US20190041992A1 - Eccentric rotating mass actuator optimization for haptic effects - Google Patents

Eccentric rotating mass actuator optimization for haptic effects Download PDF

Info

Publication number
US20190041992A1
US20190041992A1 US16/159,557 US201816159557A US2019041992A1 US 20190041992 A1 US20190041992 A1 US 20190041992A1 US 201816159557 A US201816159557 A US 201816159557A US 2019041992 A1 US2019041992 A1 US 2019041992A1
Authority
US
United States
Prior art keywords
overdrive
erm
voltage
time
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/159,557
Inventor
Robert A. Lacroix
Michael A. GREENISH
Erin B. Ramsay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immersion Corp
Original Assignee
Immersion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immersion Corp filed Critical Immersion Corp
Priority to US16/159,557 priority Critical patent/US20190041992A1/en
Assigned to IMMERSION CORPORATION reassignment IMMERSION CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LACROIX, ROBERT A., Greenish, Michael A., RAMSAY, ERIN B.
Publication of US20190041992A1 publication Critical patent/US20190041992A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/02Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone
    • H04M19/04Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone the ringing-current being generated at the substations
    • H04M19/047Vibrating means for incoming calls

Definitions

  • One embodiment is directed to an actuator, and in particular to an actuator used to generate haptic effects.
  • kinesthetic feedback such as active and resistive force feedback
  • tactile feedback such as vibration, texture, and heat
  • Haptic feedback can provide cues that enhance and simplify the user interface.
  • vibration effects, or vibrotactile haptic effects may be useful in providing cues to users of electronic devices to alert the user to specific events, or provide realistic feedback to create greater sensory immersion within a simulated or virtual environment.
  • actuators used for this purpose include an electromagnetic actuator such as an Eccentric Rotating Mass (“ERM”) in which an eccentric mass is moved by a motor, a Linear Resonant Actuator (“LRA”) in which a mass attached to a spring is driven back and forth, or a “smart material” such as piezoelectric, electro-active polymers or shape memory alloys.
  • EEM Eccentric Rotating Mass
  • LRA Linear Resonant Actuator
  • a “smart material” such as piezoelectric, electro-active polymers or shape memory alloys.
  • the performance characteristics of an actuator such as the rise time, brake time, and steady state voltage, may vary based on the design and manufacturer of the actuator, and may also change during the life of the actuator because of physical shocks, temperature fluctuations, fatigue, and wear and tear. Further, device manufacturers want the freedom to substitute different actuators at will based on cost, availability and performance characteristics without adversely affecting the haptic feedback provided by the device or requiring costly reconfiguration by hand.
  • One embodiment is a system that generates a haptic effect using an Eccentric Rotating Mass (“ERM”) actuator.
  • the system determines a back electromotive force (“EMF”) of the ERM actuator during operation of the device and receives a haptic effect signal including one or more parameters, where one of the parameters is a voltage amplitude level as a function of time. Based on the determined back EMF, the system determines if the ERM actuator is spinning and varies the voltage amplitude level based on the back EMF to generate a varied haptic effect signal, where the varying includes, when the ERM actuator is determined to be spinning, reducing the voltage amplitude level compared to when the ERM actuator is determined to not be spinning. The system then applies the varied haptic effect signal to the ERM actuator.
  • EMF Eccentric Rotating Mass
  • FIG. 1 is a block diagram of a haptically-enabled system in accordance with one embodiment of the present invention.
  • FIG. 2 is a cut-away partial perspective view of the ERM of FIG. 1 in accordance with one embodiment of the present invention.
  • FIG. 3 is a flow diagram of the functionality of the ERM drive module of FIG. 1 to determine a steady-state counter EMF (“SSCE”) level of the ERM in accordance with one embodiment of the present invention.
  • SSCE steady-state counter EMF
  • FIG. 4 is a flow diagram of the functionality of the ERM drive module to determine a rise time of the ERM in accordance with one embodiment of the present invention.
  • FIG. 5 is a flow diagram of the functionality of the ERM drive module to determine a brake time of the ERM in accordance with one embodiment of the present invention.
  • FIG. 6 is a flow diagram of the functionality of the ERM drive module when using back EMF to adjust the speed of the ERM in accordance with one embodiment of the present invention.
  • FIG. 7 is a flow diagram of the functionality of the ERM drive module when using back EMF to determine if the motor is spinning before generating haptic effects in accordance with one embodiment of the present invention.
  • One embodiment is a system the generates haptic effects using an Eccentric Rotating Mass (“ERM”) actuator by determining a back electromotive force (“EMF”) of the ERM actuator during operation of the device. Based on the determined back EMF, the system determines if the ERM actuator is spinning and varies the voltage amplitude level based on the back EMF to generate a varied haptic effect signal, where the varying includes, when the ERM actuator is determined to be spinning, reducing the voltage amplitude level compared to when the ERM actuator is determined to not be spinning. The system then applies the varied haptic effect signal to the ERM actuator.
  • EMF Eccentric Rotating Mass
  • FIG. 1 is a block diagram of a haptically-enabled system 10 in accordance with one embodiment of the present invention.
  • System 10 includes a touch sensitive surface 11 or other type of user interface mounted within a housing 15 , and may include mechanical keys/buttons 13 .
  • a haptic feedback system Internal to system 10 is a haptic feedback system that generates vibrations on system 10 . In one embodiment, the vibrations are generated on touch surface 11 .
  • the haptic feedback system includes a processor or controller 12 . Coupled to processor 12 is a memory 20 and an actuator drive circuit 16 , which is coupled to an ERM actuator 18 .
  • Processor 12 may be any type of general purpose processor, or could be a processor specifically designed to provide haptic effects, such as an application-specific integrated circuit (“ASIC”).
  • ASIC application-specific integrated circuit
  • Processor 12 may be the same processor that operates the entire system 10 , or may be a separate processor.
  • Processor 12 can decide what haptic effects are to be played and the order in which the effects are played based on high level parameters. In general, the high level parameters that define a particular haptic effect include magnitude, frequency and duration. Low level parameters such as streaming motor commands could also be used to determine a particular haptic effect.
  • a haptic effect may be considered “dynamic” if it includes some variation of these parameters when the haptic effect is generated or a variation of these parameters based on a user's interaction.
  • Processor 12 outputs the control signals to actuator drive circuit 16 , which includes electronic components and circuitry used to supply ERM 18 with the required electrical current and voltage (i.e., “motor signals”) to cause the desired haptic effects.
  • System 10 may include more than one ERM 18 , and each ERM may include a separate drive circuit 16 , all coupled to a common processor 12 .
  • Memory device 20 can be any type of storage device or computer-readable medium, such as random access memory (“RAM”) or read-only memory (“ROM”).
  • Memory 20 stores instructions executed by processor 12 .
  • memory 20 includes an ERM drive module 22 which are instructions that, when executed by processor 12 , generate drive signals for ERM 18 while also using the back EMF from ERM 18 to adjusting the drive signals, as disclosed in more detail below.
  • Memory 20 may also be located internal to processor 12 , or any combination of internal and external memory.
  • Touch surface 11 recognizes touches, and may also recognize the position and magnitude of touches on the surface.
  • the data corresponding to the touches is sent to processor 12 , or another processor within system 10 , and processor 12 interprets the touches and in response generates haptic effect signals.
  • Touch surface 11 may sense touches using any sensing technology, including capacitive sensing, resistive sensing, surface acoustic wave sensing, pressure sensing, optical sensing, etc.
  • Touch surface 11 may sense multi-touch contacts and may be capable of distinguishing multiple touches that occur at the same time.
  • Touch surface 11 may be a touchscreen that generates and displays images for the user to interact with, such as keys, dials, etc., or may be a touchpad with minimal or no images.
  • System 10 may be a handheld device, such a cellular telephone, personal digital assistant (“PDA”), smartphone, computer tablet, gaming console, etc., or may be any other type of device that provides a user interface and includes a haptic effect system that includes one or more ERM actuators.
  • the user interface may be a touch sensitive surface, or can be any other type of user interface such as a mouse, touchpad, mini-joystick, scroll wheel, trackball, game pads or game controllers, etc.
  • each ERM may have a different rotational capability in order to create a wide range of haptic effects on the device.
  • System 10 may also include one or more sensors. In one embodiment, one of the sensors is an accelerometer (not shown) that measures the acceleration of ERM 18 and system 10 .
  • FIG. 2 is a cut-away partial perspective view of ERM 18 of FIG. 1 in accordance with one embodiment of the present invention.
  • ERM 18 includes a rotating mass 201 having an off-center weight 203 that rotates about an axis of rotation 205 .
  • any type of motor may be coupled to ERM 18 to cause rotation in one or both directions around axis of rotation 205 in response to the amount and polarity of voltage applied to the motor across two leads of the motor (not shown in FIG. 2 ). It will be recognized that an application of voltage in the same direction of rotation will have an acceleration effect and cause the ERM 18 to increase its rotational speed, and that an application of voltage in the opposite direction of rotation will have a braking effect and cause the ERM 18 to decrease or even reverse its rotational speed.
  • One embodiment of the present invention determines the angular speed of ERM 18 during a monitoring period of a drive signal.
  • Angular speed is a scalar measure of rotation rate, and represents the magnitude of the vector quantity angular velocity.
  • Angular speed or frequency ⁇ in radians per second, correlates to frequency v in cycles per second, also called Hz, by a factor of 2 ⁇ .
  • the drive signal applied to ERM 18 by drive circuit 16 of FIG. 1 includes a drive period where at least one drive pulse is applied to ERM 18 , and a monitoring period where the back EMF (also referred to as the “counter-electromotive force” (“CEMF”)) of the rotating mass 201 is received and used to determine the angular speed of ERM 18 .
  • CEMF counter-electromotive force
  • the drive period and the monitoring period are concurrent and the present invention dynamically determines the angular speed of ERM 18 during both the drive and monitoring periods.
  • FIG. 3 is a flow diagram of the functionality of ERM drive module 22 to determine a steady-state counter EMF (“SSCE”) level of ERM 18 in accordance with one embodiment of the present invention.
  • the SSCE is a back EMF target to be achieved for substantially maximum force and can be considered a subset of all back EMFs that can be measured.
  • the functionality of the flow diagram of FIG. 3 , and FIGS. 4-7 below, is implemented by software stored in memory or other computer readable or tangible medium, and executed by a processor.
  • the functionality may be performed by hardware (e.g., through the use of an application specific integrated circuit (“ASIC”), a programmable gate array (“PGA”), a field programmable gate array (“FPGA”), etc.), or any combination of hardware and software.
  • ASIC application specific integrated circuit
  • PGA programmable gate array
  • FPGA field programmable gate array
  • module 22 receives or is otherwise provided with the rated voltage of ERM 18 .
  • the rated voltage or standard voltage is the operating voltage level recommended by the manufacturer of ERM 18 . In one embodiment, the rated voltage level is 3 volts.
  • the rated voltage may be determined by any means, including but not limited to automatic detection by the system, encoding in a non-volatile memory or input by hand from a manufacturer or end user.
  • the rated voltage is applied to ERM 18 for a test time of T 1 .
  • the rated voltage may be applied either continuously or in one or more pulses.
  • Test time T 1 may be automatically determined, encoded in non-volatile memory, or input by hand, but should be long enough to enable ERM 18 to achieve a steady-state angular speed given the applied rated voltage. Typical values for test time T 1 may range between 200 ms and 1000 ms.
  • ERM 18 has achieved a steady-state angular speed
  • SSCE steady-state counter EMF
  • FIG. 4 is a flow diagram of the functionality of ERM drive module 22 to determine a rise time of ERM 18 in accordance with one embodiment of the present invention. In one embodiment, the functionality of FIG. 4 is not initiated after the functionality of FIG. 3 until the back EMF returns to zero as the ERM spools down.
  • a test time T 2 is set to a low initial value, such as 10 ms, but the initial value for T 2 may be any value which is likely to be less than the rise time for ERM 18 .
  • the rated or an overdrive voltage is applied to ERM 18 for time T 2 .
  • the overdrive voltage is a voltage level that is higher than the rated voltage for ERM 18 . In one embodiment, the overdrive voltage level is 5 volts. In embodiments where an overdrive voltage is used with ERM 18 during operations, the overdrive voltage is applied at 403 .
  • the benefits of using an overdrive voltage during operation of system 10 is a greater dynamic range of haptic effects and a faster response time (spool up and spool down). If overdrive voltage is not used, the rated voltage is applied at 403 .
  • the back EMF is read from ERM 18 as a status signal.
  • the rise time is set to the value of T 2 .
  • the rise time determined at 409 is shorter when overdrive voltage is used at 403 as opposed to rated voltage.
  • the rise time upper threshold value may be any value, but typical values may range between 90% and 110% of the rated voltage SSCE.
  • the incremental rise time value may also be any value, but typical values may range between 10 ms and 60 ms, but can be up to 200 ms for slow, high inertia motors.
  • FIG. 5 is a flow diagram of the functionality of ERM drive module 22 to determine a brake time of ERM 18 in accordance with one embodiment of the present invention.
  • a test time T 3 is set to a low initial value, such as 5 ms, but the initial value for T 3 may be any value which is likely to be less than the brake time for ERM 18 .
  • the rated or overdrive voltage is applied to ERM 18 for at least rise time T 2 . If using the rated voltage, there is no typical limit on how long the voltage can be applied. If using overdrive voltage, the voltage in one embodiment is applied for approximately the rise time T 2 and not much longer. The purpose when applying overdrive voltage is to get the actuator into a target acceleration voltage spin once it has achieved equilibrium.
  • the full reverse overdrive voltage is applied to ERM 18 for test time T 3 (if using overdrive voltage during operation of system 10 ) or otherwise the full reverse rated voltage is applied for test time T 3 .
  • the back EMF is read from ERM 18 as a status signal.
  • a brake time lower threshold value such as 10% of the SSCE
  • the brake time is set to the value of T 3 .
  • an incremental brake time value such as 5 ms, is added to T 3 .
  • the brake time lower threshold value may be any value, but typical values may range between 0% and 20% of the SSCE.
  • the incremental brake time value may also be any value, but typical values may range between 5 ms and 40 ms for embodiments of system 10 that use overdrive voltage during operations.
  • the rise time and brake time of ERM 18 is derived.
  • the functionality of FIGS. 3-5 is performed in conjunction with the manufacture of system 10 using test bench measurements.
  • the functionality of FIGS. 3-5 is performed “on-board” system 10 such as whenever system 10 is powered on.
  • an accelerometer of system 10 can be used to read vibration level and this parameter can be used instead of back EMF or in conjunction with the back EMF value to continuously correct and improve the model throughout the lifetime of the device by measuring real data points.
  • the derived values for back EMF, rise time, and brake time are used to vary a haptic signal by linking the targeted back EMF levels to vibration/acceleration levels.
  • the following pseudo-code in one embodiment can be used for the linking:
  • ERM rise time and brake time The following is an example of the use of a derived ERM rise time and brake time to provide more precise haptic effects when overdrive voltage is used.
  • an ERM device such as ERM 18 has a rated voltage rise time of 40 ms and a decay time of 40 ms, an overdrive rise time of 30 ms, a reverse overdrive brake time of 20 ms, and that a device application must provide a single continuous 50 ms haptic effect to a user.
  • the device application simply instructs the system to provide a 50 ms rated voltage to the ERM, for the first 40 ms the haptic effect is less than maximum, for the next 10 ms the haptic effect is at maximum, and then for the next 40 ms the haptic effect will continue while the ERM angular speed returns to zero.
  • the single 50 ms voltage is converted to three separate voltages: first, an overdrive voltage is applied to the ERM for the overdrive rise time of 30 ms, second, a rated voltage is applied to the ERM for the 20 ms remaining time of the haptic effect, and third, a reverse overdrive voltage is applied to the ERM for the overdrive brake time of 20 ms.
  • an overdrive voltage is applied to the ERM for the overdrive rise time of 30 ms
  • a rated voltage is applied to the ERM for the 20 ms remaining time of the haptic effect
  • a reverse overdrive voltage is applied to the ERM for the overdrive brake time of 20 ms.
  • a target acceleration can be a “low rumble”, such as 30% of rated voltage steady state back EMF.
  • the “overdrive portion” would instead use substantially the maximum rated voltage to speed up the rise time to the 30% strength level.
  • both a non-overdrive and overdrive system would use the substantially maximum available voltage in order to stop the motor quickly.
  • Embodiments disclosed above control the ERM when generating haptic effects based on time varying control of the voltage across the motor.
  • the actual motor speed is affected by many varying factors such as brush and bearing friction, solder joint resistance, etc.
  • the “same” ERM motors when controlled at a given voltage, turn at different rates, and subsequently so does the acceleration generated by each motor. Controlling haptic strength only through voltage feedback is therefore not ideal because of variance in the production of the motor.
  • the ERM is controlled based on its instantaneous speed.
  • the speed of the ERM is proportional to the back EMF of the ERM (which is measured as disclosed in FIGS. 3-5 above) and can be measured instantaneously using various methods.
  • the voltage across the ERM can be adjusted so that the motor is always turning at the desired speed.
  • a time varying speed profile can be used to define a haptic effect rather than a time varying voltage profile.
  • FIG. 6 is a flow diagram of the functionality of ERM drive module 22 when using back EMF to adjust the speed of ERM 18 in accordance with one embodiment of the present invention.
  • the back EMF speed factor for the ERM is determined.
  • the back EMF of ERM 18 is sampled at various RPMs. In one embodiment, the sampling occurs before installation of ERM 18 into system 10 using an accelerometer to measure acceleration frequency, which represents the angular speed (or with other measurement tools) and a voltmeter to measure back EMF. In other embodiments, the measurements can be made onboard.
  • the speed-voltage factor for ERM 18 is determined. To characterize the relationship between output voltage and angular speed, the angular speed of the motor is sampled at various output voltages. As with 602 , in one embodiment the functionality of 604 can be completed before installation of ERM 18 into system 10 using an accelerometer to measure acceleration frequency, which represents the angular speed (or with other measurement tools) and a voltmeter to measure back EMF.
  • an angular speed versus time profile for a haptic effect generated by ERM 18 is generated or retrieved if previously generated when a haptic effect is to be played by processor 12 .
  • the haptic effect to be generated is retrieved, and the approximate output voltage is determined using the angular speed versus time profile from 606 .
  • the actual ERM angular speed is determined by applying a voltage across ERM 18 and measuring the back EMF of ERM 18 while intermittently interrupting the output voltage across ERM 18 and then using the back EMF speed factor determined at 602 .
  • the output voltage is adjusted proportionately if the actual ERM angular speed is different than the desired ERM angular speed.
  • 608 and 610 are then repeated a finite number of times, or can be continuously repeated to always adjust to real time events.
  • a haptic effect author can create a haptic effect as long or as short as he/she wants.
  • the haptic effect is comprised of a series of regularly time-indexed values of voltage across the motor or, as with the disclosed embodiments, motor speed.
  • haptic effects consist of 3-10 time-steps, and for ERMs each time-step lasts 5 ms in one embodiment. 608 and 610 are generally repeated until the end of the haptic effect is reached.
  • the haptic effect specifies the initial output voltage and the target speed, in which case the functionality of 614 is not necessary.
  • embodiments use a measurement of the back EMF of an ERM actuator in order to characterize the particular ERM actuator and to optimize the haptic effects signals that are applied to the ERM in order to generate haptic effects.
  • the measurement of the back EMF can be accomplished by measuring the voltage across the leads of the ERM, so additional measurement apparatuses are not needed in many embodiments to achieve the optimized results.
  • the back EMF can be used to determine if the motor is currently in motion before playing a new effect.
  • This embodiment can compensate for an “effect” cascade, using a model to determine/estimate if a counterweight is currently in rotation (so static friction is already broken, has momentum) and requires a reduced input force to create the desired haptic effect.
  • FIG. 7 is a flow diagram of the functionality of ERM drive module 22 when using back EMF to determine if the motor is spinning before generating haptic effects in accordance with one embodiment of the present invention.
  • a request to start a new haptic event is received.
  • the haptic output level is calculated and the haptic force is reduced according to a model based on the back EMF level, as disclosed above.
  • the haptic output level is calculated normally.
  • the haptic force is output.

Abstract

A system that generates a haptic effect using an Eccentric Rotating Mass (“ERM”) actuator determines a back electromotive force (“EMF”) of the ERM actuator during operation of the device and receives a haptic effect signal including one or more parameters, where one of the parameters is a voltage amplitude level as a function of time. Based on the determined back EMF, the system determines if the ERM actuator is spinning and varies the voltage amplitude level based on the back EMF to generate a varied haptic effect signal, where the varying includes, when the ERM actuator is determined to be spinning, reducing the voltage amplitude level compared to when the ERM actuator is determined to not be spinning. The system then applies the varied haptic effect signal to the ERM actuator.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation application of U.S. patent application Ser. No. 15/613,709, filed on Jun. 5, 2017 which is a continuation application of U.S. patent application Ser. No. 14/944,527, filed on Nov. 18, 2015, which issued as U.S. Pat. No. 9,710,065 on Jul. 18, 2017, which is a continuation application of U.S. patent application Ser. No. 14/314,605, filed on Jun. 25, 2014, which issued as U.S. Pat. No. 9,202,354 on Dec. 1, 2015, which is a continuation application of U.S. patent application Ser. No. 13/755,423, filed on Jan. 31, 2013, which issued as U.S. Pat. No. 8,791,799 on Jul. 29, 2014, which claims priority to U.S. Provisional Patent Application Ser. No. 61/593,719, filed on Feb. 1, 2012. The contents of each of the foregoing applications are hereby incorporated by reference.
  • FIELD
  • One embodiment is directed to an actuator, and in particular to an actuator used to generate haptic effects.
  • BACKGROUND INFORMATION
  • Electronic device manufacturers strive to produce a rich interface for users. Conventional devices use visual and auditory cues to provide feedback to a user. In some interface devices, kinesthetic feedback (such as active and resistive force feedback) and/or tactile feedback (such as vibration, texture, and heat) is also provided to the user, more generally known collectively as “haptic feedback” or “haptic effects”. Haptic feedback can provide cues that enhance and simplify the user interface. Specifically, vibration effects, or vibrotactile haptic effects, may be useful in providing cues to users of electronic devices to alert the user to specific events, or provide realistic feedback to create greater sensory immersion within a simulated or virtual environment.
  • In order to generate vibration effects, many devices utilize some type of actuator. Known actuators used for this purpose include an electromagnetic actuator such as an Eccentric Rotating Mass (“ERM”) in which an eccentric mass is moved by a motor, a Linear Resonant Actuator (“LRA”) in which a mass attached to a spring is driven back and forth, or a “smart material” such as piezoelectric, electro-active polymers or shape memory alloys. Many of these actuators, and the devices that they interact with, have built-in resonant frequencies that optimally are dynamically determined and controlled so that drive signals that generate the haptic effects can be most effective and efficient, such as the optimization of an LRA device as disclosed in U.S. Pat. No. 7,843,277.
  • The performance characteristics of an actuator such as the rise time, brake time, and steady state voltage, may vary based on the design and manufacturer of the actuator, and may also change during the life of the actuator because of physical shocks, temperature fluctuations, fatigue, and wear and tear. Further, device manufacturers want the freedom to substitute different actuators at will based on cost, availability and performance characteristics without adversely affecting the haptic feedback provided by the device or requiring costly reconfiguration by hand.
  • SUMMARY
  • One embodiment is a system that generates a haptic effect using an Eccentric Rotating Mass (“ERM”) actuator. The system determines a back electromotive force (“EMF”) of the ERM actuator during operation of the device and receives a haptic effect signal including one or more parameters, where one of the parameters is a voltage amplitude level as a function of time. Based on the determined back EMF, the system determines if the ERM actuator is spinning and varies the voltage amplitude level based on the back EMF to generate a varied haptic effect signal, where the varying includes, when the ERM actuator is determined to be spinning, reducing the voltage amplitude level compared to when the ERM actuator is determined to not be spinning. The system then applies the varied haptic effect signal to the ERM actuator.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a haptically-enabled system in accordance with one embodiment of the present invention.
  • FIG. 2 is a cut-away partial perspective view of the ERM of FIG. 1 in accordance with one embodiment of the present invention.
  • FIG. 3 is a flow diagram of the functionality of the ERM drive module of FIG. 1 to determine a steady-state counter EMF (“SSCE”) level of the ERM in accordance with one embodiment of the present invention.
  • FIG. 4 is a flow diagram of the functionality of the ERM drive module to determine a rise time of the ERM in accordance with one embodiment of the present invention.
  • FIG. 5 is a flow diagram of the functionality of the ERM drive module to determine a brake time of the ERM in accordance with one embodiment of the present invention.
  • FIG. 6 is a flow diagram of the functionality of the ERM drive module when using back EMF to adjust the speed of the ERM in accordance with one embodiment of the present invention.
  • FIG. 7 is a flow diagram of the functionality of the ERM drive module when using back EMF to determine if the motor is spinning before generating haptic effects in accordance with one embodiment of the present invention.
  • DETAILED DESCRIPTION
  • One embodiment is a system the generates haptic effects using an Eccentric Rotating Mass (“ERM”) actuator by determining a back electromotive force (“EMF”) of the ERM actuator during operation of the device. Based on the determined back EMF, the system determines if the ERM actuator is spinning and varies the voltage amplitude level based on the back EMF to generate a varied haptic effect signal, where the varying includes, when the ERM actuator is determined to be spinning, reducing the voltage amplitude level compared to when the ERM actuator is determined to not be spinning. The system then applies the varied haptic effect signal to the ERM actuator.
  • FIG. 1 is a block diagram of a haptically-enabled system 10 in accordance with one embodiment of the present invention. System 10 includes a touch sensitive surface 11 or other type of user interface mounted within a housing 15, and may include mechanical keys/buttons 13. Internal to system 10 is a haptic feedback system that generates vibrations on system 10. In one embodiment, the vibrations are generated on touch surface 11.
  • The haptic feedback system includes a processor or controller 12. Coupled to processor 12 is a memory 20 and an actuator drive circuit 16, which is coupled to an ERM actuator 18. Processor 12 may be any type of general purpose processor, or could be a processor specifically designed to provide haptic effects, such as an application-specific integrated circuit (“ASIC”). Processor 12 may be the same processor that operates the entire system 10, or may be a separate processor. Processor 12 can decide what haptic effects are to be played and the order in which the effects are played based on high level parameters. In general, the high level parameters that define a particular haptic effect include magnitude, frequency and duration. Low level parameters such as streaming motor commands could also be used to determine a particular haptic effect. A haptic effect may be considered “dynamic” if it includes some variation of these parameters when the haptic effect is generated or a variation of these parameters based on a user's interaction.
  • Processor 12 outputs the control signals to actuator drive circuit 16, which includes electronic components and circuitry used to supply ERM 18 with the required electrical current and voltage (i.e., “motor signals”) to cause the desired haptic effects. System 10 may include more than one ERM 18, and each ERM may include a separate drive circuit 16, all coupled to a common processor 12. Memory device 20 can be any type of storage device or computer-readable medium, such as random access memory (“RAM”) or read-only memory (“ROM”). Memory 20 stores instructions executed by processor 12. Among the instructions, memory 20 includes an ERM drive module 22 which are instructions that, when executed by processor 12, generate drive signals for ERM 18 while also using the back EMF from ERM 18 to adjusting the drive signals, as disclosed in more detail below. Memory 20 may also be located internal to processor 12, or any combination of internal and external memory.
  • Touch surface 11 recognizes touches, and may also recognize the position and magnitude of touches on the surface. The data corresponding to the touches is sent to processor 12, or another processor within system 10, and processor 12 interprets the touches and in response generates haptic effect signals. Touch surface 11 may sense touches using any sensing technology, including capacitive sensing, resistive sensing, surface acoustic wave sensing, pressure sensing, optical sensing, etc. Touch surface 11 may sense multi-touch contacts and may be capable of distinguishing multiple touches that occur at the same time. Touch surface 11 may be a touchscreen that generates and displays images for the user to interact with, such as keys, dials, etc., or may be a touchpad with minimal or no images.
  • System 10 may be a handheld device, such a cellular telephone, personal digital assistant (“PDA”), smartphone, computer tablet, gaming console, etc., or may be any other type of device that provides a user interface and includes a haptic effect system that includes one or more ERM actuators. The user interface may be a touch sensitive surface, or can be any other type of user interface such as a mouse, touchpad, mini-joystick, scroll wheel, trackball, game pads or game controllers, etc. In embodiments with more than one ERM, each ERM may have a different rotational capability in order to create a wide range of haptic effects on the device. System 10 may also include one or more sensors. In one embodiment, one of the sensors is an accelerometer (not shown) that measures the acceleration of ERM 18 and system 10.
  • FIG. 2 is a cut-away partial perspective view of ERM 18 of FIG. 1 in accordance with one embodiment of the present invention. ERM 18 includes a rotating mass 201 having an off-center weight 203 that rotates about an axis of rotation 205. In operation, any type of motor may be coupled to ERM 18 to cause rotation in one or both directions around axis of rotation 205 in response to the amount and polarity of voltage applied to the motor across two leads of the motor (not shown in FIG. 2). It will be recognized that an application of voltage in the same direction of rotation will have an acceleration effect and cause the ERM 18 to increase its rotational speed, and that an application of voltage in the opposite direction of rotation will have a braking effect and cause the ERM 18 to decrease or even reverse its rotational speed.
  • One embodiment of the present invention determines the angular speed of ERM 18 during a monitoring period of a drive signal. Angular speed is a scalar measure of rotation rate, and represents the magnitude of the vector quantity angular velocity. Angular speed or frequency ω, in radians per second, correlates to frequency v in cycles per second, also called Hz, by a factor of 2π. The drive signal applied to ERM 18 by drive circuit 16 of FIG. 1 includes a drive period where at least one drive pulse is applied to ERM 18, and a monitoring period where the back EMF (also referred to as the “counter-electromotive force” (“CEMF”)) of the rotating mass 201 is received and used to determine the angular speed of ERM 18. In another embodiment, the drive period and the monitoring period are concurrent and the present invention dynamically determines the angular speed of ERM 18 during both the drive and monitoring periods.
  • FIG. 3 is a flow diagram of the functionality of ERM drive module 22 to determine a steady-state counter EMF (“SSCE”) level of ERM 18 in accordance with one embodiment of the present invention. The SSCE is a back EMF target to be achieved for substantially maximum force and can be considered a subset of all back EMFs that can be measured. In one embodiment, the functionality of the flow diagram of FIG. 3, and FIGS. 4-7 below, is implemented by software stored in memory or other computer readable or tangible medium, and executed by a processor. In other embodiments, the functionality may be performed by hardware (e.g., through the use of an application specific integrated circuit (“ASIC”), a programmable gate array (“PGA”), a field programmable gate array (“FPGA”), etc.), or any combination of hardware and software.
  • At 301, module 22 receives or is otherwise provided with the rated voltage of ERM 18. The rated voltage or standard voltage is the operating voltage level recommended by the manufacturer of ERM 18. In one embodiment, the rated voltage level is 3 volts. The rated voltage may be determined by any means, including but not limited to automatic detection by the system, encoding in a non-volatile memory or input by hand from a manufacturer or end user.
  • At 303, the rated voltage is applied to ERM 18 for a test time of T1. The rated voltage may be applied either continuously or in one or more pulses. Test time T1 may be automatically determined, encoded in non-volatile memory, or input by hand, but should be long enough to enable ERM 18 to achieve a steady-state angular speed given the applied rated voltage. Typical values for test time T1 may range between 200 ms and 1000 ms.
  • Once ERM 18 has achieved a steady-state angular speed, at 305 the value of ERM 18 steady-state counter EMF (“SSCE”) is measured during the monitoring period, and at 307 the SSCE value is stored in memory as a status signal.
  • FIG. 4 is a flow diagram of the functionality of ERM drive module 22 to determine a rise time of ERM 18 in accordance with one embodiment of the present invention. In one embodiment, the functionality of FIG. 4 is not initiated after the functionality of FIG. 3 until the back EMF returns to zero as the ERM spools down.
  • At 401, a test time T2 is set to a low initial value, such as 10 ms, but the initial value for T2 may be any value which is likely to be less than the rise time for ERM 18.
  • At 403, the rated or an overdrive voltage is applied to ERM 18 for time T2. The overdrive voltage is a voltage level that is higher than the rated voltage for ERM 18. In one embodiment, the overdrive voltage level is 5 volts. In embodiments where an overdrive voltage is used with ERM 18 during operations, the overdrive voltage is applied at 403. The benefits of using an overdrive voltage during operation of system 10 is a greater dynamic range of haptic effects and a faster response time (spool up and spool down). If overdrive voltage is not used, the rated voltage is applied at 403.
  • At 405, the back EMF is read from ERM 18 as a status signal.
  • At 407, if the back EMF is greater than a rise time upper threshold value, such as 90% of the SSCE determined in FIG. 3, then at 409 the rise time is set to the value of T2. Typically, the rise time determined at 409 is shorter when overdrive voltage is used at 403 as opposed to rated voltage.
  • Otherwise, at 411 the system waits for the back EMF of ERM 18 to return to zero, and at 413 an incremental rise time value, such as 10 ms, is added to T2. Functionality then continues at 403. The rise time upper threshold value may be any value, but typical values may range between 90% and 110% of the rated voltage SSCE. The incremental rise time value may also be any value, but typical values may range between 10 ms and 60 ms, but can be up to 200 ms for slow, high inertia motors.
  • FIG. 5 is a flow diagram of the functionality of ERM drive module 22 to determine a brake time of ERM 18 in accordance with one embodiment of the present invention.
  • At 501, a test time T3 is set to a low initial value, such as 5 ms, but the initial value for T3 may be any value which is likely to be less than the brake time for ERM 18.
  • At 503, the rated or overdrive voltage is applied to ERM 18 for at least rise time T2. If using the rated voltage, there is no typical limit on how long the voltage can be applied. If using overdrive voltage, the voltage in one embodiment is applied for approximately the rise time T2 and not much longer. The purpose when applying overdrive voltage is to get the actuator into a target acceleration voltage spin once it has achieved equilibrium.
  • At 505, the full reverse overdrive voltage is applied to ERM 18 for test time T3 (if using overdrive voltage during operation of system 10) or otherwise the full reverse rated voltage is applied for test time T3.
  • At 507, the back EMF is read from ERM 18 as a status signal. At 509, if the back EMF is less than a brake time lower threshold value, such as 10% of the SSCE, then at 511 the brake time is set to the value of T3. Otherwise, at 513 the system waits for the back EMF of ERM 18 to return to zero, and at 515 an incremental brake time value, such as 5 ms, is added to T3. The functionality then continues to 503. The brake time lower threshold value may be any value, but typical values may range between 0% and 20% of the SSCE. The incremental brake time value may also be any value, but typical values may range between 5 ms and 40 ms for embodiments of system 10 that use overdrive voltage during operations.
  • As a result of the functionality of FIGS. 3-5, the rise time and brake time of ERM 18 is derived. In one embodiment, the functionality of FIGS. 3-5 is performed in conjunction with the manufacture of system 10 using test bench measurements. In another embodiment, the functionality of FIGS. 3-5 is performed “on-board” system 10 such as whenever system 10 is powered on. In another embodiment, an accelerometer of system 10 can be used to read vibration level and this parameter can be used instead of back EMF or in conjunction with the back EMF value to continuously correct and improve the model throughout the lifetime of the device by measuring real data points.
  • In one embodiment, the derived values for back EMF, rise time, and brake time are used to vary a haptic signal by linking the targeted back EMF levels to vibration/acceleration levels. The following pseudo-code in one embodiment can be used for the linking:
      • if(vibrating)
      • if current_acceleration_backemf>=target. acceleration-backemf
      • then stop.overdrive and set voltage to target
      • elseif(braking)
      • if current_acceleration_backemf==0
      • then stop braking and cut voltage
  • The following is an example of the use of a derived ERM rise time and brake time to provide more precise haptic effects when overdrive voltage is used. Assume that an ERM device such as ERM 18 has a rated voltage rise time of 40 ms and a decay time of 40 ms, an overdrive rise time of 30 ms, a reverse overdrive brake time of 20 ms, and that a device application must provide a single continuous 50 ms haptic effect to a user. If the device application simply instructs the system to provide a 50 ms rated voltage to the ERM, for the first 40 ms the haptic effect is less than maximum, for the next 10 ms the haptic effect is at maximum, and then for the next 40 ms the haptic effect will continue while the ERM angular speed returns to zero.
  • With an embodiment of the present invention, the single 50 ms voltage is converted to three separate voltages: first, an overdrive voltage is applied to the ERM for the overdrive rise time of 30 ms, second, a rated voltage is applied to the ERM for the 20 ms remaining time of the haptic effect, and third, a reverse overdrive voltage is applied to the ERM for the overdrive brake time of 20 ms. With this example, the resulting haptic effect reaches maximum 10 ms sooner and returns to zero 20 ms sooner than without using the present invention, providing a more precise and therefore more compelling haptic experience to the user.
  • In another example, a target acceleration can be a “low rumble”, such as 30% of rated voltage steady state back EMF. For a non-overdrive capable system, the “overdrive portion” would instead use substantially the maximum rated voltage to speed up the rise time to the 30% strength level. For braking, both a non-overdrive and overdrive system would use the substantially maximum available voltage in order to stop the motor quickly.
  • Embodiments disclosed above control the ERM when generating haptic effects based on time varying control of the voltage across the motor. However, the actual motor speed is affected by many varying factors such as brush and bearing friction, solder joint resistance, etc. As a result, because of manufacturing tolerances, the “same” ERM motors, when controlled at a given voltage, turn at different rates, and subsequently so does the acceleration generated by each motor. Controlling haptic strength only through voltage feedback is therefore not ideal because of variance in the production of the motor.
  • In one embodiment, to compensate for ERM variances, the ERM is controlled based on its instantaneous speed. The speed of the ERM is proportional to the back EMF of the ERM (which is measured as disclosed in FIGS. 3-5 above) and can be measured instantaneously using various methods. Using the instantaneous motor speed, the voltage across the ERM can be adjusted so that the motor is always turning at the desired speed. Then, a time varying speed profile can be used to define a haptic effect rather than a time varying voltage profile.
  • FIG. 6 is a flow diagram of the functionality of ERM drive module 22 when using back EMF to adjust the speed of ERM 18 in accordance with one embodiment of the present invention.
  • At 602, the back EMF speed factor for the ERM is determined. To characterize the relationship between the back EMF to angular speed of ERM 18, the back EMF of ERM 18 is sampled at various RPMs. In one embodiment, the sampling occurs before installation of ERM 18 into system 10 using an accelerometer to measure acceleration frequency, which represents the angular speed (or with other measurement tools) and a voltmeter to measure back EMF. In other embodiments, the measurements can be made onboard.
  • At 604, the speed-voltage factor for ERM 18 is determined. To characterize the relationship between output voltage and angular speed, the angular speed of the motor is sampled at various output voltages. As with 602, in one embodiment the functionality of 604 can be completed before installation of ERM 18 into system 10 using an accelerometer to measure acceleration frequency, which represents the angular speed (or with other measurement tools) and a voltmeter to measure back EMF.
  • At 606, based on the measurements at 602 and 604, an angular speed versus time profile for a haptic effect generated by ERM 18 is generated or retrieved if previously generated when a haptic effect is to be played by processor 12.
  • At 608, the haptic effect to be generated is retrieved, and the approximate output voltage is determined using the angular speed versus time profile from 606.
  • At 610, the actual ERM angular speed is determined by applying a voltage across ERM 18 and measuring the back EMF of ERM 18 while intermittently interrupting the output voltage across ERM 18 and then using the back EMF speed factor determined at 602.
  • At 612, the output voltage is adjusted proportionately if the actual ERM angular speed is different than the desired ERM angular speed. 608 and 610 are then repeated a finite number of times, or can be continuously repeated to always adjust to real time events. A haptic effect author can create a haptic effect as long or as short as he/she wants. The haptic effect is comprised of a series of regularly time-indexed values of voltage across the motor or, as with the disclosed embodiments, motor speed. Generally, haptic effects consist of 3-10 time-steps, and for ERMs each time-step lasts 5 ms in one embodiment. 608 and 610 are generally repeated until the end of the haptic effect is reached.
  • At 614, when it is time to adjust the ERM angular speed to the next speed, 608, 610 and 612 are repeated until there are no more angular speed steps. In one embodiment, the haptic effect specifies the initial output voltage and the target speed, in which case the functionality of 614 is not necessary.
  • As disclosed, embodiments use a measurement of the back EMF of an ERM actuator in order to characterize the particular ERM actuator and to optimize the haptic effects signals that are applied to the ERM in order to generate haptic effects. The measurement of the back EMF can be accomplished by measuring the voltage across the leads of the ERM, so additional measurement apparatuses are not needed in many embodiments to achieve the optimized results.
  • In another embodiment, the back EMF can be used to determine if the motor is currently in motion before playing a new effect. This embodiment can compensate for an “effect” cascade, using a model to determine/estimate if a counterweight is currently in rotation (so static friction is already broken, has momentum) and requires a reduced input force to create the desired haptic effect. FIG. 7 is a flow diagram of the functionality of ERM drive module 22 when using back EMF to determine if the motor is spinning before generating haptic effects in accordance with one embodiment of the present invention.
  • At 701, a request to start a new haptic event is received.
  • At 703, the back EMF levels are tested.
  • At 705, based on the back EMF levels, it is determined whether the motor is spinning.
  • If yes at 705 (i.e., the motor is spinning), at 707 the haptic output level is calculated and the haptic force is reduced according to a model based on the back EMF level, as disclosed above.
  • If no at 705 (i.e., the motor is not spinning), at 709 the haptic output level is calculated normally.
  • At 711, the haptic force is output.
  • Several embodiments are specifically illustrated and/or described herein. However, it will be appreciated that modifications and variations of the disclosed embodiments are covered by the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.

Claims (23)

1-20. (canceled)
21. A method of providing a haptic effect on a device including an Eccentric Rotating Mass (ERM) actuator using varying voltages to optimize the haptic effect, the method comprising:
applying an overdrive voltage to the ERM actuator for an overdrive rise time;
applying a rated voltage to the ERM actuator for a remaining time after the overdrive rise time, wherein the rated voltage is less than the overdrive voltage; and
applying a reverse overdrive voltage to the ERM actuator for an overdrive brake time after the remaining time to brake the ERM actuator.
22. The method of claim 21, wherein the overdrive voltage is applied for the overdrive rise time to reach a target speed of the ERM actuator.
23. The method of claim 22, wherein the rated voltage is applied for the remaining time to maintain the target speed.
24. The method of claim 21, wherein the overdrive rise time is shorter than a rated rise time that indicates a time duration for applying the rated voltage to the ERM actuator to reach a target speed of the ERM.
25. The method of claim 21, wherein the overdrive brake time is shorter than a rated brake time that indicates a time duration for applying a reverse rated voltage to the ERM actuator to reduce the speed of the ERM actuator from a target speed to zero, the reverse rated voltage being a reverse voltage of the rated voltage.
26. The method of claim 21, further comprising:
operating the ERM actuator to determine at least one of a back electromotive force (EMF) of the ERM actuator, an acceleration of the ERM actuator, or a vibration level of the device,
wherein at least one of the overdrive rise time, the remaining time, or the overdrive brake time is based on at least one of the back EMF, the acceleration, or the vibration level.
27. The method of claim 26, further comprising:
determining the overdrive rise time of the ERM actuator based on the overdrive voltage and at least one of the back EMF, the acceleration, or the vibration level.
28. The method of claim 26, further comprising:
determining the overdrive brake time of the ERM actuator based on the reverse overdrive voltage and at least one of the back EMF, the acceleration, or the vibration level.
29. The method of claim 26, wherein determining the back EMF of the ERM actuator includes measuring an output voltage across the ERM actuator.
30. The method of claim 21, further comprising:
determining an instantaneous speed of the ERM actuator during operation of the device; and
adjusting at least one of the overdrive voltage, the rated voltage, or the reverse overdrive voltage based on the instantaneous speed.
31. The method of claim 21, further comprising:
receiving an instruction to apply the rated voltage to the ERM actuator to generate the haptic effect; and
converting the instruction received to apply the overdrive voltage for the overdrive rise time, the rated voltage for the remaining time, and the reverse overdrive voltage for the overdrive brake time.
32. A haptically enabled system for providing a haptic effect using varying voltages to optimize the haptic effect, the system comprising:
an Eccentric Rotating Mass (ERM) actuator; and
a controller coupled to the ERM actuator, the controller configured to
apply an overdrive voltage to the ERM actuator for an overdrive rise time of,
apply a rated voltage to the ERM actuator for a remaining time after the overdrive rise time, wherein the rated voltage is less than the overdrive voltage, and
apply a reverse overdrive voltage to the ERM actuator for an overdrive brake time after the remaining time to brake the ERM actuator.
33. The haptically enabled system of claim 32, wherein the overdrive voltage is applied for the overdrive rise time to reach a target speed of the ERM actuator.
34. The haptically enabled system of claim 33, wherein the rated voltage is applied for the remaining time to maintain the target speed.
35. The haptically enabled system of claim 32, wherein the overdrive rise time is shorter than a rated rise time that indicates a time duration for applying the rated voltage to the ERM actuator to reach a target speed of the ERM.
36. The haptically enabled system of claim 32, wherein the overdrive brake time is shorter than a rated brake time that indicates a time duration for applying a reverse rated voltage to the ERM actuator to reduce the speed of the ERM actuator from a target speed to zero, the reverse rated voltage being a reverse voltage of the rated voltage.
37. The haptically enabled system of claim 32, wherein the controller is further configured to operate the ERM actuator to determine at least one of a back electromotive force (EMF) of the ERM actuator, an acceleration of the ERM actuator, or a vibration level of the device,
wherein at least one of the overdrive rise time, the remaining time, or the overdrive brake time is based on at least one of the back EMF, the acceleration, or the vibration level.
38. The haptically enabled system of claim 37, wherein the controller is further configured to determine the overdrive rise time of the ERM actuator based on the overdrive voltage and at least one of the back EMF, the acceleration, or the vibration level.
39. The haptically enabled system of claim 37, wherein the controller is further configured to determine the overdrive brake time of the ERM actuator based on the reverse overdrive voltage and at least one of the back EMF, the acceleration, or the vibration level.
40. The haptically enabled system of claim 37, wherein the controller is configured to determine the back EMF of the ERM actuator by measuring an output voltage across the ERM actuator.
41. The haptically enabled system of claim 32, wherein the controller is further configured to
determine an instantaneous speed of the ERM actuator during operation of the device, and
adjust at least one of the overdrive voltage, the rated voltage, or the reverse overdrive voltage based on the instantaneous speed.
42. The haptically enabled system of claim 32, wherein the controller is further configured to
receive an instruction to apply the rated voltage to the ERM actuator to generate the haptic effect, and
convert the instruction received to apply the overdrive voltage for the overdrive rise time, the rated voltage for the remaining time of the haptic effect duration, and the reverse overdrive voltage for the overdrive brake time.
US16/159,557 2012-02-01 2018-10-12 Eccentric rotating mass actuator optimization for haptic effects Abandoned US20190041992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/159,557 US20190041992A1 (en) 2012-02-01 2018-10-12 Eccentric rotating mass actuator optimization for haptic effects

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201261593719P 2012-02-01 2012-02-01
US13/755,423 US8791799B2 (en) 2012-02-01 2013-01-31 Eccentric rotating mass actuator optimization for haptic effects
US14/314,605 US9202354B2 (en) 2012-02-01 2014-06-25 Eccentric rotating mass actuator optimization for haptic effects
US14/944,527 US9710065B2 (en) 2012-02-01 2015-11-18 Eccentric rotating mass actuator optimization for haptic effects
US15/613,709 US9921656B2 (en) 2012-02-01 2017-06-05 Eccentric rotating mass actuator optimization for haptic effect
US15/884,649 US10101815B2 (en) 2012-02-01 2018-01-31 Eccentric rotating mass actuator optimization for haptic effects
US16/159,557 US20190041992A1 (en) 2012-02-01 2018-10-12 Eccentric rotating mass actuator optimization for haptic effects

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/884,649 Continuation US10101815B2 (en) 2012-02-01 2018-01-31 Eccentric rotating mass actuator optimization for haptic effects

Publications (1)

Publication Number Publication Date
US20190041992A1 true US20190041992A1 (en) 2019-02-07

Family

ID=47740802

Family Applications (6)

Application Number Title Priority Date Filing Date
US13/755,423 Expired - Fee Related US8791799B2 (en) 2012-02-01 2013-01-31 Eccentric rotating mass actuator optimization for haptic effects
US14/314,605 Expired - Fee Related US9202354B2 (en) 2012-02-01 2014-06-25 Eccentric rotating mass actuator optimization for haptic effects
US14/944,527 Expired - Fee Related US9710065B2 (en) 2012-02-01 2015-11-18 Eccentric rotating mass actuator optimization for haptic effects
US15/613,709 Expired - Fee Related US9921656B2 (en) 2012-02-01 2017-06-05 Eccentric rotating mass actuator optimization for haptic effect
US15/884,649 Expired - Fee Related US10101815B2 (en) 2012-02-01 2018-01-31 Eccentric rotating mass actuator optimization for haptic effects
US16/159,557 Abandoned US20190041992A1 (en) 2012-02-01 2018-10-12 Eccentric rotating mass actuator optimization for haptic effects

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US13/755,423 Expired - Fee Related US8791799B2 (en) 2012-02-01 2013-01-31 Eccentric rotating mass actuator optimization for haptic effects
US14/314,605 Expired - Fee Related US9202354B2 (en) 2012-02-01 2014-06-25 Eccentric rotating mass actuator optimization for haptic effects
US14/944,527 Expired - Fee Related US9710065B2 (en) 2012-02-01 2015-11-18 Eccentric rotating mass actuator optimization for haptic effects
US15/613,709 Expired - Fee Related US9921656B2 (en) 2012-02-01 2017-06-05 Eccentric rotating mass actuator optimization for haptic effect
US15/884,649 Expired - Fee Related US10101815B2 (en) 2012-02-01 2018-01-31 Eccentric rotating mass actuator optimization for haptic effects

Country Status (5)

Country Link
US (6) US8791799B2 (en)
EP (2) EP3232300B1 (en)
JP (3) JP6125852B2 (en)
KR (1) KR20130089211A (en)
CN (2) CN103324305B (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7765333B2 (en) 2004-07-15 2010-07-27 Immersion Corporation System and method for ordering haptic effects
US9039531B2 (en) * 2013-02-05 2015-05-26 Microsoft Technology Licensing, Llc Rumble motor movement detection
US9520822B2 (en) * 2013-04-26 2016-12-13 Texas Instruments Incorporated Circuits and methods for driving eccentric rotating mass motors
US9196135B2 (en) * 2013-06-28 2015-11-24 Immersion Corporation Uniform haptic actuator response with a variable supply voltage
US9213408B2 (en) * 2013-10-08 2015-12-15 Immersion Corporation Generating haptic effects while minimizing cascading
KR102214437B1 (en) * 2014-01-10 2021-02-10 삼성전자주식회사 Method for copying contents in a computing device, method for pasting contents in a computing device, and the computing device
US20150323994A1 (en) * 2014-05-07 2015-11-12 Immersion Corporation Dynamic haptic effect modification
US10379614B2 (en) * 2014-05-19 2019-08-13 Immersion Corporation Non-collocated haptic cues in immersive environments
US10109161B2 (en) * 2015-08-21 2018-10-23 Immersion Corporation Haptic driver with attenuation
KR102489956B1 (en) 2015-12-30 2023-01-17 엘지디스플레이 주식회사 Display device and method of driving the same
KR102489827B1 (en) 2015-12-31 2023-01-17 엘지디스플레이 주식회사 Display device
WO2018001839A1 (en) 2016-06-29 2018-01-04 Koninklijke Philips N.V. Eap actuator and drive method
JP2018030107A (en) * 2016-08-26 2018-03-01 レノボ・シンガポール・プライベート・リミテッド Haptic feedback system, electronic equipment and method for generating haptic feedback
US10671167B2 (en) * 2016-09-01 2020-06-02 Apple Inc. Electronic device including sensed location based driving of haptic actuators and related methods
TWI652603B (en) 2016-10-31 2019-03-01 南韓商樂金顯示科技股份有限公司 Touch sensing element and display device therewith
KR102611514B1 (en) 2016-11-25 2023-12-06 엘지디스플레이 주식회사 Touch sensitive device and display device comprising the same
US10333443B2 (en) 2016-12-06 2019-06-25 Dialog Semiconductor (Uk) Limited Apparatus and method for controlling a device
KR20180065434A (en) 2016-12-07 2018-06-18 엘지디스플레이 주식회사 Touch sensitive device and display device comprising the same
KR20180065800A (en) 2016-12-08 2018-06-18 엘지디스플레이 주식회사 Touch sensitive device, display device comprising the same and method for manufacturing the same
KR102355285B1 (en) 2017-07-14 2022-01-24 엘지디스플레이 주식회사 Touch sensitive device and display device comprising the same
US10467869B2 (en) * 2017-07-30 2019-11-05 Immersion Corporation Apparatus and method for providing boost protection logic
JP2019050708A (en) * 2017-09-12 2019-03-28 株式会社フコク Haptic actuator
KR102445118B1 (en) 2017-10-18 2022-09-19 엘지디스플레이 주식회사 Touch sensitive device and display device comprising the same
US20190121433A1 (en) * 2017-10-20 2019-04-25 Immersion Corporation Determining a haptic profile using a built-in accelerometer
US10360774B1 (en) * 2018-01-05 2019-07-23 Immersion Corporation Method and device for enabling pitch control for a haptic effect
US11175739B2 (en) * 2018-01-26 2021-11-16 Immersion Corporation Method and device for performing actuator control based on an actuator model
US10877562B2 (en) 2018-03-02 2020-12-29 Htc Corporation Motion detection system, motion detection method and computer-readable recording medium thereof
US10747321B2 (en) 2018-06-15 2020-08-18 Immersion Corporation Systems and methods for differential optical position sensing for haptic actuation
US10936068B2 (en) * 2018-06-15 2021-03-02 Immersion Corporation Reference signal variation for generating crisp haptic effects
US10579146B2 (en) 2018-06-15 2020-03-03 Immersion Corporation Systems and methods for multi-level closed loop control of haptic effects
US10395489B1 (en) 2018-06-15 2019-08-27 Immersion Corporation Generation and braking of vibrations
KR20200001770A (en) * 2018-06-28 2020-01-07 주식회사 동운아나텍 Apparatus and method for control an actuator
KR102120410B1 (en) * 2018-06-28 2020-06-09 주식회사 동운아나텍 Apparatus and method for control an actuator
US11269415B2 (en) 2018-08-14 2022-03-08 Cirrus Logic, Inc. Haptic output systems
WO2020055404A1 (en) * 2018-09-12 2020-03-19 Google Llc Controlling haptic output for trackpad
US10332367B1 (en) * 2018-10-17 2019-06-25 Capital One Services, Llc Systems and methods for using haptic vibration for inter device communication
GB201817495D0 (en) 2018-10-26 2018-12-12 Cirrus Logic Int Semiconductor Ltd A force sensing system and method
US10976825B2 (en) 2019-06-07 2021-04-13 Cirrus Logic, Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
US11121661B2 (en) * 2019-06-20 2021-09-14 Cirrus Logic, Inc. Minimizing transducer settling time
CN110489845A (en) * 2019-08-09 2019-11-22 瑞声科技(新加坡)有限公司 Motor vibrations model building method, sense of touch implementation method and its device
US11380175B2 (en) 2019-10-24 2022-07-05 Cirrus Logic, Inc. Reproducibility of haptic waveform
US11662821B2 (en) * 2020-04-16 2023-05-30 Cirrus Logic, Inc. In-situ monitoring, calibration, and testing of a haptic actuator
CN111782046A (en) * 2020-06-30 2020-10-16 瑞声新能源发展(常州)有限公司科教城分公司 Haptic effect acquisition method and system
US11933822B2 (en) 2021-06-16 2024-03-19 Cirrus Logic Inc. Methods and systems for in-system estimation of actuator parameters
US11908310B2 (en) 2021-06-22 2024-02-20 Cirrus Logic Inc. Methods and systems for detecting and managing unexpected spectral content in an amplifier system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070182711A1 (en) * 2006-02-03 2007-08-09 Immersion Corporation Haptic Device Testing
US9934661B2 (en) * 2009-09-30 2018-04-03 Apple Inc. Self adapting haptic device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794392A (en) * 1987-02-20 1988-12-27 Motorola, Inc. Vibrator alert device for a communication receiver
US5436622A (en) * 1993-07-06 1995-07-25 Motorola, Inc. Variable frequency vibratory alert method and structure
US5780958A (en) * 1995-11-03 1998-07-14 Aura Systems, Inc. Piezoelectric vibrating device
US6057753A (en) * 1997-07-03 2000-05-02 Projects Unlimited, Inc. Vibrational transducer
US6762745B1 (en) * 1999-05-10 2004-07-13 Immersion Corporation Actuator control providing linear and continuous force output
US8169402B2 (en) * 1999-07-01 2012-05-01 Immersion Corporation Vibrotactile haptic feedback devices
US20030025595A1 (en) 2001-06-22 2003-02-06 Edwin Langberg Tactile interface
CN102609088B (en) * 2001-11-01 2015-12-16 意美森公司 For providing the method and system of sense of touch
US7798982B2 (en) * 2002-11-08 2010-09-21 Engineering Acoustics, Inc. Method and apparatus for generating a vibrational stimulus
KR20060075262A (en) * 2004-12-28 2006-07-04 삼성전자주식회사 Phase commutation method of a bldc motor
JP4806015B2 (en) 2005-06-20 2011-11-02 ルハオ レン Composite cabinet
US7919945B2 (en) * 2005-06-27 2011-04-05 Coactive Drive Corporation Synchronized vibration device for haptic feedback
US7920694B2 (en) * 2006-02-03 2011-04-05 Immersion Corporation Generation of consistent haptic effects
US8405618B2 (en) * 2006-03-24 2013-03-26 Northwestern University Haptic device with indirect haptic feedback
JP2008123651A (en) * 2006-11-15 2008-05-29 Hitachi Global Storage Technologies Netherlands Bv Disk drive device and calibration method thereof
US8378965B2 (en) * 2007-04-10 2013-02-19 Immersion Corporation Vibration actuator with a unidirectional drive
US8621348B2 (en) * 2007-05-25 2013-12-31 Immersion Corporation Customizing haptic effects on an end user device
CN101325390B (en) * 2008-07-24 2011-04-20 珠海格力电器股份有限公司 Control method for brushless DC motor
US7843277B2 (en) 2008-12-16 2010-11-30 Immersion Corporation Haptic feedback generation based on resonant frequency
US8077021B2 (en) * 2009-03-03 2011-12-13 Empire Technology Development Llc Dynamic tactile interface
EP2406701B1 (en) * 2009-03-12 2018-08-22 Immersion Corporation System and method for using multiple actuators to realize textures
US9746923B2 (en) * 2009-03-12 2017-08-29 Immersion Corporation Systems and methods for providing features in a friction display wherein a haptic effect is configured to vary the coefficient of friction
KR101628782B1 (en) * 2009-03-20 2016-06-09 삼성전자주식회사 Apparatus and method for providing haptic function using multi vibrator in portable terminal
US20110115754A1 (en) * 2009-11-17 2011-05-19 Immersion Corporation Systems and Methods For A Friction Rotary Device For Haptic Feedback
US8937603B2 (en) * 2011-04-01 2015-01-20 Analog Devices, Inc. Method and apparatus for haptic vibration response profiling and feedback

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070182711A1 (en) * 2006-02-03 2007-08-09 Immersion Corporation Haptic Device Testing
US9934661B2 (en) * 2009-09-30 2018-04-03 Apple Inc. Self adapting haptic device

Also Published As

Publication number Publication date
US9202354B2 (en) 2015-12-01
US20160070353A1 (en) 2016-03-10
US20170269694A1 (en) 2017-09-21
CN103324305A (en) 2013-09-25
US10101815B2 (en) 2018-10-16
CN103324305B (en) 2017-08-25
US20140327530A1 (en) 2014-11-06
US20180150140A1 (en) 2018-05-31
JP6125852B2 (en) 2017-05-10
EP3232300B1 (en) 2019-09-04
EP3232300A1 (en) 2017-10-18
US9921656B2 (en) 2018-03-20
JP2019072716A (en) 2019-05-16
JP6470341B2 (en) 2019-02-13
CN107479708A (en) 2017-12-15
KR20130089211A (en) 2013-08-09
US20130194084A1 (en) 2013-08-01
EP2624100A1 (en) 2013-08-07
EP2624100B1 (en) 2017-06-14
JP2013158769A (en) 2013-08-19
US8791799B2 (en) 2014-07-29
US9710065B2 (en) 2017-07-18
JP2017136593A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US10101815B2 (en) Eccentric rotating mass actuator optimization for haptic effects
US10296092B2 (en) Generating haptic effects while minimizing cascading
JP5694140B2 (en) System and method for resonance detection
US20150323994A1 (en) Dynamic haptic effect modification
KR20190091218A (en) Method and device for performing actuator control based on an actuator model
EP2762999B1 (en) Overdrive voltage for an actuator to generate haptic effects
US20110115709A1 (en) Systems And Methods For Increasing Haptic Bandwidth In An Electronic Device
EP2752731B1 (en) Haptically-enabled system with braking
KR20180092864A (en) Method and apparatus for determining energy availability for a haptic-enabled device and for conserving energy by selecting between a braking and non-braking mode
JP2021026539A (en) Electronic equipment and control method

Legal Events

Date Code Title Description
AS Assignment

Owner name: IMMERSION CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LACROIX, ROBERT A.;GREENISH, MICHAEL A.;RAMSAY, ERIN B.;SIGNING DATES FROM 20130131 TO 20130204;REEL/FRAME:047160/0301

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE