US20180080537A1 - Differential Gear Assembly and Components Thereof - Google Patents

Differential Gear Assembly and Components Thereof Download PDF

Info

Publication number
US20180080537A1
US20180080537A1 US15/708,465 US201715708465A US2018080537A1 US 20180080537 A1 US20180080537 A1 US 20180080537A1 US 201715708465 A US201715708465 A US 201715708465A US 2018080537 A1 US2018080537 A1 US 2018080537A1
Authority
US
United States
Prior art keywords
casing
gear shaft
differential
gear
fastening member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/708,465
Other versions
US10465783B2 (en
Inventor
Roberto Gianone
Marco Fratelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meritor Heavy Vehicle Systems Cameri SpA
Original Assignee
Meritor Heavy Vehicle Systems Cameri SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meritor Heavy Vehicle Systems Cameri SpA filed Critical Meritor Heavy Vehicle Systems Cameri SpA
Assigned to MERITOR HEAVY VEHICLE SYSTEMS CAMERI SPA reassignment MERITOR HEAVY VEHICLE SYSTEMS CAMERI SPA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRATELLI, MARCO, GIANONE, ROBERTO
Publication of US20180080537A1 publication Critical patent/US20180080537A1/en
Application granted granted Critical
Publication of US10465783B2 publication Critical patent/US10465783B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/40Constructional details characterised by features of the rotating cases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/12Differential gearings without gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/037Gearboxes for accommodating differential gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • F16H2048/085Differential gearings with gears having orbital motion comprising bevel gears characterised by shafts or gear carriers for orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H2048/382Methods for manufacturing differential gearings

Definitions

  • This invention relates to a differential gear assembly of a motor vehicle, and particularly to a differential gear casing and components thereof.
  • the present invention also relates to a method of assembling a differential gear assembly.
  • Differential gear assemblies are provided in driven axles of vehicles to permit left and right driven wheels to rotate at different speeds whilst transmitting torque; as is well known, such an arrangement is required to permit a vehicle to turn from a straight line.
  • gear assemblies have been proposed, but the most common consist of a casing in which at least one rotatable differential side gear is arranged in mesh with opposite end gears of the vehicle drive shafts.
  • the casing carries an annular crown wheel which is driven by a pinion of an input shaft, which itself is driven by the vehicle engine.
  • the aforementioned side gears are rotatably mounted on a gear shafts, which are, in turn, received within openings of the casing.
  • a gear shafts In order to prevent the gear shafts from moving radially outwardly out of the casing, as a result of separating forces between the differential side gears and the end gears of the half shafts, it is commonly known to fix the gear shaft in place with respect to the casing, by fastening screws.
  • the gear shafts must be reliably connected to the casing as a correction of the connection between the casing and the gear shafts may no longer be possible. This is particularly problematic if the crown wheel permanently attached to the casing, e.g., by welding.
  • the invention in a first embodiment, relates to a differential gear assembly comprising a casing extending along a longitudinal drive axis and adapted to receive end gears of first and second half shafts of a vehicle drive axle, the casing comprising at least one opening extending perpendicular to the drive axis between outer and inner surfaces of the casing.
  • the casing comprises a cavity, extending substantially parallel to the longitudinal drive axis and adapted to receive the at least one fastening member.
  • a first gear shaft is received within the at least one opening of the casing and a first differential side gear adapted to mesh with end gears of said first and second half shafts is rotatably mounted on the first gear shaft.
  • the gear shaft comprises at least one flat extending from its first end surface towards the second end surface.
  • the first flat is constructed to form a first shoulder portion that defines a first bearing surface, which is recessed from the first end surface.
  • the gear assembly further comprises at least one fastening member adapted to fix the first gear shaft with respect to the casing, wherein the at least one fastening member contacts the first bearing surface.
  • the first bearing surface is received within the at least one opening in such a way that the at least one fastening member is visible from the outside of the casing.
  • the new differential gear assembly allows the manufacturer to inspect the connection between the casing and the gear shaft by viewing the position of the fastening member before the crown wheel or other parts of the differential gear assembly are attached. This particular design simplifies quality control processes for differential gear assemblies, thus reducing the amount of defective differential gears.
  • the flat extending from the first end surface of the gear shaft is a first alternative of constructing the differential gear assembly such that the fastening member is visible from the outer surface of the casing. As will be described in more detail below, the flat creates a gap between the outer surface of the gear shaft and the inner surface of the opening of the casing that can be used to view the fastening member in its assembled condition. It will be appreciated that the flat can be produced simply by milling off parts of the gear shaft along its first end surface.
  • the flat is constructed to form a shoulder portion that is sufficiently large to form a stop surface that engages with an end portion of the fastening member.
  • the gear shaft could include other shapes which enable the manufacturer to view the fastening member during assembly of the differential.
  • the gear shaft could comprise a longitudinal blind bore, which extends from the first end surface, that is, from the outer surface of the casing to the point of engagement between the gear shaft and the fastening member.
  • the first gear shaft comprises opposite first and second end surfaces, wherein the at least one fastening member engages the first gear shaft between said first and second end surfaces.
  • the fastening member does not engage with the gear shaft at its outer, first end surface but connects with a circumferential side surface of the gear shafts, which is usually received within the casing. As such, the fastening member is protected from environmental conditions by the casing.
  • the first gear shaft comprises a substantially cylindrical shape.
  • the cavity in the casing may be a through hole extending between a first end arranged at a side surface of the casing and a second end arranged at an inner surface of the at least one opening.
  • the differential gear assembly may further comprise a cover attached to said side surface of the casing so as to cover the first end of the cavity.
  • the cover can be attached to the side surface of the casing to secure the fastening member in place within the cavity.
  • the cover can also be used to pressurize the fastening member against the flat of the gear shaft, particularly if the fastening member is constructed as a slidable member, such as a pin.
  • the fastening member is constructed as a pin, preferably as a solid pin.
  • the pin may be sized to be inserted into the cavity in a press fitting manner. Constructing the fastening member as a pin provides improvements of the load distribution compared to using screws as fastening members.
  • pins can comprise a larger diameter, and thus are able to withstand higher radial forces exerted by the gear shaft.
  • designing the fastening members as pins will reduce overall cost of the inventive differential gear assembly. It will also be appreciated that using solid pins allows the reduction of the pilot diameter of the gear shaft.
  • the differential gear assembly further comprises a second gear shaft received within a second opening of the casing adapted to receive a second differential side gear, wherein the second gear shall is releasably connected to the first gear shaft.
  • the second gear shaft is produced in a substantially identical manner as the first gear shaft and releasably connected to the first gear shaft at its second end surface, opposite the second opening of the casing.
  • the first and second gear shafts may be arranged along a common axis, which extends perpendicular to the longitudinal axis of the differential gear, and may be attached to each other at their respective second ends.
  • the casing may comprise third and fourth openings extending perpendicular to the drive axis between the outer and inner surface of the casing, wherein the differential gear assembly further comprises a third gear shaft, said third gear shaft extending substantially perpendicular to the first and second gear shafts and being received within the third and fourth openings.
  • the differential gear assembly comprises a three-piece spider shaft having first and second short gear shafts and a longer third gear shaft extending between the third and fourth openings of the casing.
  • the differential gear assembly may comprise third and fourth differential side gears adapted to mesh with the end gears of the first and second half shafts, the third and fourth side gears being rotatably mounted on the third gear shaft.
  • the differential gear assembly of this embodiment therefore, comprises four differential side gears attached to the first, second and third gear shafts.
  • first, second, third and fourth openings of the casing are preferably arranged in an equally spaced manner at 90 degree intervals along the circumference of the casing.
  • first, second and third gear shafts may be releasably attached to each other and their point of intersection to form the four-legged spider shaft assembly.
  • the present invention further relates to a method of assembling a differential gear assembly, the methods comprising steps of:
  • a casing comprising at least one opening extending perpendicular to a drive axis of the differential gear assembly, between outer and inner surfaces of the casing, the casing comprising a cavity, extending substantially parallel to the longitudinal drive axis and adapted to receive a fastening member;
  • first gear shaft Inserting a first gear shaft together with a first differential side gear mounted thereon into the casing such that the first gear shaft is received within the at least one opening of the casing, said first gear shaft comprising at least one flat extending from its first end surface, said flat forming a first shoulder portion that defines a first bearing surface, which is recessed from the first end surface;
  • Fixing the first gear shaft with respect to the casing by inserting at least one fastening member into the cavity of the casing, such that the at least one fastening member contacts the first bearing surface, wherein the first bearing surface is received within the at least one opening in such a way that the at least one fastening member is visible from the outer surface of the casing;
  • the method of the present invention will reduce the number of defective differentials and simplify quality control. This is particularly the case if the crown wheel is attached to the outer surface of the casing by welding. Frequently, there is no more possibility of refastening the gear shafts after the wheel has been attached to the casing. The same applies to the connection between the casing and the aforementioned cover, which is commonly also established via a weld seam. As such, if the fastening member is not correctly aligned within the cavity, before the crown wheel or the cover are attached to the casing, the gear shafts might not be fixed in place securely and there may be no way of correcting this deficiency.
  • the at least one fastening member is inserted into the cavity of the casing from a first side surface of the casing and held in place by a cover, which is attached to the side surface of the casing after said fastening member is inserted and inspected.
  • the present invention further relates to a gear shaft for the differential gear assembly, comprising a substantially cylindrical shape extending between a first end surface and a second end surface, wherein the gear shaft comprises a two flats extending from the first end surface towards the second end surface one of the flats defining a bearing surface for receiving a fastening member and wherein the two flats define first and second shoulder portions on opposite sides of the first end surface. While the flats define bearing surfaces for the fastening member, they also facilitate inspection between the connection of the fastening member and the gear shaft, once the latter is inserted into the casing of the differential gear assembly.
  • the shaft may also comprise two flats extending from the second end surface towards the first end surface and defining third and fourth shoulder portions for engagement with a corresponding recess of other gear shafts.
  • the third and fourth shoulder portions may extend in a substantially perpendicular plane to the first and second flats.
  • the third and fourth shoulder portions define an anti-rotation lock together with the remaining gear shafts, as will be described in more detail below.
  • the gear shaft may also comprise a knit-section arranged between the first and second end surfaces of the shaft, the mid-section comprising first and second flats for attachment to a corresponding different side gear.
  • the flats of the mid-section can be used to secure the differential side gears in place along the longitudinal axis of the gear shafts.
  • FIG. 1 a schematic cross-section of a differential gear assembly according to a first embodiment of the present invention
  • FIG. 2 a a perspective side view of a gear shaft according to a first embodiment of the present invention
  • FIG. 2 b a top view of the gear shaft shown in FIG. 2 a ;
  • FIG. 2 c a bottom view of the gear shaft shown in FIG. 2 a.
  • FIG. 1 shows a schematic cross-section of a first embodiment of a differential gear assembly according to the present invention.
  • the differential gear assembly 1 comprises a casing 10 with a first side end 11 and a second side end 12 .
  • the generally bowl shaped casing 10 has a cavity 13 extending between the first and second ends 11 , 12 , along a longitudinal axis LA.
  • the cavity of the casing 10 is adapted to receive end gears 21 , 22 of first and second half shafts of a vehicle drive axle (not shown).
  • the casing 10 comprises a continuous flange portion 15 , which defines a circular shoulder 16 adapted to receive a close-fitting bevel gear crown wheel (not shown).
  • FIG. 1 shows a schematic cross-section of a first embodiment of a differential gear assembly according to the present invention.
  • the differential gear assembly 1 comprises a casing 10 with a first side end 11 and a second side end 12 .
  • the generally bowl shaped casing 10 has a cavity 13 extending between the first and
  • the flange portion 15 has a circular recess 17 for a corresponding circular projection of the crown wheel and a circular projection 19 for engagement in a corresponding recess of the crown wheel.
  • the flange portion is substantially plain.
  • the casing defines a circular cylindrical projection concentric with the longitudinal drive axis LA.
  • the casing has an inner surface 101 and an outer surface 102 to mount the differential gear assembly in an axle housing.
  • the side wall of the casing 10 has a substantially constant radius adjacent the flange portion 15 .
  • the illustration of FIG. 1 shows first opening 14 a and second opening 14 b .
  • the first and second openings 14 a , 14 b extend perpendicular to the longitudinal drive axis LA along a common shaft axis SA between the outer and inner surfaces 101 , 102 of the casing 10 .
  • a first gear shaft 31 a is received within the first opening 14 a and extends along the shaft axis SA.
  • a second gear shaft 31 b is received within the second opening 14 b and extends along the common shaft axis SA.
  • the first and second gear shafts 31 a , 31 b both comprise opposite first and second end surfaces 32 a , 32 b , 33 a , 33 b .
  • the first end surfaces 32 a , 32 b of the respective first and second gear shafts 31 a , 31 b are arranged substantially flush with the outer surface 102 of the casing 10 .
  • the second end surfaces 33 a , 33 b of the gear shafts 31 a , 31 b are connected to each other via a third gear shaft 40 , which extends in a direction perpendicular to the longitudinal drive axis LA and the shaft axis SA.
  • the gear shafts 31 a and 31 b are both adapted to rotatably receive a corresponding differential side gear 51 , 52 .
  • These first and second differential side gears 51 , 52 are adapted to mesh with the end gears 21 and 22 of the drive axles and facilitate rotation of the drive axles at different rotational speeds.
  • the fastening members 61 , 62 are solid bolts, which are inserted into cavities 63 , 64 that extend through the casing 10 between the first side surface 11 and an inner surface of the openings 14 a , 14 b .
  • the cavities 63 , 64 of FIG. 1 extend in a direction parallel to the longitudinal axis of the casing 10 .
  • FIGS. 2 a to 2 c show that the gear shafts 31 a , 31 b are shown in more detail.
  • FIGS. 2 a and 2 b show that the gear shafts 31 a 31 b , comprise first and second flats 34 a , 34 b , 35 a , 35 b which extend from the first end surface 32 a , 32 b towards the second end surface 33 a , 33 b .
  • the flats 34 a , 34 b and 35 a and 35 b form shoulder portions along the first end of the respective gear shaft 31 a , 31 b , which define bearing surfaces 38 a , 38 b , 39 , 39 b .
  • FIG. 1 The illustration of FIG.
  • the flats 34 a , 34 b and the so-formed recessed bearing surfaces 38 a , 38 b of the gear shafts 31 a , 31 b provide visibility of the respective fastening member 61 , 62 , from the outside of the casing 10 in its assembled condition. This is because the shoulder portions formed by the flats create a gap between the outer surface of the gear shaft and the inner surface of the opening.
  • the connection between the casing 10 and the gear shafts 31 a , 31 b via the fastening member 61 , 62 can thus be inspected during quality control, before the crown wheel (not shown) is attached, preferably welded, to the flange portion 15 of the casing 10 .
  • a cover 70 is attached to the first side end 11 of the casing 10 .
  • Cover 70 which is preferably welded to the first side end 11 of the casing 10 , closes a first end of the cavities 63 , 64 and thereby fixes the fastening members 61 , 62 inside their respective cavities 63 , 64 .
  • the cover 70 may also be used to press the first and second fastening member 61 , 62 against the flat 34 a , 34 b of the first and second gear shafts 31 a , 31 b .
  • the cover 70 is attached to the casing 10 after obtaining a positive inspection result of the connection between the fastening members 61 , 62 and their respective gear shafts, 31 a , 31 b,
  • the first and second gear shafts 31 a , 31 b may comprise third and fourth flats 36 a , 36 b , 37 a , 37 b defining third and fourth shoulder portions, and blind bores 80 a , 80 b for attaching the first and second gears shafts 31 a , 31 b to the third gear shaft 40 along their second end surface 33 a , 33 b .
  • the blind bores 80 a , 80 b can be adapted to receive pins of the third drive shaft 40 to prevent translational, relative movement between the first, second and third gear shafts 31 a , 31 b , 40 .
  • the flats 36 a , 36 b and 37 a , 37 b provide an anti-rotation lock of the first, second and third gear shaft 31 a , 31 b.
  • FIG. 2 a further shows that the first and second gear shafts 31 a , 31 b comprise further flats 81 a , 81 b adapted to engage with the inner diameter of differential side gears 51 and 52 . Similar to the first and second flats 34 a , 34 b , 35 a , 35 b , the flats 81 a , 81 b of the mid-section may be provided on opposite sides of the respective gear shaft 31 a , 31 b.
  • the invention is not restricted to the specific embodiments shown in FIGS. 1 to 2 c .
  • the fastening members could be hollow bolts instead of the sold bolts illustrated.
  • the invention is also not restricted to a three-piece spider assembly as illustrated in FIG. 1 , but could have a single gear shaft extending between first and second openings of the casing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Retarders (AREA)
  • General Details Of Gearings (AREA)
  • Motor Power Transmission Devices (AREA)

Abstract

A differential gear assembly, a gear shaft for a differential gear assembly, and a method of assembly. The differential gear assembly includes a casing, a first gear shaft, a first differential side gear, and at least one fastening member. The fastening member may be visible from outside the casing.

Description

    TECHNICAL FIELD
  • This invention relates to a differential gear assembly of a motor vehicle, and particularly to a differential gear casing and components thereof. The present invention also relates to a method of assembling a differential gear assembly.
  • BACKGROUND
  • Differential gear assemblies are provided in driven axles of vehicles to permit left and right driven wheels to rotate at different speeds whilst transmitting torque; as is well known, such an arrangement is required to permit a vehicle to turn from a straight line.
  • Many kinds of different gear assemblies have been proposed, but the most common consist of a casing in which at least one rotatable differential side gear is arranged in mesh with opposite end gears of the vehicle drive shafts. The casing carries an annular crown wheel which is driven by a pinion of an input shaft, which itself is driven by the vehicle engine.
  • The aforementioned side gears are rotatably mounted on a gear shafts, which are, in turn, received within openings of the casing. In order to prevent the gear shafts from moving radially outwardly out of the casing, as a result of separating forces between the differential side gears and the end gears of the half shafts, it is commonly known to fix the gear shaft in place with respect to the casing, by fastening screws. Depending on the construction of the differential gear assembly, it is often required to fix the gear shaft in place before the crown wheel is attached to the casing, as the crown wheel may prevent any access to the gear shafts thereafter. At this point, the gear shafts must be reliably connected to the casing as a correction of the connection between the casing and the gear shafts may no longer be possible. This is particularly problematic if the crown wheel permanently attached to the casing, e.g., by welding.
  • In view of the above, it is an objective of the present invention to provide a gear assembly and a method of assembling the latter to provide a stable connection between the gear shaft and the casing can be achieved reliably before the crown wheel is attached.
  • SUMMARY
  • In a first embodiment, the invention relates to a differential gear assembly comprising a casing extending along a longitudinal drive axis and adapted to receive end gears of first and second half shafts of a vehicle drive axle, the casing comprising at least one opening extending perpendicular to the drive axis between outer and inner surfaces of the casing. The casing comprises a cavity, extending substantially parallel to the longitudinal drive axis and adapted to receive the at least one fastening member. A first gear shaft is received within the at least one opening of the casing and a first differential side gear adapted to mesh with end gears of said first and second half shafts is rotatably mounted on the first gear shaft. The gear shaft comprises at least one flat extending from its first end surface towards the second end surface. The first flat is constructed to form a first shoulder portion that defines a first bearing surface, which is recessed from the first end surface. The gear assembly further comprises at least one fastening member adapted to fix the first gear shaft with respect to the casing, wherein the at least one fastening member contacts the first bearing surface. The first bearing surface is received within the at least one opening in such a way that the at least one fastening member is visible from the outside of the casing.
  • The new differential gear assembly allows the manufacturer to inspect the connection between the casing and the gear shaft by viewing the position of the fastening member before the crown wheel or other parts of the differential gear assembly are attached. This particular design simplifies quality control processes for differential gear assemblies, thus reducing the amount of defective differential gears. The flat extending from the first end surface of the gear shaft is a first alternative of constructing the differential gear assembly such that the fastening member is visible from the outer surface of the casing. As will be described in more detail below, the flat creates a gap between the outer surface of the gear shaft and the inner surface of the opening of the casing that can be used to view the fastening member in its assembled condition. It will be appreciated that the flat can be produced simply by milling off parts of the gear shaft along its first end surface. The flat is constructed to form a shoulder portion that is sufficiently large to form a stop surface that engages with an end portion of the fastening member. Of course, the gear shaft could include other shapes which enable the manufacturer to view the fastening member during assembly of the differential. In one alternative example, the gear shaft could comprise a longitudinal blind bore, which extends from the first end surface, that is, from the outer surface of the casing to the point of engagement between the gear shaft and the fastening member.
  • In another embodiment, the first gear shaft comprises opposite first and second end surfaces, wherein the at least one fastening member engages the first gear shaft between said first and second end surfaces. According to this embodiment, the fastening member does not engage with the gear shaft at its outer, first end surface but connects with a circumferential side surface of the gear shafts, which is usually received within the casing. As such, the fastening member is protected from environmental conditions by the casing.
  • In another embodiment, the first gear shaft comprises a substantially cylindrical shape.
  • The cavity in the casing may be a through hole extending between a first end arranged at a side surface of the casing and a second end arranged at an inner surface of the at least one opening.
  • According to another embodiment, the differential gear assembly may further comprise a cover attached to said side surface of the casing so as to cover the first end of the cavity. After the fastening member is introduced to the cavity of the casing, the cover can be attached to the side surface of the casing to secure the fastening member in place within the cavity. As such, the cover can also be used to pressurize the fastening member against the flat of the gear shaft, particularly if the fastening member is constructed as a slidable member, such as a pin.
  • In another embodiment, the fastening member is constructed as a pin, preferably as a solid pin. The pin may be sized to be inserted into the cavity in a press fitting manner. Constructing the fastening member as a pin provides improvements of the load distribution compared to using screws as fastening members. In particular, pins can comprise a larger diameter, and thus are able to withstand higher radial forces exerted by the gear shaft. Moreover, designing the fastening members as pins will reduce overall cost of the inventive differential gear assembly. It will also be appreciated that using solid pins allows the reduction of the pilot diameter of the gear shaft.
  • According to another embodiment, the differential gear assembly further comprises a second gear shaft received within a second opening of the casing adapted to receive a second differential side gear, wherein the second gear shall is releasably connected to the first gear shaft. Preferably, the second gear shaft is produced in a substantially identical manner as the first gear shaft and releasably connected to the first gear shaft at its second end surface, opposite the second opening of the casing. In other words, the first and second gear shafts may be arranged along a common axis, which extends perpendicular to the longitudinal axis of the differential gear, and may be attached to each other at their respective second ends.
  • In another embodiment, the casing may comprise third and fourth openings extending perpendicular to the drive axis between the outer and inner surface of the casing, wherein the differential gear assembly further comprises a third gear shaft, said third gear shaft extending substantially perpendicular to the first and second gear shafts and being received within the third and fourth openings. According to this embodiment, the differential gear assembly comprises a three-piece spider shaft having first and second short gear shafts and a longer third gear shaft extending between the third and fourth openings of the casing. As such, the differential gear assembly may comprise third and fourth differential side gears adapted to mesh with the end gears of the first and second half shafts, the third and fourth side gears being rotatably mounted on the third gear shaft. The differential gear assembly of this embodiment, therefore, comprises four differential side gears attached to the first, second and third gear shafts. It should be noted that the first, second, third and fourth openings of the casing are preferably arranged in an equally spaced manner at 90 degree intervals along the circumference of the casing.
  • The aforementioned first, second and third gear shafts may be releasably attached to each other and their point of intersection to form the four-legged spider shaft assembly.
  • The present invention further relates to a method of assembling a differential gear assembly, the methods comprising steps of:
  • Providing a casing comprising at least one opening extending perpendicular to a drive axis of the differential gear assembly, between outer and inner surfaces of the casing, the casing comprising a cavity, extending substantially parallel to the longitudinal drive axis and adapted to receive a fastening member;
  • Inserting a first gear shaft together with a first differential side gear mounted thereon into the casing such that the first gear shaft is received within the at least one opening of the casing, said first gear shaft comprising at least one flat extending from its first end surface, said flat forming a first shoulder portion that defines a first bearing surface, which is recessed from the first end surface;
  • Fixing the first gear shaft with respect to the casing by inserting at least one fastening member into the cavity of the casing, such that the at least one fastening member contacts the first bearing surface, wherein the first bearing surface is received within the at least one opening in such a way that the at least one fastening member is visible from the outer surface of the casing;
  • Inspecting the position of the at least one fastening member from the outside of the casing; and
  • Attaching a crown wheel to the outer surface of the casing.
  • As mentioned previously, the method of the present invention will reduce the number of defective differentials and simplify quality control. This is particularly the case if the crown wheel is attached to the outer surface of the casing by welding. Frequently, there is no more possibility of refastening the gear shafts after the wheel has been attached to the casing. The same applies to the connection between the casing and the aforementioned cover, which is commonly also established via a weld seam. As such, if the fastening member is not correctly aligned within the cavity, before the crown wheel or the cover are attached to the casing, the gear shafts might not be fixed in place securely and there may be no way of correcting this deficiency.
  • To avoid the aforementioned shortfalls, the at least one fastening member is inserted into the cavity of the casing from a first side surface of the casing and held in place by a cover, which is attached to the side surface of the casing after said fastening member is inserted and inspected.
  • The present invention further relates to a gear shaft for the differential gear assembly, comprising a substantially cylindrical shape extending between a first end surface and a second end surface, wherein the gear shaft comprises a two flats extending from the first end surface towards the second end surface one of the flats defining a bearing surface for receiving a fastening member and wherein the two flats define first and second shoulder portions on opposite sides of the first end surface. While the flats define bearing surfaces for the fastening member, they also facilitate inspection between the connection of the fastening member and the gear shaft, once the latter is inserted into the casing of the differential gear assembly.
  • According to another aspect, the shaft may also comprise two flats extending from the second end surface towards the first end surface and defining third and fourth shoulder portions for engagement with a corresponding recess of other gear shafts. The third and fourth shoulder portions may extend in a substantially perpendicular plane to the first and second flats. The third and fourth shoulder portions define an anti-rotation lock together with the remaining gear shafts, as will be described in more detail below.
  • The gear shaft may also comprise a knit-section arranged between the first and second end surfaces of the shaft, the mid-section comprising first and second flats for attachment to a corresponding different side gear. The flats of the mid-section can be used to secure the differential side gears in place along the longitudinal axis of the gear shafts.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the following detailed description, specific embodiments of the present invention will be described with regard to the figures attached. The figures show:
  • FIG. 1 a schematic cross-section of a differential gear assembly according to a first embodiment of the present invention;
  • FIG. 2a a perspective side view of a gear shaft according to a first embodiment of the present invention;
  • FIG. 2b a top view of the gear shaft shown in FIG. 2a ; and
  • FIG. 2c a bottom view of the gear shaft shown in FIG. 2 a.
  • DETAILED DESCRIPTION
  • As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
  • FIG. 1 shows a schematic cross-section of a first embodiment of a differential gear assembly according to the present invention. The differential gear assembly 1 comprises a casing 10 with a first side end 11 and a second side end 12. The generally bowl shaped casing 10 has a cavity 13 extending between the first and second ends 11, 12, along a longitudinal axis LA. The cavity of the casing 10 is adapted to receive end gears 21, 22 of first and second half shafts of a vehicle drive axle (not shown). Along its first side end 11, the casing 10 comprises a continuous flange portion 15, which defines a circular shoulder 16 adapted to receive a close-fitting bevel gear crown wheel (not shown). As illustrated in FIG. 1, the flange portion 15 has a circular recess 17 for a corresponding circular projection of the crown wheel and a circular projection 19 for engagement in a corresponding recess of the crown wheel. On the adjacent side of the flange portion 15, that is, towards the first side end 11, the flange portion is substantially plain.
  • At the second side end 12, the casing defines a circular cylindrical projection concentric with the longitudinal drive axis LA. The casing has an inner surface 101 and an outer surface 102 to mount the differential gear assembly in an axle housing.
  • The side wall of the casing 10 has a substantially constant radius adjacent the flange portion 15. The illustration of FIG. 1 shows first opening 14 a and second opening 14 b. The first and second openings 14 a, 14 b extend perpendicular to the longitudinal drive axis LA along a common shaft axis SA between the outer and inner surfaces 101, 102 of the casing 10.
  • A first gear shaft 31 a is received within the first opening 14 a and extends along the shaft axis SA. A second gear shaft 31 b is received within the second opening 14 b and extends along the common shaft axis SA. The first and second gear shafts 31 a, 31 b both comprise opposite first and second end surfaces 32 a, 32 b, 33 a, 33 b. In the illustrated embodiment, the first end surfaces 32 a, 32 b of the respective first and second gear shafts 31 a, 31 b are arranged substantially flush with the outer surface 102 of the casing 10. The second end surfaces 33 a, 33 b of the gear shafts 31 a, 31 b are connected to each other via a third gear shaft 40, which extends in a direction perpendicular to the longitudinal drive axis LA and the shaft axis SA. The gear shafts 31 a and 31 b are both adapted to rotatably receive a corresponding differential side gear 51, 52. These first and second differential side gears 51, 52 are adapted to mesh with the end gears 21 and 22 of the drive axles and facilitate rotation of the drive axles at different rotational speeds.
  • During actuation of the differential gear assembly, radial separating forces between the end gear 21, 22 and the first and second differential side gears 51, 52 exert pressure on the differential side gears 51, 52 and their respective gear shaft 31 a, 31 b in a radial direction, that perpendicularly away from longitudinal drive axis LA. In order to stop the first and second gear shafts 31 a, 31 b from moving radially out of their respective openings 14 a, 14 b, fastening members 61, 62 are inserted into the casing 10 and engaged with bearing surfaces of the respective gear shaft 31 a, 31 b. In the particular embodiment of FIG. 1, the fastening members 61, 62 are solid bolts, which are inserted into cavities 63, 64 that extend through the casing 10 between the first side surface 11 and an inner surface of the openings 14 a, 14 b. The cavities 63, 64 of FIG. 1 extend in a direction parallel to the longitudinal axis of the casing 10.
  • With references to FIGS. 2a to 2c , the gear shafts 31 a, 31 b are shown in more detail. FIGS. 2a and 2b show that the gear shafts 31 a 31 b, comprise first and second flats 34 a, 34 b, 35 a, 35 b which extend from the first end surface 32 a, 32 b towards the second end surface 33 a, 33 b. The flats 34 a, 34 b and 35 a and 35 b form shoulder portions along the first end of the respective gear shaft 31 a, 31 b, which define bearing surfaces 38 a, 38 b, 39, 39 b. The illustration of FIG. 1 indicates that the fastening members 61, 62 engage with the gear shafts 31 a, 31 b at bearing surfaces 38 a, 38 b to provide an end stop for radial movement of the gear shafts 31 a, 31 b. It will be appreciated that it is generally sufficient to provide only one bearing surface 38 a, 38 b or 39, 39 b in the embodiment shown in FIG. 1. However, providing bearing surfaces 38 a, 38 b, 39 a, 39 b on opposing ends of the first end surface 32 a, 32 b will simplify alignment of the gear shafts 31 a, 31 b with their respective fastening members 61, 62.
  • When looking at FIG. 1, it should be clear that the flats 34 a, 34 b and the so-formed recessed bearing surfaces 38 a, 38 b of the gear shafts 31 a, 31 b provide visibility of the respective fastening member 61, 62, from the outside of the casing 10 in its assembled condition. This is because the shoulder portions formed by the flats create a gap between the outer surface of the gear shaft and the inner surface of the opening. The connection between the casing 10 and the gear shafts 31 a, 31 b via the fastening member 61, 62 can thus be inspected during quality control, before the crown wheel (not shown) is attached, preferably welded, to the flange portion 15 of the casing 10.
  • After inspection of the connection between the casing and gear shafts 31 a, 31 b, a cover 70 is attached to the first side end 11 of the casing 10. Cover 70, which is preferably welded to the first side end 11 of the casing 10, closes a first end of the cavities 63, 64 and thereby fixes the fastening members 61, 62 inside their respective cavities 63, 64. The cover 70 may also be used to press the first and second fastening member 61, 62 against the flat 34 a, 34 b of the first and second gear shafts 31 a, 31 b. Preferably, the cover 70 is attached to the casing 10 after obtaining a positive inspection result of the connection between the fastening members 61, 62 and their respective gear shafts, 31 a, 31 b,
  • As shown in FIG. 2c , the first and second gear shafts 31 a, 31 b may comprise third and fourth flats 36 a, 36 b, 37 a, 37 b defining third and fourth shoulder portions, and blind bores 80 a, 80 b for attaching the first and second gears shafts 31 a, 31 b to the third gear shaft 40 along their second end surface 33 a, 33 b. As can be derived from FIG. 1, the blind bores 80 a, 80 b can be adapted to receive pins of the third drive shaft 40 to prevent translational, relative movement between the first, second and third gear shafts 31 a, 31 b, 40. The flats 36 a, 36 b and 37 a, 37 b provide an anti-rotation lock of the first, second and third gear shaft 31 a, 31 b.
  • FIG. 2a further shows that the first and second gear shafts 31 a, 31 b comprise further flats 81 a, 81 b adapted to engage with the inner diameter of differential side gears 51 and 52. Similar to the first and second flats 34 a, 34 b, 35 a, 35 b, the flats 81 a, 81 b of the mid-section may be provided on opposite sides of the respective gear shaft 31 a, 31 b.
  • The invention is not restricted to the specific embodiments shown in FIGS. 1 to 2 c. In particular, the fastening members could be hollow bolts instead of the sold bolts illustrated. The invention is also not restricted to a three-piece spider assembly as illustrated in FIG. 1, but could have a single gear shaft extending between first and second openings of the casing.
  • While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.

Claims (20)

What is claimed is:
1. A differential gear assembly comprising:
a casing extending along a longitudinal drive axis and adapted to receive end gears of first and second half shafts of a vehicle drive axle, the casing including at least one opening extending perpendicular to the longitudinal drive axis between outer and inner surfaces of the casing;
a first gear shaft received within the at least one opening of the casing, the first gear shaft including at least one flat extending from its first end surface, the flat forming a first shoulder portion that defines a first bearing surface that is recessed from the first end surface;
a first differential side gear adapted to mesh with end gears of the first and second half shafts, the first differential side gear being rotatably mounted on the first gear shaft; and
at least one fastening member adapted to fix the first gear shaft with respect to the casing, the at least one fastening member contacting the first bearing surface;
wherein the casing has a cavity extending substantially parallel to the longitudinal drive axis and adapted to receive the at least one fastening member and the first bearing surface is received within the at least one opening such that the at least one fastening member is visible from the outside of the casing.
2. The differential gear assembly of claim 1 wherein the first gear shaft includes opposite first and second end surfaces, and wherein the at least one fastening member engages the first gear shaft between the first and second end surfaces.
3. The differential gear assembly of claim 1 wherein the first gear shaft has a substantially cylindrical shape.
4. The differential gear assembly of claim 1 wherein the cavity is a through hole and extends between a first end arranged at a side surface of the casing and a second end arranged at an inner surface of the at least one opening.
5. The differential gear assembly of claim 4 wherein the differential gear assembly further comprises a cover attached to the side surface of the casing to cover the first end of the cavity.
6. The differential gear assembly of claim 1 wherein the fastening member is a pin.
7. The differential gear assembly of claim 6 wherein the pin is a solid pin.
8. The differential gear assembly of claim 6 wherein the pin is sized to be inserted into the cavity in a press fitting manner.
9. The differential gear assembly of claim 1 wherein the differential gear assembly further comprises a second gear shaft received within a second opening of the casing adapted to receive a second differential side gear, and wherein the second gear shaft is releasably connected to the first gear shaft.
10. The differential gear assembly of claim 9 wherein the casing further comprises third and fourth openings extending perpendicular to the longitudinal drive axis between the outer and inner surfaces of the casing, and wherein the differential gear assembly further comprises a third gear shaft, wherein the third gear shaft extends substantially perpendicular to the first and second gear shafts and is received within the third and fourth openings.
11. The differential gear assembly of claim 10 wherein the differential gear assembly further comprises third and fourth differential side gears adapted to mesh with the end gears of the first and second half shafts, the third and fourth differential side gears being rotatably mounted on the third gear shaft.
12. The differential gear assembly of claim 10 wherein the first, second and third gear shafts are releasably attached to each other.
13. A method of assembling a differential gear assembly, the method comprising the steps of:
providing a casing having at least one opening extending perpendicular to a longitudinal drive axis of the differential gear assembly between outer and inner surfaces of the casing, the casing having a cavity extending substantially parallel to the longitudinal drive axis and adapted to receive a fastening member;
inserting a first gear shaft together with a first differential side gear mounted thereon into the casing such that the first gear shaft is received within the at least one opening of the casing, the first gear shaft having at least one flat extending from its first end surface, the flat forming a first shoulder portion that defines a first bearing surface that is recessed from the first end surface;
fixing the first gear shaft with respect to the casing by inserting at least one fastening member into the cavity of the casing such that the at least one fastening member contacts the first bearing surface, wherein the first bearing surface is received within the at least one opening such that the at least one fastening member is visible from the outside of the casing;
inspecting a position of the at least one fastening member from the outer surface of the casing; and
attaching a crown wheel to the outer surface of the casing.
14. The method of claim 13 wherein the crown wheel is welded to the outer surface of the casing.
15. The method of claim 13 wherein the at least one fastening member is inserted into the cavity of the casing from a first side surface of the casing and held in place by a cover that is attached to the first side surface of the casing.
16. The method of claim 15 wherein the cover is welded to the first side surface of the casing after the fastening member is inserted and inspected.
17. A gear shaft for a differential gear assembly comprising:
a first end surface;
a second end surface; and
two flats that extend from the first end surface toward the second end surface, wherein one of the flats defines a bearing surface for receiving a fastening member and the two flats define first and second shoulder portions disposed on opposite sides of the first end surface.
18. The gear shaft of claim 17 wherein the gear shaft has a substantially cylindrical shape extending between the first end surface and the second end surface.
19. The gear shaft of claim 17 further comprising two flats that extend from the second end surface towards the first end surface that define third and fourth shoulder portions and wherein the third and fourth shoulder portions extend in a substantially perpendicular plane with respect to the two flats that extend from the first end surface.
20. The gear shaft of claim 19 wherein the gear shaft further comprises a mid-section arranged between the first end surface and the second end surface, the mid-section including first and second flats for attachment to a corresponding differential side gear.
US15/708,465 2016-09-21 2017-09-19 Differential gear assembly and components thereof Active 2038-01-18 US10465783B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16189830.9A EP3299666B1 (en) 2016-09-21 2016-09-21 Differential gear assembly and components thereof
EP16189830 2016-09-21
EP16189830.9 2016-09-21

Publications (2)

Publication Number Publication Date
US20180080537A1 true US20180080537A1 (en) 2018-03-22
US10465783B2 US10465783B2 (en) 2019-11-05

Family

ID=56990257

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/708,465 Active 2038-01-18 US10465783B2 (en) 2016-09-21 2017-09-19 Differential gear assembly and components thereof

Country Status (4)

Country Link
US (1) US10465783B2 (en)
EP (1) EP3299666B1 (en)
CN (1) CN107859724B (en)
BR (1) BR102017020145B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109578558A (en) * 2018-12-04 2019-04-05 山东蓬翔汽车有限公司 It is a kind of jail support, smooth lubricated type differential assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016221722A1 (en) * 2016-11-07 2018-05-09 Zf Friedrichshafen Ag Differential device and a vehicle with the differential device
JP7243922B2 (en) 2020-03-30 2023-03-22 株式会社アイシン differential transmission
FR3142231A1 (en) * 2022-11-17 2024-05-24 Hydromecanique Et Frottement advanced differential axle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966020A (en) * 1974-12-04 1976-06-29 Allis-Chalmers Corporation Differential lubrication system
US4467672A (en) * 1980-09-19 1984-08-28 Regie Nationale Des Usines Renault Transmission differential
GB2179714A (en) * 1985-08-30 1987-03-11 Toyota Motor Co Ltd A differential gear in an automobile
US20090215572A1 (en) * 2008-02-21 2009-08-27 Topway Model Research Co.,Ltd Differential for model car
US20160208899A1 (en) * 2011-09-06 2016-07-21 Eaton Corporation Modular Cross Shaft Yoke
US20160356372A1 (en) * 2015-06-08 2016-12-08 Magna Powertrain Of America, Inc. Differential assembly with single weld joint connecting two-piece differential case and ring gear

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK106479C (en) * 1965-02-04 1967-02-06 Sachsenring Automobilwerke Beetle differential for motor vehicles.
US3915267A (en) 1973-08-02 1975-10-28 Dana Corp Differential and braking assembly
US4183263A (en) * 1976-07-01 1980-01-15 Dana Corporation Differential mechanism
US5273498A (en) * 1992-12-07 1993-12-28 New Venture Gear, Inc. Differential mechanism
JP2976204B1 (en) 1998-06-09 1999-11-10 本田技研工業株式会社 Lubrication structure in differential equipment
US6045479A (en) 1998-08-10 2000-04-04 Ford Global Technologies, Inc. Differential mechanism for an automotive vehicle having a cold formed housing assembly
US6802793B2 (en) 2003-02-17 2004-10-12 American Axle & Manufacturing, Inc. Cross pin retention system for differentials
US7291083B2 (en) 2004-08-04 2007-11-06 Arvinmeritor Technology, Llc Inter-axle differential assembly
US7367914B2 (en) 2005-02-25 2008-05-06 Ronjo Company Differential housing support member
GB0601717D0 (en) * 2006-01-27 2006-03-08 Meritor Heavy Vehicle Sys Ltd Differential Gear Casing
US7695392B2 (en) 2007-07-10 2010-04-13 Ford Global Technologies, Llc Differential mechanism assembly
US20090013533A1 (en) 2007-07-10 2009-01-15 Isken Ii Dennis W Differential mechanism assembly
US7819040B2 (en) 2007-11-28 2010-10-26 Transform Automotive Llc Method for making vehicle axle differential casing and resultant product
WO2010016896A1 (en) * 2008-08-06 2010-02-11 Mclaren Performance Technologies Inc. Differential case assembly
CN202023908U (en) * 2011-04-26 2011-11-02 浙江吉利汽车研究院有限公司 Positioning pin slip-off limiting structure of differential gear planetary gear
DE102012014950A1 (en) 2011-07-30 2013-01-31 Daimler Ag Housing for differential gear of motor vehicle e.g. passenger car, has division planes that are arranged in housing portions in which openings are formed for receiving portions of bearing pins, and are welded at housing portions
RU2607694C2 (en) * 2011-09-06 2017-01-10 Итон Корпорейшн Transverse shaft modular connecting link
US8651994B2 (en) 2011-09-30 2014-02-18 Arvinmeritor Technology, Llc Drive axle assembly and disengagement system
US8535191B1 (en) 2012-07-17 2013-09-17 Gkn Driveline North America, Inc. Aluminum flange with anti-rotation slots
DE102012214165A1 (en) * 2012-08-09 2014-02-13 Zf Friedrichshafen Ag Differential i.e. differential gear, for use in propelled vehicle axle, has short input axles comprising inner and outer end areas, where inner areas are accommodated in transverse bore and connected with one another in torque-proof manner
US9109635B2 (en) 2013-02-07 2015-08-18 Arvinmeritor Technology, Llc Axle assembly having a moveable clutch collar
US9279490B2 (en) 2013-08-28 2016-03-08 Arvinmeritor Technology, Llc Method of making a bevel gear system
US9657827B2 (en) 2013-10-23 2017-05-23 Eaton Corporation Torque limiting differential
US9410605B2 (en) 2014-05-14 2016-08-09 Arvinmeritor Technology, Llc Differential assembly having a link shaft
CN104235304A (en) * 2014-08-25 2014-12-24 樊秀英 Agricultural mechanical differential case
US9719563B2 (en) 2015-05-22 2017-08-01 Arvinmeritor Technology, Llc Axle assembly having a tapered spline arrangement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966020A (en) * 1974-12-04 1976-06-29 Allis-Chalmers Corporation Differential lubrication system
US4467672A (en) * 1980-09-19 1984-08-28 Regie Nationale Des Usines Renault Transmission differential
GB2179714A (en) * 1985-08-30 1987-03-11 Toyota Motor Co Ltd A differential gear in an automobile
US20090215572A1 (en) * 2008-02-21 2009-08-27 Topway Model Research Co.,Ltd Differential for model car
US20160208899A1 (en) * 2011-09-06 2016-07-21 Eaton Corporation Modular Cross Shaft Yoke
US20160356372A1 (en) * 2015-06-08 2016-12-08 Magna Powertrain Of America, Inc. Differential assembly with single weld joint connecting two-piece differential case and ring gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109578558A (en) * 2018-12-04 2019-04-05 山东蓬翔汽车有限公司 It is a kind of jail support, smooth lubricated type differential assembly

Also Published As

Publication number Publication date
CN107859724A (en) 2018-03-30
BR102017020145B1 (en) 2023-04-25
CN107859724B (en) 2021-04-16
EP3299666B1 (en) 2022-08-17
BR102017020145A2 (en) 2018-12-04
US10465783B2 (en) 2019-11-05
EP3299666A1 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
US10465783B2 (en) Differential gear assembly and components thereof
US8562477B2 (en) Differential gear and vehicle provided with differential gear
US20090266198A1 (en) Laser welded differential casings for vehicle axles
US7819040B2 (en) Method for making vehicle axle differential casing and resultant product
US7901318B2 (en) Four pinion differential with cross pin retention unit and related method
EP3144561B1 (en) Bogie axle assembly
US10591040B2 (en) Differential device
US7470207B2 (en) Differential assembly for a machine
US20190086440A1 (en) Differential ring gear equipped with a target for measuring the rotation speed thereof and arrangement in a gear box
BR102013012105B1 (en) SHAFT SLEEVE ASSEMBLY
EP2753850B1 (en) Modular cross shaft yoke
US9109689B2 (en) Axle assembly having banjo beam and strengthened coverpan
AU2004224968A1 (en) Method for verifying predetermined bearing preload of differential assembly module
US11231099B2 (en) Axle assembly and differential assembly with spider shaft retention
US11975567B2 (en) Hub bearing constant velocity joint
US20080121070A1 (en) Axle and axle components and method of manufacturing
JP2007010040A (en) Differential device
JP2007010040A5 (en)
CN114251428B (en) Differential gear assembly and method of assembling the same
EP4309940A1 (en) Axle assembly having a wheel end assembly and a gear reduction unit
EP3734116A1 (en) Differential assembly having an overhanging ring gear
JP2010031955A (en) Shaft member and differential device
JP2010164083A (en) Pinion shaft and differential device
WO2007085845A1 (en) Differential gear casing
IT202000026912A1 (en) SPOKED WHEEL FOR TUBELESS TIRE

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERITOR HEAVY VEHICLE SYSTEMS CAMERI SPA, ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GIANONE, ROBERTO;FRATELLI, MARCO;REEL/FRAME:043625/0300

Effective date: 20170919

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4