxide-Silicon memory (SONOS), floating junction gate random access memory (FJG RAM), Millipede memory, racetrack memory, and/or the like.
  • CBRAM conductive-bridging random access memory
  • PRAM phase-change random access memory
  • FeRAM ferroelectric random-access memory
  • NVRAM non-volatile random-access memory
  • MRAM magnetoresistive random-access memory
  • RRAM resistive random-access memory
  • SONOS Silicon-Oxide-Nitride-Oxide-Silicon memory
  • FJG RAM floating junction gate random access memory
  • Millipede memory racetrack memory
  • a volatile computer-readable storage medium may include random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), fast page mode dynamic random access memory (FPM DRAM), extended data-out dynamic random access memory (EDO DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (DDR SDRAM), double data rate type two synchronous dynamic random access memory (DDR2 SDRAM), double data rate type three synchronous dynamic random access memory (DDR3 SDRAM), Rambus dynamic random access memory (RDRAM), Twin Transistor RAM (TTRAM), Thyristor RAM (T-RAM), Zero-capacitor (Z-RAM), Rambus in-line memory module (RIMM), dual in-line memory module (DIMM), single in-line memory module (SIMM), video random access memory VRAM, cache memory (including various levels), flash memory, register memory, and/or the like.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • FPM DRAM fast page mode dynamic random access memory
  • embodiments of the present invention may also be implemented as methods, apparatus, systems, computing devices, computing entities, and/or the like, as have been described elsewhere herein.
  • embodiments of the present invention may take the form of an apparatus, system, computing device, computing entity, and/or the like executing instructions stored on a computer-readable storage medium to perform certain steps or operations.
  • embodiments of the present invention may also take the form of an entirely hardware embodiment performing certain steps or operations.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including computer-readable instructions for implementing the functionality specified in the flowchart block or blocks.
  • the computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer-implemented process such that the instructions that execute on the computer or other programmable apparatus provide operations for implementing the functions specified in the flowchart block or blocks.
  • blocks of the block diagrams and flowchart illustrations support various combinations for performing the specified functions, combinations of operations for performing the specified functions and program instructions for performing the specified functions. It should also be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, could be implemented by special purpose hardware-based computer systems that perform the specified functions or operations, or combinations of special purpose hardware and computer instructions.
  • FIG. 5 is a block diagram of an exemplary system 1020 that can be used in conjunction with various embodiments of the present invention.
  • the system 1020 may include one or more central computing devices 1110 , one or more distributed computing devices 1120 , and one or more distributed handheld or mobile devices 1300 , all configured in communication with a central server 1200 (or control unit) via one or more networks 1130 .
  • FIG. 5 illustrates the various system entities as separate, standalone entities, the various embodiments are not limited to this particular architecture.
  • the one or more networks 1130 may be capable of supporting communication in accordance with any one or more of a number of second-generation (2G), 2.5G, third-generation (3G), and/or fourth-generation (4G) mobile communication protocols, or the like. More particularly, the one or more networks 1130 may be capable of supporting communication in accordance with 2G wireless communication protocols IS-136 (TDMA), GSM, and IS-95 (CDMA). Also, for example, the one or more networks 1130 may be capable of supporting communication in accordance with 2.5G wireless communication protocols GPRS, Enhanced Data GSM Environment (EDGE), or the like.
  • the one or more networks 1130 may be capable of supporting communication in accordance with 3G wireless communication protocols such as Universal Mobile Telephone System (UMTS) network employing Wideband Code Division Multiple Access (WCDMA) radio access technology.
  • UMTS Universal Mobile Telephone System
  • WCDMA Wideband Code Division Multiple Access
  • Some narrow-band AMPS (NAMPS), as well as TACS, network(s) may also benefit from embodiments of the present invention, as should dual or higher mode mobile stations (e.g., digital/analog or TDMA/CDMA/analog phones).
  • each of the components of the system 1020 may be configured to communicate with one another in accordance with techniques such as, for example, radio frequency (RF), BluetoothTM infrared (IrDA), or any of a number of different wired or wireless networking techniques, including a wired or wireless Personal Area Network (“PAN”), Local Area Network (“LAN”), Metropolitan Area Network (“MAN”), Wide Area Network (“WAN”), or the like.
  • RF radio frequency
  • IrDA infrared
  • PAN Personal Area Network
  • LAN Local Area Network
  • MAN Metropolitan Area Network
  • WAN Wide Area Network
  • the device(s) 1110 - 1300 are illustrated in FIG. 5 as communicating with one another over the same network 1130 , these devices may likewise communicate over multiple, separate networks.
  • the distributed devices 1110 , 1120 , and/or 1300 may be further configured to collect and transmit data on their own.
  • the devices 1110 , 1120 , and/or 1300 may be capable of receiving data via one or more input units or devices, such as a keypad, touchpad, barcode scanner, radio frequency identification (RFID) reader, interface card (e.g., modem, etc.) or receiver.
  • RFID radio frequency identification
  • the devices 1110 , 1120 , and/or 1300 may further be capable of storing data to one or more volatile or non-volatile memory modules, and outputting the data via one or more output units or devices, for example, by displaying data to the user operating the device, or by transmitting data, for example over the one or more networks 1130 .
  • the server 1200 includes various systems for performing one or more functions in accordance with various embodiments of the present invention, including those more particularly shown and described herein. It should be understood, however, that the server 1200 might include a variety of alternative devices for performing one or more like functions, without departing from the spirit and scope of the present invention. For example, at least a portion of the server 1200 , in certain embodiments, may be located on the distributed device(s) 1110 , 1120 , and/or the handheld or mobile device(s) 1300 , as may be desirable for particular applications.
  • the handheld or mobile device(s) 1300 may contain one or more mobile applications 1330 which may be configured so as to provide a user interface for communication with the server 1200 , all as will be likewise described in further detail below.
  • FIG. 6A is a schematic diagram of the server 1200 according to various embodiments.
  • the server 1200 includes a processor 1230 that communicates with other elements within the server via a system interface or bus 1235 .
  • a display/input device 1250 for receiving and displaying data.
  • This display/input device 1250 may be, for example, a keyboard or pointing device that is used in combination with a monitor.
  • the server 1200 further includes memory 1220 , which typically includes both read only memory (ROM) 1226 and random access memory (RAM) 1222 .
  • the server's ROM 1226 is used to store a basic input/output system 1224 (BIOS), containing the basic routines that help to transfer information between elements within the server 1200 .
  • BIOS basic input/output system
  • the server 1200 includes at least one storage device or program storage 210 , such as a hard disk drive, a floppy disk drive, a CD Rom drive, or optical disk drive, for storing information on various computer-readable media, such as a hard disk, a removable magnetic disk, or a CD-ROM disk.
  • each of these storage devices 1210 are connected to the system bus 1235 by an appropriate interface.
  • the storage devices 1210 and their associated computer-readable media provide nonvolatile storage for a personal computer.
  • the computer-readable media described above could be replaced by any other type of computer-readable media known in the art. Such media include, for example, magnetic cassettes, flash memory cards, digital video disks, and Bernoulli cartridges.
  • the storage device 1210 and/or memory of the server 1200 may further provide the functions of a data storage device, which may store historical and/or current delivery data and delivery conditions that may be accessed by the server 1200 .
  • the storage device 1210 may comprise one or more databases.
  • database refers to a structured collection of records or data that is stored in a computer system, such as via a relational database, hierarchical database, or network database and as such, should not be construed in a limiting fashion.
  • a number of program modules (e.g., exemplary modules 1400 - 1700 ) comprising, for example, one or more computer-readable program code portions executable by the processor 1230 , may be stored by the various storage devices 1210 and within RAM 1222 . Such program modules may also include an operating system 1280 . In these and other embodiments, the various modules 1400 , 1500 , 1600 , 1700 control certain aspects of the operation of the server 1200 with the assistance of the processor 1230 and operating system 1280 . In still other embodiments, it should be understood that one or more additional and/or alternative modules may also be provided, without departing from the scope and nature of the present invention.
  • the program modules 1400 , 1500 , 1600 , 1700 are executed by the server 1200 and are configured to generate one or more graphical user interfaces, reports, instructions, and/or notifications/alerts, all accessible and/or transmittable to various users of the system 1020 .
  • the user interfaces, reports, instructions, and/or notifications/alerts may be accessible via one or more networks 1130 , which may include the Internet or other feasible communications network, as previously discussed.
  • one or more of the modules 1400 , 1500 , 1600 , 1700 may be alternatively and/or additionally (e.g., in duplicate) stored locally on one or more of the devices 1110 , 1120 , and/or 1300 and may be executed by one or more processors of the same.
  • the modules 1400 , 1500 , 1600 , 1700 may send data to, receive data from, and utilize data contained in one or more databases, which may be comprised of one or more separate, linked and/or networked databases.
  • a network interface 1260 for interfacing and communicating with other elements of the one or more networks 1130 .
  • a network interface 1260 for interfacing and communicating with other elements of the one or more networks 1130 .
  • one or more of the server 1200 components may be located geographically remotely from other server components.
  • one or more of the server 1200 components may be combined, and/or additional components performing functions described herein may also be included in the server.
  • the server 1200 may comprise multiple processors operating in conjunction with one another to perform the functionality described herein.
  • the processor 1230 can also be connected to at least one interface or other means for displaying, transmitting and/or receiving data, content or the like.
  • the interface(s) can include at least one communication interface or other means for transmitting and/or receiving data, content or the like, as well as at least one user interface that can include a display and/or a user input interface, as will be described in further detail below.
  • the user input interface in turn, can comprise any of a number of devices allowing the entity to receive data from a user, such as a keypad, a touch display, a joystick or other input device.
  • embodiments of the present invention are not limited to traditionally defined server architectures. Still further, the system of embodiments of the present invention is not limited to a single server, or similar network entity or mainframe computer system. Other similar architectures including one or more network entities operating in conjunction with one another to provide the functionality described herein may likewise be used without departing from the spirit and scope of embodiments of the present invention. For example, a mesh network of two or more personal computers (PCs), similar electronic devices, or handheld portable devices, collaborating with one another to provide the functionality described herein in association with the server 1200 may likewise be used without departing from the spirit and scope of embodiments of the present invention.
  • PCs personal computers
  • similar electronic devices or handheld portable devices
  • many individual steps of a process may or may not be carried out utilizing the computer systems and/or servers described herein, and the degree of computer implementation may vary, as may be desirable and/or beneficial for one or more particular applications.
  • FIG. 6B provides an illustrative schematic representative of a mobile device 1300 that can be used in conjunction with various embodiments of the present invention.
  • Mobile devices 1300 can be operated by various parties.
  • a mobile device 1300 may include an antenna 1312 , a transmitter 1304 (e.g., radio), a receiver 1306 (e.g., radio), and a processing element 1308 that provides signals to and receives signals from the transmitter 1304 and receiver 1306 , respectively.
  • a transmitter 1304 e.g., radio
  • a receiver 1306 e.g., radio
  • a processing element 1308 that provides signals to and receives signals from the transmitter 1304 and receiver 1306 , respectively.
  • the signals provided to and received from the transmitter 1304 and the receiver 1306 , respectively, may include signaling data in accordance with an air interface standard of applicable wireless systems to communicate with various entities, such as the server 1200 , the distributed devices 1110 , 1120 , and/or the like.
  • the mobile device 1300 may be capable of operating with one or more air interface standards, communication protocols, modulation types, and access types. More particularly, the mobile device 1300 may operate in accordance with any of a number of wireless communication standards and protocols.
  • the mobile device 1300 may operate in accordance with multiple wireless communication standards and protocols, such as GPRS, UMTS, CDMA2000, 1 ⁇ RTT, WCDMA, TD-SCDMA, LTE, E-UTRAN, EVDO, HSPA, HSDPA, Wi-Fi, WiMAX, UWB, IR protocols, Bluetooth protocols, USB protocols, and/or any other wireless protocol.
  • multiple wireless communication standards and protocols such as GPRS, UMTS, CDMA2000, 1 ⁇ RTT, WCDMA, TD-SCDMA, LTE, E-UTRAN, EVDO, HSPA, HSDPA, Wi-Fi, WiMAX, UWB, IR protocols, Bluetooth protocols, USB protocols, and/or any other wireless protocol.
  • the mobile device 1300 may according to various embodiments communicate with various other entities using concepts such as Unstructured Supplementary Service data (USSD), Short Message Service (SMS), Multimedia Messaging Service (MMS), Dual-Tone Multi-Frequency Signaling (DTMF), and/or Subscriber Identity Module Dialer (SIM dialer).
  • USSD Unstructured Supplementary Service data
  • SMS Short Message Service
  • MMS Multimedia Messaging Service
  • DTMF Dual-Tone Multi-Frequency Signaling
  • SIM dialer Subscriber Identity Module Dialer
  • the mobile device 1300 can also download changes, add-ons, and updates, for instance, to its firmware, software (e.g., including executable instructions, applications, program modules), and operating system.
  • the mobile device 1300 may include a location determining device and/or functionality.
  • the mobile device 1300 may include a GPS module adapted to acquire, for example, latitude, longitude, altitude, geocode, course, and/or speed data.
  • the GPS module acquires data, sometimes known as ephemeris data, by identifying the number of satellites in view and the relative positions of those satellites.
  • the mobile device 1300 may also comprise a user interface (that can include a display 1316 coupled to a processing element 1308 ) and/or a user input interface (coupled to a processing element 308 ).
  • the user input interface can comprise any of a number of devices allowing the mobile device 1300 to receive data, such as a keypad 1318 (hard or soft), a touch display, voice or motion interfaces, or other input device.
  • the keypad can include (or cause display of) the conventional numeric (0-9) and related keys (#, *), and other keys used for operating the mobile device 1300 and may include a full set of alphabetic keys or set of keys that may be activated to provide a full set of alphanumeric keys.
  • the user input interface can be used, for example, to activate or deactivate certain functions, such as screen savers and/or sleep modes.
  • the mobile device 1300 can also include volatile storage or memory 1322 and/or non-volatile storage or memory 1324 , which can be embedded and/or may be removable.
  • the non-volatile memory may be ROM, PROM, EPROM, EEPROM, flash memory, MMCs, SD memory cards, Memory Sticks, CBRAM, PRAM, FeRAM, RRAM, SONOS, racetrack memory, and/or the like.
  • the volatile memory may be RAM, DRAM, SRAM, FPM DRAM, EDO DRAM, SDRAM, DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM, RDRAM, RIMM, DIMM, SIMM, VRAM, cache memory, register memory, and/or the like.
  • the volatile and non-volatile storage or memory can store databases, database instances, database mapping systems, data, applications, programs, program modules, scripts, source code, object code, byte code, compiled code, interpreted code, machine code, executable instructions, and/or the like to implement the functions of the mobile device 1300 .
  • the mobile device 1300 may also include one or more of a camera 1326 and a mobile application 1330 .
  • the camera 1326 may be configured according to various embodiments as an additional and/or alternative data collection feature, whereby one or more items may be read, stored, and/or transmitted by the mobile device 1300 via the camera.
  • the mobile application 1330 may further provide a feature via which various tasks may be performed with the mobile device 1300 .
  • Various configurations may be provided, as may be desirable for one or more users of the mobile device 1300 and the system 1020 as a whole.

Abstract

A method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure, the method comprising the steps of: providing at least one model of the three-dimensional article, lowering the support structure a predetermined distance and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, rotating the at least one model by the predetermined angle in the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer, the at least one first energy beam source causing the first powder layer on the stationary support structure which is stationary to fuse in the selected locations according to the model to form first portions of the three-dimensional article.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit of U.S. Provisional Patent Application No. 62/565,596, filed on Sep. 29, 2017, the contents of which as are hereby incorporated by reference in their entirety.
  • BACKGROUND Technical Field
  • The present invention relates to a method and apparatus for additive manufacturing of 3-dimensional objects.
  • Related Art
  • Freeform fabrication or additive manufacturing is a method for forming three-dimensional articles through successive fusion of chosen parts of powder layers applied to a work plate.
  • Such an apparatus may comprise a work plate on which the three-dimensional article is to be formed, a powder dispenser, arranged to lay down a thin layer of powder on the work plate for the formation of a powder bed, a laser beam source for delivering energy to the powder whereby fusion of the powder takes place, elements for control of the laser beam source over the powder bed for the formation of a cross section of the three-dimensional article through fusion of parts of the powder bed, and a controlling computer, in which information is stored concerning consecutive cross sections of the three-dimensional article. A three-dimensional article is formed through consecutive fusions of consecutively formed cross sections of powder layers, successively laid down by the powder dispenser.
  • FIG. 1 illustrates schematically an additive manufacturing apparatus comprising a laser source 1 directed by scanning optics 2 such that the beam 3 defines a 2-dimensional pattern in a thin bed of metal powder 4. Where the laser impinges upon the bed of powder, the powder is fused to form a solid layer 5 bonded to a base plate 6. When the first layer is completed, the build plate is indexed down by the elevator mechanism 7. The powder bed is then replenished to the original level by the powder distributor 8 which scans horizontally so as to scrape powder from powder supply hopper 9 and deposit a uniform layer above the previously scanned layer. The second layer of powder is then scanned so as to fuse the required areas of powder onto the previously fused layer 5. By repeating this process, a 3-dimensional article is progressively build up, being composed of multiple 2-dimensional layers 5.
  • A problem with the prior art is the difficulty of providing a layer of metal powder with equal thickness over the full build envelope. A variation of the powder layer thickness may be revealed by dimensional inaccuracy of the final product.
  • There is a demand for additive manufacturing techniques with higher machine yield, higher final quality of manufactured part and a less sensitive powder dispatching system.
  • BRIEF SUMMARY
  • An object of the present invention is to provide an additive manufacturing apparatus and method suitable for additive manufacturing of three-dimensional parts which is capable of efficiently building higher quality parts than prior art machines without sacrificing material properties of the final product.
  • In a first aspect according to various embodiments of the invention it is provided a method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure, which parts correspond to successive portions of the three-dimensional article, the method comprising the steps of: providing at least one model of the three-dimensional article, lowering the support structure a predetermined distance and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, rotating the support structure the predetermined angle in a second direction opposite to the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer, directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, repeating the steps of lowering and rotating until the three-dimensional article is finished.
  • An exemplary advantage of at least these embodiments is that additive manufacturing may be performed with higher yield. This is due to the fact that the angle of the manufactured part(s) relative to the powder distributor is not constant but changed from one layer to another. This will help removing repetitive errors that may arise when using a static angle between the parts that is to be manufactured and the powder distributor. By changing the angle of the powder distribution mechanism and the support structure onto which the three-dimensional article is manufactured may also remove errors in the powder distribution process independently of what is manufactured, i.e., powder distribution errors are distributed more evenly over the manufacturing area compared to when using a fixed angle of the powder distribution process and support structure. In the latter case, errors may be stacked onto each other from one layer to another, which in the end may cause not only dimension errors but also reduced mechanical properties of the final article.
  • In various example embodiments according to the present invention the predetermined angle which the support structure is rotated is equal or unequal from one layer to another.
  • An exemplary advantage of using unequal rotational angle from one layer to another is that errors emanating from the powder distribution process is spread out at a larger area where they have no impact on the final article or eliminated due to the fact that the angle between the powder distributor and the previously built three-dimensional layer will not cause any powder layer inhomogeneities. An exemplary advantage of using an equal rotational angle for a predetermined number of layers is that the angle is known beforehand not to cause any powder layer inhomogeneities for the-three dimensional cross sections which is to be built. Another fixed rotational angle may be used for a predetermined number of layers if the other rotational angle gives a better powder layer homogeneity than the previously used rotational angle. A more favourable rotational angle may arise if the cross sections which has been built is altered.
  • In various example embodiments according to the present invention the support structure is rotated by rotating the support structure alone and/or a build tank in which the support structure is arranged.
  • An exemplary advantage of rotating the support structure alone and keeping the position of the build tank fixed is that it reduces the mechanical complexity of the machine. An exemplary advantage of rotating the build tank is that it may reduce the leakage of powder between the support structure and the build tank.
  • An advantage of various example embodiments of the present invention is that any type of powder distribution process may be used. The rotation of the support structure a predetermined angle before powder application and then reposition to the original position before fusion takes place may reduce powder distribution related errors irrespective of how the powder distribution is made.
  • In a second aspect according to various embodiments of the invention it is provided an apparatus for forming a three-dimensional article through successive fusion of parts of a powder bed, which parts corresponds to successive cross sections of the three-dimensional article, the apparatus comprising: a. a control unit having stored thereon a computer model of the three-dimensional article, b. a control unit configured for moving a support structure a predetermined distance in z-direction and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, c. a control unit configured for rotating the support structure the predetermined angle in a second direction opposite to the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer, d. a control unit configured for directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, and e. a control unit configured for repeating step b-d until the three-dimensional article is finished.
  • An exemplary advantage of at least these embodiments is that it provides for an additive manufacturing apparatus with higher yield. This is due to the fact that the angle of the manufactured part(s) relative to the powder distributor is not constant but changed from one layer to another. This will help removing repetitive errors that may arise when using a static angle between the parts that is to be manufactured and the powder distributor. By changing the angle of the powder distribution mechanism and the support structure onto which the three-dimensional article is manufactured may also remove errors in the powder distribution process independently of what is manufactured, i.e., powder distribution errors are distributed more evenly over the manufacturing area compared to when using a fixed angle of the powder distribution process and support structure. In the latter case, errors may be stacked onto each other from one layer to another, which in the end may cause not only dimension errors but also reduced mechanical properties of the final article.
  • Another exemplary advantage of these embodiments is that it is equally applicable for any powder distribution mechanism and they are also independent of the energy beam source used for fusing the powder material.
  • In yet another aspect according to various embodiments of the invention it is provided a method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure, which parts correspond to successive portions of the three-dimensional article. The method comprises the steps of: providing at least one model of the three-dimensional article, lowering the support structure a predetermined distance and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, rotating the at least one model by the predetermined angle in the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer, directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, and repeating at least the lowering and the rotating steps until the three-dimensional article is finished. Exemplary advantages of this method mirror those previously detailed herein, although the same are achievable with a single mechanical rotation versus two.
  • In yet another aspect according to various embodiments of the invention it is provided a computer program product comprising at least one non-transitory computer-readable storage medium having computer-readable program code portions embodied therein, the computer-readable program code portions comprising one or more executable portions configured for: upon receipt of at least one model of a three-dimensional article, lowering a support structure a predetermined distance and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, rotating the at least one model by the predetermined angle in the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer, directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, and repeating the lowering, rotating, and directing steps until the three-dimensional article is finished. Exemplary advantages of this computer program product mirror those of the method summarized immediately above.
  • In yet another aspect according to various embodiments of the invention it is provided an apparatus for forming a three-dimensional article through successive fusion of parts of a powder bed, which parts corresponds to successive cross sections of the three-dimensional article, the apparatus comprising: a selectively rotatable support structure; at least one first energy beam; at least one control unit with a computer model of the three-dimensional article stored thereon, the control unit being configured for: moving the support structure a predetermined distance in z-direction and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, rotating the computer model by the predetermined angle in the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer, directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, and repeating the moving, rotating, and directing steps until the three-dimensional article is finished. Exemplary advantages of this apparatus mirror those of the method summarized immediately above.
  • Herein and throughout, where an exemplary embodiment is described or an advantage thereof is identified, such are considered and intended as exemplary and non-limiting in nature, so as to not otherwise limit or constrain the scope and nature of the inventive concepts disclosed.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
  • The invention will be further described in the following, in a non-limiting way with reference to the accompanying drawings. Same characters of reference are employed to indicate corresponding similar parts throughout the several figures of the drawings:
  • FIG. 1 presents a first schematic side view of an additive manufacturing apparatus according to prior art;
  • FIG. 2 presents a second schematic side view of an additive manufacturing apparatus according to prior art;
  • FIGS. 3A-3D show respective side views of an additive manufacturing machine in different manufacturing stages according to certain embodiments of the present invention;
  • FIGS. 3E-G show respective side views of an additive manufacturing machine in different manufacturing stages according to certain additional embodiments of the present invention;
  • FIGS. 4A-B show exemplary schematic flow charts according to various embodiments of the present invention;
  • FIG. 5 is a block diagram of an exemplary system 1020 according to various embodiments;
  • FIG. 6A is a schematic block diagram of a server 1200 according to various embodiments; and
  • FIG. 6B is a schematic block diagram of an exemplary mobile device 1300 according to various embodiments.
  • DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS
  • Various example embodiments of the present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, embodiments of the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly known and understood by one of ordinary skill in the art to which the invention relates. The term “or” is used herein in both the alternative and conjunctive sense, unless otherwise indicated. Like numbers refer to like elements throughout.
  • To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.
  • The term “three-dimensional structures” and the like as used herein refer generally to intended or actually fabricated three-dimensional configurations (e.g. of structural material or materials) that are intended to be used for a particular purpose. Such structures, etc. may, for example, be designed with the aid of a three-dimensional CAD system.
  • The term “two-dimensional structures” and the like as used herein refer generally to substantially planar structures that may be considered as respective “layers” that when taken as a whole define or otherwise form the “three-dimensional structures” defined above. While referred to as “two-dimensional structures” it should be understood that each includes an accompanying thickness in a third dimension, albeit such that the structures remain substantially two-dimensional in nature. As a non-limiting example, a plurality of two-dimensional structures would have to be stacked atop one another so as to achieve a thickness comparable to that of the “three-dimensional structures” defined above and described elsewhere herein.
  • The term “electron beam” as used herein in various embodiments refers to any charged particle beam. The sources of a charged particle beam can include an electron gun, a linear accelerator and so on.
  • Various embodiments of the invention relate to a method for producing three-dimensional objects by powder additive manufacturing, for instance Electron Beam Melting (EBM) and/or selective laser sintering SLS or selective laser melting SLM. In various example embodiments the object may be wider than the sum of the beam scanning area from the energy beam sources.
  • FIG. 2 depicts an embodiment of a freeform fabrication or additive manufacturing apparatus 21 according to prior art.
  • The apparatus 21 comprises an electron beam gun 6; deflection coils 7; two powder hoppers 4, 14; a build platform 2; a build chamber 10; a powder distributor 28; a powder bed 5; a vacuum chamber 20 and a control unit 8.
  • The vacuum chamber 20 is capable of maintaining a vacuum environment by means of a vacuum system, which system may comprise a turbomolecular pump, a scroll pump, an ion pump and one or more valves which are well known to a skilled person in the art and therefore need no further explanation in this context. The vacuum system is controlled by the control unit 8.
  • The electron beam gun 6 is generating an electron beam which is used for melting or fusing together powder material provided on the build platform 2. The control unit 8 may be used for controlling and managing the electron beam emitted from the electron beam gun 6. At least one focusing coil (not shown), at least one deflection coil 7, an optional coil for astigmatic correction (not shown) and an electron beam power supply (not shown) may be electrically connected to the control unit 8. In an example embodiment of the invention the electron beam gun 6 generates a focusable electron beam with an accelerating voltage of about 15-120 kV and with a beam power in the range of 3-10 Kw. The pressure in the vacuum chamber may be 1×10−3 mbar or lower when building the three-dimensional article 3 by fusing the powder layer by layer with the energy beam.
  • In another embodiment a laser beam may be used for melting or fusing the powder material. In such case tiltable mirrors may be used in the beam path in order to deflect the laser beam to a predetermined position.
  • The powder hoppers 4, 14 comprise the powder material to be provided on the build platform 2 in the build chamber 10. The powder material may for instance be pure metals or metal alloys such as titanium, titanium alloys, aluminum, aluminum alloys, stainless steel, Co—Cr alloys, nickel based superalloys, etc., and the like.
  • The powder distributor 28 is arranged to lay down a thin layer of the powder material on the build platform 2. During a work cycle the build platform 2 will be lowered successively in relation to a fixed point in the vacuum chamber. In order to make this movement possible, the build platform 2 is in one embodiment of the invention arranged movably in vertical direction, i.e., in the direction indicated by arrow P. This means that the build platform 2 starts in an initial position, in which a first powder material layer of necessary thickness has been laid down. Means for lowering the build platform 2 may for instance be through a servo engine equipped with a gear, adjusting screws, etc., and the like
  • An electron beam may be directed over the build platform 2 causing the first powder layer to fuse in selected locations to form a first cross section of the three-dimensional article 3. The beam is directed over the build platform 2 from instructions given by the control unit 8. In the control unit 8 instructions for how to control the electron beam for each layer of the three-dimensional article is stored.
  • After a first layer is finished, i.e., the fusion of powder material for making a first layer of the three-dimensional article 3, a second powder layer is provided on the build platform 2. The second powder layer is preferably distributed according to the same manner as the previous layer. However, there might be other methods in the same additive manufacturing machine for distributing powder onto the build platform 2.
  • After having distributed the second powder layer on the build platform, the energy beam is directed over the build platform 2 causing the second powder layer to fuse in selected locations to form a second cross section of the three-dimensional article. Fused portions in the second layer may be bonded to fused portions of the first layer. The fused portions in the first and second layer may be melted together by melting not only the powder in the uppermost layer but also remelting at least a fraction of a thickness of a layer directly below the uppermost layer.
  • An optional preheating of the powder layer to a temperature below the melting point of the powders may be performed before the actual fusing of the powder takes place at selected areas.
  • Performing the melting by scanning with a focused beam in the area corresponding to a predetermined cross section of the model stored in the control unit 8.
  • In another embodiment the build platform 2 may be provided in an enclosable chamber provided with ambient air and atmosphere pressure. In still another example embodiment the work plate may be provided in open air. In those two cases the high energy beam fusing the powder material may be one or a plurality of laser beams.
  • FIGS. 3A-3D show respective side views of an additive manufacturing machine in different manufacturing stages according to the present invention.
  • FIG. 3A comprises a first powder hopper 4 with powder 67, a second powder hopper 14 with powder 167, a powder distributor 28, a powder table 40, a build chamber 10, a build platform 2. The energy beam(s) and its energy beam source(s) and beam deflection mechanism for fusing the powder layers have been left out for clarity reasons only.
  • A predetermined amount of powder 68 from the first powder hopper 4 may be provided on the powder table 40 between the powder distributor 28 and the build chamber 10. This predetermined amount of powder 68 may be provided on the powder table 40 by raising a floor 65 in the powder hopper 4 a predetermined distance. In FIG. 3A the predetermined amount of powder is created by raising the floor 65 from a position C to a position D. The predetermined amount of powder 68 then provided above the top surface A of the powder table 40 in the powder hopper 4, may be raked off by the powder distributor 28 from the powder hopper 4 to the powder table 40. The predetermined amount of powder 68 may be raked off from the first powder hopper 4 to an area between the powder hopper 4 and the build chamber 10, i,e, onto the powder table 40, or directly to the build chamber 10 if there is no space between the build chamber 10 and the first powder hopper 4.
  • The build platform 2 is arranged at a position denoted by B, which is lower than a position of the powder table 40 which is denoted by A. The difference in height between the powder table 40 and the top surface of the build platform 2 or a previous partly fused powder layer will represent the thickness of the powder layer which is to be fused in selected location according to the model stored in the control unit.
  • Before a new layer of powder material is applied on top of the build platform 2, the build platform 2 is not only lowered in order to create the space for a new powder layer but also rotated a predetermined angle denoted by arrow 80 in FIG. 3A. The angle of rotation may be between 0°-90° from its original position in a clockwise direction or 0°-90° in a counter clockwise direction. In an example embodiment the angle is 72 degrees either clockwise or counter clockwise. In another example embodiment the angle is 40 degrees either clockwise or counter clockwise. By rotating the build platform 2 a predetermined angle before applying the powder layer instead of always keeping the build platform 2 at a fixed angular position will decrease the likelihood of dimensional instability due to the fact that possible powder distribution errors from one layer may not add up with powder distribution errors in another layer. The powder distribution errors may arise from previously fused areas having a different height compared to the non-fused areas. By changing the angle of the previously built areas with respect to a powder distributor 28 from one layer to another, the likelihood of building up large dimensional errors may be reduced. The build platform is rotated the predetermined angle with respect to the powder distribution mechanism in a clockwise or counter clockwise direction from its original position before the powder application is started. In an example embodiment the rotation of the build platform 2 may be with a first predetermined angle before a first layer is to be applied and a second predetermined angle before a second layer is to be applied. The first and second angles may be different. The first predetermined angle of rotation may be in a clockwise direction and the second predetermined angle of rotation may be in a counter clockwise direction.
  • In another example embodiment the predetermined angle is randomly selected to be any angle between 0-90 degrees for a predetermined number of layers in either clockwise direction or counter clockwise direction.
  • The build platform 2 may be rotated by rotating the axis 90 supporting the build platform 2. In another example embodiment the build platform 2 may be rotated by rotating the build tank 10 together with the build platform 2.
  • FIG. 3B illustrates the process step in which the powder taken from the powder hopper 4 is distributed over the build platform 2. While distributing the powder material over the build platform 2, the build platform 2 is in a stationary condition, i.e., neither moving downwards nor rotating.
  • FIG. 3C illustrates a step made after the powder layer has been applied but before the powder layer is irradiated with a high energy beam for fusing the powder in selected locations. In FIG. 3C the build platform 2 is rotated back to its original position by rotating the build platform 2 the predetermined angle in an opposite direction compared to the direction the build platform 2 was rotated prior to applying the powder layer. By the rotation one makes sure that the coordinate system of the high energy beam and the coordinate system of the build platform 2 are aligned to each other. In an example embodiment one or a plurality of alignment marks may be used for returning the build platform 2 to its original position. The alignment marks may be detected by a camera system. The detected alignment marks may either be compared with a reference position or alternatively a first alignment mark may be provided on the build platform 2 and a second alignment mark may be arranged in a fixed position. The fixed alignment mark and the alignment mark on the build platform 2 should be arranged in a predetermined way when the build platform 2 is in its original position. Other means for making sure the build platform 2 is returning to the same position is also possible, such as alignment marks detected by camera or illuminated by laser light are also possible. The alignment marks may be arranged on the backside of the build platform 2. In an alternative embodiment the original position may be validated by detecting an electrical device rotating the build platform 2 or build platform 2 together with the build tank. The electrical device making the rotation may for instance be a step motor having a gear adapted to and engaging with a gear on the build platform 2 or the build tank 10.
  • In FIG. 3D the powder layer is radiated in selected locations by the high energy beam 75 for heating and/or melting the powder layer 33. The build platform 2 is stationary in its original position while melting the powder layer at the selected locations. In FIG. 3D only one beam is illustrated, but two or more high energy beams may also be used in the heating and/or melting process. The one or plurality of beams may be of the same type or of different type. Laser beams and/or electron beams may be used for melting and/or heating the powder layer 33.
  • FIGS. 3E-G show respective side views of an additive manufacturing machine in different manufacturing stages according to another embodiment of the present invention.
  • FIG. 3E comprises a first powder hopper 4 with powder 67, a second powder hopper 14 with powder 167, a powder distributor 28, a powder table 40, a build chamber 10, a build platform 2. The energy beam(s) and its energy beam source(s) and beam deflection mechanism for fusing the powder layers have been left out for clarity reasons only.
  • A predetermined amount of powder 68 from the first powder hopper 4 may be provided on the powder table 40 between the powder distributor 28 and the build chamber 10. This predetermined amount of powder 68 may be provided on the powder table 40 by raising a floor 65 in the powder hopper 4 a predetermined distance. In FIG. 3E the predetermined amount of powder is created by raising the floor 65 from a position C to a position D. The predetermined amount of powder 68 then provided above the top surface A of the powder table 40 in the powder hopper 4, may be raked off by the powder distributor 28 from the powder hopper 4 to the powder table 40. The predetermined amount of powder 68 may be raked off from the first powder hopper 4 to an area between the powder hopper 4 and the build chamber 10, i,e, onto the powder table 40, or directly to the build chamber 10 if there is no space between the build chamber 10 and the first powder hopper 4.
  • The build platform 2 is arranged at a position denoted by B, which is lower than a position of the powder table 40 which is denoted by A. The difference in height between the powder table 40 and the top surface of the build platform 2 or a previous partly fused powder layer will represent the thickness of the powder layer which is to be fused in selected location according to the model stored in the control unit.
  • Before a new layer of powder material is applied on top of the build platform 2, the build platform 2 is not only lowered in order to create the space for a new powder layer but also rotated a predetermined angle denoted by arrow 80 in FIG. 3E. The angle of rotation may be between 0°-90° from its original position in a clockwise direction or 0°-90° in a counter clockwise direction. In an example embodiment the angle is 72 degrees either clockwise or counter clockwise. In another example embodiment the angle is 20 degrees either clockwise or counter clockwise. By rotating the build platform 2 a predetermined angle before applying the powder layer instead of always keeping the build platform 2 at a fixed angular position the likelihood of dimensional instability is decreased due to the fact that possible powder distribution errors from one layer may not add up with powder distribution errors in another layer. The powder distribution errors may arise from previously fused areas having a different height compared to the non-fused areas. By changing the angle of the previously built areas with respect to a powder distributor 28 from one layer to another, the likelihood of building up large dimensional errors may be reduced. The build platform is rotated the predetermined angle with respect to the powder distribution mechanism in a clockwise or counter clockwise direction from its original position before the powder application is started. In an example embodiment the rotation of the build platform 2 may be with a first predetermined angle before a first layer is to be applied and a second predetermined angle before a second layer is to be applied. The first and second angles may be different. The first predetermined angle of rotation may be in a clockwise direction and the second predetermined angle of rotation may be in a counter clockwise direction.
  • In another example embodiment the predetermined angle is randomly selected to be any angle between 0-90 degrees for a predetermined number of layers in either clockwise direction or counter clockwise direction. The build platform 2 may be rotated by rotating the axis 90 supporting the build platform 2. In another example embodiment the build platform 2 may be rotated by rotating the build tank 10 together with the build platform 2.
  • FIG. 3F illustrates the process step in which the powder taken from the powder hopper 4 is distributed over the build platform 2. While distributing the powder material over the build platform 2, the build platform 2 is in a stationary condition, i.e., neither moving downwards nor rotating.
  • In FIG. 3G the powder layer is next radiated in selected locations by the high energy beam 75 for heating and/or melting the powder layer 33. The build platform 2 remains stationary in the same position as in FIG. 3F while melting the powder layer at the selected locations. In FIG. 3G only one beam is illustrated, but two or more high energy beams may also be used in the heating and/or melting process. The one or plurality of beams may be of the same type or of different type. Laser beams and/or electron beams may be used for melting and/or heating the powder layer 33.
  • Notably, in FIG. 3G, as compared to FIG. 3D, the build platform 2 is not prior (as in FIG. 3C) rotated back to its original position. Instead, in FIG. 3G, the build platform remains in the rotated position achieved in FIG. 3F. Before fusing or radiation that occurs in FIG. 3G, though, the at least one model of the three-dimensional article that is provided (e.g., via a CAD (Computer Aided Design) tool, as described elsewhere herein) may be rotated an angle that corresponds to the predetermined angle by which the build platform 2 (and/or build tank 10) is rotated in FIG. 3F. As a result, only one mechanical rotation of the build platform 2 is needed per layer, with the second mechanical rotation provided in other embodiments described herein being replaced with a computer-generated rotation of the CAD file or model, thus providing a rotation of the coordinate system utilized by the high energy beam during heating and/or melting of the powder layer 33. In other words, by the rotation of the model (without a second rotation of the support surface or build platform 2, one can nevertheless ensure that the coordinate system of the high energy beam and the coordinate system of the build platform 2 are aligned to each other.
  • Rotation of the CAD file or model may be clockwise or counter-clockwise. The rotation of the CAD file may also be different for different layers, much like the rotation of the build platform 2. It is also possible to rotate the CAD and/or the build platform 2 in clockwise and counter-clockwise directions in the same build of a three-dimensional multi-layer object, provided that the CAD file is always rotated in the same direction as the build platform 2 for any particular layer.
  • Various embodiments of this invention concern the provision of a rotation of the build platform 2 from its original position prior to applying a new powder layer and then rotating an associated CAD file (i.e., model) in a corresponding manner when the powder layer has been applied but before the powder layer is radiated by the high energy beam for fusing and/or heating at selected locations. In an example embodiment of the present invention the axis of rotation may be vertical and the build platform 2 may be annular.
  • The build platform 2 may either be rotated by rotating the axis 90 supporting the build platform 2 or rotating the build tank 10 together with the build platform 2 with respect to a powder distribution mechanism. A rotation of the build tank 10 may be applied from its outside.
  • A position of the build tank 10 and work plate 2 may be measured and feedback to the control unit 8.
  • It must be understood that the present invention is potentially applicable to any type of layer wise rapid prototyping and additive manufacturing machines, and to other machines using the layer-on-layer fabrication technique, including non-metallic material.
  • The electron beam source generating an electron beam may be used for melting or fusing together powder material 33 provided on the work plate 2. The control unit 8 may be used for controlling and managing the electron and/or laser beams emitted from at least one electron beam source and/or at least one laser beam source. The electron beams and/or laser beams may be deflected between its first extreme position and its second extreme position.
  • The powder storage 4, 14 may comprise the metal powder material 67, 167 to be provided on the work plate 2. The metal powder material may for instance be pure metals or metal alloys such as titanium, titanium alloys, aluminum, aluminum alloys, stainless steel, Co—Cr—W alloy, Ni-based alloys, Titanium aluminides, Niobium, silicon nitride, molybdenum disilicide and the like.
  • In FIG. 4A it is depicted a flow chart of an example embodiment of a method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure, which parts correspond to successive portions of the three-dimensional article.
  • In a first step denoted 410 at least one model of the three-dimensional article is provided. The model may be generated by a CAD (Computer Aided Design) tool. The model may be sliced into a number of slices representing the fused powder layers which is going to form the physical three-dimensional article.
  • In a second step denoted 420 the support structure is lowered a predetermined distance and rotated a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure. The rotation may be performed with respect to a powder distribution mechanism. The predetermined angle may be between 0°-90° in a clockwise direction or 0°-90° in a counter clockwise direction. Alternatively the predetermined angle is 0-180 degrees from the original position. When using 0-180 degrees it will take longer time to go to the extreme position 180 and back from the extreme position to the original position compared to if using 0-90 in clockwise direction and 0-90 in counter clockwise direction. Given that the speed of rotation is the same in both case it will be a reduction by a factor 2 in the latter case with clockwise and counter clockwise rotation. The rotation and lowering may be performed simultaneously or as separate steps. In the latter case the rotation of the support structure or the build tank together with the support structure may be performed before lowering or vice versa.
  • In a third step denoted by 430 the support structure is rotated the predetermined angle in a second direction opposite to the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer. Here the support structure 2 is rotated back to the original position, which position is aligned with the high energy beam coordinate system. By returning back to the original position when fusing the powder material there is no need for coordinate transformation as would be necessary if the fusing position is altered from one layer to another.
  • In a fourth step denoted by 440 the at least one first energy beam is directed from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article. The at least one first energy beam may be at least one laser beam and/or at least one electron beam.
  • In a fifth step denoted by 450 step 420 to 440 is repeated until the three-dimensional article is finished.
  • In FIG. 4B it is depicted a flow chart of another example embodiment of a method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure, which parts correspond to successive portions of the three-dimensional article.
  • In a first step denoted 510 at least one model of the three-dimensional article is provided. The model may be generated by a CAD (Computer Aided Design) tool. The model may be sliced into a number of slices representing the fused powder layers which is going to form the physical three-dimensional article.
  • In a second step denoted 520 the support structure is lowered a predetermined distance and rotated a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure. The rotation may be performed with respect to a powder distribution mechanism. The predetermined angle may be between 0°-90° in a clockwise direction or 0°-90° in a counter clockwise direction. Alternatively the predetermined angle is 0-180 degrees from the original position. When using 0-180 degrees it will take longer time to go to the extreme position 180 and back from the extreme position to the original position compared to if using 0-90 in clockwise direction and 0-90 in counter clockwise direction. Given that the speed of rotation is the same in both case it will be a reduction by a factor 2 in the latter case with clockwise and counter clockwise rotation. The rotation and lowering may be performed simultaneously or as separate steps. In the latter case the rotation of the support structure or the build tank together with the support structure may be performed before lowering or vice versa.
  • In a third step denoted by 530 the support structure remains in the position obtained during step 520 (i.e., it is not further rotated). Instead, as compared to step 430, during step 530 the at least one model of the three-dimensional article provided in step 510 is electronically rotated. Rotation of the model, as generated by a CAD (Computer Aided Design) tool, is done by an angle corresponding in value and direction to the rotation of the support structure in step 520. In other words, it is also possible to rotate the CAD file (and thus the coordinate system referenced therein) in clockwise and counter-clockwise directions in the same build of a three-dimensional multi-layer object, provided that the CAD file is always rotated in the same direction as the build platform 2 for any particular layer. In at least this embodiment, only one mechanical rotation of the build platform 2 is needed per layer, with the second mechanical rotation provided in other embodiments described herein being replaced with a computer-generated rotation of the CAD file or model, thus providing a rotation of the coordinate system utilized by the high energy beam during heating and/or melting of the powder layer 33 (see step 540).
  • In a fourth step denoted by 540 the at least one first energy beam is directed from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article. The at least one first energy beam may be at least one laser beam and/or at least one electron beam.
  • In a fifth step denoted by 550, step 520 to 540 is repeated until the three-dimensional article is finished.
  • Preheating of the powder with the purpose of heating the powder particles to a predetermined temperature below its melting temperature may be performed at any stage, i.e., during powder application, during rotation and/or lowering of the support structure and/or during fusion of the powder particles but at other regions where fusion is not taking place.
  • In another aspect of the invention it is provided a program element configured and arranged when executed on a computer to implement a method for forming at least one three-dimensional article through successive fusion of parts of a powder bed, which parts correspond to successive portions of the three-dimensional article. The program element may be installed in a computer readable storage medium. The computer readable storage medium may be the control unit 10 or another and separate control unit, as may be desirable. The computer readable storage medium and the program element, which may comprise computer-readable program code portions embodied therein, may further be contained within a non-transitory computer program product. Further details regarding these features and configurations are provided, in turn, below.
  • As mentioned, various embodiments of the present invention may be implemented in various ways, including as non-transitory computer program products. A computer program product may include a non-transitory computer-readable storage medium storing applications, programs, program modules, scripts, source code, program code, object code, byte code, compiled code, interpreted code, machine code, executable instructions, and/or the like (also referred to herein as executable instructions, instructions for execution, program code, and/or similar terms used herein interchangeably). Such non-transitory computer-readable storage media include all computer-readable media (including volatile and non-volatile media).
  • In one embodiment, a non-volatile computer-readable storage medium may include a floppy disk, flexible disk, hard disk, solid-state storage (SSS) (e.g., a solid state drive (SSD), solid state card (SSC), solid state module (SSM)), enterprise flash drive, magnetic tape, or any other non-transitory magnetic medium, and/or the like. A non-volatile computer-readable storage medium may also include a punch card, paper tape, optical mark sheet (or any other physical medium with patterns of holes or other optically recognizable indicia), compact disc read only memory (CD-ROM), compact disc compact disc-rewritable (CD-RW), digital versatile disc (DVD), Blu-ray disc (BD), any other non-transitory optical medium, and/or the like. Such a non-volatile computer-readable storage medium may also include read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory (e.g., Serial, NAND, NOR, and/or the like), multimedia memory cards (MMC), secure digital (SD) memory cards, SmartMedia cards, CompactFlash (CF) cards, Memory Sticks, and/or the like. Further, a non-volatile computer-readable storage medium may also include conductive-bridging random access memory (CBRAM), phase-change random access memory (PRAM), ferroelectric random-access memory (FeRAM), non-volatile random-access memory (NVRAM), magnetoresistive random-access memory (MRAM), resistive random-access memory (RRAM), Silicon-Oxide-Nitride-Oxide-Silicon memory (SONOS), floating junction gate random access memory (FJG RAM), Millipede memory, racetrack memory, and/or the like.
  • In one embodiment, a volatile computer-readable storage medium may include random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), fast page mode dynamic random access memory (FPM DRAM), extended data-out dynamic random access memory (EDO DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (DDR SDRAM), double data rate type two synchronous dynamic random access memory (DDR2 SDRAM), double data rate type three synchronous dynamic random access memory (DDR3 SDRAM), Rambus dynamic random access memory (RDRAM), Twin Transistor RAM (TTRAM), Thyristor RAM (T-RAM), Zero-capacitor (Z-RAM), Rambus in-line memory module (RIMM), dual in-line memory module (DIMM), single in-line memory module (SIMM), video random access memory VRAM, cache memory (including various levels), flash memory, register memory, and/or the like. It will be appreciated that where embodiments are described to use a computer-readable storage medium, other types of computer-readable storage media may be substituted for or used in addition to the computer-readable storage media described above.
  • As should be appreciated, various embodiments of the present invention may also be implemented as methods, apparatus, systems, computing devices, computing entities, and/or the like, as have been described elsewhere herein. As such, embodiments of the present invention may take the form of an apparatus, system, computing device, computing entity, and/or the like executing instructions stored on a computer-readable storage medium to perform certain steps or operations. However, embodiments of the present invention may also take the form of an entirely hardware embodiment performing certain steps or operations.
  • Various embodiments are described below with reference to block diagrams and flowchart illustrations of apparatuses, methods, systems, and computer program products. It should be understood that each block of any of the block diagrams and flowchart illustrations, respectively, may be implemented in part by computer program instructions, e.g., as logical steps or operations executing on a processor in a computing system. These computer program instructions may be loaded onto a computer, such as a special purpose computer or other programmable data processing apparatus to produce a specifically-configured machine, such that the instructions which execute on the computer or other programmable data processing apparatus implement the functions specified in the flowchart block or blocks.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including computer-readable instructions for implementing the functionality specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer-implemented process such that the instructions that execute on the computer or other programmable apparatus provide operations for implementing the functions specified in the flowchart block or blocks.
  • Accordingly, blocks of the block diagrams and flowchart illustrations support various combinations for performing the specified functions, combinations of operations for performing the specified functions and program instructions for performing the specified functions. It should also be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, could be implemented by special purpose hardware-based computer systems that perform the specified functions or operations, or combinations of special purpose hardware and computer instructions.
  • FIG. 5 is a block diagram of an exemplary system 1020 that can be used in conjunction with various embodiments of the present invention. In at least the illustrated embodiment, the system 1020 may include one or more central computing devices 1110, one or more distributed computing devices 1120, and one or more distributed handheld or mobile devices 1300, all configured in communication with a central server 1200 (or control unit) via one or more networks 1130. While FIG. 5 illustrates the various system entities as separate, standalone entities, the various embodiments are not limited to this particular architecture.
  • According to various embodiments of the present invention, the one or more networks 1130 may be capable of supporting communication in accordance with any one or more of a number of second-generation (2G), 2.5G, third-generation (3G), and/or fourth-generation (4G) mobile communication protocols, or the like. More particularly, the one or more networks 1130 may be capable of supporting communication in accordance with 2G wireless communication protocols IS-136 (TDMA), GSM, and IS-95 (CDMA). Also, for example, the one or more networks 1130 may be capable of supporting communication in accordance with 2.5G wireless communication protocols GPRS, Enhanced Data GSM Environment (EDGE), or the like. In addition, for example, the one or more networks 1130 may be capable of supporting communication in accordance with 3G wireless communication protocols such as Universal Mobile Telephone System (UMTS) network employing Wideband Code Division Multiple Access (WCDMA) radio access technology. Some narrow-band AMPS (NAMPS), as well as TACS, network(s) may also benefit from embodiments of the present invention, as should dual or higher mode mobile stations (e.g., digital/analog or TDMA/CDMA/analog phones). As yet another example, each of the components of the system 1020 may be configured to communicate with one another in accordance with techniques such as, for example, radio frequency (RF), Bluetooth™ infrared (IrDA), or any of a number of different wired or wireless networking techniques, including a wired or wireless Personal Area Network (“PAN”), Local Area Network (“LAN”), Metropolitan Area Network (“MAN”), Wide Area Network (“WAN”), or the like.
  • Although the device(s) 1110-1300 are illustrated in FIG. 5 as communicating with one another over the same network 1130, these devices may likewise communicate over multiple, separate networks.
  • According to one embodiment, in addition to receiving data from the server 1200, the distributed devices 1110, 1120, and/or 1300 may be further configured to collect and transmit data on their own. In various embodiments, the devices 1110, 1120, and/or 1300 may be capable of receiving data via one or more input units or devices, such as a keypad, touchpad, barcode scanner, radio frequency identification (RFID) reader, interface card (e.g., modem, etc.) or receiver. The devices 1110, 1120, and/or 1300 may further be capable of storing data to one or more volatile or non-volatile memory modules, and outputting the data via one or more output units or devices, for example, by displaying data to the user operating the device, or by transmitting data, for example over the one or more networks 1130.
  • In various embodiments, the server 1200 includes various systems for performing one or more functions in accordance with various embodiments of the present invention, including those more particularly shown and described herein. It should be understood, however, that the server 1200 might include a variety of alternative devices for performing one or more like functions, without departing from the spirit and scope of the present invention. For example, at least a portion of the server 1200, in certain embodiments, may be located on the distributed device(s) 1110, 1120, and/or the handheld or mobile device(s) 1300, as may be desirable for particular applications. As will be described in further detail below, in at least one embodiment, the handheld or mobile device(s) 1300 may contain one or more mobile applications 1330 which may be configured so as to provide a user interface for communication with the server 1200, all as will be likewise described in further detail below.
  • FIG. 6A is a schematic diagram of the server 1200 according to various embodiments. The server 1200 includes a processor 1230 that communicates with other elements within the server via a system interface or bus 1235. Also included in the server 1200 is a display/input device 1250 for receiving and displaying data. This display/input device 1250 may be, for example, a keyboard or pointing device that is used in combination with a monitor. The server 1200 further includes memory 1220, which typically includes both read only memory (ROM) 1226 and random access memory (RAM) 1222. The server's ROM 1226 is used to store a basic input/output system 1224 (BIOS), containing the basic routines that help to transfer information between elements within the server 1200. Various ROM and RAM configurations have been previously described herein.
  • In addition, the server 1200 includes at least one storage device or program storage 210, such as a hard disk drive, a floppy disk drive, a CD Rom drive, or optical disk drive, for storing information on various computer-readable media, such as a hard disk, a removable magnetic disk, or a CD-ROM disk. As will be appreciated by one of ordinary skill in the art, each of these storage devices 1210 are connected to the system bus 1235 by an appropriate interface. The storage devices 1210 and their associated computer-readable media provide nonvolatile storage for a personal computer. As will be appreciated by one of ordinary skill in the art, the computer-readable media described above could be replaced by any other type of computer-readable media known in the art. Such media include, for example, magnetic cassettes, flash memory cards, digital video disks, and Bernoulli cartridges.
  • Although not shown, according to an embodiment, the storage device 1210 and/or memory of the server 1200 may further provide the functions of a data storage device, which may store historical and/or current delivery data and delivery conditions that may be accessed by the server 1200. In this regard, the storage device 1210 may comprise one or more databases. The term “database” refers to a structured collection of records or data that is stored in a computer system, such as via a relational database, hierarchical database, or network database and as such, should not be construed in a limiting fashion.
  • A number of program modules (e.g., exemplary modules 1400-1700) comprising, for example, one or more computer-readable program code portions executable by the processor 1230, may be stored by the various storage devices 1210 and within RAM 1222. Such program modules may also include an operating system 1280. In these and other embodiments, the various modules 1400, 1500, 1600, 1700 control certain aspects of the operation of the server 1200 with the assistance of the processor 1230 and operating system 1280. In still other embodiments, it should be understood that one or more additional and/or alternative modules may also be provided, without departing from the scope and nature of the present invention.
  • In various embodiments, the program modules 1400, 1500, 1600, 1700 are executed by the server 1200 and are configured to generate one or more graphical user interfaces, reports, instructions, and/or notifications/alerts, all accessible and/or transmittable to various users of the system 1020. In certain embodiments, the user interfaces, reports, instructions, and/or notifications/alerts may be accessible via one or more networks 1130, which may include the Internet or other feasible communications network, as previously discussed.
  • In various embodiments, it should also be understood that one or more of the modules 1400, 1500, 1600, 1700 may be alternatively and/or additionally (e.g., in duplicate) stored locally on one or more of the devices 1110, 1120, and/or 1300 and may be executed by one or more processors of the same. According to various embodiments, the modules 1400, 1500, 1600, 1700 may send data to, receive data from, and utilize data contained in one or more databases, which may be comprised of one or more separate, linked and/or networked databases.
  • Also located within the server 1200 is a network interface 1260 for interfacing and communicating with other elements of the one or more networks 1130. It will be appreciated by one of ordinary skill in the art that one or more of the server 1200 components may be located geographically remotely from other server components. Furthermore, one or more of the server 1200 components may be combined, and/or additional components performing functions described herein may also be included in the server.
  • While the foregoing describes a single processor 1230, as one of ordinary skill in the art will recognize, the server 1200 may comprise multiple processors operating in conjunction with one another to perform the functionality described herein. In addition to the memory 1220, the processor 1230 can also be connected to at least one interface or other means for displaying, transmitting and/or receiving data, content or the like. In this regard, the interface(s) can include at least one communication interface or other means for transmitting and/or receiving data, content or the like, as well as at least one user interface that can include a display and/or a user input interface, as will be described in further detail below. The user input interface, in turn, can comprise any of a number of devices allowing the entity to receive data from a user, such as a keypad, a touch display, a joystick or other input device.
  • Still further, while reference is made to the “server” 1200, as one of ordinary skill in the art will recognize, embodiments of the present invention are not limited to traditionally defined server architectures. Still further, the system of embodiments of the present invention is not limited to a single server, or similar network entity or mainframe computer system. Other similar architectures including one or more network entities operating in conjunction with one another to provide the functionality described herein may likewise be used without departing from the spirit and scope of embodiments of the present invention. For example, a mesh network of two or more personal computers (PCs), similar electronic devices, or handheld portable devices, collaborating with one another to provide the functionality described herein in association with the server 1200 may likewise be used without departing from the spirit and scope of embodiments of the present invention.
  • According to various embodiments, many individual steps of a process may or may not be carried out utilizing the computer systems and/or servers described herein, and the degree of computer implementation may vary, as may be desirable and/or beneficial for one or more particular applications.
  • FIG. 6B provides an illustrative schematic representative of a mobile device 1300 that can be used in conjunction with various embodiments of the present invention. Mobile devices 1300 can be operated by various parties. As shown in FIG. 6B, a mobile device 1300 may include an antenna 1312, a transmitter 1304 (e.g., radio), a receiver 1306 (e.g., radio), and a processing element 1308 that provides signals to and receives signals from the transmitter 1304 and receiver 1306, respectively.
  • The signals provided to and received from the transmitter 1304 and the receiver 1306, respectively, may include signaling data in accordance with an air interface standard of applicable wireless systems to communicate with various entities, such as the server 1200, the distributed devices 1110, 1120, and/or the like. In this regard, the mobile device 1300 may be capable of operating with one or more air interface standards, communication protocols, modulation types, and access types. More particularly, the mobile device 1300 may operate in accordance with any of a number of wireless communication standards and protocols. In a particular embodiment, the mobile device 1300 may operate in accordance with multiple wireless communication standards and protocols, such as GPRS, UMTS, CDMA2000, 1×RTT, WCDMA, TD-SCDMA, LTE, E-UTRAN, EVDO, HSPA, HSDPA, Wi-Fi, WiMAX, UWB, IR protocols, Bluetooth protocols, USB protocols, and/or any other wireless protocol.
  • Via these communication standards and protocols, the mobile device 1300 may according to various embodiments communicate with various other entities using concepts such as Unstructured Supplementary Service data (USSD), Short Message Service (SMS), Multimedia Messaging Service (MMS), Dual-Tone Multi-Frequency Signaling (DTMF), and/or Subscriber Identity Module Dialer (SIM dialer). The mobile device 1300 can also download changes, add-ons, and updates, for instance, to its firmware, software (e.g., including executable instructions, applications, program modules), and operating system.
  • According to one embodiment, the mobile device 1300 may include a location determining device and/or functionality. For example, the mobile device 1300 may include a GPS module adapted to acquire, for example, latitude, longitude, altitude, geocode, course, and/or speed data. In one embodiment, the GPS module acquires data, sometimes known as ephemeris data, by identifying the number of satellites in view and the relative positions of those satellites.
  • The mobile device 1300 may also comprise a user interface (that can include a display 1316 coupled to a processing element 1308) and/or a user input interface (coupled to a processing element 308). The user input interface can comprise any of a number of devices allowing the mobile device 1300 to receive data, such as a keypad 1318 (hard or soft), a touch display, voice or motion interfaces, or other input device. In embodiments including a keypad 1318, the keypad can include (or cause display of) the conventional numeric (0-9) and related keys (#, *), and other keys used for operating the mobile device 1300 and may include a full set of alphabetic keys or set of keys that may be activated to provide a full set of alphanumeric keys. In addition to providing input, the user input interface can be used, for example, to activate or deactivate certain functions, such as screen savers and/or sleep modes.
  • The mobile device 1300 can also include volatile storage or memory 1322 and/or non-volatile storage or memory 1324, which can be embedded and/or may be removable. For example, the non-volatile memory may be ROM, PROM, EPROM, EEPROM, flash memory, MMCs, SD memory cards, Memory Sticks, CBRAM, PRAM, FeRAM, RRAM, SONOS, racetrack memory, and/or the like. The volatile memory may be RAM, DRAM, SRAM, FPM DRAM, EDO DRAM, SDRAM, DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM, RDRAM, RIMM, DIMM, SIMM, VRAM, cache memory, register memory, and/or the like. The volatile and non-volatile storage or memory can store databases, database instances, database mapping systems, data, applications, programs, program modules, scripts, source code, object code, byte code, compiled code, interpreted code, machine code, executable instructions, and/or the like to implement the functions of the mobile device 1300.
  • The mobile device 1300 may also include one or more of a camera 1326 and a mobile application 1330. The camera 1326 may be configured according to various embodiments as an additional and/or alternative data collection feature, whereby one or more items may be read, stored, and/or transmitted by the mobile device 1300 via the camera. The mobile application 1330 may further provide a feature via which various tasks may be performed with the mobile device 1300. Various configurations may be provided, as may be desirable for one or more users of the mobile device 1300 and the system 1020 as a whole.
  • It will be appreciated that many variations of the above systems and methods are possible, and that deviation from the above embodiments are possible, but yet within the scope of the claims. Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Such modifications may, for example, involve using a different numbers of energy beam sources than the exemplified two energy beam sources. There may be a mixture between different kinds of energy beam sources such as laser beam sources and electron beam sources. In various example embodiments only a plurality of laser beam sources are used. Other electrically conductive materials than pure metallic powder may be used such as electrically conductive powders of polymers and electrically conductive powder of ceramics. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (20)

1. A method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure, which parts correspond to successive portions of the three-dimensional article, the method comprising the steps of:
providing at least one model of the three-dimensional article,
lowering the support structure a predetermined distance and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure,
rotating the at least one model by the predetermined angle in the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer,
directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article,
repeating at least the lowering and the rotating steps until the three-dimensional article is finished.
2. The method according to claim 1, wherein the predetermined angle which the support structure is rotated is equal or unequal from one layer to another.
3. The method according to claim 1, wherein the support structure is rotated by either rotating the support structure alone or by rotating a build tank in which the support structure is arranged.
4. The method according to claim 1, wherein the predetermined angle is less than 30°.
5. The method according to claim 1, wherein the powder layer is provided by a powder distributor, which powder distributor is pushing a predetermined amount of powder to be applied in front of the powder distributor over and above the support structure.
6. The method according to claim 1, wherein the rotational axis of the support structure is along the Z-axis and the at least one beam is fusing in an X-Y plane.
7. The method according to claim 1, wherein the support structure is a horizontal plate.
8. The method according to claim 1, wherein the at least one energy beam is at least one laser beam and/or at least one electron beam.
9. The method according to claim 1, wherein the first direction the support structure is rotated is clockwise for a predetermined number of powder layers and anti-clockwise for a predetermined number of powder layers.
10. The method according to claim 1, further comprising the step of preheating the powder layer before fusing it.
11. The method according to claim 10, wherein the preheating is performed by using at least one energy beam source also used for fusing the powder layer.
12. The method according to claim 10, wherein the preheating is performed by using an energy source not used for fusing the powder layer.
13. The method according to claim 10, wherein the preheating is performed during and/or after application of a new powder layer.
14. A computer program product comprising at least one non-transitory computer-readable storage medium having computer-readable program code portions embodied therein, the computer-readable program code portions comprising one or more executable portions configured for:
upon receipt of at least one model of a three-dimensional article, lowering a support structure a predetermined distance and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure,
rotating the at least one model by the predetermined angle in the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer,
directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, and
repeating the lowering, rotating, and directing steps until the three-dimensional article is finished.
15. An apparatus for forming a three-dimensional article through successive fusion of parts of a powder bed, which parts corresponds to successive cross sections of the three-dimensional article, the apparatus comprising:
a selectively rotatable support structure;
at least one first energy beam;
at least one control unit with a computer model of the three-dimensional article stored thereon, the control unit being configured for:
moving the support structure a predetermined distance in z-direction and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure,
rotating the computer model by the predetermined angle in the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations for fusing the first powder layer,
directing the at least one first energy beam from the at least one first energy beam source at selected locations according to the model for fusing the first powder layer on the support structure, which is stationary, for forming first portions of the three-dimensional article, and
repeating the moving, rotating, and directing steps until the three-dimensional article is finished.
16. The apparatus according to claim 15, wherein the powder layer is provided by a powder distributor, which powder distributor is pushing a predetermined amount of powder to be applied in front of the powder distributor over and above the support structure.
17. The apparatus according to claim 15, wherein the support structure is a horizontal plate.
18. The apparatus according to claim 15, wherein the at least one energy beam is at least one laser beam and/or at least one electron beam.
19. The apparatus according to claim 15, further comprising the step of preheating the powder layer before fusing it.
20. The apparatus according to claim 19, wherein the preheating is performed by using at least one energy beam source also used for fusing the powder layer.
US16/103,686 2017-09-29 2018-08-14 Method and apparatus for additive manufacturing Abandoned US20190099809A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/103,686 US20190099809A1 (en) 2017-09-29 2018-08-14 Method and apparatus for additive manufacturing
JP2020517514A JP7404232B2 (en) 2017-09-29 2018-09-24 Additive manufacturing method and equipment
CN201880063072.7A CN111565871B (en) 2017-09-29 2018-09-24 Method and apparatus for additive manufacturing
PCT/EP2018/075745 WO2019063459A1 (en) 2017-09-29 2018-09-24 Method and apparatus for additive manufacturing
EP18774035.2A EP3687719B1 (en) 2017-09-29 2018-09-24 Method and apparatus for additive manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762565596P 2017-09-29 2017-09-29
US16/103,686 US20190099809A1 (en) 2017-09-29 2018-08-14 Method and apparatus for additive manufacturing

Publications (1)

Publication Number Publication Date
US20190099809A1 true US20190099809A1 (en) 2019-04-04

Family

ID=65896403

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/103,686 Abandoned US20190099809A1 (en) 2017-09-29 2018-08-14 Method and apparatus for additive manufacturing
US16/103,634 Active 2039-09-24 US11185926B2 (en) 2017-09-29 2018-08-14 Method and apparatus for additive manufacturing
US17/509,562 Pending US20220040766A1 (en) 2017-09-29 2021-10-25 Method and apparatus for additive manufacturing

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/103,634 Active 2039-09-24 US11185926B2 (en) 2017-09-29 2018-08-14 Method and apparatus for additive manufacturing
US17/509,562 Pending US20220040766A1 (en) 2017-09-29 2021-10-25 Method and apparatus for additive manufacturing

Country Status (5)

Country Link
US (3) US20190099809A1 (en)
EP (2) EP3687719B1 (en)
JP (2) JP2020535317A (en)
CN (2) CN111565871B (en)
WO (2) WO2019063459A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180264598A1 (en) * 2017-03-15 2018-09-20 General Electric Company Constantly varying hatch for additive manufacturing
CN114559059A (en) * 2022-03-10 2022-05-31 西安赛隆金属材料有限责任公司 Powder bed electron beam additive manufacturing equipment and method
US20220234286A1 (en) * 2018-10-22 2022-07-28 Hamilton Sundstrand Corporation Rotating relative recoater and part orientation
US20220314532A1 (en) * 2021-03-31 2022-10-06 Ruhr-Universitaet Bochum Method and device for additive layer manufacturing of at least one component

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190099809A1 (en) * 2017-09-29 2019-04-04 Arcam Ab Method and apparatus for additive manufacturing
DE102019120570A1 (en) * 2019-07-30 2021-02-04 Pro-Beam Gmbh & Co. Kgaa PROCESS AND ELECTRON BEAM SYSTEM FOR THE PROCESSING OF POWDERED MATERIALS AT HIGH ACCELERATION VOLTAGES
US20210101209A1 (en) * 2019-10-03 2021-04-08 Hamilton Sundstrand Corporation Changeable recoater approach angle
CN112589124B (en) * 2020-12-10 2022-08-30 嘉兴意动能源有限公司 Basic shaft type metal 3D printer
CN112496352B (en) * 2021-02-07 2021-05-11 西安赛隆金属材料有限责任公司 Powder bed electron beam additive manufacturing equipment and method
CN113246463A (en) * 2021-05-14 2021-08-13 安徽工程大学 3D printing device
CN114888303B (en) * 2022-05-09 2024-03-15 广东粤港澳大湾区硬科技创新研究院 Blue laser additive manufacturing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110297081A1 (en) * 2007-06-21 2011-12-08 Materials Solutions Rotating build plate
US20140263209A1 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing
US20160167160A1 (en) * 2014-12-15 2016-06-16 Arcam Ab Method for additive manufacturing
US20190099808A1 (en) * 2017-09-29 2019-04-04 Arcam Ab Method and apparatus for additive manufacturing

Family Cites Families (241)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2264968A (en) 1938-02-14 1941-12-02 Magnafiux Corp Apparatus for measuring wall thickness
US2323715A (en) 1941-10-17 1943-07-06 Gen Electric Thermal testing apparatus
US3634644A (en) 1968-12-30 1972-01-11 Ogden Eng Corp Method and apparatus for welding together beam components
US3882477A (en) 1973-03-26 1975-05-06 Peter H Mueller Smoke and heat detector incorporating an improved smoke chamber
US3838496A (en) 1973-04-09 1974-10-01 C Kelly Welding apparatus and method
US3906229A (en) 1973-06-12 1975-09-16 Raytheon Co High energy spatially coded image detecting systems
US3908124A (en) 1974-07-01 1975-09-23 Us Energy Phase contrast in high resolution electron microscopy
US4348576A (en) 1979-01-12 1982-09-07 Steigerwald Strahltechnik Gmbh Position regulation of a charge carrier beam
US4314134A (en) 1979-11-23 1982-02-02 Ford Motor Company Beam position control for electron beam welder
JPS56156767A (en) 1980-05-02 1981-12-03 Sumitomo Electric Ind Ltd Highly hard substance covering material
US4352565A (en) 1981-01-12 1982-10-05 Rowe James M Speckle pattern interferometer
US4541055A (en) 1982-09-01 1985-09-10 Westinghouse Electric Corp. Laser machining system
JPS60181638A (en) 1984-02-29 1985-09-17 Toshiba Corp Photography method of radiation image
IL84936A (en) 1987-12-23 1997-02-18 Cubital Ltd Three-dimensional modelling apparatus
US4863538A (en) 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
EP0289116A1 (en) 1987-03-04 1988-11-02 Westinghouse Electric Corporation Method and device for casting powdered materials
US4927992A (en) 1987-03-04 1990-05-22 Westinghouse Electric Corp. Energy beam casting of metal articles
US4818562A (en) 1987-03-04 1989-04-04 Westinghouse Electric Corp. Casting shapes
DE3736391C1 (en) 1987-10-28 1989-02-16 Du Pont Deutschland Process for coating surface areas previously made tacky
US4958431A (en) 1988-03-14 1990-09-25 Westinghouse Electric Corp. More creep resistant turbine rotor, and procedures for repair welding of low alloy ferrous turbine components
US4888490A (en) 1988-05-24 1989-12-19 University Of Southern California Optical proximity apparatus and method using light sources being modulated at different frequencies
US5876550A (en) 1988-10-05 1999-03-02 Helisys, Inc. Laminated object manufacturing apparatus and method
DE3923899A1 (en) 1989-07-19 1991-01-31 Leybold Ag METHOD FOR REGULATING THE HIT POSITIONS OF SEVERAL ELECTRON BEAMS ON A MOLT BATH
US5182170A (en) 1989-09-05 1993-01-26 Board Of Regents, The University Of Texas System Method of producing parts by selective beam interaction of powder with gas phase reactant
US5135695A (en) 1989-12-04 1992-08-04 Board Of Regents The University Of Texas System Positioning, focusing and monitoring of gas phase selective beam deposition
US5204055A (en) 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5118192A (en) 1990-07-11 1992-06-02 Robotic Vision Systems, Inc. System for 3-D inspection of objects
JPH04332537A (en) 1991-05-03 1992-11-19 Horiba Ltd Method for measuring osteosalt
US5252264A (en) 1991-11-08 1993-10-12 Dtm Corporation Apparatus and method for producing parts with multi-directional powder delivery
JP3100209B2 (en) 1991-12-20 2000-10-16 三菱重工業株式会社 Deflection electron gun for vacuum deposition
US5393482A (en) 1993-10-20 1995-02-28 United Technologies Corporation Method for performing multiple beam laser sintering employing focussed and defocussed laser beams
US5483036A (en) 1993-10-28 1996-01-09 Sandia Corporation Method of automatic measurement and focus of an electron beam and apparatus therefor
DE4400523C2 (en) 1994-01-11 1996-07-11 Eos Electro Optical Syst Method and device for producing a three-dimensional object
US5906863A (en) 1994-08-08 1999-05-25 Lombardi; John Methods for the preparation of reinforced three-dimensional bodies
US5572431A (en) 1994-10-19 1996-11-05 Bpm Technology, Inc. Apparatus and method for thermal normalization in three-dimensional article manufacturing
US5511103A (en) 1994-10-19 1996-04-23 Seiko Instruments Inc. Method of X-ray mapping analysis
DE19511772C2 (en) 1995-03-30 1997-09-04 Eos Electro Optical Syst Device and method for producing a three-dimensional object
US5595670A (en) 1995-04-17 1997-01-21 The Twentyfirst Century Corporation Method of high speed high power welding
US5837960A (en) 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
DE19606128A1 (en) 1996-02-20 1997-08-21 Eos Electro Optical Syst Device and method for producing a three-dimensional object
US5883357A (en) 1996-03-25 1999-03-16 Case Western Reserve University Selective vacuum gripper
US6046426A (en) 1996-07-08 2000-04-04 Sandia Corporation Method and system for producing complex-shape objects
DE19846478C5 (en) 1998-10-09 2004-10-14 Eos Gmbh Electro Optical Systems Laser-sintering machine
DE19853947C1 (en) 1998-11-23 2000-02-24 Fraunhofer Ges Forschung Process chamber for selective laser fusing of material powder comprises a raised section in the cover surface above the structure volume, in which a window is arranged for the coupling in of the laser beam
US6162378A (en) 1999-02-25 2000-12-19 3D Systems, Inc. Method and apparatus for variably controlling the temperature in a selective deposition modeling environment
FR2790418B1 (en) 1999-03-01 2001-05-11 Optoform Sarl Procedes De Prot RAPID PROTOTYPING PROCESS ALLOWING THE USE OF PASTY MATERIALS, AND DEVICE FOR IMPLEMENTING SAME
US6204469B1 (en) 1999-03-04 2001-03-20 Honda Giken Kogyo Kabushiki Kaisha Laser welding system
US6811744B2 (en) 1999-07-07 2004-11-02 Optomec Design Company Forming structures from CAD solid models
US6391251B1 (en) 1999-07-07 2002-05-21 Optomec Design Company Forming structures from CAD solid models
DE19939616C5 (en) 1999-08-20 2008-05-21 Eos Gmbh Electro Optical Systems Device for the generative production of a three-dimensional object
US6537052B1 (en) 1999-08-23 2003-03-25 Richard J. Adler Method and apparatus for high speed electron beam rapid prototyping
DE19952998B4 (en) 1999-11-04 2004-04-15 Exner, Horst, Prof. Dr.-Ing. Device for the direct production of bodies in the layer structure of pulverulent substances
SE521124C2 (en) 2000-04-27 2003-09-30 Arcam Ab Device and method for making a three-dimensional product
WO2001091924A1 (en) 2000-06-01 2001-12-06 Board Of Regents, The University Of Texas System Direct selective laser sintering of metals
SE520565C2 (en) 2000-06-16 2003-07-29 Ivf Industriforskning Och Utve Method and apparatus for making objects by FFF
AU2001273693A1 (en) 2000-07-26 2002-02-05 Aeromet Corporation Tubular body with deposited features and method of manufacture therefor
US6751516B1 (en) 2000-08-10 2004-06-15 Richardson Technologies, Inc. Method and system for direct writing, editing and transmitting a three dimensional part and imaging systems therefor
DE10047615A1 (en) 2000-09-26 2002-04-25 Generis Gmbh Swap bodies
DE10058748C1 (en) 2000-11-27 2002-07-25 Markus Dirscherl Method for producing a component and device for carrying out the method
US6492651B2 (en) 2001-02-08 2002-12-10 3D Systems, Inc. Surface scanning system for selective deposition modeling
EP1234625A1 (en) 2001-02-21 2002-08-28 Trumpf Werkzeugmaschinen GmbH + Co. KG Process and apparatus for producing a shaped body by selective laser sintering
US6732943B2 (en) 2001-04-05 2004-05-11 Aradigm Corporation Method of generating uniform pores in thin polymer films
US6656410B2 (en) 2001-06-22 2003-12-02 3D Systems, Inc. Recoating system for using high viscosity build materials in solid freeform fabrication
US6419203B1 (en) 2001-07-20 2002-07-16 Chi Hung Dang Vibration isolator with parallelogram mechanism
US7275925B2 (en) 2001-08-30 2007-10-02 Micron Technology, Inc. Apparatus for stereolithographic processing of components and assemblies
DE10157647C5 (en) 2001-11-26 2012-03-08 Cl Schutzrechtsverwaltungs Gmbh Method for producing three-dimensional workpieces in a laser material processing system or a stereolithography system
JP2003241394A (en) 2002-02-21 2003-08-27 Pioneer Electronic Corp Electron beam lithography system
JP3724437B2 (en) 2002-02-25 2005-12-07 松下電工株式会社 Manufacturing method and manufacturing apparatus for three-dimensional shaped object
US20040012124A1 (en) 2002-07-10 2004-01-22 Xiaochun Li Apparatus and method of fabricating small-scale devices
DE10219984C1 (en) 2002-05-03 2003-08-14 Bego Medical Ag Device for producing freely formed products through a build-up of layers of powder-form material, has powder spread over a lowerable table, and then solidified in layers by a laser energy source
US20050282300A1 (en) 2002-05-29 2005-12-22 Xradia, Inc. Back-end-of-line metallization inspection and metrology microscopy system and method using x-ray fluorescence
US6746506B2 (en) 2002-07-12 2004-06-08 Extrude Hone Corporation Blended powder solid-supersolidus liquid phase sintering
DE10235434A1 (en) 2002-08-02 2004-02-12 Eos Gmbh Electro Optical Systems Device for producing a three-dimensional object by e.g. selective laser sintering comprises a support and a material-distributing unit which move relative to each other
DE10236697A1 (en) 2002-08-09 2004-02-26 Eos Gmbh Electro Optical Systems Method and device for producing a three-dimensional object by means of sintering
US7020539B1 (en) 2002-10-01 2006-03-28 Southern Methodist University System and method for fabricating or repairing a part
US20040084814A1 (en) 2002-10-31 2004-05-06 Boyd Melissa D. Powder removal system for three-dimensional object fabricator
US20060147332A1 (en) 2004-12-30 2006-07-06 Howmedica Osteonics Corp. Laser-produced porous structure
US7537664B2 (en) 2002-11-08 2009-05-26 Howmedica Osteonics Corp. Laser-produced porous surface
US20040167663A1 (en) 2002-11-11 2004-08-26 Hiatt William M. Handling system for use with programmable material consolidation systems and associated methods
SE524467C2 (en) 2002-12-13 2004-08-10 Arcam Ab Apparatus for manufacturing a three-dimensional product, the apparatus comprising a housing
SE524421C2 (en) * 2002-12-19 2004-08-10 Arcam Ab Apparatus and method for making a three-dimensional product
SE524432C2 (en) 2002-12-19 2004-08-10 Arcam Ab Apparatus and method for making a three-dimensional product
SE524420C2 (en) 2002-12-19 2004-08-10 Arcam Ab Apparatus and method for making a three-dimensional product
SE524439C2 (en) 2002-12-19 2004-08-10 Arcam Ab Apparatus and method for making a three-dimensional product
US6724001B1 (en) 2003-01-08 2004-04-20 International Business Machines Corporation Electron beam lithography apparatus with self actuated vacuum bypass valve
WO2004076103A1 (en) 2003-02-25 2004-09-10 Matsushita Electric Works Ltd. Three dimensional structure producing method and producing device
DE20305843U1 (en) 2003-02-26 2003-06-26 Laserinstitut Mittelsachsen E Mechanism for manufacturing miniature or microstructure bodies with at least one support for bodies
DE10310385B4 (en) 2003-03-07 2006-09-21 Daimlerchrysler Ag Method for the production of three-dimensional bodies by means of powder-based layer-building methods
US6815636B2 (en) 2003-04-09 2004-11-09 3D Systems, Inc. Sintering using thermal image feedback
US7008454B2 (en) 2003-04-09 2006-03-07 Biomedical Engineering Trust I Prosthetic knee with removable stop pin for limiting anterior sliding movement of bearing
JP2007503342A (en) 2003-05-23 2007-02-22 ズィー コーポレイション Three-dimensional printing apparatus and method
US7435072B2 (en) 2003-06-02 2008-10-14 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication
GB0312909D0 (en) 2003-06-05 2003-07-09 Univ Liverpool Apparatus for manufacturing three dimensional items
GB0317387D0 (en) 2003-07-25 2003-08-27 Univ Loughborough Method and apparatus for combining particulate material
CA2436267C (en) 2003-07-30 2010-07-27 Control And Metering Limited Vibrating table assembly for bag filling apparatus
JP2005059477A (en) * 2003-08-18 2005-03-10 Shiyoufuu:Kk Apparatus of manufacturing three-dimensional structure
US20050173380A1 (en) 2004-02-09 2005-08-11 Carbone Frank L. Directed energy net shape method and apparatus
DE102004009127A1 (en) 2004-02-25 2005-09-15 Bego Medical Ag Method and device for producing products by sintering and / or melting
DE102004009126A1 (en) 2004-02-25 2005-09-22 Bego Medical Ag Method and device for generating control data sets for the production of products by free-form sintering or melting and device for this production
JP4130813B2 (en) 2004-05-26 2008-08-06 松下電工株式会社 Three-dimensional shaped object manufacturing apparatus and light beam irradiation position and processing position correction method thereof
GB0421469D0 (en) 2004-09-27 2004-10-27 Dt Assembly & Test Europ Ltd Apparatus for monitoring engine exhaust
US7521652B2 (en) 2004-12-07 2009-04-21 3D Systems, Inc. Controlled cooling methods and apparatus for laser sintering part-cake
US7569174B2 (en) 2004-12-07 2009-08-04 3D Systems, Inc. Controlled densification of fusible powders in laser sintering
KR20060075922A (en) 2004-12-29 2006-07-04 동부일렉트로닉스 주식회사 X-ray detecting device and apparatus for analysing a sample using the same
WO2006091097A2 (en) 2005-01-14 2006-08-31 Cam Implants B.V. Two-dimensional and three-dimensional structures with a pattern identical to that of e.g. cancellous bone
DE102005014483B4 (en) 2005-03-30 2019-06-27 Realizer Gmbh Device for the production of articles by layering of powdered material
DE102005015870B3 (en) 2005-04-06 2006-10-26 Eos Gmbh Electro Optical Systems Device and method for producing a three-dimensional object
DE102005016940B4 (en) 2005-04-12 2007-03-15 Eos Gmbh Electro Optical Systems Apparatus and method for applying layers of powdered material to a surface
US7807947B2 (en) 2005-05-09 2010-10-05 3D Systems, Inc. Laser sintering process chamber gas curtain window cleansing in a laser sintering system
JP4809423B2 (en) 2005-05-11 2011-11-09 アルカム・アクチボラゲット Powder coating system
DE102005022308B4 (en) 2005-05-13 2007-03-22 Eos Gmbh Electro Optical Systems Apparatus and method for manufacturing a three-dimensional object with a heated powder coating material build-up material
JP2006332296A (en) 2005-05-26 2006-12-07 Hitachi High-Technologies Corp Focus correction method in electronic beam applied circuit pattern inspection
US7690909B2 (en) 2005-09-30 2010-04-06 3D Systems, Inc. Rapid prototyping and manufacturing system and method
DE102005056260B4 (en) 2005-11-25 2008-12-18 Prometal Rct Gmbh Method and device for the surface application of flowable material
US7557491B2 (en) 2006-02-09 2009-07-07 Citizen Holdings Co., Ltd. Electronic component package
DE102006014694B3 (en) 2006-03-28 2007-10-31 Eos Gmbh Electro Optical Systems Process chamber and method for processing a material with a directed beam of electromagnetic radiation, in particular for a laser sintering device
DE102006023484A1 (en) 2006-05-18 2007-11-22 Eos Gmbh Electro Optical Systems Apparatus and method for layering a three-dimensional object from a powdery building material
US20090206065A1 (en) 2006-06-20 2009-08-20 Jean-Pierre Kruth Procedure and apparatus for in-situ monitoring and feedback control of selective laser powder processing
WO2008013483A1 (en) 2006-07-27 2008-01-31 Arcam Ab Method and device for producing three-dimensional objects
EP2087031B1 (en) 2006-11-09 2011-09-21 Valspar Sourcing, Inc. Powder compositions and methods of manufacturing articles therefrom
DE102006055078A1 (en) 2006-11-22 2008-06-05 Eos Gmbh Electro Optical Systems Apparatus for layering a three-dimensional object
DE102006055052A1 (en) 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Apparatus for layering a three-dimensional object
DE102006059851B4 (en) 2006-12-15 2009-07-09 Cl Schutzrechtsverwaltungs Gmbh Method for producing a three-dimensional component
US8691329B2 (en) 2007-01-31 2014-04-08 General Electric Company Laser net shape manufacturing using an adaptive toolpath deposition method
US20080236738A1 (en) 2007-03-30 2008-10-02 Chi-Fung Lo Bonded sputtering target and methods of manufacture
DE102007018126A1 (en) 2007-04-16 2008-10-30 Eads Deutschland Gmbh Production method for high-temperature components and component produced therewith
DE102007018601B4 (en) 2007-04-18 2013-05-23 Cl Schutzrechtsverwaltungs Gmbh Device for producing three-dimensional objects
EP2155421B1 (en) 2007-05-15 2019-07-03 Arcam Ab Method and device for producing three-dimensional objects
DE102007029052A1 (en) 2007-06-21 2009-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for producing a component based on three-dimensional data of the component
DE102007029142A1 (en) 2007-06-25 2009-01-02 3D-Micromac Ag Layer application device for electrostatic layer application of a powdery material and apparatus and method for producing a three-dimensional object
JP4916392B2 (en) 2007-06-26 2012-04-11 パナソニック株式会社 Manufacturing method and manufacturing apparatus for three-dimensional shaped object
EP2011631B1 (en) 2007-07-04 2012-04-18 Envisiontec GmbH Process and device for producing a three-dimensional object
DE102007056984A1 (en) 2007-11-27 2009-05-28 Eos Gmbh Electro Optical Systems Method for producing a three-dimensional object by means of laser sintering
KR20100120115A (en) 2007-12-06 2010-11-12 아르켐 에이비 Apparatus and method for producing a three-dimensional object
US8992816B2 (en) 2008-01-03 2015-03-31 Arcam Ab Method and apparatus for producing three-dimensional objects
US20090206056A1 (en) 2008-02-14 2009-08-20 Songlin Xu Method and Apparatus for Plasma Process Performance Matching in Multiple Wafer Chambers
DE102008012064B4 (en) 2008-02-29 2015-07-09 Cl Schutzrechtsverwaltungs Gmbh Method and device for producing a hybrid molding produced by a hybrid process and hybrid molding produced by the process
DE202008005417U1 (en) 2008-04-17 2008-07-03 Hochschule Mittweida (Fh) Device for producing objects from powder particles for the safe handling of a quantity of powder particles
WO2009131103A1 (en) 2008-04-21 2009-10-29 パナソニック電工株式会社 Laminate molding device
US20090283501A1 (en) 2008-05-15 2009-11-19 General Electric Company Preheating using a laser beam
US8741203B2 (en) 2008-10-20 2014-06-03 Ivoclar Vivadent Ag Device and method for processing light-polymerizable material for building up an object in layers
JP4404947B1 (en) * 2009-02-12 2010-01-27 株式会社松浦機械製作所 Three-dimensional structure manufacturing method
US8308466B2 (en) 2009-02-18 2012-11-13 Arcam Ab Apparatus for producing a three-dimensional object
JP2010228332A (en) 2009-03-27 2010-10-14 Panasonic Corp Production process of shaped article
US8452073B2 (en) 2009-04-08 2013-05-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Closed-loop process control for electron beam freeform fabrication and deposition processes
ES2663554T5 (en) 2009-04-28 2022-05-06 Bae Systems Plc Layered additive manufacturing method
US8449283B2 (en) 2009-06-12 2013-05-28 Corning Incorporated Dies for forming extrusions with thick and thin walls
FR2948044B1 (en) 2009-07-15 2014-02-14 Phenix Systems THIN-LAYERING DEVICE AND METHOD OF USING SUCH A DEVICE
EP2454039B1 (en) 2009-07-15 2014-09-03 Arcam Ab Method for producing three-dimensional objects
CN101607311B (en) 2009-07-22 2011-09-14 华中科技大学 Fast forming method of fusion of metal powder of three beams of laser compound scanning
EP2459361B1 (en) 2009-07-29 2019-11-06 Zydex Pty Ltd 3d printing on a rotating cylindrical surface
EP2292357B1 (en) 2009-08-10 2016-04-06 BEGO Bremer Goldschlägerei Wilh.-Herbst GmbH & Co KG Ceramic article and methods for producing such article
CN101635210B (en) 2009-08-24 2011-03-09 西安理工大学 Method for repairing defect in tungsten copper-copper integral electric contact material
EP2289652B2 (en) 2009-08-25 2022-09-28 BEGO Medical GmbH Device and method for generative production
FR2949667B1 (en) 2009-09-09 2011-08-19 Obl POROUS STRUCTURE WITH A CONTROLLED PATTERN, REPEAT IN SPACE, FOR THE PRODUCTION OF SURGICAL IMPLANTS
EP3479933A1 (en) 2009-09-17 2019-05-08 Sciaky Inc. Electron beam layer manufacturing apparatus
DE102009043597A1 (en) 2009-09-25 2011-04-07 Siemens Aktiengesellschaft Method for producing a marked object
DE102009053190A1 (en) 2009-11-08 2011-07-28 FIT Fruth Innovative Technologien GmbH, 92331 Apparatus and method for producing a three-dimensional body
US10166316B2 (en) 2009-11-12 2019-01-01 Smith & Nephew, Inc. Controlled randomized porous structures and methods for making same
US8598523B2 (en) 2009-11-13 2013-12-03 Sciaky, Inc. Electron beam layer manufacturing using scanning electron monitored closed loop control
DE102010011059A1 (en) 2010-03-11 2011-09-15 Global Beam Technologies Ag Method and device for producing a component
EP2555902B1 (en) 2010-03-31 2018-04-25 Sciaky Inc. Raster methodology for electron beam layer manufacturing using closed loop control
US8487534B2 (en) 2010-03-31 2013-07-16 General Electric Company Pierce gun and method of controlling thereof
DE102010020416A1 (en) 2010-05-12 2011-11-17 Eos Gmbh Electro Optical Systems Construction space changing device and a device for producing a three-dimensional object with a construction space changing device
CN201693176U (en) 2010-06-13 2011-01-05 华南理工大学 Quick forming flexible preset metal powder spreading device
DE102010050531A1 (en) 2010-09-08 2012-03-08 Mtu Aero Engines Gmbh Generatively producing portion of component, which is constructed from individual powder layers, comprises heating powder layer locally on melting temperature, forming molten bath, reheating zone downstream to the molten bath
DE102010041284A1 (en) 2010-09-23 2012-03-29 Siemens Aktiengesellschaft Method for selective laser sintering and equipment suitable for this method for selective laser sintering
DE102010049521B3 (en) 2010-10-25 2012-04-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for generating an electron beam
US9073265B2 (en) 2011-01-28 2015-07-07 Arcam Ab Method for production of a three-dimensional body
DE102011009624A1 (en) 2011-01-28 2012-08-02 Mtu Aero Engines Gmbh Method and device for process monitoring
US8319181B2 (en) 2011-01-30 2012-11-27 Fei Company System and method for localization of large numbers of fluorescent markers in biological samples
US8568124B2 (en) 2011-04-21 2013-10-29 The Ex One Company Powder spreader
DE102011105045B3 (en) 2011-06-20 2012-06-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Producing a component by a layered structure using selective laser melting, comprises for each layer fusing a powdery component material corresponding to a desired geometry of the component, using a laser beam and solidifying by cooling
FR2980380B1 (en) 2011-09-23 2015-03-06 Snecma STRATEGY FOR MANUFACTURING A METAL PIECE BY SELECTIVE FUSION OF A POWDER
FR2984779B1 (en) 2011-12-23 2015-06-19 Michelin Soc Tech METHOD AND APPARATUS FOR REALIZING THREE DIMENSIONAL OBJECTS
US10144063B2 (en) 2011-12-28 2018-12-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
KR102182567B1 (en) 2011-12-28 2020-11-24 아르켐 에이비 Method and apparatus for increasing the resolution in additively manufactured three-dimensional articles
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
TWI472427B (en) 2012-01-20 2015-02-11 財團法人工業技術研究院 Device and method for powder distribution and additive manufacturing method using the same
JP2013171925A (en) 2012-02-20 2013-09-02 Canon Inc Charged particle beam device and article manufacturing method using the same
JP5354041B2 (en) 2012-02-24 2013-11-27 住友金属鉱山株式会社 Silver powder manufacturing method
GB201205591D0 (en) 2012-03-29 2012-05-16 Materials Solutions Apparatus and methods for additive-layer manufacturing of an article
WO2013159811A1 (en) 2012-04-24 2013-10-31 Arcam Ab Safety protection method and apparatus for additive manufacturing device
US9064671B2 (en) 2012-05-09 2015-06-23 Arcam Ab Method and apparatus for generating electron beams
US9126167B2 (en) 2012-05-11 2015-09-08 Arcam Ab Powder distribution in additive manufacturing
FR2991208B1 (en) 2012-06-01 2014-06-06 Michelin & Cie MACHINE AND PROCESS FOR ADDITIVE MANUFACTURE OF POWDER
CN104781022B (en) 2012-11-06 2017-10-17 阿卡姆股份公司 The powder pre-treating manufactured for addition
WO2014092651A1 (en) 2012-12-16 2014-06-19 Blacksmith Group Pte. Ltd. A 3d printer with a controllable rotary surface and method for 3d printing with controllable rotary surface
DE112013006029T5 (en) 2012-12-17 2015-09-17 Arcam Ab Method and device for additive manufacturing
US9718129B2 (en) 2012-12-17 2017-08-01 Arcam Ab Additive manufacturing method and apparatus
JP2014125643A (en) 2012-12-25 2014-07-07 Honda Motor Co Ltd Apparatus for three-dimensional shaping and method for three-dimensional shaping
US9364995B2 (en) 2013-03-15 2016-06-14 Matterrise, Inc. Three-dimensional printing and scanning system and method
US9550207B2 (en) 2013-04-18 2017-01-24 Arcam Ab Method and apparatus for additive manufacturing
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
US9415443B2 (en) 2013-05-23 2016-08-16 Arcam Ab Method and apparatus for additive manufacturing
DE102013210242A1 (en) 2013-06-03 2014-12-04 Siemens Aktiengesellschaft Plant for selective laser melting with rotating relative movement between powder bed and powder distributor
US20140363326A1 (en) 2013-06-10 2014-12-11 Grid Logic Incorporated System and method for additive manufacturing
GB201310762D0 (en) 2013-06-17 2013-07-31 Rolls Royce Plc An additive layer manufacturing method
US9468973B2 (en) 2013-06-28 2016-10-18 Arcam Ab Method and apparatus for additive manufacturing
CN203509463U (en) 2013-07-30 2014-04-02 华南理工大学 Composite manufacturing device with conformal cooling channel injection mold
GB201313840D0 (en) 2013-08-02 2013-09-18 Rolls Royce Plc Method of Manufacturing a Component
JP2015038237A (en) 2013-08-19 2015-02-26 独立行政法人産業技術総合研究所 Laminated molding, powder laminate molding apparatus, and powder laminate molding method
US9505057B2 (en) 2013-09-06 2016-11-29 Arcam Ab Powder distribution in additive manufacturing of three-dimensional articles
US9676032B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
GB201316815D0 (en) 2013-09-23 2013-11-06 Renishaw Plc Additive manufacturing apparatus and method
TWI624350B (en) 2013-11-08 2018-05-21 財團法人工業技術研究院 Powder shaping method and apparatus thereof
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
CN103786342A (en) * 2014-01-10 2014-05-14 康子纯 3D (three-dimensional) printer with inclinable machine body
EP3102389B1 (en) 2014-02-06 2019-08-28 United Technologies Corporation An additive manufacturing system with a multi-laser beam gun and method of operation
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US9770869B2 (en) 2014-03-18 2017-09-26 Stratasys, Inc. Additive manufacturing with virtual planarization control
CN103909263A (en) * 2014-03-24 2014-07-09 苏州大业三维打印技术有限公司 Rotary powder spreading device used for selective laser sintering
JP2015193866A (en) 2014-03-31 2015-11-05 日本電子株式会社 Three-dimensional lamination molding device, three-dimensional lamination molding system and three-dimensional lamination molding method
DE102014004633B4 (en) * 2014-04-01 2023-12-14 Concept Laser Gmbh Device and method for producing three-dimensional objects by successively solidifying layers
US20150283613A1 (en) 2014-04-02 2015-10-08 Arcam Ab Method for fusing a workpiece
GB2546016B (en) 2014-06-20 2018-11-28 Velo3D Inc Apparatuses, systems and methods for three-dimensional printing
US9341467B2 (en) 2014-08-20 2016-05-17 Arcam Ab Energy beam position verification
US20160052079A1 (en) 2014-08-22 2016-02-25 Arcam Ab Enhanced additive manufacturing
US20160052056A1 (en) 2014-08-22 2016-02-25 Arcam Ab Enhanced electron beam generation
US20160059314A1 (en) 2014-09-03 2016-03-03 Arcam Ab Method for improved material properties in additive manufacturing
US20160129501A1 (en) 2014-11-06 2016-05-12 Arcam Ab Method for improved powder layer quality in additive manufacturing
US9721755B2 (en) 2015-01-21 2017-08-01 Arcam Ab Method and device for characterizing an electron beam
US20160279735A1 (en) 2015-03-27 2016-09-29 Arcam Ab Method for additive manufacturing
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
CN104890238B (en) * 2015-04-30 2017-05-24 北京敏速自动控制设备有限公司 Three-dimensional printing method and system thereof
JP6483551B2 (en) 2015-07-03 2019-03-13 株式会社アスペクト Powder bed fusion unit
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US10583483B2 (en) 2015-10-15 2020-03-10 Arcam Ab Method and apparatus for producing a three-dimensional article
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10071422B2 (en) 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
WO2017208234A1 (en) * 2016-05-29 2017-12-07 Stratasys Ltd. Method and apparatus for 3d printing
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US20170348792A1 (en) 2016-06-01 2017-12-07 Arcam Ab Method for additive manufacturing
CN206306458U (en) * 2016-11-11 2017-07-07 安徽省科普产品工程研究中心有限责任公司 A kind of intelligent 3D printer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110297081A1 (en) * 2007-06-21 2011-12-08 Materials Solutions Rotating build plate
US20140263209A1 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing
US20160167160A1 (en) * 2014-12-15 2016-06-16 Arcam Ab Method for additive manufacturing
US20190099808A1 (en) * 2017-09-29 2019-04-04 Arcam Ab Method and apparatus for additive manufacturing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180264598A1 (en) * 2017-03-15 2018-09-20 General Electric Company Constantly varying hatch for additive manufacturing
US20220234286A1 (en) * 2018-10-22 2022-07-28 Hamilton Sundstrand Corporation Rotating relative recoater and part orientation
US20220314532A1 (en) * 2021-03-31 2022-10-06 Ruhr-Universitaet Bochum Method and device for additive layer manufacturing of at least one component
DE102021108175A1 (en) 2021-03-31 2022-10-06 RUHR-UNIVERSITäT BOCHUM Process and device for the layer-by-layer additive manufacturing of at least one component
CN114559059A (en) * 2022-03-10 2022-05-31 西安赛隆金属材料有限责任公司 Powder bed electron beam additive manufacturing equipment and method

Also Published As

Publication number Publication date
CN111565871A (en) 2020-08-21
EP3687719B1 (en) 2022-02-09
EP3687719A1 (en) 2020-08-05
CN111565871B (en) 2022-07-05
JP2020535316A (en) 2020-12-03
WO2019063457A1 (en) 2019-04-04
WO2019063459A1 (en) 2019-04-04
US11185926B2 (en) 2021-11-30
EP3687718A1 (en) 2020-08-05
US20190099808A1 (en) 2019-04-04
JP7404232B2 (en) 2023-12-25
US20220040766A1 (en) 2022-02-10
JP2020535317A (en) 2020-12-03
CN111542406A (en) 2020-08-14

Similar Documents

Publication Publication Date Title
US20220040766A1 (en) Method and apparatus for additive manufacturing
US11623282B2 (en) Additive manufacturing of three-dimensional articles
US10071424B2 (en) Computer program products configured for additive manufacturing of three-dimensional articles
US20200398341A1 (en) Method for additive manufacturing
US10974448B2 (en) Additive manufacturing of three-dimensional articles
US20160129501A1 (en) Method for improved powder layer quality in additive manufacturing
US9310188B2 (en) Energy beam deflection speed verification
US20160059314A1 (en) Method for improved material properties in additive manufacturing
US20160282848A1 (en) Method for additive manufacturing
US20200391320A1 (en) Method and apparatus for additive manufacturing
WO2016096407A1 (en) Method and apparatus for additive manufacturing using a two dimensional angular coordinate system
EP3183089B1 (en) Energy beam deflection speed verification

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: ARCAM AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HELLESTAM, CALLE;REEL/FRAME:048910/0214

Effective date: 20190207

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION