US20180256765A1 - System and Method for Holding and Sanitizing Writing Implements - Google Patents

System and Method for Holding and Sanitizing Writing Implements Download PDF

Info

Publication number
US20180256765A1
US20180256765A1 US15/457,961 US201715457961A US2018256765A1 US 20180256765 A1 US20180256765 A1 US 20180256765A1 US 201715457961 A US201715457961 A US 201715457961A US 2018256765 A1 US2018256765 A1 US 2018256765A1
Authority
US
United States
Prior art keywords
brake shoe
window sash
stop
open position
fully open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/457,961
Inventor
Maura Elizabeth Erwin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US15/457,961 priority Critical patent/US20180256765A1/en
Publication of US20180256765A1 publication Critical patent/US20180256765A1/en
Priority to US16/932,664 priority patent/US11097027B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K23/00Holders or connectors for writing implements; Means for protecting the writing-points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K23/00Holders or connectors for writing implements; Means for protecting the writing-points
    • B43K23/001Supporting means
    • B43K23/002Supporting means with a fixed base
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K23/00Holders or connectors for writing implements; Means for protecting the writing-points
    • B43K23/02Holders or connectors for writing implements; Means for protecting the writing-points with means for preventing rolling
    • B43K23/04Holders or connectors for writing implements; Means for protecting the writing-points with means for preventing rolling enabling the writing implement to be set upright
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43MBUREAU ACCESSORIES NOT OTHERWISE PROVIDED FOR
    • B43M99/00Subject matter not provided for in other groups of this subclass
    • B43M99/001Desk sets
    • B43M99/002Tubular fountain pen holders
    • B43M99/006Tubular fountain pen holders with more than one penholder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/15Biocide distribution means, e.g. nozzles, pumps, manifolds, fans, baffles, sprayers

Definitions

  • the present invention relates to systems and methods that are used to disinfect the exterior of writing implements, such as pens, pencils, styluses and markers. More particularly, the present invention relates to systems and method that expose the exterior of writing implements to chemical disinfectants.
  • Writing implements such as pens, pencils, styluses and markers, are utilized by being held in a writer's hand.
  • the writing implement is contaminated with all the bacteria, viruses and other microbials that are present on the user's hand.
  • writing implements are often placed behind the ear, held in the mouth, thrown into storage drawers, placed into pencil cups, and dropped on the floor.
  • Each one of these environments contains numerous microbial contaminants that are transferred to the writing implement.
  • Many writing implements contain grooves, contours, seams, clips, and materials that can harbor microbial contamination after exposure. The same contaminations occurs to similar handheld items, such as make-up pens and make-up brushes.
  • a person may wash their hands and put on protective gloves to prevent cross contamination.
  • the gloved hands become contaminated. Accordingly, the use of writing implements can be a significant cause of cross contamination in an otherwise clean environment.
  • the ink is soluble in alcohol, it will be understood that if a pen or marker were to be placed in a container of disinfectant that contains alcohol, the ink in the pen or marker would run, therein destroying the pen or marker. Furthermore, pens and markers contain hollows in their structures that would fill with liquid if they were submerged in any liquid disinfectant. Once removed from the liquid disinfectant, the liquid disinfectant in the various hollows would leak from the pen or marker and ruin the paper being written upon.
  • the present invention is a system and method for holding and sanitizing writing implements. Or similar shaped handheld implements, while they are not in use.
  • the system uses a container having a closed bottom and an open top.
  • the container can be self-standing or it can be made into a portable unit, such as a pocket protector.
  • the container is filled with a body of open cell foam.
  • the body of the open cell foam has a plurality of hollow shafts formed therein for holding writing implements.
  • the hollow shafts in the body of open cell foam are accessible through the open top of the container.
  • the open top of the container is covered with a cap. Access holes are formed through the cap directly above the tubular shafts. In this manner, writing implements can be inserted into the tubular shafts directly through the cap.
  • a volume of a liquid disinfectant is poured into the container.
  • the liquid disinfectant is at least partially absorbed by the body of open cell foam. This moistens the walls of the hollow shafts with disinfectant.
  • a writing implement is inserted into a hollow shaft, it is physically wiped and coated with the liquid disinfectant without being submerged in liquid disinfectant.
  • a writing implement or similar object is drawn out of the tubular shaft, it is clean, sanitized and ready to use without the need to dry.
  • FIG. 1 is a perspective view of an exemplary embodiment of a sanitizing station shown in conjunction with some writing implements;
  • FIG. 2 is a cross-sectional view of the exemplary embodiment of FIG. 1 ;
  • FIG. 3 shows the present invention configured as a pocket protector and shown in conjunction with some writing implements
  • FIG. 4 is a cross-sectional view of the exemplary embodiment of FIG. 3 .
  • a sanitizing station 10 that can be used to disinfect a variety of writing implements 12 , such as pencils, pens, styluses and markers. Alternatively, similarly shaped implements, such as make-up pens and make-up applicator can be sanitized.
  • the sanitizing station 10 consists of a container 14 .
  • the container 14 has an overall length L 1 between a closed bottom 16 and an open top 18 .
  • the open top 18 is partially covered by a cap 20 .
  • the cap 20 contains a plurality of access holes 22 .
  • the access holes 22 are sized so that writing implements 12 can pass through the cap 20 and into the container 14 .
  • a body of open cell foam 24 is disposed within the container 14 under the cap 20 .
  • the body of open cell foam 24 is preferably a synthetic foam material, such as a polyurethane foam that is mixed with softening agents to remain pliable.
  • the body of open cell foam 24 is exposed to a volume of liquid disinfectant 26 within the confines of the container 14 .
  • the liquid disinfectant 26 is insufficient to fully saturate the body of open cell foam 24 . Rather, the liquid disinfectant 26 keeps the body of open cell foam 24 damp with the liquid disinfectant 26 , utilizing a wicking action, which is later explained.
  • the body of open cell foam 24 fills or mostly fills the container 14 .
  • Hollow shafts 28 are formed in the body of open cell foam 24 under the access holes 22 in the cap 20 .
  • the hollow shafts 28 are parallel.
  • Each of the hollow shafts 28 has a length L 2 which is shorter than the overall length L 1 of the container 14 .
  • the result is a solid area 29 within the body of open cell foam 24 that exists below the hollow shafts 28 but above the closed bottom 16 of the container 14 .
  • Each hollow shaft 28 has a preferred diameter D 1 between 5 mm and 10 mm.
  • D 1 a preferred diameter between 5 mm and 10 mm.
  • liquid disinfectants can be used. However, the choice of the liquid disinfectant 26 is very important to make the sanitizing station 10 a viable commercial product.
  • the liquid disinfectant cannot be alcohol based or a petroleum by-product, such as a ketone. If it were, the disinfectant could dissolve the ink of the writing implement and/or the plastic used to fabricate the writing implement. Also, the disinfectant must be colorless so as not to stain the hand and/or paper to which a sanitized writing implement is applied.
  • the disinfectant also cannot be unstable over short periods of time, such as is hydrogen peroxide. Otherwise, the disinfectant would lose its effectiveness over prolonged periods of use. It is also preferred that the disinfectant be odorless, non-toxic, and non-reactive to materials.
  • the disinfectant would have a strong smell, would be a danger to a user who touched his/her eyes, and could discolor writing material or dyed clothing that it inadvertently contacts.
  • the preferred liquid disinfectant 26 for use in the sanitizing station 10 is an aqueous solution of silver di-hydrogen citrate.
  • Silver di-hydrogen citrate provides a broad spectrum antimicrobial activity and is effective against bacteria, fungi and viruses including pathogenic microorganisms. The antimicrobial properties of silver are well known. In order for silver to be effective in killing microorganisms, it must be in an ionic form.
  • Silver di-hydrogen citrate is a complex of one silver ion weakly bound to one citrate ion having the molecular complex AgC 6 H 7 O 7 .
  • Silver di-hydrogen citrate provides a stabilized form of silver ion in an organic acid (citric acid). The bioavailability of the ions allows for silver di-hydrogen citrate to be rapidly effective against a broad spectrum of bacteria, viruses and fungi.
  • Silver di-hydrogen citrate utilizes a multiple prong attack against microorganisms.
  • Silver di-hydrogen citrate targets an organism's cell membrane.
  • Silver ions are highly attracted to sulfur-containing thiol groups found in metabolic and structural proteins bound to the membrane surface.
  • Silver di-hydrogen citrate targets these critical proteins and destroys their structure.
  • citrate plays a key part in the effectiveness of silver di-hydrogen citrate. Bacteria are actually attracted to silver di-hydrogen citrate because they recognize citric acid as a food source. This allows silver di-hydrogen citrate to easily enter the microorganism through membrane transport proteins. Once inside the organism, silver di-hydrogen citrate binds to DNA and intracellular proteins causing irreversible damage to the DNA and protein structure. Metabolic and reproductive functions halt, and the organism dies. Viruses are much smaller than bacterial and fungal cells and do not have metabolic activity. Viruses present fewer targets sites on which a biocide can act. Silver targets the viral envelope, or capsid, and the viral nucleic acid. Silver not only destroys the viral envelope, preventing the virus from attaching to a host cell, it also destroys the infectious component of the virus, the nucleic acid.
  • the sanitizing station 10 is design not to soak the writing implements 12 in the liquid disinfectant 26 . This is accomplished by controlling the volume of the liquid disinfectant 26 present in the container 14 .
  • the volume of the liquid disinfectant 26 present in the container 14 can be determined by a quick visual inspection.
  • a narrow vertical window 30 is formed in the wall of the container 14 near its closed bottom 16 .
  • the window 30 is either transparent or translucent enough to visually determine the fluid level within the container 14 .
  • the top of the window 30 is a length L 3 below the open top 18 of the container 14 .
  • the length L 3 is longer than the length L 2 of the hollow shafts 28 . The result is that the window 30 corresponds in position to the solid area 29 within the body of open cell foam 24 .
  • the liquid disinfectant 26 When the liquid disinfectant 26 is added to the container 14 , the liquid disinfectant 26 is absorbed by the body of open cell foam 24 . Once the body of open cell 24 foam reaches its saturation point, the liquid disinfectant 26 will pool in the bottom of the container 14 . The level of the pooled liquid disinfectant 26 is visible through the window 30 in the container 14 . To prevent any part of a writing implement 12 from soaking in the pooled liquid disinfectant 26 , the level of the pooled liquid disinfectant 26 is always kept below the top of the window 30 . In this manner, the level of the pooled liquid disinfectant 26 will be below the bottom of the hollow shafts 28 that hold the writing implements 12 . Likewise, by observing the pooled liquid disinfectant 26 in the vertical window 30 , a person can determine when the liquid disinfectant 26 is running dry and can add more liquid disinfectant 26 as needed.
  • a central filler bore 32 is formed in the body of open cell foam 24 .
  • the central filler bore 32 is larger than the hollow shafts 28 and descends deeper into the body of open cell foam 24 than do the hollow shafts 28 .
  • the central filler bore 32 is used to introduce more of the liquid disinfectant 26 into the container 14 .
  • a plug 34 on the cap 20 is removed to expose the central filler bore 32 .
  • the liquid disinfectant 26 is the poured into the central filler bore 32 until the level of the liquid disinfectant 26 , as viewed through the vertical window 30 , is adequate. Once properly filled, the plug 34 is replaced.
  • Writing implements 12 are set into the hollow shafts 28 through the access holes 22 in the cap 20 . Once in a hollow shaft 28 , a writing implement 12 can be left indefinitely. The writing implements 12 will not fill with the liquid disinfectant 26 because the writing implements 12 are held above the pooling level of the liquid disinfectant 26 . The writing implements 12 are, however, dampened by the liquid disinfectant 26 due to the wicking action of the body of open cell foam 24 . Due to the long duration of the writing implements 12 in the sanitizing station 10 , which can be hours, days, or weeks, the writing implements 12 are encased in a disinfecting environment that disinfects all surfaces in and around the writing implements 12 .
  • the exterior of the writing implements 12 are automatically subjected to a wiping action that wipes dirt and debris off of the writing implements 12 .
  • the result is a passive system that automatically cleans and sanitizes writing implements 12 just by placing the writing implements 12 into the sanitizing station 10 when not in use.
  • the present invention is configured as a pocket protector 40 .
  • the pocket protector 40 is useful to doctors and other healthcare professionals that may travel from room to room in hospitals or clinics and are concerned with cross contamination.
  • the pocket protector 40 has a liquid impervious case 42 .
  • the case 42 has an open top 44 and a closed bottom 46 .
  • the open top 44 of the case 42 is covered by a flap closure 48 .
  • the case 42 is filled with open cell foam material 50 .
  • Hollow shafts 52 are formed in the open cell foam material 50 .
  • the hollow shafts 52 are parallel.
  • the hollow shafts 52 are accessible through an access opening 54 in the flap closure 48 .
  • a window 56 is formed in the case 42 near its closed bottom 46 .
  • the window 56 enables a person to visualize the level of any pooled liquid within the case.
  • the case 42 is partially filled with a liquid disinfectant 58 .
  • the volume of the liquid disinfectant 58 is controlled so that it does not pool to any level higher than the window 56 .
  • the liquid disinfectant 58 keeps the open cell foam material 50 damp through absorption and a wicking action from the pooled liquid disinfectant 58 .
  • Writing implements 12 are set into the hollow shafts 52 through the access openings 54 in the flap closure 48 . Once in a hollow shaft 52 , the writing implements 12 can be left indefinitely. The writing implements 12 will not fill with the liquid disinfectant 58 because the writing implement 12 is held above the pooling level of the liquid disinfectant 58 . The writing implements 12 are, however, dampened by the liquid disinfectant 58 due to the wicking action of the open cell foam material 50 . This sanitizes the writing implements 12 .
  • the exterior of the writing implement 12 is automatically subjected to a wiping action that wipes dirt and debris off the writing implement 12 .
  • the result is a passive system that automatically cleans and sanitizes writing implements 12 just by placing the writing implement into the pocket protector 40 when not in use.

Abstract

A system and method for holding and sanitizing handheld implements. The system uses a container filled with a body of open cell foam. The body of the open cell foam has hollow shafts formed therein for holding the implements. The hollow shafts in the body of open cell foam are accessible through the open top of the container. A volume of a liquid disinfectant is poured into the container. The liquid disinfectant is at least partially absorbed by the body of open cell foam. This moistens the walls of the hollow shafts with disinfectant. As handheld implement is inserted into a hollow shaft, it is physically wiped and coated with the liquid disinfectant without being submerged in liquid disinfectant. When the implement is drawn out of the tubular shaft, it is clean, sanitized and ready to use without the need to dry.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • In general, the present invention relates to systems and methods that are used to disinfect the exterior of writing implements, such as pens, pencils, styluses and markers. More particularly, the present invention relates to systems and method that expose the exterior of writing implements to chemical disinfectants.
  • 2. Prior Art Description
  • Writing implements, such as pens, pencils, styluses and markers, are utilized by being held in a writer's hand. As a consequence, the writing implement is contaminated with all the bacteria, viruses and other microbials that are present on the user's hand. Furthermore, writing implements are often placed behind the ear, held in the mouth, thrown into storage drawers, placed into pencil cups, and dropped on the floor. Each one of these environments contains numerous microbial contaminants that are transferred to the writing implement. Many writing implements contain grooves, contours, seams, clips, and materials that can harbor microbial contamination after exposure. The same contaminations occurs to similar handheld items, such as make-up pens and make-up brushes.
  • In a clean environment, such as a doctor's office or a research laboratory, a person may wash their hands and put on protective gloves to prevent cross contamination. However, as soon as that person holds a pen or pencil to write down a note, the gloved hands become contaminated. Accordingly, the use of writing implements can be a significant cause of cross contamination in an otherwise clean environment.
  • There are many systems for disinfecting handheld objects. For example, a barber will place combs and scissors in an alcohol solution, such as Barbacide® between uses. This sanitizes the combs and scissors and prevents microbial contamination and parasite contamination from customer to customer. However, such disinfecting systems cannot be used to disinfect most writing implements. Most pens and markers contain a liquid ink that is in an alcohol solution. Once the pen or marker is used to write, the alcohol rapidly evaporates from the dispensed ink and the ink quickly dries to the touch. Since the ink is soluble in alcohol, it will be understood that if a pen or marker were to be placed in a container of disinfectant that contains alcohol, the ink in the pen or marker would run, therein destroying the pen or marker. Furthermore, pens and markers contain hollows in their structures that would fill with liquid if they were submerged in any liquid disinfectant. Once removed from the liquid disinfectant, the liquid disinfectant in the various hollows would leak from the pen or marker and ruin the paper being written upon.
  • In the prior art, devices have been developed that attempt to disinfect writing implements without causing the ink to run. For example, in U.S. Pat. No. 8,357,914, to Caldwell, writing implements are disinfected by being exposed to ultraviolet light. The problem with such systems is that ultraviolet light sources produce a significant amount of heat. The light energy and the heat energy combine to heat the ink within a pen or marker. This could cause the ink to expand and leak out of the pen or marker. Furthermore, the heat and light energy tends to cause the alcohol carrier in the inks to prematurely evaporate. As such, a pen or marker could prematurely run dry. Lastly, ultraviolet light degrades plastic, especially foam plastic. Many pens have sections of foam plastic on their exteriors for comfort. Exposure to ultraviolet light rapidly causes such surface to degrade and disintegrate, therein ruining the pen.
  • In U.S. Pat. No. 5,683,655 to Carter, a system is disclosed where a writing implement is wiped against a material that is soaked with a disinfectant. The problem with such a system is that it is not passive. Rather, the system requires a user to manipulate the writing implement completely through a tube each time the writing implement is touched. This takes a considerable amount of effort and time. Consequently, in a real world application, the process would often be skipped. Furthermore, when passed through the tube of disinfectant, a pen or pencil may only spend a second or two in actual contact with the disinfecting surfaces. This is insufficient time to sanitize a pencil, pen, stylus, or marker having many crevices that harbor contamination. In addition, the system does nothing to keep the writing implement clean and sanitary when the writing implement is not in use and resting upon a contaminated surface.
  • A need therefore exists for a system and method of sanitizing a writing implement, or similar shape implement, and keeping the writing implement clean while not in use. A need also exists for a system and device for sanitizing a writing implement that completely sanitizes the writing implement in a passive manner without harming the writing implement. These needs are met by the present invention as described and claimed below.
  • SUMMARY OF THE INVENTION
  • The present invention is a system and method for holding and sanitizing writing implements. Or similar shaped handheld implements, while they are not in use. The system uses a container having a closed bottom and an open top. The container can be self-standing or it can be made into a portable unit, such as a pocket protector. The container is filled with a body of open cell foam. The body of the open cell foam has a plurality of hollow shafts formed therein for holding writing implements. The hollow shafts in the body of open cell foam are accessible through the open top of the container. To limit evaporation losses, the open top of the container is covered with a cap. Access holes are formed through the cap directly above the tubular shafts. In this manner, writing implements can be inserted into the tubular shafts directly through the cap.
  • A volume of a liquid disinfectant is poured into the container. The liquid disinfectant is at least partially absorbed by the body of open cell foam. This moistens the walls of the hollow shafts with disinfectant. As a writing implement is inserted into a hollow shaft, it is physically wiped and coated with the liquid disinfectant without being submerged in liquid disinfectant. When a writing implement or similar object is drawn out of the tubular shaft, it is clean, sanitized and ready to use without the need to dry.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the present invention, reference is made to the following description of exemplary embodiments thereof, considered in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a perspective view of an exemplary embodiment of a sanitizing station shown in conjunction with some writing implements;
  • FIG. 2 is a cross-sectional view of the exemplary embodiment of FIG. 1;
  • FIG. 3 shows the present invention configured as a pocket protector and shown in conjunction with some writing implements; and
  • FIG. 4 is a cross-sectional view of the exemplary embodiment of FIG. 3.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Although the present invention disinfecting system and method can be embodied in many ways, only two exemplary embodiments are presented for discussion. The exemplary embodiments set forth two of the best modes contemplated for practicing the invention. However, the embodiments are merely exemplary and should not be considered a limitation when interpreting the scope of the appended claims.
  • Referring to FIG. 1 and FIG. 2, a sanitizing station 10 is shown that can be used to disinfect a variety of writing implements 12, such as pencils, pens, styluses and markers. Alternatively, similarly shaped implements, such as make-up pens and make-up applicator can be sanitized. The sanitizing station 10 consists of a container 14. The container 14 has an overall length L1 between a closed bottom 16 and an open top 18. The open top 18 is partially covered by a cap 20. The cap 20 contains a plurality of access holes 22. The access holes 22 are sized so that writing implements 12 can pass through the cap 20 and into the container 14.
  • A body of open cell foam 24 is disposed within the container 14 under the cap 20. The body of open cell foam 24 is preferably a synthetic foam material, such as a polyurethane foam that is mixed with softening agents to remain pliable. The body of open cell foam 24 is exposed to a volume of liquid disinfectant 26 within the confines of the container 14. The liquid disinfectant 26 is insufficient to fully saturate the body of open cell foam 24. Rather, the liquid disinfectant 26 keeps the body of open cell foam 24 damp with the liquid disinfectant 26, utilizing a wicking action, which is later explained.
  • The body of open cell foam 24 fills or mostly fills the container 14. Hollow shafts 28 are formed in the body of open cell foam 24 under the access holes 22 in the cap 20. The hollow shafts 28 are parallel. Each of the hollow shafts 28 has a length L2 which is shorter than the overall length L1 of the container 14. The result is a solid area 29 within the body of open cell foam 24 that exists below the hollow shafts 28 but above the closed bottom 16 of the container 14.
  • Each hollow shaft 28 has a preferred diameter D1 between 5 mm and 10 mm. As such, when a writing implement 12 is advanced into a hollow shaft 28 through an access hole 22 in the cap 20, the writing implement 12 will contact the walls that define the hollow shaft 28 and will be moistened by the liquid disinfectant 26 held by the body of open cell foam 24. By being in contact with the liquid disinfectant 26, the writing implement 12 is sanitized. The writing implement 12 is stored in the confines of the hollow shaft 28 when not in use. As such, the writing implement 12 will remain in contact with the body of open cell foam 24 and the liquid disinfectant 26 it holds for prolonged periods of time. Such exposure is sufficient to kill most contamination present on the writing implement 12.
  • Many liquid disinfectants can be used. However, the choice of the liquid disinfectant 26 is very important to make the sanitizing station 10 a viable commercial product. The liquid disinfectant cannot be alcohol based or a petroleum by-product, such as a ketone. If it were, the disinfectant could dissolve the ink of the writing implement and/or the plastic used to fabricate the writing implement. Also, the disinfectant must be colorless so as not to stain the hand and/or paper to which a sanitized writing implement is applied. The disinfectant also cannot be unstable over short periods of time, such as is hydrogen peroxide. Otherwise, the disinfectant would lose its effectiveness over prolonged periods of use. It is also preferred that the disinfectant be odorless, non-toxic, and non-reactive to materials. For example, if the disinfectant were a dilution of chlorine, the disinfectant would have a strong smell, would be a danger to a user who touched his/her eyes, and could discolor writing material or dyed clothing that it inadvertently contacts.
  • Taking into account the needed properties of the disinfectant, the preferred liquid disinfectant 26 for use in the sanitizing station 10 is an aqueous solution of silver di-hydrogen citrate. An aqueous solution of silver di-hydrogen citrate containing between 50 ppm and 100 ppm silver ions, is colorless and mostly odorless. Any mild odor that may be present is that of citrus and is pleasant to most consumers. Silver di-hydrogen citrate provides a broad spectrum antimicrobial activity and is effective against bacteria, fungi and viruses including pathogenic microorganisms. The antimicrobial properties of silver are well known. In order for silver to be effective in killing microorganisms, it must be in an ionic form. Silver di-hydrogen citrate is a complex of one silver ion weakly bound to one citrate ion having the molecular complex AgC6H7O7. Silver di-hydrogen citrate provides a stabilized form of silver ion in an organic acid (citric acid). The bioavailability of the ions allows for silver di-hydrogen citrate to be rapidly effective against a broad spectrum of bacteria, viruses and fungi. Silver di-hydrogen citrate utilizes a multiple prong attack against microorganisms. Silver di-hydrogen citrate targets an organism's cell membrane. Silver ions are highly attracted to sulfur-containing thiol groups found in metabolic and structural proteins bound to the membrane surface. Silver di-hydrogen citrate targets these critical proteins and destroys their structure. This disruption of the organism's membrane function and integrity lyses the membrane and the organism dies. In addition to supporting the silver ion, citrate plays a key part in the effectiveness of silver di-hydrogen citrate. Bacteria are actually attracted to silver di-hydrogen citrate because they recognize citric acid as a food source. This allows silver di-hydrogen citrate to easily enter the microorganism through membrane transport proteins. Once inside the organism, silver di-hydrogen citrate binds to DNA and intracellular proteins causing irreversible damage to the DNA and protein structure. Metabolic and reproductive functions halt, and the organism dies. Viruses are much smaller than bacterial and fungal cells and do not have metabolic activity. Viruses present fewer targets sites on which a biocide can act. Silver targets the viral envelope, or capsid, and the viral nucleic acid. Silver not only destroys the viral envelope, preventing the virus from attaching to a host cell, it also destroys the infectious component of the virus, the nucleic acid.
  • The sanitizing station 10 is design not to soak the writing implements 12 in the liquid disinfectant 26. This is accomplished by controlling the volume of the liquid disinfectant 26 present in the container 14. The volume of the liquid disinfectant 26 present in the container 14 can be determined by a quick visual inspection. A narrow vertical window 30 is formed in the wall of the container 14 near its closed bottom 16. The window 30 is either transparent or translucent enough to visually determine the fluid level within the container 14. The top of the window 30 is a length L3 below the open top 18 of the container 14. The length L3 is longer than the length L2 of the hollow shafts 28. The result is that the window 30 corresponds in position to the solid area 29 within the body of open cell foam 24.
  • When the liquid disinfectant 26 is added to the container 14, the liquid disinfectant 26 is absorbed by the body of open cell foam 24. Once the body of open cell 24 foam reaches its saturation point, the liquid disinfectant 26 will pool in the bottom of the container 14. The level of the pooled liquid disinfectant 26 is visible through the window 30 in the container 14. To prevent any part of a writing implement 12 from soaking in the pooled liquid disinfectant 26, the level of the pooled liquid disinfectant 26 is always kept below the top of the window 30. In this manner, the level of the pooled liquid disinfectant 26 will be below the bottom of the hollow shafts 28 that hold the writing implements 12. Likewise, by observing the pooled liquid disinfectant 26 in the vertical window 30, a person can determine when the liquid disinfectant 26 is running dry and can add more liquid disinfectant 26 as needed.
  • A central filler bore 32 is formed in the body of open cell foam 24. The central filler bore 32 is larger than the hollow shafts 28 and descends deeper into the body of open cell foam 24 than do the hollow shafts 28. The central filler bore 32 is used to introduce more of the liquid disinfectant 26 into the container 14. To add liquid disinfectant 26, a plug 34 on the cap 20 is removed to expose the central filler bore 32. The liquid disinfectant 26 is the poured into the central filler bore 32 until the level of the liquid disinfectant 26, as viewed through the vertical window 30, is adequate. Once properly filled, the plug 34 is replaced.
  • Writing implements 12, or similar shaped items, are set into the hollow shafts 28 through the access holes 22 in the cap 20. Once in a hollow shaft 28, a writing implement 12 can be left indefinitely. The writing implements 12 will not fill with the liquid disinfectant 26 because the writing implements 12 are held above the pooling level of the liquid disinfectant 26. The writing implements 12 are, however, dampened by the liquid disinfectant 26 due to the wicking action of the body of open cell foam 24. Due to the long duration of the writing implements 12 in the sanitizing station 10, which can be hours, days, or weeks, the writing implements 12 are encased in a disinfecting environment that disinfects all surfaces in and around the writing implements 12. Furthermore, as writing implements 12 are placed into the hollow shafts 28 and pulled out of the hollow shafts 28, the exterior of the writing implements 12 are automatically subjected to a wiping action that wipes dirt and debris off of the writing implements 12. The result is a passive system that automatically cleans and sanitizes writing implements 12 just by placing the writing implements 12 into the sanitizing station 10 when not in use.
  • Referring now to FIG. 3 and FIG. 4, an alternate embodiment of the present invention is shown. In this embodiment, the present invention is configured as a pocket protector 40. The pocket protector 40 is useful to doctors and other healthcare professionals that may travel from room to room in hospitals or clinics and are concerned with cross contamination.
  • The pocket protector 40 has a liquid impervious case 42. The case 42 has an open top 44 and a closed bottom 46. The open top 44 of the case 42 is covered by a flap closure 48. Under the flap closure 48, the case 42 is filled with open cell foam material 50. Hollow shafts 52 are formed in the open cell foam material 50. The hollow shafts 52 are parallel. The hollow shafts 52 are accessible through an access opening 54 in the flap closure 48.
  • A window 56 is formed in the case 42 near its closed bottom 46. The window 56 enables a person to visualize the level of any pooled liquid within the case.
  • The case 42 is partially filled with a liquid disinfectant 58. The volume of the liquid disinfectant 58 is controlled so that it does not pool to any level higher than the window 56. The liquid disinfectant 58 keeps the open cell foam material 50 damp through absorption and a wicking action from the pooled liquid disinfectant 58.
  • Writing implements 12, or similar shaped items, are set into the hollow shafts 52 through the access openings 54 in the flap closure 48. Once in a hollow shaft 52, the writing implements 12 can be left indefinitely. The writing implements 12 will not fill with the liquid disinfectant 58 because the writing implement 12 is held above the pooling level of the liquid disinfectant 58. The writing implements 12 are, however, dampened by the liquid disinfectant 58 due to the wicking action of the open cell foam material 50. This sanitizes the writing implements 12. Furthermore, as a writing implement 12 is placed into a hollow shaft 52 and pulled out of a hollow shaft 52, the exterior of the writing implement 12 is automatically subjected to a wiping action that wipes dirt and debris off the writing implement 12. The result is a passive system that automatically cleans and sanitizes writing implements 12 just by placing the writing implement into the pocket protector 40 when not in use.
  • It will be understood that the embodiments of the present invention that are illustrated and described are merely exemplary and that a person skilled in the art can make many variations to those embodiments. For instance, different disinfectant solutions can be used. Likewise, different formulations of open cell foam can be used. The appearance of the container is understood to be a matter of design choice. All such embodiments are intended to be included within the scope of the present invention as defined by the claims.

Claims (7)

1. In a window having a window sash, wherein said window sash travels in guide tracks between a fully open position and a fully closed position, a system for inhibiting drift movement of said window sash out of said fully open position, said system comprising:
a brake shoe having a spool post, wherein said brake shoe moves in one of said guide tracks with said window sash as said window sash is manually manipulated between said fully closed position and said fully open position;
a flexible locking finger extending from said brake shoe;
a coiled ribbon spring supported by said brake shoe about said spool post, wherein said coiled ribbon spring has a free end that can be extended away from said brake shoe;
a stop mounted to said one of said guide tracks at a fixed elevation, said stop having a bottom edge that faces said brake shoe in one of said guide tracks, wherein said stop has a depression formed therein for receiving said flexible locking finger and an inclined surface that extends from said bottom edge to said depression to guide said flexible locking finger into said depression as said window sash moves toward said fully open position, wherein said flexible locking finger engages said depression when said sash reaches said fully open position therein creating an interconnection that prevents said brake shoe from moving away from said stop until a threshold separating force is applied to said window sash to move said sash from said fully open position towards said fully closed position, and;
an anchor element extending from said stop that interconnects with said free end of said coiled ribbon spring, wherein said coiled ribbon spring biases said brake shoe toward said stop.
2. The system according to claim 1, wherein said threshold force is between one pound and ten pounds.
3.-9. (canceled)
10. In a window having a window sash, wherein said window sash can move in guide tracks between a fully open position and a fully closed position, a system for inhibiting inadvertent movement of said window sash out of said fully open position, said system comprising:
a brake shoe coupled to said window sash that moves in one of said guide tracks;
a locking finger that extends from said brake shoe;
a ribbon coil spring supported by said brake shoe, wherein said ribbon coil spring moves with said brake shoe in one of said guide tracks, wherein said ribbon spring has a free end;
a stop mounted at a fixed position within said one of said guide tracks, said stop having a depression formed therein for receiving said locking finger and an inclined surface that leads into said depression, wherein said inclined surface guides said locking finger into said depression as said window sash moves toward said fully open position;
an anchor element thereon that interconnects with said free end of said ribbon coil spring;
wherein said brake shoe is separable from said stop when a closing force is manually applied that acts to move said window sash toward said fully closed position.
11. The system according to claim 10, wherein said closing force is between one pound and ten pounds.
12. The system according to claim 10, wherein said locking finger on said brake shoe interconnects with said depression on said stop when said window sash is in said fully open position.
13.-19. (canceled)
US15/457,961 2017-03-13 2017-03-13 System and Method for Holding and Sanitizing Writing Implements Abandoned US20180256765A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/457,961 US20180256765A1 (en) 2017-03-13 2017-03-13 System and Method for Holding and Sanitizing Writing Implements
US16/932,664 US11097027B2 (en) 2017-03-13 2020-07-17 System and method for holding and sanitizing writing implements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/457,961 US20180256765A1 (en) 2017-03-13 2017-03-13 System and Method for Holding and Sanitizing Writing Implements

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/932,664 Continuation US11097027B2 (en) 2017-03-13 2020-07-17 System and method for holding and sanitizing writing implements

Publications (1)

Publication Number Publication Date
US20180256765A1 true US20180256765A1 (en) 2018-09-13

Family

ID=63445985

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/457,961 Abandoned US20180256765A1 (en) 2017-03-13 2017-03-13 System and Method for Holding and Sanitizing Writing Implements
US16/932,664 Active US11097027B2 (en) 2017-03-13 2020-07-17 System and method for holding and sanitizing writing implements

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/932,664 Active US11097027B2 (en) 2017-03-13 2020-07-17 System and method for holding and sanitizing writing implements

Country Status (1)

Country Link
US (2) US20180256765A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110001256A (en) * 2019-05-07 2019-07-12 黄家骜 A kind of Portable water-color paint brush cylinder
CN111568543A (en) * 2020-06-10 2020-08-25 浙江大学 Doctor's operation handing-over checking system
WO2023161277A1 (en) * 2022-02-24 2023-08-31 BIC Violex Single Member S.A. Writing instruments

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210402031A1 (en) * 2020-06-30 2021-12-30 Theodore DeCarlo Portable sanitizing container
US11938237B1 (en) * 2020-09-03 2024-03-26 Brian E. Wind Utensil sanitizer
US20230329420A1 (en) * 2022-04-15 2023-10-19 Cilag Gmbh International Container features for surgical instrument lubricant

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US816959A (en) 1905-09-25 1906-04-03 Pasquale Briganti Sterilizing and antiseptic case with stand for surgical instruments.
US5882667A (en) 1993-08-02 1999-03-16 Jones; Thomas Lucius Plastic sleeve containing an antimicrobial agent
US5683655A (en) 1995-01-30 1997-11-04 Carter; Stephen D. Apparatus and method for disinfecting writing instruments
US6039928A (en) 1998-01-28 2000-03-21 Roberts; Jon L. Writing implement sterilization apparatus
US6142297A (en) 1999-02-05 2000-11-07 Price; Walter Thermometer sanitizing device and method
US6270275B1 (en) 1999-05-25 2001-08-07 Jasun Martz Sponge storage and disinfecting device
US8336152B2 (en) 2007-04-02 2012-12-25 C. R. Bard, Inc. Insert for a microbial scrubbing device
US8058629B2 (en) 2008-06-19 2011-11-15 Long Catherine L Writing utensil sterilization apparatus
US8535729B2 (en) 2008-12-05 2013-09-17 The Clorox Company Natural silver disinfectant compositions
US8770881B2 (en) 2009-06-23 2014-07-08 Cleanint Llc Sanitization apparatuses, kits, and methods
US8357914B1 (en) 2010-06-28 2013-01-22 Dawn E. Caldwell UV disinfecting apparatus
US8491849B2 (en) * 2011-06-10 2013-07-23 Raad Hermiz Writing implement sanitizer and method of sanitization therefor
US9155809B2 (en) 2011-09-30 2015-10-13 Michael Roberts Pen sterilization device
US8967900B2 (en) 2012-07-17 2015-03-03 James M. Anderson Hygienic writing instrument and method of using
WO2014134299A1 (en) 2013-03-01 2014-09-04 Hadlock John Devices and methods for sanitizing writing implements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110001256A (en) * 2019-05-07 2019-07-12 黄家骜 A kind of Portable water-color paint brush cylinder
CN111568543A (en) * 2020-06-10 2020-08-25 浙江大学 Doctor's operation handing-over checking system
WO2023161277A1 (en) * 2022-02-24 2023-08-31 BIC Violex Single Member S.A. Writing instruments

Also Published As

Publication number Publication date
US20200345877A1 (en) 2020-11-05
US11097027B2 (en) 2021-08-24

Similar Documents

Publication Publication Date Title
US11097027B2 (en) System and method for holding and sanitizing writing implements
Sattar et al. The crucial role of wiping in decontamination of high-touch environmental surfaces: review of current status and directions for the future
EP2029353B1 (en) Surface mountable delivery device
US5405602A (en) Nonaqueous cold sterilant
US20100314267A1 (en) Decontamination system
US8968771B2 (en) Articles and methods for applying antimicrobial protection
BR112019011935B1 (en) METHOD FOR ADDING A BIOCIDAL COMPOSITION TO A CLOTHES WASHING PROCESS
JP2012072134A (en) Silver ion production liquid for antibacterial use, silver ion antibacterial liquid produced from the liquid, and production method for producing the antibacterial liquid
AU2004319251B2 (en) Decontamination system
US20140328941A1 (en) Non-corrosive stable peracetic acid concentrate solution
Moriello et al. Efficacy of disinfectants containing accelerated hydrogen peroxide against conidial arthrospores and isolated infective spores of M icrosporum canis and T richophyton sp.
US20120329881A1 (en) Methods for disinfecting and sanitizing cosmetics and cosmetic tools
US5637307A (en) Method of immersion sterilization and organic cold chemical sterilant
Sandle The CDC Handbook-a Guide to Cleaning and Disinfecting Clean Rooms
US20210402433A1 (en) System and method for impregnating a porous surface with antibacterial and antiviral compounds
US20150320797A1 (en) Two-component cleaning and disinfecting system
Omidbakhsh Theoretical and experimental aspects of microbicidal activities of hard surface disinfectants: are their label claims based on testing under field conditions?
US20130081660A1 (en) Pen sterilization device
Ryan et al. Effect of inoculation method on the determination of decontamination efficacy against Bacillus spores
Vanhecke et al. A potent and safe H2O2 fumigation approach
US8846108B2 (en) Antimicrobial body affecting products
Otter An overview of the options for antimicrobial hard surfaces in hospitals
WO2007078476A3 (en) Fragranted biocidal moistening fluids
Sandle 2 Disinfectants
Sandle Risk of microbial spores to cleanrooms: Part 2: Selection of sporicidal disinfectants

Legal Events

Date Code Title Description
STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCV Information on status: appeal procedure

Free format text: APPEAL READY FOR REVIEW

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION