US20180036606A1 - Method and apparatus for optimizing launch characteristics of a golf club - Google Patents

Method and apparatus for optimizing launch characteristics of a golf club Download PDF

Info

Publication number
US20180036606A1
US20180036606A1 US15/788,331 US201715788331A US2018036606A1 US 20180036606 A1 US20180036606 A1 US 20180036606A1 US 201715788331 A US201715788331 A US 201715788331A US 2018036606 A1 US2018036606 A1 US 2018036606A1
Authority
US
United States
Prior art keywords
face insert
striking surface
insert
face
golf club
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/788,331
Inventor
Adam C. Sclafani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Game Changer Industries LLC
Original Assignee
Game Changer Industries LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/491,645 external-priority patent/US20170304687A1/en
Application filed by Game Changer Industries LLC filed Critical Game Changer Industries LLC
Priority to US15/788,331 priority Critical patent/US20180036606A1/en
Assigned to GAME CHANGER INDUSTRIES LLC reassignment GAME CHANGER INDUSTRIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCLAFANI, ADAM C.
Publication of US20180036606A1 publication Critical patent/US20180036606A1/en
Priority to US17/119,088 priority patent/US11752401B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/047Heads iron-type
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B2053/042
    • A63B2053/0445
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0416Heads having an impact surface provided by a face insert
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0416Heads having an impact surface provided by a face insert
    • A63B53/042Heads having an impact surface provided by a face insert the face insert consisting of a material different from that of the head
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0445Details of grooves or the like on the impact surface
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0466Heads wood-type
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/48Details or accessories of golf clubs, bats, rackets or the like with corrugated cross-section
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/52Details or accessories of golf clubs, bats, rackets or the like with slits

Definitions

  • the present disclosure relates to golf clubs and related sports applications. More particularly, it relates to enhanced surface strike performance of a golf club head, which may be achieved by an insert attached to the golf club head.
  • a preferred embodiment of the present disclosure is directed to a golf club head, it is contemplated that other types of sports equipment (e.g., baseball bats, hockey sticks, polo mallets, croquet mallets bocce balls, bowling balls, billiard balls, etc., and the like) may similarly benefit from the enhanced surface strike performance disclosed herein.
  • the design of typical golf clubs includes specific features that affect the flight characteristics of the golf ball after impact. For example, the loft angle of the club, face grooves and surface characteristics of the club impart a combination of angular spin and forward velocity at impact. The forward velocity is further directed along a vector (launch angle) by virtue of the balls interaction with the clubface at impact.
  • spin can be a benefit for the highly skilled golfer and allow the golfer to “work the ball” by deliberately curving the flight path in a left-to-right or right-to-left direction.
  • High spin rates may also facilitate the skilled golfer in reducing the amount of travel on the ground of short shots to the green (i.e., getting the ball to “check up”).
  • a golf club head it is preferable to configure a golf club head to achieve less spin, greater launch angle and increased carry distance.
  • Historically, one known way modify these golf ball characteristics is to use a “slippery” clubface.
  • Vaseline®, Chopstick®, or other temporary substances applied to the striking face of the golf club is widely known. These practices, however, are not “legally conforming” to the Rules of Golf issued by the United States Golf Association (“USGA”), as these substances are “temporary modifications.”
  • USGA United States Golf Association
  • the removal of grooves on the golf clubface is also widely known in the industry to modify the aforementioned characteristics of golf balls, and clubs having groove-less and highly polished clubfaces are currently marketed today.
  • U.S. Pat. No. 6,974,392 (“Chang”) describes a golf club for minimizing spin of the golf ball.
  • the method described employs the use of low friction substances that cover the impact surface of the golf club, such as PTFE and variants of PTFE (Teflon). These substances are known for their low coefficient of friction, and are thus an obvious attribute for coating that is expected to reduce the spin of a struck golf ball.
  • Chang further describes how to overcome the limitations of the method that was previously discussed in U.S. Pat. No. 5,423,535 (“Shaw”). Shaw also listed PTFE as a candidate for spin reduction treatment of golf club face. While being somewhat effective, this approach of using PTFE had limited functionality and practicality. As a result, the PTFE coatings on the golf club did not reach the level of performance expectation. Chang describes the problem as ultimately relating to the softness of the PTFE and that at impact the compression of the golf ball into the layer of PTFE produces a mechanical engagement of the ball against the surface and introduces unexpected and unwanted spin of the golf ball. The solution proposed in Chang is to limit the thickness of the PTFE coating and employ a supporting layer under the PTFE. However, this limits the degree of mechanical engagement of the PTFE layer with the golf ball.
  • the present disclosure relates to golf clubs and related sports applications. More particularly, it relates to an enhanced strike surface of a golf club head, which may be achieved by an insert attached to the golf club head.
  • the present disclosure describes a method for producing golf clubs that have design features and characteristics that enhance the directional accuracy, reduce the inadvertent hooking and slicing and improve the distance performance of a golf club of given loft angle.
  • the present disclosure overcomes the cost and complexity of such manufacturing techniques and results in a dramatic improvement in golf club performance.
  • the ball striking surface of the clubface is provided by an insert attached to the clubface.
  • the insert can be substantially smooth or can have surface features as described below.
  • the insert provides the ball striking surface having an advantageous combination of properties, such as smoothness, hardness and durability.
  • the insert includes a ball striking surface having surface features configured as one or more ridges or ribs.
  • the one or more surface features can be configured as one or more grooves.
  • the one or more surface features can further be configured as punch marks spaced across the insert.
  • the one or more surface features can be configured as a combination of ridges, grooves, and/or punch marks.
  • the insert and ball striking surface with surface features are made from a material providing an advantageous combination of properties, such as smoothness, hardness and durability, adapted to improve golf club performance.
  • the intrinsic coefficient of friction is not a critical characteristic of the chosen material for the insert and ball striking surface that results in the enhanced performance.
  • the insert and its ball striking surface are made from an injection moldable material which provides enhanced performance.
  • the injection moldable material can be a polymeric material which includes Acetal.
  • FIG. 1 is a partial perspective view of a golf club including a clubface with a ball striking surface having enhanced performance in accordance with one embodiment of the present disclosure.
  • FIG. 2 is a partial perspective view of a golf club head which has surface features on the clubface in accordance with another embodiment of the present disclosure.
  • FIG. 3 is a partial perspective view of a golf club head which has a smooth clubface in accordance with another embodiment of the present disclosure.
  • FIG. 4A illustrates a partial perspective view of a golf club head which has an insert providing a ball striking surface having enhanced performance in accordance with another embodiment of the present disclosure.
  • FIG. 4B illustrates a partial perspective view of a golf club head which has an insert providing a ball striking surface having enhanced performance in accordance with another embodiment of the present disclosure.
  • FIG. 4C illustrates a partial perspective view of a golf club head which has an insert providing a ball striking surface having enhanced performance in accordance with another embodiment of the present disclosure.
  • FIG. 5 is a partial perspective view of a golf club head which has an insert providing a ball striking surface which has one or more surface features, including one or more raised ridge or rib portions and/or grooved portions.
  • FIG. 6 is a partial perspective view of a golf club head which has an insert providing a ball striking surface which has one or more surface features, including a first repeating pattern of grooved portions and second repeating pattern of a pair of raised ridge portions.
  • FIG. 7 is a partial perspective view of a golf club head which has an insert providing a ball striking surface which has one or more surface features, including punch marks spaced across the insert.
  • FIG. 8 is a partial cross-sectional view of a layer of coating disposed on a clubface of a golf club head according one aspect of the present embodiments.
  • a preferred embodiment of the present disclosure is a golf club of low cost manufacture that includes a ball striking surface able to perform to the above specifications.
  • a performance enhancing ball-striking surface to be practical and useful it must be durable, smooth, resist impact forces of normal use, and reduce the imparted spin on the golf ball.
  • the USGA requires that the surface have a hardness that passes the ‘fingernail test.” This hardness corresponds to a Mohs hardness of 2.5, compared with a copper penny having a Mohs hardness of 3.0.
  • the intent of this ruling is to render common lubricants, adhesive patches and other waxy or liquid substances that may be applied to the striking surface as non-conforming.
  • PTFE surface coatings
  • existing methods use surface coatings (PTFE and its variants) with a specific coefficient of friction.
  • Coefficient of friction is a complex property that is known to be unpredictable and can be highly dependent on normal forces at the contact surfaces as well as being limited by the mechanical properties of the substances being tested (i.e., hardness, compressive strength, yield strength, etc.).
  • PTFE would seem to be a viable substance to coat a golf club for reduced spin, it has been determined that, from a practical standpoint, PTFE has fails to be useful.
  • PTFE is not sufficiently durable or impact resistant to satisfy the requirements of a viable surface of a golf club.
  • a ball striking surface of the clubface is the surface of an insert attached to the clubface of the golf club.
  • the ball striking surface may be substantially smooth or comprise one or more surface features.
  • the ball striking surface of the golf club satisfying the physical attributes listed below, while still meeting the physical attributes required by the USGA, will reduce a spin rate, increase a launch angle, and increase a carry distance on the golf ball compared with a similar golf club without the ball striking surface of the present disclosure.
  • the resulting ball striking surface 18 may include some or all of the following properties:
  • Ra A surface roughness of 1.0 micron or less (i.e., a substantially smooth surface), where Ra is the roughness average of the ball striking surface's measured microscopic peaks and valleys;
  • a ball striking surface having a combination of some or all of properties a)-g) above has been found to dramatically improve the performance characteristics of a golf ball struck by the ball striking surface.
  • the hardness and compressive strength properties of the ball striking surface in combination with the smoothness prevents the golf ball from developing significant mechanical engagement with ball striking surface upon impact with the golf club, thereby reducing the amount of imparted spin.
  • a golf club 10 having a shaft 12 and a head 14 connected to the shaft in a manner well known in the art. While the golf club head 14 illustrated in FIG. 1 is shown as being configured for a driver 11 or a “wood” club, it should be understood that the present disclosure is not necessarily limited thereto, and other types of golf club heads are also contemplated (See FIGS. 3-4 ). Additionally, other types of sports equipment adapted to strike respective balls associated with the sport are contemplated. In this regard, the head 14 can more generally be referred to as a body member adapted to strike an associated ball.
  • the body member or golf club head 14 includes a clubface 16 , which is the surface of the golf club head that faces an associated golf ball (not shown) as a user prepares to swing the golf club.
  • the body member 14 includes a face which is the surface of the body member that faces an associated game ball.
  • At least a portion of the face or clubface 16 comprises a ball striking surface 18 .
  • the ball striking surface 18 is adapted to contact an associated game ball, such as a golf ball, and transfer the kinetic energy of the golf club to the golf ball.
  • the ball striking surface 18 may comprise substantially all of the face or clubface 16 of the body member or golf club head 14 , or just a portion thereof (e.g., a centrally located “sweet spot” of the clubface).
  • FIG. 2 illustrates a golf club head 22 which is configured as an “iron” club.
  • the clubface 16 of the golf club head 22 has a ball striking surface 18 which includes surface features 24 .
  • the surface features 24 can be configured as one or more ridges or ribs.
  • the surface features 24 can be configured as one or more grooves.
  • the surface features 24 can be configured as a combination of ridges and grooves.
  • Other surface features such as punch marks are also contemplated, and the surface features of the present disclosure are not limited to the geometry of those illustrated in FIG. 2 .
  • the ridged and/or grooved ball striking surface 18 is adapted to contact an associated golf ball and transfer the kinetic energy of the golf club to the golf ball.
  • the ridged and/or grooved ball striking surface 18 of golf club head 22 may comprise just a portion of the clubface 16 or substantially all of the clubface (e.g., except for perimeter portions of the clubface), provided the surface features are in accordance with the Rules of Golf issued by the USGA.
  • FIG. 3 illustrates a golf club head 26 which, similar to golf club head 22 shown in FIG. 2 , is also configured as an “iron” club.
  • the clubface 16 of golf club head 26 has a ball striking surface 18 without any surface features.
  • the ball striking surface 18 of head 26 is configured to be substantially smooth.
  • the substantially smooth ball striking surface is adapted to contact an associated golf ball and transfer the kinetic energy of the golf club to the golf ball.
  • the substantially smooth ball striking surface 18 of golf club head 26 may comprise substantially all of the clubface 16 of the golf club head 14 , or just a portion thereof (e.g., a centrally located “sweet spot” of the clubface).
  • the ball striking surface 18 of the golf club head 14 can be configured similarly to that of golf ball heads 22 , 26 illustrated in FIGS. 2 and 3 , respectfully. That is, the ball striking surface 18 of the driver golf club head 14 can be configured to have one or more ridges or grooves or be configured to be substantially smooth.
  • FIGS. 4A-4C and FIGS. 5-7 show a golf club head 30 which is configured as an “iron” club, such as the 7-iron illustrated in FIG. 4A .
  • golf club head 30 could also be configured as any other iron club or as a “wood” or driver club without departing from the scope of the present disclosure.
  • other types of sports equipment adapted to strike respective balls associated with the sport are contemplated.
  • the head 30 can more generally be referred to as a body member adapted to strike an associated ball.
  • the body member or golf club head 30 of FIGS. 4A-4C and FIGS. 5-7 differ from those illustrated in FIGS.
  • the ball striking surface 18 comprises a separate insert 32 that is completely separate from the rest of the body member or golf club head.
  • the separate insert 32 can be configured as an overlay insert or an inlay insert, both of which can be attached to the clubface 16 .
  • the insert 32 can be attached to the clubface 16 in a manner well known in the art, such as through the use of adhesives or through a mechanical means such as fasteners, etc.
  • the insert 32 comprising the ball striking surface 18 is adapted to contact an associated golf ball and transfer the kinetic energy of the golf club to the golf ball.
  • FIGS. 4A-4C and FIGS. 5-7 show the insert 32 being configured as an inlay insert.
  • the clubface 16 includes a receiving portion 34 ( FIG. 4A ) adapted to receive the inlay insert 32 .
  • the inlay insert 32 is attached to the receiving portion 34 in the same manner as discussed above, i.e., through the use of adhesives or mechanical fasteners known in the art.
  • the insert 32 is attached to the clubface 16 to provide the ball striking surface 18 comprising just a portion of the clubface of the body member or golf club head 30 such as central portion.
  • the receiving portion 34 can be recessed into the clubface 16 such that the inlay insert 32 , and thus the ball striking surface 18 , is substantially flush with the surrounding portions of the clubface in accordance with the Rules of Golf issued by the USGA.
  • the separate insert 32 is configured as an overlay insert (not shown).
  • the insert 32 is attached to the clubface 16 to provide the ball striking surface 18 comprising substantially all of the clubface of the golf club head 30 .
  • the entire clubface 16 acts as the receiving portion for the insert 32 such that the insert completely overlays or covers the clubface.
  • the insert 32 is attached to the clubface in the same manner as discussed above, i.e., through the use of adhesives or mechanical fasteners known in the art.
  • the ball striking surface 18 of the separate insert 32 attached to the face or clubface 16 of the body member or golf club head 30 can be configured similarly to that of golf ball heads 22 , 26 illustrated in FIGS. 2 and 3 , respectfully. That is, the ball striking surface 18 of the insert 32 can be configured to have one or more surface features or textures, such as ridges or grooves, or be configured to be substantially smooth. In the embodiment illustrated in FIGS. 4A-4C , the ball striking surface 18 of the insert 32 is configured to be substantially smooth.
  • FIGS. 5-7 show an insert 32 with a ball striking surface 18 having a variety of one or more surface features 36 .
  • the different types of surface features 36 illustrated in FIGS. 5-7 are only exemplary, and it should be understood that the striking surface 18 can comprise any number of desirable patterns or textures not limited to those illustrated in FIGS. 5-7 .
  • the ball striking surface 18 ′ of the insert 32 ′ has surface features 36 ′ configured as one or more ridges or ribs 38 .
  • the ridges or ribs 38 are raised, or in other words, protrude outward from the insert 32 ′.
  • valleys or grooved portions 40 are located in between adjacent ridges or ribs.
  • the raised/grooved arrangement of the surface features 36 ′ in FIG. 5 can be reversed, such that reference numeral 38 of FIG. 5 can refer to valleys or grooves and reference numeral 40 can refer to raised rib or ridge portions. As shown in FIG.
  • the ridges/ribs 38 and grooves 40 generally extend vertically between the top and bottom of the insert 32 ′ and comprise substantially all of the insert. Moreover, the vertical direction of the ridges/ribs 38 and grooves 40 is generally oriented parallel to a plane having an angle substantially similar to the loft angle of the clubface 16 . Alternatively, the ridges/ribs 38 and grooves 40 can be generally oriented in a horizontal direction perpendicular to the plane having an angle substantially similar to the loft angle of the clubface 16 (not shown). In other words, the ridges/ribs 38 and grooves 40 can extend horizontally between the left and right side of the insert 32 ′.
  • FIG. 6 an additional embodiment of an insert 32 ′′ with a ball striking surface 18 ′′ having a one or more surface features 36 ′′ is illustrated.
  • the surface features 36 ′′ of FIG. 6 are configured in a more complex pattern compared to the ridges and/or grooves illustrated in FIG. 5 .
  • the surface features 36 ′′ comprising the ball striking surface 18 ′′ in FIG. 6 include two repeating patterns that cover substantially all of the insert 32 ′′.
  • the first repeating surface feature pattern is a series of short grooves 42 that are generally oriented in a vertical direction parallel with a plane having an angle substantially similar to the loft angle of the clubface 16 .
  • the grooves 42 protrude inward into the insert 32 ′′ and repeat horizontally between the left and right side of the insert.
  • the grooves 42 are generally spaced equidistant to one another.
  • the second repeating surface feature pattern is a pair of raised ribs or ridges 44 that are oriented perpendicular to the grooves 42 .
  • the raised ribs or ridges 44 are also generally oriented in a horizontal direction perpendicular to the plane having an angle substantially similar to the loft angle of the clubface 16 .
  • the raised ribs or ridges 44 extend horizontally between the left and right side of the insert 32 ′′.
  • the raised/grooved arrangement of the surface features 36 ′′ in FIG. 6 can be reversed, such that reference numeral 42 of FIG.
  • reference numeral 44 can refer to a pair of valleys or grooves. Moreover, it is contemplated that the orientation of the surface features 36 ′′ in FIG. 6 can be reversed, such that the grooves 42 extend horizontally and the ridges 44 extend vertically.
  • the first and second patterns 42 , 44 are shown in FIG. 6 as alternating in a one-to-one fashion. That is, a first grooved pattern follows a first pair of raised ridges, a second pair of raised ridges follows the first grooved pattern, a second grooved pattern follows the second pair of raised ridges, etc. It should be understood, however, that the repeating surface feature patterns can alternate in any desired arrangement without departing from the scope of the present disclosure. For example, two sets of grooves may be located between a pair of raised ridges, etc.
  • FIG. 7 a further embodiment of an insert 32 ′′′ with a ball striking surface 18 ′′′ having a one or more surface features 36 ′′′ is illustrated.
  • the surface features 36 of FIG. 7 are configured as a pattern of punch marks 46 .
  • the punch marks 46 cover substantially all of the insert 32 ′′′ and are sunken into or depressed therein.
  • the punch marks 46 are generally spaced equidistant to one another to form a pattern that can generally be described as cubic.
  • the spacing of adjacent punch marks can be varied in any desired arrangement without departing from the scope of the present disclosure.
  • the punch marks 46 can form different patterns across the insert 32 ′′′, such as a diamond pattern, a radial pattern, etc.
  • each of the different surface features 36 ′, 36 ′′, 36 ′′′ making up the ball striking surfaces 18 ′, 18 ′′, 18 ′′′ of the inserts are adapted to contact an associated golf ball and transfer the kinetic energy of the golf club to the golf ball.
  • the inserts and the surface features which make up the ball striking surfaces may cover substantially all of the clubface 16 (except for perimeter portions thereof), as illustrated in FIGS. 5-7 .
  • the inserts 32 ′, 32 ′′, 32 ′′′, and thus the surface features 36 ′, 36 ′′, 36 ′′′ may cover just a smaller portion of the clubface such as a central “sweet spot” (not shown).
  • an insert could include at least two or more of the surface features illustrated in FIGS. 5-7 , such as two or more surface features selected from a ridge or groove extending vertically between a top and a bottom of the face insert, a ridge or groove extending horizontally between the sides of the insert, and a bottom of the face insert, punch marks spaced across the insert, and repeating patterns thereof.
  • the different surface features 36 ′, 36 ′′, 36 ′′′ illustrated in FIGS. 5-7 may vary throughout a set of golf clubs, from wedges to longer irons, depending upon the desired launch characteristics needed for optimal flight of each club. For example, it may be desirable to provide one type of surface feature on a longer iron, which may not be desirable on a wedge.
  • the surface features 36 ′ illustrated in FIG. 5 i.e., vertically oriented ridges and/or grooves 38 , 40
  • a combination of horizontal/vertical ridges or grooves 42 , 44 comprising the surface features illustrated in FIGS. 5-7 can be combined and varied in any number of arrangements on the clubface of each individual golf club, in order to optimize various performance characteristics. These performance characteristics include, but are not limited to, launch angle, spin rate, and carry distance (e.g., yardage) of the golf ball.
  • the insert 32 , 32 ′, 32 ′′, 32 ′′ is removably attached to the clubface 16 .
  • Such a configuration allows the insert to be removed from the clubface 16 whenever desired by the user of the golf club.
  • the ball striking surface 18 , 18 ′, 18 ′′, 18 ′′′ which may include one or more surface features 36 , 36 ′, 36 ′′, 36 ′′ as described above, may exhibit a degradation in performance characteristics due to, for example, the forceful nature of the impact between golf clubs and golf balls, the presence of debris (e.g., sand, dirt, grass, etc.), and/or exposure to natural elements (e.g., sunlight, water, cold air, etc.).
  • a user may want to remove the insert for reconditioning or replacement of the ball striking surface, thereby saving on costs which might otherwise be spent on replacing the entire golf club.
  • manufacturers may release upgraded or improved inserts and ball striking surfaces for various golf club models, if warranted by performance tuning and optimization demands that commonly change over time. These upgrades or improvements may include making the insert from a different material which provides the desired performance tuning and optimization.
  • a removable insert permits a golf club user to upgrade just the striking surface of the golf club head, as opposed to the entire golf club.
  • the ball striking surface 18 , 18 ′, 18 ′′, 18 ′′′ of each of the golf club heads described above and shown in FIGS. 1-7 has a combination of properties and/or surface features configured to improve various performance characteristics associated with the game of golf. These performance characteristics include but are not limited to an increased launch angle of the golf ball, a decreased spin rate of the golf ball, and an increased carry distance (e.g., yardage) of the golf ball.
  • the ball striking surface's combination of properties advantageously improves these performance characteristics at any given club speed by permitting a much more significant portion of the kinetic energy to be transferred to the propulsion of the golf ball forward/upward at impact and a much lower amount of the energy (than conventional golf clubs) to be converted to rotational energy that spins the ball. Moreover, less inadvertent loss of accuracy from off axis spin of the ball is achieved.
  • this combination of properties is achieved by a ball striking surface having some or all of the properties a) through g) described previously in this disclosure.
  • the intrinsic lubricity of the ball striking surface is not a required characteristic. In other words, a particular coefficient of friction of the ball striking surface is not a critical property that results in the enhanced performance.
  • a ball striking surface with some or all of the properties a) through g) described above also imparts improved durability, such that the ball striking surface can withstand repeated forceful golf ball impacts without a significant degradation in performance (a common problem with PTFE coatings).
  • the ball striking surface thus forms a support structure for carrying the force of a golf ball impact from the clubface 16 to the heads 14 , 22 , 26 , and 30 with minimal, if any, indentation.
  • the clubface 16 comprises a ball striking surface 18 , 18 ′, 18 ′′, 18 ′′′ which is provided by a face insert, such as insert 32 , 32 ′, 32 ′′, 32 ′′ described above.
  • the ball striking surface and the insert are integral. That is, the ball striking surface and the insert are included as part of a whole rather than supplied as separate components.
  • the advantageous combination of properties disclosed herein is intrinsic to the insert 32 , 32 ′, 32 ′′, 32 ′′. This may be achieved, for example, by using an injection molding manufacturing process to form the insert and ball striking surface as a single body and from the same material which has the advantageous combination of properties.
  • the material used to form the insert and striking surface can be the same or different from the material used to make the body member or golf club head 30 .
  • the unitary or single bodied insert 32 , 32 ′, 32 ′′, 32 ′′ and ball striking surface 18 , 18 ′, 18 ′′, 18 ′′ is made from a material chosen for having the advantageous combination or properties discussed herein, including smoothness, hardness and durability.
  • the intrinsic coefficient of friction is not the critical characteristic of the chosen coating that results in the enhanced performance.
  • the insert is made from a polymeric material such as Acetal. Acetal is commercially available under the tradename Delrin.
  • the insert can be made from other polymeric materials, reinforced polymers, or ceramic or porcelain-based substances. Polymeric materials such as Acetal are preferable due to their ability to be injection molded and to provide high levels of hardness, compared with other plastic materials.
  • Injection molding permits the manufacturing of inserts 32 , 32 ′, 32 ′′, 32 ′′ having a wide variety of ball striking surfaces, which are easily imparted to the insert by designing a mold having the desired striking surface.
  • an injection mold can provide an insert with a smooth ball striking surface, such as the surface 36 illustrated in FIGS. 4A-4C , and/or the various surface features 36 ′, 36 ′′, 36 ′′′ illustrated in FIGS. 5-7 .
  • the unitary or single bodied insert 32 , 32 ′, 32 ′′, 32 ′′ and ball striking surface 18 , 18 ′, 18 ′′, 18 ′′ can have any desired thickness which protects against abrasion without exposing the underlying material of the golf club head, and which provides the advantageous combination of properties disclosed herein.
  • Abrasion can result from the forceful nature of the impact between golf clubs and golf balls, the presence of debris (e.g., mineral particles, sand, dirt, grass, etc.), and/or exposure to natural elements (e.g., sunlight, water, cold air, etc.).
  • the insert has a thickness of about 500 ⁇ m to about 2,500 ⁇ m, and preferably about 750 ⁇ m to about 2,250 ⁇ m, and more preferably about 1,000 ⁇ m to about 2,000 ⁇ m.
  • the ball striking surface 18 and the clubface 16 of the golf club heads 14 , 22 , 26 , and 30 are integral. That is, the ball striking surface 18 and clubface 16 are included as part of a whole rather than supplied separately.
  • the advantageous combination of properties disclosed herein is intrinsic to the clubface and the ball striking surface. This may be achieved, for example, by manufacturing the golf club head, clubface, and ball striking surface from the same material having the advantageous combination of properties.
  • a surface treatment could be performed on the clubface to form the ball striking surface with the combination of properties, such as through a surface hardening or work hardening process known in the art.
  • FIG. 8 illustrates another embodiment according to aspects of the present disclosure, wherein the clubface 16 of the golf club head 14 is supplied with a separate component which provides the ball striking surface 18 having the advantageous combination of properties presently disclosed.
  • the separate component is one or more layers of a coating 20 disposed on at least a portion of the clubface 16 of golf club head 14 to form a ball striking surface 18 .
  • the coating 20 can comprise multiple layers at any desired thickness t to form the ball striking surface 18 with the advantageous combination or properties.
  • the coating 20 is a substance chosen for having the advantageous combination or properties discussed herein, including smoothness, hardness and durability. However, the intrinsic coefficient of friction is not the critical characteristic of the chosen coating that results in the enhanced performance.
  • the coating 20 forming the ball contacting surface 18 is adapted to impact an associated golf ball and transfer the kinetic energy of the golf club to the golf ball.
  • the ball striking surface 18 comprising the coating 20 may comprise substantially all of the clubface 16 of the golf club head 14 , or just a portion thereof.
  • the coating 20 can be applied at a centrally located “sweet spot” of the clubface, or could be applied to cover the entire clubface.
  • golf club head 14 is illustrated in FIG. 8 as receiving the coating 20 , it should be understood that any of the golf club heads discussed herein could similarly receive the coating without departing from the scope of the present disclosure, including heads 22 , 26 , and 30 illustrated in FIGS. 2, 3, 4A-4C , and 5 - 7 , respectively.
  • the surface features 24 can already be formed on the clubface 16 such that the coating is disposed over the surface features to form the ridged and/or grooved ball striking surface 18 of the golf club head.
  • the coating 20 can be applied to the clubface 16 such that the coating itself forms the surface features 24 of golf club head 22 .
  • the coating 20 can be applied to the insert 32 to form the ball striking surface 18 .
  • the insert 32 may further comprise a substrate (not shown) and the coating 20 is applied to at least a portion of the substrate.
  • the substrate of the insert 32 and the clubface 16 of the golf club head 30 can be made from the same or different materials.
  • the coating 20 is applied to the substrate of the insert such that when the insert is attached to the clubface 16 , the ball striking surface 18 formed by the coating is still substantially flush with the surrounding portions of the clubface in accordance with the Rules of Golf issued by the USGA.
  • the coating 20 is applied to the entire substrate of the insert to provide a ball striking surface 18 which entirely covers the clubface 16 .
  • the coating 20 material is a polymeric isocyanate derivative such as polyurethane, including modified polyurethanes like oil modified polyurethane.
  • a polyurethane coating 20 is applied at a suitable thickness t to provide the advantageous combination of properties disclosed herein, including a range of about 100 ⁇ m to about 200 ⁇ m, and preferably about 115 ⁇ m to about 185 ⁇ m, and more preferably about 125 ⁇ m to about 185 ⁇ m.
  • the thickness of the one or more layers comprising the coating is preferably maintained within the aforementioned range.
  • a coating material which is commercially available under the trade POR-15® is presently preferred for use. The application of ball striking surfaces comprising the POR-15® coating, a coating not known for its low coefficient of friction nor commonly used in connection with golf clubs, unexpectedly enhanced the performance characteristics of golf clubs, as shown in the Example below.
  • an optional first step is to smooth out the clubface or insert by removing any unwanted surface features and roughness on the clubface by techniques know in the art, including grinding, sanding, etc., and the like. If the clubface or insert is to include surface features, or is already prepared to an adequate smoothness, a surface preparation step is first performed.
  • the surface preparation step involves removing all visible oil, grease, soil, dirt, and other contaminants from the golf club head. Surface preparation can also include an acid etching step known in the art to clean the clubface or insert.
  • the coating can then be disposed on the clubface or insert using known application techniques, such as spraying, airless spraying, brushing, or rolling. Additional layers of coating are then applied as desired, allowing each preceding coat to dry for approximately 1 to 2 hours before application of subsequent coat layers. In some particular embodiments, 3 to 4 layers of coating has been found to impart the advantageous combination of properties to the ball striking surface of the golf club heads disclosed herein. Once the desired number of coating layers is applied, the coating should be allowed to cure for approximately one day.
  • a coating comprising modified polyurethane provides a ball striking surface 18 , 18 ′, 18 ′′, 18 ′′′ superior to PTFE in durability, performance and cost of manufacture.
  • Modified polyurethane coatings are typically used for the purpose of corrosion protection of metal surfaces. The application of these compounds to enhance the performance characteristics of golf clubs is both non-obvious and effective.
  • the golf clubface may be coated with a baked on porcelain material as used in non-stick cookware or appliance surfaces. Additionally, a ceramic coating may also be used to achieve the required surface properties. A powder coating of polyurethane or other acceptably hard and durable material may also be used.
  • FIGS. 1-8 illustrate and the above disclosure describes a preferred embodiment of a golf club providing a clubface 16 and a ball striking surface 18 , 18 ′, 18 ′′, 18 ′′′
  • other items of sports equipment can provide a face having a striking surface with the advantageous combination of properties disclosed herein.
  • other types of sports equipment that may similarly benefit from enhanced surface strike performance due to the advantageous combination of properties disclosed herein include, but are not limited to, baseball bats, hockey sticks, polo mallets, croquet mallets bocce balls, bowling balls, billiard balls, etc., and the like.
  • These additional types of sports equipment can include the combination of properties intrinsically or through the use of coatings and/or inserts as discussed above.
  • Tests were performed to show the advantage of utilizing a ball striking surface having the advantageous combination of properties disclosed herein, including hardness, smoothness, and durability.
  • Various performance characteristics associated with the game of golf can be improved through the use of the ball striking surface having this advantageous combination of properties.
  • Such performance characteristics include an increased launch angle of the golf ball, a decreased spin rate of the golf ball, and an increased carry distance (e.g., yardage) of the golf ball.
  • Two golf clubs of the same type and brand were acquired.
  • two Callaway® 9-irons were used, each having a 39° loft.
  • One of the golf clubs was modified to have the ball striking surface disclosed herein for comparison with the other golf club, which was left unmodified.
  • POR-15® was coated on the clubface of the modified golf club in accordance with the method discussed above.
  • the modified club produced between about 16 yards to about 45 yards increased carry distance and an average increased carry distance of over 30 yards compared with the unmodified golf club, with no significant increase in ball velocity.
  • the launch angle achieved by the modified golf club increased by as much as about 7 degrees, with an average launch angle increase of about 2 degrees compared with the unmodified golf club.
  • the modified golf club decreased spin rate by as much as about 70%, with an average decrease in spin rate of about 60% compared with the unmodified golf club.
  • the results in Table 1 show that a ball striking surface having a combination of properties a)-g) disclosed above will increase the launch angle of the struck ball and reduce the spin rate. As a result, longer and higher ball flight, less lateral dispersion of an incorrectly struck ball, and a more beneficial descent angle are achieved.
  • the improved performance characteristics achieved by the modified golf club is attributed to the ball striking surface having the advantageous combination of properties disclosed herein.
  • properties such as hardness and resistance to indentation of the ball striking surface, in combination with the smoothness, prevents the golf ball from developing significant mechanical engagement with ball striking surface upon impact with the golf club, thereby reducing the amount of imparted spin. Because less kinetic energy is converted to rotational energy that spins that ball, a much more significant portion of the kinetic energy is transferred to the forward/upward propulsion of the golf ball, thereby improving the launch angle and increasing the carry distance.
  • the application of ball striking surfaces having this combination of properties to enhance the performance characteristics of golf clubs is un-expected, effective, and non-obvious.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Golf Clubs (AREA)

Abstract

An apparatus is disclosed having a body member which includes a face surface and a receiving portion recessed into the face surface. A face insert having a striking surface is also included and is adapted to attach to the recessed receiving portion. The face insert and the striking surface are a single body made from an injection moldable material which provides the striking surface of the face insert with a combination of properties configured to improve performance characteristics of an associated ball. A method of enhancing surface strike performance using the aforementioned apparatus is also disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 15/491,645, filed Apr. 19, 2017, which claims priority to U.S. Provisional Patent Application Ser. No. 62/325,124, filed Apr. 20, 2016. The disclosure of each of the aforementioned patent applicants is fully incorporated herein by reference.
  • BACKGROUND OF THE DISCLOSURE
  • The present disclosure relates to golf clubs and related sports applications. More particularly, it relates to enhanced surface strike performance of a golf club head, which may be achieved by an insert attached to the golf club head. Although a preferred embodiment of the present disclosure is directed to a golf club head, it is contemplated that other types of sports equipment (e.g., baseball bats, hockey sticks, polo mallets, croquet mallets bocce balls, bowling balls, billiard balls, etc., and the like) may similarly benefit from the enhanced surface strike performance disclosed herein.
  • The design of typical golf clubs includes specific features that affect the flight characteristics of the golf ball after impact. For example, the loft angle of the club, face grooves and surface characteristics of the club impart a combination of angular spin and forward velocity at impact. The forward velocity is further directed along a vector (launch angle) by virtue of the balls interaction with the clubface at impact.
  • The introduction of spin can be a benefit for the highly skilled golfer and allow the golfer to “work the ball” by deliberately curving the flight path in a left-to-right or right-to-left direction. High spin rates may also facilitate the skilled golfer in reducing the amount of travel on the ground of short shots to the green (i.e., getting the ball to “check up”).
  • The vast majority of golfers are insufficiently skilled in the control of spin on the ball. Therefore, the inadvertent and errant introduction of spin commonly results in either hooking or slicing the balls flight path in an unintended direction.
  • At impact the club head transfers its kinetic energy to the ball. Conventional golf clubs impart some energy to spin the ball and the remaining energy to propel the ball. Depending upon the angle of impact of the club face the proportion of energy diverted to either spin or propulsion will vary.
  • It is preferable to configure a golf club head to achieve less spin, greater launch angle and increased carry distance. Historically, one known way modify these golf ball characteristics is to use a “slippery” clubface. For example, Vaseline®, Chopstick®, or other temporary substances applied to the striking face of the golf club is widely known. These practices, however, are not “legally conforming” to the Rules of Golf issued by the United States Golf Association (“USGA”), as these substances are “temporary modifications.” The removal of grooves on the golf clubface is also widely known in the industry to modify the aforementioned characteristics of golf balls, and clubs having groove-less and highly polished clubfaces are currently marketed today.
  • Several patents disclose a number of attempts to achieve these results. For example, U.S. Pat. No. 6,974,392 (“Chang”) describes a golf club for minimizing spin of the golf ball. The method described employs the use of low friction substances that cover the impact surface of the golf club, such as PTFE and variants of PTFE (Teflon). These substances are known for their low coefficient of friction, and are thus an obvious attribute for coating that is expected to reduce the spin of a struck golf ball.
  • Chang further describes how to overcome the limitations of the method that was previously discussed in U.S. Pat. No. 5,423,535 (“Shaw”). Shaw also listed PTFE as a candidate for spin reduction treatment of golf club face. While being somewhat effective, this approach of using PTFE had limited functionality and practicality. As a result, the PTFE coatings on the golf club did not reach the level of performance expectation. Chang describes the problem as ultimately relating to the softness of the PTFE and that at impact the compression of the golf ball into the layer of PTFE produces a mechanical engagement of the ball against the surface and introduces unexpected and unwanted spin of the golf ball. The solution proposed in Chang is to limit the thickness of the PTFE coating and employ a supporting layer under the PTFE. However, this limits the degree of mechanical engagement of the PTFE layer with the golf ball.
  • Thus, there is a need for a new and improved method and apparatus for providing a strike surface of a golf club which will overcome the above mentioned deficiencies while providing a better overall result. Specifically, the present disclosure overcomes the limitations of the existing attempts through the use of non-obvious methods.
  • SUMMARY OF THE DISCLOSURE
  • The present disclosure relates to golf clubs and related sports applications. More particularly, it relates to an enhanced strike surface of a golf club head, which may be achieved by an insert attached to the golf club head.
  • In the present disclosure a much more significant portion of the kinetic energy is transferred to the propulsion of the golf ball forward/upward and a much lower amount of the energy (than conventional golf clubs) is converted to rotational energy that spins the ball. This results in an improved launch angle and greater carry distance than a conventional golf club for any given clubhead speed at impact and less inadvertent loss of accuracy from off axis spin of the ball.
  • In particular, the present disclosure describes a method for producing golf clubs that have design features and characteristics that enhance the directional accuracy, reduce the inadvertent hooking and slicing and improve the distance performance of a golf club of given loft angle.
  • The present disclosure overcomes the cost and complexity of such manufacturing techniques and results in a dramatic improvement in golf club performance.
  • Specifically, in accordance with one embodiment of the disclosure, the ball striking surface of the clubface is provided by an insert attached to the clubface. The insert can be substantially smooth or can have surface features as described below. Moreover, the insert provides the ball striking surface having an advantageous combination of properties, such as smoothness, hardness and durability.
  • Furthermore, in accordance with another embodiment of the disclosure, the insert includes a ball striking surface having surface features configured as one or more ridges or ribs. Alternatively, the one or more surface features can be configured as one or more grooves. The one or more surface features can further be configured as punch marks spaced across the insert. In still a further embodiment, the one or more surface features can be configured as a combination of ridges, grooves, and/or punch marks. The insert and ball striking surface with surface features are made from a material providing an advantageous combination of properties, such as smoothness, hardness and durability, adapted to improve golf club performance. The intrinsic coefficient of friction is not a critical characteristic of the chosen material for the insert and ball striking surface that results in the enhanced performance.
  • In one particular embodiment of the disclosure, the insert and its ball striking surface are made from an injection moldable material which provides enhanced performance. The injection moldable material can be a polymeric material which includes Acetal.
  • Still other aspects of this disclosure will become apparent upon reading and understanding of the present disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the present invention, reference may be had to the following detailed description taken in conjunction with the accompanying drawings in which:
  • FIG. 1 is a partial perspective view of a golf club including a clubface with a ball striking surface having enhanced performance in accordance with one embodiment of the present disclosure.
  • FIG. 2 is a partial perspective view of a golf club head which has surface features on the clubface in accordance with another embodiment of the present disclosure.
  • FIG. 3 is a partial perspective view of a golf club head which has a smooth clubface in accordance with another embodiment of the present disclosure.
  • FIG. 4A illustrates a partial perspective view of a golf club head which has an insert providing a ball striking surface having enhanced performance in accordance with another embodiment of the present disclosure.
  • FIG. 4B illustrates a partial perspective view of a golf club head which has an insert providing a ball striking surface having enhanced performance in accordance with another embodiment of the present disclosure.
  • FIG. 4C illustrates a partial perspective view of a golf club head which has an insert providing a ball striking surface having enhanced performance in accordance with another embodiment of the present disclosure.
  • FIG. 5 is a partial perspective view of a golf club head which has an insert providing a ball striking surface which has one or more surface features, including one or more raised ridge or rib portions and/or grooved portions.
  • FIG. 6 is a partial perspective view of a golf club head which has an insert providing a ball striking surface which has one or more surface features, including a first repeating pattern of grooved portions and second repeating pattern of a pair of raised ridge portions.
  • FIG. 7 is a partial perspective view of a golf club head which has an insert providing a ball striking surface which has one or more surface features, including punch marks spaced across the insert.
  • FIG. 8 is a partial cross-sectional view of a layer of coating disposed on a clubface of a golf club head according one aspect of the present embodiments.
  • DETAILED DESCRIPTION OF THE DISCLOSURE
  • A preferred embodiment of the present disclosure is a golf club of low cost manufacture that includes a ball striking surface able to perform to the above specifications. For a performance enhancing ball-striking surface to be practical and useful it must be durable, smooth, resist impact forces of normal use, and reduce the imparted spin on the golf ball. The USGA requires that the surface have a hardness that passes the ‘fingernail test.” This hardness corresponds to a Mohs hardness of 2.5, compared with a copper penny having a Mohs hardness of 3.0. The intent of this ruling is to render common lubricants, adhesive patches and other waxy or liquid substances that may be applied to the striking surface as non-conforming.
  • In contrast, existing methods use surface coatings (PTFE and its variants) with a specific coefficient of friction. Coefficient of friction is a complex property that is known to be unpredictable and can be highly dependent on normal forces at the contact surfaces as well as being limited by the mechanical properties of the substances being tested (i.e., hardness, compressive strength, yield strength, etc.). While PTFE would seem to be a viable substance to coat a golf club for reduced spin, it has been determined that, from a practical standpoint, PTFE has fails to be useful. In particular, PTFE is not sufficiently durable or impact resistant to satisfy the requirements of a viable surface of a golf club.
  • According to one embodiment of the present disclosure, a ball striking surface of the clubface is the surface of an insert attached to the clubface of the golf club. The ball striking surface may be substantially smooth or comprise one or more surface features. The ball striking surface of the golf club satisfying the physical attributes listed below, while still meeting the physical attributes required by the USGA, will reduce a spin rate, increase a launch angle, and increase a carry distance on the golf ball compared with a similar golf club without the ball striking surface of the present disclosure.
  • Specifically, in accordance with the preferred embodiment of this disclosure, the resulting ball striking surface 18 (see FIGS. 1-7) may include some or all of the following properties:
  • a) A hardness of greater than Shore D 65;
  • b) A surface roughness Ra of 1.0 micron or less (i.e., a substantially smooth surface), where Ra is the roughness average of the ball striking surface's measured microscopic peaks and valleys;
  • c) A wear resistance minimum of zero loss at 1 kg per 1000 Cycles (ASTM-C-501);
  • d) A flexural strength of greater than 3000 psi (ASTM C-580);
  • e) An indentation resistance (Mil-D-3134F sec 4.7.4) of greater than 1500 psi for a duration of 30 minutes;
  • f) A tensile strength of greater than 3000 psi (ASTM C-307); and
  • g) A compressive strength of greater than 5000 psi.
  • A ball striking surface having a combination of some or all of properties a)-g) above has been found to dramatically improve the performance characteristics of a golf ball struck by the ball striking surface. For example, the hardness and compressive strength properties of the ball striking surface in combination with the smoothness prevents the golf ball from developing significant mechanical engagement with ball striking surface upon impact with the golf club, thereby reducing the amount of imparted spin.
  • Referring now to FIG. 1, a golf club 10 is shown having a shaft 12 and a head 14 connected to the shaft in a manner well known in the art. While the golf club head 14 illustrated in FIG. 1 is shown as being configured for a driver 11 or a “wood” club, it should be understood that the present disclosure is not necessarily limited thereto, and other types of golf club heads are also contemplated (See FIGS. 3-4). Additionally, other types of sports equipment adapted to strike respective balls associated with the sport are contemplated. In this regard, the head 14 can more generally be referred to as a body member adapted to strike an associated ball. The body member or golf club head 14 includes a clubface 16, which is the surface of the golf club head that faces an associated golf ball (not shown) as a user prepares to swing the golf club. Alternatively, in more general terms, the body member 14 includes a face which is the surface of the body member that faces an associated game ball. At least a portion of the face or clubface 16 comprises a ball striking surface 18. The ball striking surface 18 is adapted to contact an associated game ball, such as a golf ball, and transfer the kinetic energy of the golf club to the golf ball. In this regard, the ball striking surface 18 may comprise substantially all of the face or clubface 16 of the body member or golf club head 14, or just a portion thereof (e.g., a centrally located “sweet spot” of the clubface).
  • FIG. 2 illustrates a golf club head 22 which is configured as an “iron” club. The clubface 16 of the golf club head 22 has a ball striking surface 18 which includes surface features 24. In one embodiment, the surface features 24 can be configured as one or more ridges or ribs. Alternatively, the surface features 24 can be configured as one or more grooves. In still a further embodiment, the surface features 24 can be configured as a combination of ridges and grooves. Other surface features such as punch marks are also contemplated, and the surface features of the present disclosure are not limited to the geometry of those illustrated in FIG. 2. The ridged and/or grooved ball striking surface 18 is adapted to contact an associated golf ball and transfer the kinetic energy of the golf club to the golf ball. In this regard, the ridged and/or grooved ball striking surface 18 of golf club head 22 may comprise just a portion of the clubface 16 or substantially all of the clubface (e.g., except for perimeter portions of the clubface), provided the surface features are in accordance with the Rules of Golf issued by the USGA.
  • FIG. 3 illustrates a golf club head 26 which, similar to golf club head 22 shown in FIG. 2, is also configured as an “iron” club. However, the clubface 16 of golf club head 26 has a ball striking surface 18 without any surface features. In other words, the ball striking surface 18 of head 26 is configured to be substantially smooth. The substantially smooth ball striking surface is adapted to contact an associated golf ball and transfer the kinetic energy of the golf club to the golf ball. In this regard, the substantially smooth ball striking surface 18 of golf club head 26 may comprise substantially all of the clubface 16 of the golf club head 14, or just a portion thereof (e.g., a centrally located “sweet spot” of the clubface).
  • Referring back to FIG. 1, the ball striking surface 18 of the golf club head 14 can be configured similarly to that of golf ball heads 22, 26 illustrated in FIGS. 2 and 3, respectfully. That is, the ball striking surface 18 of the driver golf club head 14 can be configured to have one or more ridges or grooves or be configured to be substantially smooth.
  • FIGS. 4A-4C and FIGS. 5-7 show a golf club head 30 which is configured as an “iron” club, such as the 7-iron illustrated in FIG. 4A. However, it should be understood that golf club head 30 could also be configured as any other iron club or as a “wood” or driver club without departing from the scope of the present disclosure. Additionally, other types of sports equipment adapted to strike respective balls associated with the sport are contemplated. In this regard, the head 30 can more generally be referred to as a body member adapted to strike an associated ball. The body member or golf club head 30 of FIGS. 4A-4C and FIGS. 5-7 differ from those illustrated in FIGS. 1-3 in that the ball striking surface 18 comprises a separate insert 32 that is completely separate from the rest of the body member or golf club head. The separate insert 32 can be configured as an overlay insert or an inlay insert, both of which can be attached to the clubface 16. The insert 32 can be attached to the clubface 16 in a manner well known in the art, such as through the use of adhesives or through a mechanical means such as fasteners, etc. The insert 32 comprising the ball striking surface 18 is adapted to contact an associated golf ball and transfer the kinetic energy of the golf club to the golf ball.
  • The embodiments illustrated in FIGS. 4A-4C and FIGS. 5-7 show the insert 32 being configured as an inlay insert. In this regard, the clubface 16 includes a receiving portion 34 (FIG. 4A) adapted to receive the inlay insert 32. The inlay insert 32 is attached to the receiving portion 34 in the same manner as discussed above, i.e., through the use of adhesives or mechanical fasteners known in the art. Generally, when configured as an inlay, the insert 32 is attached to the clubface 16 to provide the ball striking surface 18 comprising just a portion of the clubface of the body member or golf club head 30 such as central portion. In this regard, the receiving portion 34 can be recessed into the clubface 16 such that the inlay insert 32, and thus the ball striking surface 18, is substantially flush with the surrounding portions of the clubface in accordance with the Rules of Golf issued by the USGA.
  • In other embodiments, the separate insert 32 is configured as an overlay insert (not shown). When the insert 32 is configured as an overlay, the insert is attached to the clubface 16 to provide the ball striking surface 18 comprising substantially all of the clubface of the golf club head 30. In other words, when configured as an overlay, the entire clubface 16 acts as the receiving portion for the insert 32 such that the insert completely overlays or covers the clubface. Again, when configured as an overlay insert, the insert 32 is attached to the clubface in the same manner as discussed above, i.e., through the use of adhesives or mechanical fasteners known in the art.
  • The ball striking surface 18 of the separate insert 32 attached to the face or clubface 16 of the body member or golf club head 30 can be configured similarly to that of golf ball heads 22, 26 illustrated in FIGS. 2 and 3, respectfully. That is, the ball striking surface 18 of the insert 32 can be configured to have one or more surface features or textures, such as ridges or grooves, or be configured to be substantially smooth. In the embodiment illustrated in FIGS. 4A-4C, the ball striking surface 18 of the insert 32 is configured to be substantially smooth.
  • In contrast to FIGS. 4A-4C, the embodiments illustrated in FIGS. 5-7 show an insert 32 with a ball striking surface 18 having a variety of one or more surface features 36. The different types of surface features 36 illustrated in FIGS. 5-7 are only exemplary, and it should be understood that the striking surface 18 can comprise any number of desirable patterns or textures not limited to those illustrated in FIGS. 5-7.
  • Referring specifically to FIG. 5, the ball striking surface 18′ of the insert 32′ has surface features 36′ configured as one or more ridges or ribs 38. The ridges or ribs 38 are raised, or in other words, protrude outward from the insert 32′. As a result of each ridge or rib 38 protruding upward from the clubface 16, valleys or grooved portions 40 are located in between adjacent ridges or ribs. Alternatively, the raised/grooved arrangement of the surface features 36′ in FIG. 5 can be reversed, such that reference numeral 38 of FIG. 5 can refer to valleys or grooves and reference numeral 40 can refer to raised rib or ridge portions. As shown in FIG. 5, the ridges/ribs 38 and grooves 40 generally extend vertically between the top and bottom of the insert 32′ and comprise substantially all of the insert. Moreover, the vertical direction of the ridges/ribs 38 and grooves 40 is generally oriented parallel to a plane having an angle substantially similar to the loft angle of the clubface 16. Alternatively, the ridges/ribs 38 and grooves 40 can be generally oriented in a horizontal direction perpendicular to the plane having an angle substantially similar to the loft angle of the clubface 16 (not shown). In other words, the ridges/ribs 38 and grooves 40 can extend horizontally between the left and right side of the insert 32′.
  • Referring now to FIG. 6, an additional embodiment of an insert 32″ with a ball striking surface 18″ having a one or more surface features 36″ is illustrated. The surface features 36″ of FIG. 6 are configured in a more complex pattern compared to the ridges and/or grooves illustrated in FIG. 5. In particular, the surface features 36″ comprising the ball striking surface 18″ in FIG. 6 include two repeating patterns that cover substantially all of the insert 32″. The first repeating surface feature pattern is a series of short grooves 42 that are generally oriented in a vertical direction parallel with a plane having an angle substantially similar to the loft angle of the clubface 16. The grooves 42 protrude inward into the insert 32″ and repeat horizontally between the left and right side of the insert. The grooves 42 are generally spaced equidistant to one another. The second repeating surface feature pattern is a pair of raised ribs or ridges 44 that are oriented perpendicular to the grooves 42. The raised ribs or ridges 44 are also generally oriented in a horizontal direction perpendicular to the plane having an angle substantially similar to the loft angle of the clubface 16. In other words, the raised ribs or ridges 44 extend horizontally between the left and right side of the insert 32″. Alternatively, the raised/grooved arrangement of the surface features 36″ in FIG. 6 can be reversed, such that reference numeral 42 of FIG. 6 can refer to a repeating pattern of raised rib or ridge portions and reference numeral 44 can refer to a pair of valleys or grooves. Moreover, it is contemplated that the orientation of the surface features 36″ in FIG. 6 can be reversed, such that the grooves 42 extend horizontally and the ridges 44 extend vertically.
  • The first and second patterns 42, 44 are shown in FIG. 6 as alternating in a one-to-one fashion. That is, a first grooved pattern follows a first pair of raised ridges, a second pair of raised ridges follows the first grooved pattern, a second grooved pattern follows the second pair of raised ridges, etc. It should be understood, however, that the repeating surface feature patterns can alternate in any desired arrangement without departing from the scope of the present disclosure. For example, two sets of grooves may be located between a pair of raised ridges, etc.
  • Turning now FIG. 7, a further embodiment of an insert 32′″ with a ball striking surface 18′″ having a one or more surface features 36′″ is illustrated. The surface features 36 of FIG. 7 are configured as a pattern of punch marks 46. The punch marks 46 cover substantially all of the insert 32′″ and are sunken into or depressed therein. Moreover, the punch marks 46 are generally spaced equidistant to one another to form a pattern that can generally be described as cubic. However, it should be understood that the spacing of adjacent punch marks can be varied in any desired arrangement without departing from the scope of the present disclosure. For example, the punch marks 46 can form different patterns across the insert 32′″, such as a diamond pattern, a radial pattern, etc.
  • As illustrated in FIGS. 5-7, each of the different surface features 36′, 36″, 36′″ making up the ball striking surfaces 18′, 18″, 18′″ of the inserts are adapted to contact an associated golf ball and transfer the kinetic energy of the golf club to the golf ball. Moreover, the inserts and the surface features which make up the ball striking surfaces may cover substantially all of the clubface 16 (except for perimeter portions thereof), as illustrated in FIGS. 5-7. Alternatively, the inserts 32′, 32″, 32′″, and thus the surface features 36′, 36″, 36′″, may cover just a smaller portion of the clubface such as a central “sweet spot” (not shown). However, in any event, the surface features illustrated in FIGS. 5-7 should be in accordance with the Rules of Golf issued by the USGA. Furthermore, while the various surface features illustrated in FIGS. 5-7 are mostly shown as being included on the insert individually, it should be understood that any combination of the individual surface features illustrated in FIGS. 5-7 could be included on an insert without departing from the scope of the present disclosure. For example, an insert could include at least two or more of the surface features illustrated in FIGS. 5-7, such as two or more surface features selected from a ridge or groove extending vertically between a top and a bottom of the face insert, a ridge or groove extending horizontally between the sides of the insert, and a bottom of the face insert, punch marks spaced across the insert, and repeating patterns thereof.
  • In addition, the different surface features 36′, 36″, 36′″ illustrated in FIGS. 5-7 may vary throughout a set of golf clubs, from wedges to longer irons, depending upon the desired launch characteristics needed for optimal flight of each club. For example, it may be desirable to provide one type of surface feature on a longer iron, which may not be desirable on a wedge. To further exemplify this aspect of the present disclosure, the surface features 36′ illustrated in FIG. 5 (i.e., vertically oriented ridges and/or grooves 38, 40) may be desired to optimize launch characteristics of shorter clubs in wet conditions, where the ridges and/or grooves help to disperse water yet not induce spin. As another example, a combination of horizontal/vertical ridges or grooves 42, 44 comprising the surface features illustrated in FIGS. 5-7 can be combined and varied in any number of arrangements on the clubface of each individual golf club, in order to optimize various performance characteristics. These performance characteristics include, but are not limited to, launch angle, spin rate, and carry distance (e.g., yardage) of the golf ball.
  • In some embodiments, the insert 32, 32′, 32″, 32″ is removably attached to the clubface 16. Such a configuration allows the insert to be removed from the clubface 16 whenever desired by the user of the golf club. After a significant period of use, the ball striking surface 18, 18′, 18″, 18′″, which may include one or more surface features 36, 36′, 36″, 36″ as described above, may exhibit a degradation in performance characteristics due to, for example, the forceful nature of the impact between golf clubs and golf balls, the presence of debris (e.g., sand, dirt, grass, etc.), and/or exposure to natural elements (e.g., sunlight, water, cold air, etc.). As such, a user may want to remove the insert for reconditioning or replacement of the ball striking surface, thereby saving on costs which might otherwise be spent on replacing the entire golf club. Moreover, manufacturers may release upgraded or improved inserts and ball striking surfaces for various golf club models, if warranted by performance tuning and optimization demands that commonly change over time. These upgrades or improvements may include making the insert from a different material which provides the desired performance tuning and optimization. In this regard, a removable insert permits a golf club user to upgrade just the striking surface of the golf club head, as opposed to the entire golf club.
  • In accordance with a preferred embodiment of the disclosure, the ball striking surface 18, 18′, 18″, 18′″ of each of the golf club heads described above and shown in FIGS. 1-7 has a combination of properties and/or surface features configured to improve various performance characteristics associated with the game of golf. These performance characteristics include but are not limited to an increased launch angle of the golf ball, a decreased spin rate of the golf ball, and an increased carry distance (e.g., yardage) of the golf ball. As mentioned above, the ball striking surface's combination of properties advantageously improves these performance characteristics at any given club speed by permitting a much more significant portion of the kinetic energy to be transferred to the propulsion of the golf ball forward/upward at impact and a much lower amount of the energy (than conventional golf clubs) to be converted to rotational energy that spins the ball. Moreover, less inadvertent loss of accuracy from off axis spin of the ball is achieved. Specifically, this combination of properties is achieved by a ball striking surface having some or all of the properties a) through g) described previously in this disclosure. Importantly, it has been found that the intrinsic lubricity of the ball striking surface is not a required characteristic. In other words, a particular coefficient of friction of the ball striking surface is not a critical property that results in the enhanced performance.
  • In particular, the properties of hardness, indentation resistance or compressive strength, and smoothness are preferred. A ball striking surface with some or all of the properties a) through g) described above also imparts improved durability, such that the ball striking surface can withstand repeated forceful golf ball impacts without a significant degradation in performance (a common problem with PTFE coatings). The ball striking surface thus forms a support structure for carrying the force of a golf ball impact from the clubface 16 to the heads 14, 22, 26, and 30 with minimal, if any, indentation.
  • In accordance with a preferred embodiment of the present disclosure, the clubface 16 comprises a ball striking surface 18, 18′, 18″,18′″ which is provided by a face insert, such as insert 32, 32′, 32″, 32″ described above. In other words, the ball striking surface and the insert are integral. That is, the ball striking surface and the insert are included as part of a whole rather than supplied as separate components. In such an embodiment, the advantageous combination of properties disclosed herein is intrinsic to the insert 32, 32′, 32″, 32″. This may be achieved, for example, by using an injection molding manufacturing process to form the insert and ball striking surface as a single body and from the same material which has the advantageous combination of properties. The material used to form the insert and striking surface can be the same or different from the material used to make the body member or golf club head 30.
  • The unitary or single bodied insert 32, 32′, 32″, 32″ and ball striking surface 18, 18′, 18″, 18″ is made from a material chosen for having the advantageous combination or properties discussed herein, including smoothness, hardness and durability. However, the intrinsic coefficient of friction is not the critical characteristic of the chosen coating that results in the enhanced performance. In particular embodiments, the insert is made from a polymeric material such as Acetal. Acetal is commercially available under the tradename Delrin. In other embodiments, the insert can be made from other polymeric materials, reinforced polymers, or ceramic or porcelain-based substances. Polymeric materials such as Acetal are preferable due to their ability to be injection molded and to provide high levels of hardness, compared with other plastic materials. Injection molding permits the manufacturing of inserts 32, 32′, 32″, 32″ having a wide variety of ball striking surfaces, which are easily imparted to the insert by designing a mold having the desired striking surface. For example, an injection mold can provide an insert with a smooth ball striking surface, such as the surface 36 illustrated in FIGS. 4A-4C, and/or the various surface features 36′, 36″, 36′″ illustrated in FIGS. 5-7.
  • The unitary or single bodied insert 32, 32′, 32″, 32″ and ball striking surface 18, 18′, 18″, 18″ can have any desired thickness which protects against abrasion without exposing the underlying material of the golf club head, and which provides the advantageous combination of properties disclosed herein. Abrasion can result from the forceful nature of the impact between golf clubs and golf balls, the presence of debris (e.g., mineral particles, sand, dirt, grass, etc.), and/or exposure to natural elements (e.g., sunlight, water, cold air, etc.). In some particular embodiments, the insert has a thickness of about 500 μm to about 2,500 μm, and preferably about 750 μm to about 2,250 μm, and more preferably about 1,000 μm to about 2,000 μm.
  • In accordance with another embodiment of the present disclosure, the ball striking surface 18 and the clubface 16 of the golf club heads 14, 22, 26, and 30 are integral. That is, the ball striking surface 18 and clubface 16 are included as part of a whole rather than supplied separately. In such an embodiment, the advantageous combination of properties disclosed herein is intrinsic to the clubface and the ball striking surface. This may be achieved, for example, by manufacturing the golf club head, clubface, and ball striking surface from the same material having the advantageous combination of properties. As another example, a surface treatment could be performed on the clubface to form the ball striking surface with the combination of properties, such as through a surface hardening or work hardening process known in the art.
  • FIG. 8 illustrates another embodiment according to aspects of the present disclosure, wherein the clubface 16 of the golf club head 14 is supplied with a separate component which provides the ball striking surface 18 having the advantageous combination of properties presently disclosed. In particular, the separate component is one or more layers of a coating 20 disposed on at least a portion of the clubface 16 of golf club head 14 to form a ball striking surface 18. The coating 20 can comprise multiple layers at any desired thickness t to form the ball striking surface 18 with the advantageous combination or properties. The coating 20 is a substance chosen for having the advantageous combination or properties discussed herein, including smoothness, hardness and durability. However, the intrinsic coefficient of friction is not the critical characteristic of the chosen coating that results in the enhanced performance.
  • The coating 20 forming the ball contacting surface 18 is adapted to impact an associated golf ball and transfer the kinetic energy of the golf club to the golf ball. In this regard, the ball striking surface 18 comprising the coating 20 may comprise substantially all of the clubface 16 of the golf club head 14, or just a portion thereof. For example, the coating 20 can be applied at a centrally located “sweet spot” of the clubface, or could be applied to cover the entire clubface. Moreover, while golf club head 14 is illustrated in FIG. 8 as receiving the coating 20, it should be understood that any of the golf club heads discussed herein could similarly receive the coating without departing from the scope of the present disclosure, including heads 22, 26, and 30 illustrated in FIGS. 2, 3, 4A-4C, and 5-7, respectively.
  • If the coating 20 is applied to head 22 of FIG. 2, the surface features 24 can already be formed on the clubface 16 such that the coating is disposed over the surface features to form the ridged and/or grooved ball striking surface 18 of the golf club head. Alternatively, the coating 20 can be applied to the clubface 16 such that the coating itself forms the surface features 24 of golf club head 22.
  • Referring now to golf club head 30 of FIGS. 4A-4C, the coating 20 can be applied to the insert 32 to form the ball striking surface 18. In this regard, the insert 32 may further comprise a substrate (not shown) and the coating 20 is applied to at least a portion of the substrate. The substrate of the insert 32 and the clubface 16 of the golf club head 30 can be made from the same or different materials. However, when the insert 32 is configured as an inlay insert as described above, the coating 20 is applied to the substrate of the insert such that when the insert is attached to the clubface 16, the ball striking surface 18 formed by the coating is still substantially flush with the surrounding portions of the clubface in accordance with the Rules of Golf issued by the USGA. When the insert 32 is configured as an overlay insert as described above, the coating 20 is applied to the entire substrate of the insert to provide a ball striking surface 18 which entirely covers the clubface 16.
  • With reference back to FIG. 8, in some particular embodiments the coating 20 material is a polymeric isocyanate derivative such as polyurethane, including modified polyurethanes like oil modified polyurethane. A polyurethane coating 20 is applied at a suitable thickness t to provide the advantageous combination of properties disclosed herein, including a range of about 100 μm to about 200 μm, and preferably about 115 μm to about 185 μm, and more preferably about 125 μm to about 185 μm. When the coating 20 is applied as one or more layers, the thickness of the one or more layers comprising the coating is preferably maintained within the aforementioned range. A coating material which is commercially available under the trade POR-15® is presently preferred for use. The application of ball striking surfaces comprising the POR-15® coating, a coating not known for its low coefficient of friction nor commonly used in connection with golf clubs, unexpectedly enhanced the performance characteristics of golf clubs, as shown in the Example below.
  • A process for applying the polyurethane coating 20 to the clubface 16 or insert 32, 32′, 32″, 32′″ of a golf club will now be described. If a substantially smooth ball striking surface is desired, an optional first step is to smooth out the clubface or insert by removing any unwanted surface features and roughness on the clubface by techniques know in the art, including grinding, sanding, etc., and the like. If the clubface or insert is to include surface features, or is already prepared to an adequate smoothness, a surface preparation step is first performed. The surface preparation step involves removing all visible oil, grease, soil, dirt, and other contaminants from the golf club head. Surface preparation can also include an acid etching step known in the art to clean the clubface or insert. The coating can then be disposed on the clubface or insert using known application techniques, such as spraying, airless spraying, brushing, or rolling. Additional layers of coating are then applied as desired, allowing each preceding coat to dry for approximately 1 to 2 hours before application of subsequent coat layers. In some particular embodiments, 3 to 4 layers of coating has been found to impart the advantageous combination of properties to the ball striking surface of the golf club heads disclosed herein. Once the desired number of coating layers is applied, the coating should be allowed to cure for approximately one day.
  • A coating comprising modified polyurethane provides a ball striking surface 18, 18′, 18″, 18′″ superior to PTFE in durability, performance and cost of manufacture. Modified polyurethane coatings are typically used for the purpose of corrosion protection of metal surfaces. The application of these compounds to enhance the performance characteristics of golf clubs is both non-obvious and effective.
  • It is contemplated that other coatings and materials can be used and applied to the clubface to provide a ball striking surface having the advantageous combination of properties disclosed herein. For example, the golf clubface may be coated with a baked on porcelain material as used in non-stick cookware or appliance surfaces. Additionally, a ceramic coating may also be used to achieve the required surface properties. A powder coating of polyurethane or other acceptably hard and durable material may also be used.
  • Moreover, even though FIGS. 1-8 illustrate and the above disclosure describes a preferred embodiment of a golf club providing a clubface 16 and a ball striking surface 18, 18′, 18″, 18′″, it is contemplated that, without deviating from the scope of the present disclosure, other items of sports equipment can provide a face having a striking surface with the advantageous combination of properties disclosed herein. For example, other types of sports equipment that may similarly benefit from enhanced surface strike performance due to the advantageous combination of properties disclosed herein include, but are not limited to, baseball bats, hockey sticks, polo mallets, croquet mallets bocce balls, bowling balls, billiard balls, etc., and the like. These additional types of sports equipment can include the combination of properties intrinsically or through the use of coatings and/or inserts as discussed above.
  • The following example is provided to illustrate the processes of the present disclosure. The example is merely illustrative and is not intended to limit the disclosure to the materials, conditions, or process parameters set forth therein.
  • Example
  • Tests were performed to show the advantage of utilizing a ball striking surface having the advantageous combination of properties disclosed herein, including hardness, smoothness, and durability. Various performance characteristics associated with the game of golf can be improved through the use of the ball striking surface having this advantageous combination of properties. Such performance characteristics include an increased launch angle of the golf ball, a decreased spin rate of the golf ball, and an increased carry distance (e.g., yardage) of the golf ball.
  • Two golf clubs of the same type and brand were acquired. In particular, two Callaway® 9-irons were used, each having a 39° loft. One of the golf clubs was modified to have the ball striking surface disclosed herein for comparison with the other golf club, which was left unmodified. To provide the modified golf club with the ball striking surface, a coating of polyurethane material commercially available under the trade name POR-15®, and having the advantageous combination of properties disclosed herein, was used. POR-15® was coated on the clubface of the modified golf club in accordance with the method discussed above.
  • Numerous golf balls of the same brand were struck with the modified and unmodified golf clubs and various measurements were recorded. Using a FlightScope® ball tracking monitor, radar, and launch monitor, the golf ball carry distance, golf ball speed, club speed, golf ball spin rate, and golf ball launch angle were recorded for each golf shot with the modified and unmodified golf club. The shots were taken outside to simulate real-world conditions, and the data was collected for the full flight of the ball. In other words, the carry distances of the golf balls was actually measured and not extrapolated from initial launch conditions. The results are presented in Table 1 below:
  • TABLE 1
    Performance Measurements of Modified and Unmodified Golf Club
    Shot Carry (yds) Ball (mph) Club (mph) Spin (rpm) Launch V (°)
    Modified Golf Club
    3 165.6 102.6 89.1 2965 29.9
    4 171.6 106.1 86.9 2797 30.5
    5 163.8 105.7 94.5 2553 27.5
    6 150 95.8 87.8 2398 32.6
    Average 162.75 102.55 89.575 2678.25 30.125
    Unmodified Golf Club
    14 134.1 104.3 85.5 7924 25.3
    15 133.5 106.8 85.8 8168 28.6
    16 127.1 98.3 90.2 6368 28.7
    17 132 102.5 86.7 6082 29.1
    Average 131.675 102.975 87.05 7135.5 27.925
  • As shown in Table 1 above, the modified club produced between about 16 yards to about 45 yards increased carry distance and an average increased carry distance of over 30 yards compared with the unmodified golf club, with no significant increase in ball velocity. In addition, the launch angle achieved by the modified golf club increased by as much as about 7 degrees, with an average launch angle increase of about 2 degrees compared with the unmodified golf club. Moreover, the modified golf club decreased spin rate by as much as about 70%, with an average decrease in spin rate of about 60% compared with the unmodified golf club. In summary, the results in Table 1 show that a ball striking surface having a combination of properties a)-g) disclosed above will increase the launch angle of the struck ball and reduce the spin rate. As a result, longer and higher ball flight, less lateral dispersion of an incorrectly struck ball, and a more beneficial descent angle are achieved.
  • The improved performance characteristics achieved by the modified golf club is attributed to the ball striking surface having the advantageous combination of properties disclosed herein. For example, properties such as hardness and resistance to indentation of the ball striking surface, in combination with the smoothness, prevents the golf ball from developing significant mechanical engagement with ball striking surface upon impact with the golf club, thereby reducing the amount of imparted spin. Because less kinetic energy is converted to rotational energy that spins that ball, a much more significant portion of the kinetic energy is transferred to the forward/upward propulsion of the golf ball, thereby improving the launch angle and increasing the carry distance. The application of ball striking surfaces having this combination of properties to enhance the performance characteristics of golf clubs is un-expected, effective, and non-obvious.
  • The exemplary embodiment has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the above disclosures or the equivalents thereof.

Claims (20)

1. An apparatus for enhancing surface strike performance, comprising:
a body member including a face surface and a receiving portion recessed into the face surface; and,
a face insert having a striking surface, the face insert adapted to attach to the recessed receiving portion, the face insert and the striking surface comprising a single body made from an injection moldable material;
wherein the injection moldable material provides the striking surface of the face insert with a combination of properties configured to improve performance characteristics of an associated ball, the performance characteristics including at least one of a launch angle, a carry distance, and a spin rate.
2. The apparatus of claim 1, wherein the combination of properties of the striking surface includes a hardness of at least Shore D 65, a surface roughness of Ra 1 μm or less, and a resistance to indentation at 1,500 psi or greater for a duration of about 30 minutes measured according to Mil-D-3134F.
3. The apparatus of claim 2, wherein the combination of properties of the striking surface further includes a wear resistance minimum of zero weight loss at a load of 1 kg per 1000 cycles measured according to ASTM-C-501, a flexural strength of greater than about 3,000 psi measured according to ASTM C-580, includes a tensile strength of greater than about 3,000 psi measured according to ASTM C-307, and a compressive strength of greater than about 5,000 psi measured according to ASTM C-579.
4. The apparatus of claim 1, wherein the striking surface of the face insert further comprises one or more surface features.
5. The apparatus of claim 4, wherein the one or more surface features of the striking surface include at least one of a ridge or groove extending vertically between a top and a bottom of the face insert.
6. The apparatus of claim 4, wherein the one or more surface features of the striking surface include at least one of a ridge or groove extending horizontally between a right side and a left side of the face insert.
7. The apparatus of claim 4, wherein the one or more surface features of the striking surface include punch marks spaced across the face insert.
8. The apparatus of claim 4, wherein the one or more surface features of the striking surface are selected from one or more of a ridge or groove extending vertically between a top and a bottom of the face insert, a ridge or groove extending horizontally between a right side and a left side of the face insert, punch marks spaced across the face insert, and repeating patterns thereof.
9. The apparatus of claim 1, wherein the face insert is removable from the recessed receiving portion of the body member.
10. The apparatus of claim 1, wherein the face insert has a thickness of about 1,000 μm to about 2,000 μm.
11. The apparatus of claim 1, wherein the injection moldable material is a polymeric material including Acetal.
12. The apparatus of claim 1, wherein the body member is a golf club head and the face surface is a clubface.
13. A method of enhancing surface strike performance, comprising:
providing a body member having a face surface and a receiving portion recessed into the face surface;
forming a face insert having a striking surface using an injection molding process, the face insert and striking surface being made from a polymeric material providing a combination of properties configured to improve performance characteristics of an associated ball; and,
attaching the face insert to the recessed receiving portion of the body member;
wherein the improved performance characteristics include at least one of a launch angle, a carry distance, and a spin rate.
14. The method of claim 13, further comprising selecting one or more surface features comprising the striking surface of the face insert and based on a desired performance characteristic to improve.
15. The method of claim 14, wherein the one or more surface features are selected from at least one of a ridge or groove extending vertically between a top and a bottom of the face insert, a ridge or groove extending horizontally between a right side and a left side of the face insert, punch marks spaced across the face insert, and repeating patterns thereof.
16. The method of claim 13, further comprising removing the face insert from the recessed receiving portion of the body member.
17. The method of claim 16, further comprising replacing the removed face insert with a different face insert having improved performance characteristics.
18. The method of claim 13, wherein the polymeric material includes Acetal.
19. An apparatus for enhancing surface strike performance, comprising:
a body member including a face surface and a receiving portion recessed into the face surface; and,
a face insert having a striking surface, the face insert adapted to attach to the recessed receiving portion, the face insert and the striking surface comprising a single body made from an injection moldable material;
wherein the single body comprising the face insert and striking surface has a thickness of about 1,000 μm to about 2,000 μm; and,
wherein the injection moldable material is a polymeric material including Acetal which provides the striking surface of the face insert with a combination of properties configured to improve performance characteristics of an associated ball, the performance characteristics including at least one of a launch angle, a carry distance, and a spin rate.
20. The apparatus of claim 19, further comprising one or more surface features comprising the striking surface of the face insert and selected from at least one of a ridge or groove extending vertically between a top and a bottom of the face insert, a ridge or groove extending horizontally between a right side and a left side of the face insert, punch marks spaced across the face insert, and repeating patterns thereof.
US15/788,331 2016-04-20 2017-10-19 Method and apparatus for optimizing launch characteristics of a golf club Abandoned US20180036606A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/788,331 US20180036606A1 (en) 2016-04-20 2017-10-19 Method and apparatus for optimizing launch characteristics of a golf club
US17/119,088 US11752401B2 (en) 2016-04-20 2020-12-11 Method for optimizing launch characteristics of a golf club

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662325124P 2016-04-20 2016-04-20
US15/491,645 US20170304687A1 (en) 2016-04-20 2017-04-19 Method and apparatus for enhancing surface strike performance
US15/788,331 US20180036606A1 (en) 2016-04-20 2017-10-19 Method and apparatus for optimizing launch characteristics of a golf club

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/491,645 Continuation-In-Part US20170304687A1 (en) 2016-04-20 2017-04-19 Method and apparatus for enhancing surface strike performance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/119,088 Continuation-In-Part US11752401B2 (en) 2016-04-20 2020-12-11 Method for optimizing launch characteristics of a golf club

Publications (1)

Publication Number Publication Date
US20180036606A1 true US20180036606A1 (en) 2018-02-08

Family

ID=61071714

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/788,331 Abandoned US20180036606A1 (en) 2016-04-20 2017-10-19 Method and apparatus for optimizing launch characteristics of a golf club

Country Status (1)

Country Link
US (1) US20180036606A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217195A (en) * 2018-06-22 2019-12-26 ブリヂストンスポーツ株式会社 Golf club head
US10894192B2 (en) 2018-06-22 2021-01-19 Bridgestone Sports Co., Ltd. Golf club head and manufacturing method thereof
US20230023334A1 (en) * 2019-12-13 2023-01-26 Karsten Manufacturing Corporation Golf club head with textured faceplate and methods of manufacturing the same
US11752401B2 (en) 2016-04-20 2023-09-12 Game Changer Industries Llc Method for optimizing launch characteristics of a golf club

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1336671A (en) * 1920-04-13 Gole-club
US1414124A (en) * 1920-06-12 1922-04-25 Daniel S Griffin Golf head
US3819180A (en) * 1972-06-26 1974-06-25 T Murphy Perforated golf putter
US3937474A (en) * 1971-03-10 1976-02-10 Acushnet Company Golf club with polyurethane insert
US3975023A (en) * 1971-12-13 1976-08-17 Kyoto Ceramic Co., Ltd. Golf club head with ceramic face plate
US5620382A (en) * 1996-03-18 1997-04-15 Hyun Sam Cho Diamond golf club head
JPH10216275A (en) * 1997-02-07 1998-08-18 Mitsui Eng & Shipbuild Co Ltd Golf club head and its production
US6224497B1 (en) * 1997-09-25 2001-05-01 Anthony J. Antonious Golf club head with improved frequency matched ball striking face characteristics
US6638182B2 (en) * 2000-10-03 2003-10-28 Callaway Golf Company Golf club head with coated striking plate
US20040009829A1 (en) * 2002-07-15 2004-01-15 Kapilow Alan W. Golf club head with interchangeable striking face-plates
US20040127300A1 (en) * 2001-06-25 2004-07-01 Roger Cleveland Golf Company, Inc. Golf clubhead
US6939248B2 (en) * 2002-07-04 2005-09-06 Mizuno Corporation Wood golf club head designed to describe the optimum trajectory of a golf ball
US20080096682A1 (en) * 2006-10-19 2008-04-24 Fox Angela O Golf club putter heads and golf putters including same
US7648424B2 (en) * 2006-12-01 2010-01-19 Hinojosa Albert L Golf club head having concavely curved face
GB2469036A (en) * 2009-03-31 2010-10-06 David Cameron Galloway Clark Golf club with low friction membrane
US20110172026A1 (en) * 2010-01-14 2011-07-14 Callaway Golf Company Metal injection molded grooved face insert
GB2486664A (en) * 2010-12-21 2012-06-27 David Cameron Galloway Clark Mirror surface finish golf club driver
US8979669B2 (en) * 2010-12-30 2015-03-17 Taylor Made Golf Company, Inc. Polymer cover layer for golf club face
US9283448B2 (en) * 2013-08-20 2016-03-15 Nike Inc. Golf club head with polymeric face
US9452326B2 (en) * 2011-09-30 2016-09-27 Karsten Manufacturing Corporation Grooves of golf club heads and methods to manufacture grooves of golf club heads
US20160346649A1 (en) * 2011-09-30 2016-12-01 Karsten Manufacturing Corporation Grooves of golf club heads and methods to manufacture grooves of golf club heads
US20170197121A1 (en) * 2016-01-13 2017-07-13 Nike, Inc Golf Clubs and Golf Club Heads
US20180008871A1 (en) * 2015-05-12 2018-01-11 Karsten Manufacturing Corporation Golf club head with selectively detachable face

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1336671A (en) * 1920-04-13 Gole-club
US1414124A (en) * 1920-06-12 1922-04-25 Daniel S Griffin Golf head
US3937474A (en) * 1971-03-10 1976-02-10 Acushnet Company Golf club with polyurethane insert
US3975023A (en) * 1971-12-13 1976-08-17 Kyoto Ceramic Co., Ltd. Golf club head with ceramic face plate
US3819180A (en) * 1972-06-26 1974-06-25 T Murphy Perforated golf putter
US5620382A (en) * 1996-03-18 1997-04-15 Hyun Sam Cho Diamond golf club head
JPH10216275A (en) * 1997-02-07 1998-08-18 Mitsui Eng & Shipbuild Co Ltd Golf club head and its production
US6224497B1 (en) * 1997-09-25 2001-05-01 Anthony J. Antonious Golf club head with improved frequency matched ball striking face characteristics
US6638182B2 (en) * 2000-10-03 2003-10-28 Callaway Golf Company Golf club head with coated striking plate
US20040127300A1 (en) * 2001-06-25 2004-07-01 Roger Cleveland Golf Company, Inc. Golf clubhead
US6939248B2 (en) * 2002-07-04 2005-09-06 Mizuno Corporation Wood golf club head designed to describe the optimum trajectory of a golf ball
US20040009829A1 (en) * 2002-07-15 2004-01-15 Kapilow Alan W. Golf club head with interchangeable striking face-plates
US20080096682A1 (en) * 2006-10-19 2008-04-24 Fox Angela O Golf club putter heads and golf putters including same
US7648424B2 (en) * 2006-12-01 2010-01-19 Hinojosa Albert L Golf club head having concavely curved face
GB2469036A (en) * 2009-03-31 2010-10-06 David Cameron Galloway Clark Golf club with low friction membrane
US20110172026A1 (en) * 2010-01-14 2011-07-14 Callaway Golf Company Metal injection molded grooved face insert
GB2486664A (en) * 2010-12-21 2012-06-27 David Cameron Galloway Clark Mirror surface finish golf club driver
US8979669B2 (en) * 2010-12-30 2015-03-17 Taylor Made Golf Company, Inc. Polymer cover layer for golf club face
US9452326B2 (en) * 2011-09-30 2016-09-27 Karsten Manufacturing Corporation Grooves of golf club heads and methods to manufacture grooves of golf club heads
US20160346649A1 (en) * 2011-09-30 2016-12-01 Karsten Manufacturing Corporation Grooves of golf club heads and methods to manufacture grooves of golf club heads
US9283448B2 (en) * 2013-08-20 2016-03-15 Nike Inc. Golf club head with polymeric face
US20180008871A1 (en) * 2015-05-12 2018-01-11 Karsten Manufacturing Corporation Golf club head with selectively detachable face
US20170197121A1 (en) * 2016-01-13 2017-07-13 Nike, Inc Golf Clubs and Golf Club Heads

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
English translation of Uchida, JP 10216275 A *
MatWeb, "Overview of materials for Acetal Homopolymer, Unreinforced" *
MIL-D-3134J, Military Specification for Deck Covering Materials, published October 5, 1988 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11752401B2 (en) 2016-04-20 2023-09-12 Game Changer Industries Llc Method for optimizing launch characteristics of a golf club
JP2019217195A (en) * 2018-06-22 2019-12-26 ブリヂストンスポーツ株式会社 Golf club head
US10894192B2 (en) 2018-06-22 2021-01-19 Bridgestone Sports Co., Ltd. Golf club head and manufacturing method thereof
JP7078466B2 (en) 2018-06-22 2022-05-31 ブリヂストンスポーツ株式会社 Golf club head
US11471733B2 (en) 2018-06-22 2022-10-18 Bridgestone Sports Co., Ltd. Golf club head and manufacturing method thereof
US20230023334A1 (en) * 2019-12-13 2023-01-26 Karsten Manufacturing Corporation Golf club head with textured faceplate and methods of manufacturing the same

Similar Documents

Publication Publication Date Title
US20180036606A1 (en) Method and apparatus for optimizing launch characteristics of a golf club
US11918868B2 (en) Golf clubs and golf club heads
KR101773069B1 (en) Golf putter head with zirconia ceramic insert
KR101860691B1 (en) Golf club heads
JP6166877B2 (en) Golf club head
KR102453505B1 (en) Golf club heads with energy storage characteristics
JPH07323101A (en) Golf wood club with smooth face without groove
US20140274452A1 (en) Golf Clubs and Golf Club Heads Having Various Front Face Characteristics
US11717730B2 (en) Golf club heads with energy storage characteristics
EP2416855A2 (en) Golf club having hydrophobic and hydrophilic portions
US8562456B2 (en) Golf club head
KR101476512B1 (en) Golf club with regrind material
US11890512B2 (en) High density outer layer of a golf club head
US11752401B2 (en) Method for optimizing launch characteristics of a golf club
US20170304687A1 (en) Method and apparatus for enhancing surface strike performance
US20040116198A1 (en) Replaceable golf club face and protective shield
US20160082324A1 (en) Golf club
JP2007125399A (en) Golf club head with top line insert
US20060118998A1 (en) Putter-type club head with an insert and method of manufacturing
US20080234063A1 (en) Method Of Reducing Golf Ball Spin
Chou Engineering Methodology in Golf Studies

Legal Events

Date Code Title Description
AS Assignment

Owner name: GAME CHANGER INDUSTRIES LLC, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCLAFANI, ADAM C.;REEL/FRAME:044384/0997

Effective date: 20171208

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION