US20170304659A1 - Intelligent disaster prevention and escape method and system - Google Patents

Intelligent disaster prevention and escape method and system Download PDF

Info

Publication number
US20170304659A1
US20170304659A1 US15/509,862 US201415509862A US2017304659A1 US 20170304659 A1 US20170304659 A1 US 20170304659A1 US 201415509862 A US201415509862 A US 201415509862A US 2017304659 A1 US2017304659 A1 US 2017304659A1
Authority
US
United States
Prior art keywords
node
escape
nodes
region
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/509,862
Other versions
US10322302B2 (en
Inventor
Shuo hong CHEN
Xiao mei LIN
Zhi ying WU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to LIN, Xiao mei, CHEN, Shuo hong reassignment LIN, Xiao mei ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, Shuo hong, LIN, Xiao mei, WU, Zhi ying
Publication of US20170304659A1 publication Critical patent/US20170304659A1/en
Application granted granted Critical
Publication of US10322302B2 publication Critical patent/US10322302B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
    • G08B7/066Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources guiding along a path, e.g. evacuation path lighting strip
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B3/00Devices or single parts for facilitating escape from buildings or the like, e.g. protection shields, protection screens; Portable devices for preventing smoke penetrating into distinct parts of buildings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion

Definitions

  • the present invention relates to an intelligent disaster prevention and escape method, in particular to the intelligent disaster prevention and escape method and system capable of producing a safest path plan according to a risk coefficient and the distance between adjacent nodes, to provide immediate escape instructions.
  • the public facilities in a building generally include emergency escape exits and escape instruction signs to guide trapped people to escape through an escape path while the event of a disaster happened.
  • the traditional escape instruction signs simply direct people to the exit of the current floor without considering any immediate burst situation or whether the path directed by the traditional escape instruction sign is reliable or safe.
  • the traditional escape instruction sign does not guarantee to provide a safer or more reliable escape path for the people at that floor to evacuate and escape, and fails to timely select the safest and most effective path.
  • the primary objective of the present invention is to overcome the drawbacks of the prior art by providing an intelligent disaster prevention and escape method and system capable of producing a safest path plan according to a risk coefficient and the distance between adjacent nodes to guide people to escape and evacuate.
  • the present invention provides an intelligent disaster prevention and escape method comprising the steps of:
  • sensing surrounding environment information of a plurality of nodes of a region of a building to generate a plurality of sensing signals of the plurality of nodes respectively;
  • the escape path planning algorithm executes the steps of: using a first node of the plurality of nodes as a calculation starting point, and selecting and adding a specific second node having the minimum threat coefficient from a plurality of second nodes connected to the first node and not selected yet; adding a third node of the region, and updating the third node to a threat coefficient of the first node or the second node, and updating record of the minimum threat coefficient of the path of the third node when the minimum threat coefficient is calculated; and repeatedly adding a new node, and calculating the new node to a minimum threat coefficient of any precursor node until all nodes of the region have been selected and added.
  • the escape path planning algorithm is provided for using each exit node of the plurality of nodes as the calculation starting point to form the safest path plan, wherein an escape direction is the direction of a node of the plurality of nodes reaching the precursor node of the minimum threat coefficient.
  • the threat coefficient of the plurality of paths is calculated according to the risk coefficient and the distance between a plurality of adjacent nodes to perform the escape path planning algorithm and the safest path plan further comprises the step of adding an exit node of a second region to the region to calculate the safest path plan.
  • the step of calculating the risk coefficient of the plurality of nodes according to the plurality of sensing signals is further used for performing a regular operation of the plurality of sensing signals.
  • the present invention further provides an intelligent disaster prevention and escape system comprising a plurality of sensors, installed to the nodes of a region of a building, for sensing surrounding environment information of the plurality of nodes to produce the plurality of sensing signals of plurality of nodes respectively; a plurality of escape direction instructing devices, installed at the plurality of nodes of the region of the building according to a safest path plan to generate a plurality of escape instructions of the plurality of nodes respectively; and a processing unit, coupled to the plurality of sensors and the plurality of escape direction instructing devices, for calculating a plurality of risk coefficients of the plurality of nodes according to the plurality of sensing signals; and calculating a threat coefficient of the plurality of paths according to the plurality of risk coefficients and the distances between the plurality of adjacent nodes for executing an escape path planning algorithm and producing the safest path plan.
  • a plurality of sensors installed to the nodes of a region of a building, for sensing surrounding environment information of the plurality of no
  • the escape path planning algorithm executes the steps of: using a first node of the plurality of nodes as a calculation starting point, and selecting and adding a specific node having the minimum threat coefficient from a plurality of second nodes connected to the first node and not selected yet; adding a third node of the region, and updating the third node to a threat coefficient of the first node or the second node, and updating record of the minimum threat coefficient of the path of the third node when the minimum threat coefficient is calculated; and repeatedly adding a new node, and calculating the new node to a minimum threat coefficient of any precursor node until all nodes of the region have been selected and added.
  • the threat coefficient is the product of the risk coefficient and the distance.
  • the processing unit is provided for adding an exit node of a second region to the region to calculate the safest path plan.
  • the present invention provides an intelligent disaster prevention and escape method and an intelligent disaster prevention and escape system capable of producing the safest path plan according to the risk coefficient and the distance between adjacent nodes to produce safe, reliable and immediate escape instructions to guide people to escape and evacuate, so as to reduce casualties occurred in the disaster.
  • FIG. 1 is a schematic view of an intelligent disaster prevention and escape system in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a schematic view of an intelligent disaster prevention and escape system in accordance with a preferred embodiment of the present invention
  • FIG. 3 is a schematic view of calculating an escape path planning algorithm in accordance with a preferred embodiment of the present invention.
  • FIG. 4 is a schematic view of an intelligent disaster prevention and escape system in accordance with a preferred embodiment of the present invention.
  • FIG. 4 is a schematic view of a plurality of nodes of a first region and a second region of a building in accordance with a preferred embodiment of the present invention
  • FIG. 5 is a schematic view of adding an exit node of a second region to the first region to calculate the escape path planning algorithm in accordance with a preferred embodiment of the present invention
  • FIG. 6 is a flow chart of an operating example of an intelligent disaster prevention and escape method in accordance with the present invention.
  • FIG. 7 is a flow chart of an operating example of Step S 630 as depicted in FIG. 6 .
  • the intelligent disaster prevention and escape system 100 comprises (or includes but not limited to): a plurality of sensors (such as i sensors) S 1 ⁇ S i , a plurality of escape direction instructing devices (such as j escape direction instructing devices) DP 1 ⁇ DP j and a processing unit 130 .
  • the sensors S 1 ⁇ S i are installed at a plurality of nodes of a region of a building for sensing surrounding environment information of the plurality of nodes (such as k nodes) N 1 ⁇ N k for producing a plurality of sensing signals SS 1 ⁇ SS i to produce the plurality of nodes N 1 ⁇ N k respectively.
  • the sensors S 1 ⁇ S i are provided for sensing ambient temperature, smoke, flame, carbon monoxide concentration, carbon dioxide concentration or any other dangerous gas concentration and generating the plurality of sensing signals SS 1 ⁇ SS i respectively.
  • this example is used for illustrating the present invention, but not intended for limiting the scope of the invention.
  • the escape direction instructing devices DP 1 ⁇ DP j are installed at the plurality of nodes N 1 ⁇ N k of the region of the building for generating a plurality of escape instructions DS 1 ⁇ DS j of the plurality of nodes N 1 ⁇ N k respectively according to the safest path plan.
  • the processing unit 130 is coupled to the plurality of sensors S 1 ⁇ S i and the plurality of escape direction instructing devices DP 1 ⁇ DP j for calculating a plurality of risk coefficients RC 1 ⁇ RC k of the plurality of nodes N 1 ⁇ N k according to the plurality of sensing signals SS 1 ⁇ SS i respectively.
  • the processing unit 130 receives the plurality of sensing signals SS 1 ⁇ SS i sensed by the plurality of sensors S 1 ⁇ S i via a wireless or cable connection.
  • the processing unit 130 executes an escape path planning algorithm to produce the safest path plan according to the plurality of risk coefficients RC 1 ⁇ RC k and a distance D 1 ⁇ D h between the plurality of adjacent nodes.
  • the processing unit 130 calculates the safest path plan
  • the distances D 1 ⁇ D h between the plurality of adjacent nodes are used as the weights of the plurality of risk coefficients RC 1 ⁇ RC k to produce the minimum threat coefficient.
  • the processing unit 130 may be a server or a computer, but the invention is not limited to such arrangement only.
  • the plurality of adjacent nodes with the distances D 1 ⁇ D h apart may be built in the server or the computer, but the invention is not just limited to such arrangement only.
  • the first region includes 5 nodes N 1 ⁇ N 5 , wherein the nodes N 1 and N 3 are exit nodes, and all of the 5 nodes N 1 ⁇ N 5 have a plurality of sensors S 1 ⁇ S 5 installed thereon, and the plurality of sensors of each node may be used for sensing ambient temperature, smoke, flame, carbon monoxide, carbon dioxide or infrared light, etc to generate a plurality of sensing signals SS 1 ⁇ SS i respectively. For example, the higher temperature, the more dangerous.
  • the processing unit 130 is capable of calculating the risk coefficient RC 1 ⁇ RC 5 of each node N 1 ⁇ N 5 according to the sensing signal SS 1 ⁇ SS 5 of each node. It is noteworthy that the processing unit 130 of a preferred embodiment of the present invention may detect the temperature, smoke concentration, carbon monoxide concentration, carbon dioxide concentration in the sensing signals SS 1 ⁇ SS 5 and detect the wavelength by the infrared flame sensor before performing the regular planning operation, and then the invention further calculates the risk coefficients RC 1 ⁇ RC 5 .
  • all of the distances D between adjacent nodes are set to 1 to facilitate the calculation, and the minimum threat coefficient of each node is the numerical value of the risk coefficient (with a weight equal to 1), but the present invention is not just limited to such arrangement only.
  • the processing unit 130 calculates the risk coefficient RC 1 ⁇ RC 5 of the nodes N 1 ⁇ N 5 which are equal to 25000 for the node N 1 , 0 for the node N 2 , 15625 for the node N 3 , 125000 for the node N 4 and 0 for the node N 5 .
  • FIG. 3 is a schematic view of an escape path planning algorithm in accordance with the present invention, the escape path planning algorithm comprises the following steps:
  • Step a 1 the processing unit 130 uses a first node (which is the exit node N 1 ) in the plurality of nodes as a calculation starting point, the minimum threat coefficient of the node N 1 to the node N 1 (N 1 ->N 1 ) is equal to 125000, and the precursor node is updated to be N 1 ->N 1 .
  • Step a 2 a specific second node (node N 2 ) having a minimum threat coefficient and connected to the first node (node N 1 ) is selected from the plurality of second nodes (nodes N 2 , N 3 , N 4 , and N 5 ) and added.
  • the minimum threat coefficient from the node N 1 to the node N 1 (N 1 ->N 1 ) is equal to 125000
  • the minimum threat coefficient from the node N 2 to the node N 1 (N 2 ->N 1 ) is equal to 125000
  • the precursor node is updated to be N 1 ->N 1 and N 2 ->N.
  • Step a 3 a third node (node N 3 ) of the region is added to update the minimum threat coefficient reaching the first node (node N 1 ) and the second node (node N 2 ).
  • Step a 4 a new node N 4 is added in Step a 4 .
  • Step a 5 a new node N 5 is added.
  • Step a 6 confirmation is made in Step a 6 , and the minimum threat coefficients from the nodes N 1 , N 2 , N 3 , N 4 and N 5 to the exit node N 1 are equal to 125000, 125000, 140625, 250000 and 250000 respectively.
  • the escape path planning algorithm of this preferred embodiment is used for using each exit node (such as the exit node N 3 ) in the plurality of nodes sequentially as the calculation starting point to form the safest path plan. It is noteworthy that when the processing unit 130 calculates the minimum threat coefficient, the record of the minimum threat coefficient is updated. For example, in Step c 1 , the node N 3 is used as a calculation starting point.
  • the minimum threat coefficient from the node N 3 to the node N 3 is 15625 which is smaller than 140625 or the original minimum threat coefficient from the node N 3 to the node N 1 (N 3 ->N 1 ), so that the record of the minimum threat coefficient is updated to 15625, and the precursor nodes are updated to N 1 ->N 1 , N 2 ->N 1 , N 3 ->N 3 , N 4 ->N 2 and N 5 ->N 4 .
  • Step c 2 a minimum threat coefficient having a specific second node (node N 2 ) and connected to the first node (node N 3 ) and not selected from the plurality of second nodes (nodes N 1 , N 2 , N 4 , and N 5 ) is selected and added.
  • the minimum threat coefficient from the node N 3 to the node N 3 is equal to 15625
  • minimum threat coefficient from the node N 2 to the node N 3 is equal to 15625 which is smaller than 125000 or the original minimum threat coefficient from the node N 2 to the node N 1 (N 2 ->N 1 ), so that the record of the minimum threat coefficient is updated to 15625, and the precursor nodes are updated to N 1 ->N 1 , N 2 ->N 3 , N 3 ->N 3 , N 4 ->N 2 , N 5 ->N 4 .
  • Steps c 3 ⁇ c 6 is substantially the same as the aforementioned steps, and thus will not be repeated.
  • the minimum threat coefficients from the nodes N 1 , N 2 , N 3 , N 4 and N 5 to the exit node N 1 are equal to 125000, 15626, 15625, 140625 and 140625 respectively.
  • the steps a 6 and c 6 of FIG. 3 show that the minimum threat coefficient from the node N 2 to the exit node N 3 is equal to 15625, which is smaller than 125000 or the minimum threat coefficient from the node N 2 to the exit node N 1 .
  • the processing unit 130 will control an indicating lamp DP 2 at the node N 2 to guide the person in a direction towards the exit node N 3 .
  • FIG. 4 for a schematic view of a plurality of nodes N 1 ⁇ N 6 of a first region and a second region of a building in accordance with a preferred embodiment of the present invention, the distance between an exit node N 6 of the second region and the node N 5 of the first region is equal to 2, and the exit node N 6 is a far exit node.
  • FIG. 5 shows a schematic view of adding an exit node of a second region to the first region to calculate the escape path planning algorithm in accordance with a preferred embodiment of the present invention, the processing unit 130 is used to add an exit node N 6 of a second region to the first region to calculate the safest path plan.
  • Steps f 1 ⁇ f 7 the exit node N 3 is used as the calculation starting point to form the safest path plan. Since the principle of the steps f 1 ⁇ f 7 is substantially the same as the aforementioned steps, it will not be repeated. It is noteworthy that the distance between an exit node N 6 of the second region and the node N 5 of the first region is equal to 2, so that when the node N 5 to the node N 6 (N 5 ->N 6 ) or the node N 6 to the node N 5 (N 6 ->N 5 ) is calculated, the weight is equal to 2.
  • the minimum threat coefficients from the nodes N 1 , N 2 , N 3 , N 4 , N 4 and N 6 to the exit node N 6 are equal to 125000, 15626, 15625, 140625, 31250 and 15625 respectively.
  • the minimum threat coefficient from the node N 5 to the exit node N 6 is equal to 15625, which is smaller than 250000 (the minimum threat coefficient from the node N 5 to the exit node N 1 and 140625 (the minimum threat coefficient from the node N 5 to the exit node N 3 ).
  • the processing unit 130 will control an indicating lamp DP 5 at the node N 5 to guide the person to escape to the far exit node N 6 of the second region.
  • the escape path planning algorithm may set the known shortest distance between the plurality of nodes to infinite or a relative larger value and the distance between the calculation starting point and the calculation starting point to 0, but the present invention is not limited to such arrangement only.
  • the method comprises the following steps: (It is noteworthy that the method may be carried out without following the steps as shown in FIG. 6 to achieve the substantially same result):
  • Step S 600 Start.
  • Step S 610 Sense surrounding environment information of a plurality of nodes of a region of a building to generate a plurality of sensing signals of the plurality of nodes respectively.
  • Step S 620 Calculate a plurality of risk coefficients of the plurality of nodes according to the plurality of sensing signals.
  • Step S 630 Execute an escape path planning algorithm to produce a safest path plan according to the plurality of risk coefficients and the distances between the plurality of adjacent nodes.
  • Step S 640 Generate a plurality of escape instructions for the plurality of nodes according to the safest path plan.
  • step S 610 is carried out by the plurality of sensors S 1 ⁇ S i ; the steps S 620 and S 630 are executed by the processing unit 130 ; and the step S 640 is executed by the plurality of escape direction instructing devices DP 1 ⁇ DP j .
  • the operation includes but not limited to the following steps (it is noteworthy that the method may be carried out without following the sequence of the steps as shown in FIG. 7 to achieve the substantially same result):
  • Step S 631 Use a first node of the plurality of nodes as a calculation starting point, and select and add a specific second node which is connected to the first node and not selected from the plurality of second nodes yet and has a minimum threat coefficient.
  • Step S 632 Add a third node of the region, and update the minimum threat coefficient of the first node and the second node, wherein when the minimum threat coefficient is calculated, the record of the minimum threat coefficient is updated.
  • the third node After the third node is added, it is necessary to update the threat coefficient of “the third node to the reach the first node” or “the third node to reach the second node”. If a smaller numerical value of the threat coefficient is calculated and obtained, the numerical value of the threat coefficient of the path passing through the third node is updated and replaced. Regardless of the path of the third node reaching the first node or the path reaching the second node, the numerical value of the threat coefficient has the smallest value.
  • the path of “the third node reaching the first node” may be one passing the second node or not passing the second node.
  • Step S 633 Repeatedly add a new node, until all nodes of the region are added, wherein the minimum threat coefficient is the minimum of the product of the risk coefficient and the distance.
  • the present invention provides an intelligent disaster prevention and escape method and an intelligent disaster prevention and escape system capable of producing the safest path plan according to a risk coefficient and a distance between adjacent nodes to provide safe, reliable and immediate escape instructions, so as to guide people to escape and evaporate for a disaster site.
  • the present invention has the following advantages and effects.
  • the present invention guarantees the safest path for different positions of a floor of a building while taking the emergency situations of a disaster into consideration, or selects the safest and best path for the escape and evacuation according to the emergency situations of the disaster and maximizes the possibility of the escape and the safety of the evacuation.
  • the present invention can immediately and dynamically select the best and safest path according to the situation of the disaster at different time.
  • the present invention meets the requirements of the safety, intelligence, reliability, and timeliness for the escape and evacuation of an intelligent building.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Alarm Systems (AREA)
  • Emergency Lowering Means (AREA)

Abstract

An intelligent disaster prevention and escape method includes the steps of: sensing surrounding environment information of plural nodes of a region of a building to generate plural sensing signals of the nodes respectively; calculating a risk coefficient of each node according to the sensing signals; calculating a threat coefficient for plural paths according to the risk coefficients and the distances between the adjacent nodes, for executing an escape path planning algorithm to produce a safest path plan; and producing plural escape instructions for the nodes respectively according to the safest path plan. The invention has the effect of producing the safest path plan according to the risk coefficient and the distance between adjacent nodes, so as to provide safe and immediate escape instructions to guide people to escape and evacuate and reduce casualties.

Description

    BACKGROUND OF INVENTION Field of the Invention
  • The present invention relates to an intelligent disaster prevention and escape method, in particular to the intelligent disaster prevention and escape method and system capable of producing a safest path plan according to a risk coefficient and the distance between adjacent nodes, to provide immediate escape instructions.
  • Description of the Related Art
  • With the development and urbanization of cities, today's buildings become increasingly taller, bigger and more complicated, and the casualties caused by a disaster occurred in the buildings must be severe, and thus the fire issue of the buildings also catches increasingly more attention. At present, the public facilities in a building generally include emergency escape exits and escape instruction signs to guide trapped people to escape through an escape path while the event of a disaster happened. However, the traditional escape instruction signs simply direct people to the exit of the current floor without considering any immediate burst situation or whether the path directed by the traditional escape instruction sign is reliable or safe.
  • In other words, the traditional escape instruction sign does not guarantee to provide a safer or more reliable escape path for the people at that floor to evacuate and escape, and fails to timely select the safest and most effective path.
  • Therefore, it is one of the important subjects of this field to provide the most reliable and safest escape path instruction, so as to reduce casualties in a fire.
  • SUMMARY OF THE INVENTION
  • Therefore, the primary objective of the present invention is to overcome the drawbacks of the prior art by providing an intelligent disaster prevention and escape method and system capable of producing a safest path plan according to a risk coefficient and the distance between adjacent nodes to guide people to escape and evacuate.
  • To achieve the aforementioned objective, the present invention provides an intelligent disaster prevention and escape method comprising the steps of:
  • sensing surrounding environment information of a plurality of nodes of a region of a building to generate a plurality of sensing signals of the plurality of nodes respectively;
  • calculating a risk coefficient of each node according to the plurality of sensing signals;
    calculating a threat coefficient for a plurality of paths according to the plurality of risk coefficients and the distances between the plurality of adjacent nodes, for executing an escape path planning algorithm to produce a safest path plan; and
    producing a plurality of escape instructions for the plurality of nodes respectively according to the safest path plan.
  • In the intelligent disaster prevention and escape method, the escape path planning algorithm executes the steps of: using a first node of the plurality of nodes as a calculation starting point, and selecting and adding a specific second node having the minimum threat coefficient from a plurality of second nodes connected to the first node and not selected yet; adding a third node of the region, and updating the third node to a threat coefficient of the first node or the second node, and updating record of the minimum threat coefficient of the path of the third node when the minimum threat coefficient is calculated; and repeatedly adding a new node, and calculating the new node to a minimum threat coefficient of any precursor node until all nodes of the region have been selected and added.
  • In a preferred embodiment, the escape path planning algorithm is provided for using each exit node of the plurality of nodes as the calculation starting point to form the safest path plan, wherein an escape direction is the direction of a node of the plurality of nodes reaching the precursor node of the minimum threat coefficient.
  • In the intelligent disaster prevention and escape method, the threat coefficient of the plurality of paths is calculated according to the risk coefficient and the distance between a plurality of adjacent nodes to perform the escape path planning algorithm and the safest path plan further comprises the step of adding an exit node of a second region to the region to calculate the safest path plan.
  • In the intelligent disaster prevention and escape method, the step of calculating the risk coefficient of the plurality of nodes according to the plurality of sensing signals is further used for performing a regular operation of the plurality of sensing signals.
  • The present invention further provides an intelligent disaster prevention and escape system comprising a plurality of sensors, installed to the nodes of a region of a building, for sensing surrounding environment information of the plurality of nodes to produce the plurality of sensing signals of plurality of nodes respectively; a plurality of escape direction instructing devices, installed at the plurality of nodes of the region of the building according to a safest path plan to generate a plurality of escape instructions of the plurality of nodes respectively; and a processing unit, coupled to the plurality of sensors and the plurality of escape direction instructing devices, for calculating a plurality of risk coefficients of the plurality of nodes according to the plurality of sensing signals; and calculating a threat coefficient of the plurality of paths according to the plurality of risk coefficients and the distances between the plurality of adjacent nodes for executing an escape path planning algorithm and producing the safest path plan.
  • In the intelligent disaster prevention and escape system, the escape path planning algorithm executes the steps of: using a first node of the plurality of nodes as a calculation starting point, and selecting and adding a specific node having the minimum threat coefficient from a plurality of second nodes connected to the first node and not selected yet; adding a third node of the region, and updating the third node to a threat coefficient of the first node or the second node, and updating record of the minimum threat coefficient of the path of the third node when the minimum threat coefficient is calculated; and repeatedly adding a new node, and calculating the new node to a minimum threat coefficient of any precursor node until all nodes of the region have been selected and added.
  • In the intelligent disaster prevention and escape system, the threat coefficient is the product of the risk coefficient and the distance.
  • In the intelligent disaster prevention and escape system, the processing unit is provided for adding an exit node of a second region to the region to calculate the safest path plan.
  • In summation, the present invention provides an intelligent disaster prevention and escape method and an intelligent disaster prevention and escape system capable of producing the safest path plan according to the risk coefficient and the distance between adjacent nodes to produce safe, reliable and immediate escape instructions to guide people to escape and evacuate, so as to reduce casualties occurred in the disaster.
  • The above and other objects, features and advantages of the present invention will become apparent from the following detailed description taken with the accompanying drawings. It is noteworthy that the components as shown in the drawings are schematic drawings not necessarily drawn according to the actual proportion.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of an intelligent disaster prevention and escape system in accordance with a preferred embodiment of the present invention;
  • FIG. 2 is a schematic view of an intelligent disaster prevention and escape system in accordance with a preferred embodiment of the present invention;
  • FIG. 3 is a schematic view of calculating an escape path planning algorithm in accordance with a preferred embodiment of the present invention;
  • FIG. 4 is a schematic view of an intelligent disaster prevention and escape system in accordance with a preferred embodiment of the present invention;
  • FIG. 4 is a schematic view of a plurality of nodes of a first region and a second region of a building in accordance with a preferred embodiment of the present invention;
  • FIG. 5 is a schematic view of adding an exit node of a second region to the first region to calculate the escape path planning algorithm in accordance with a preferred embodiment of the present invention;
  • FIG. 6 is a flow chart of an operating example of an intelligent disaster prevention and escape method in accordance with the present invention; and
  • FIG. 7 is a flow chart of an operating example of Step S630 as depicted in FIG. 6.
  • DESCRIPTION OF THE INVENTION
  • In this specification and the claims recited below, technical terms are used to indicate respective components, and people having ordinary skills in the art should understand that hardware manufacturers may use different terms for the same component. Therefore, the difference between terms in this specification and the claims of this specification should be used to differentiate the components, but the difference between the functions of the components should be used to differentiate the components. The term “comprising” used in the specification and claims is an open term which should be interpreted as “including but not limited to”. In addition, the term “coupled to” includes any direct or indirect electrical connection means. Therefore, if a first device is coupled to a second device as described in the specification, it means that the first device may be directly electrically coupled to the second device, or indirectly electrically coupled to the second device through another device or connection means.
  • With reference to FIG. 1 for a schematic view of an intelligent disaster prevention and escape system 100 in accordance with a preferred embodiment of the present invention, the intelligent disaster prevention and escape system 100 comprises (or includes but not limited to): a plurality of sensors (such as i sensors) S1˜Si, a plurality of escape direction instructing devices (such as j escape direction instructing devices) DP1˜DPj and a processing unit 130. It is noteworthy that the sensors S1˜Si are installed at a plurality of nodes of a region of a building for sensing surrounding environment information of the plurality of nodes (such as k nodes) N1˜Nk for producing a plurality of sensing signals SS1˜SSi to produce the plurality of nodes N1˜Nk respectively. For example, the sensors S1˜Si are provided for sensing ambient temperature, smoke, flame, carbon monoxide concentration, carbon dioxide concentration or any other dangerous gas concentration and generating the plurality of sensing signals SS1˜SSi respectively. However, this example is used for illustrating the present invention, but not intended for limiting the scope of the invention. The escape direction instructing devices DP1˜DPj are installed at the plurality of nodes N1˜Nk of the region of the building for generating a plurality of escape instructions DS1˜DSj of the plurality of nodes N1˜Nk respectively according to the safest path plan. In addition, the processing unit 130 is coupled to the plurality of sensors S1˜Si and the plurality of escape direction instructing devices DP1˜DPj for calculating a plurality of risk coefficients RC1˜RCk of the plurality of nodes N1˜Nk according to the plurality of sensing signals SS1˜SSi respectively. It is noteworthy that the processing unit 130 receives the plurality of sensing signals SS1˜SSi sensed by the plurality of sensors S1˜Si via a wireless or cable connection. However, this is just one of the embodiments illustrating the present invention but not a limitation of the present invention. The processing unit 130 executes an escape path planning algorithm to produce the safest path plan according to the plurality of risk coefficients RC1˜RCk and a distance D1˜Dh between the plurality of adjacent nodes. For example, when the processing unit 130 calculates the safest path plan, the distances D1˜Dh between the plurality of adjacent nodes are used as the weights of the plurality of risk coefficients RC1˜RCk to produce the minimum threat coefficient. In a preferred embodiment of the present invention, the processing unit 130 may be a server or a computer, but the invention is not limited to such arrangement only. In addition, the plurality of adjacent nodes with the distances D1˜Dh apart may be built in the server or the computer, but the invention is not just limited to such arrangement only.
  • It is noteworthy that the numbers i, j, k, and h are used as examples for the illustrating the invention, but these numbers may the equal or unequal and are not intended for limiting the present invention.
  • A related operation of the escape path planning algorithm in accordance with the present invention is described below. With reference to FIG. 2 for a schematic view of a plurality of nodes of a first region of a building in accordance with a preferred embodiment of the present invention, the first region includes 5 nodes N1˜N5, wherein the nodes N1 and N3 are exit nodes, and all of the 5 nodes N1˜N5 have a plurality of sensors S1˜S5 installed thereon, and the plurality of sensors of each node may be used for sensing ambient temperature, smoke, flame, carbon monoxide, carbon dioxide or infrared light, etc to generate a plurality of sensing signals SS1˜SSi respectively. For example, the higher temperature, the more dangerous. The more concentrated smoke, the more dangerous. The higher concentration of carbon monoxide or carbon dioxide, or the greater the wavelength (exceeding 1.0 μm) detected by an infrared flame sensor, the more dangerous. Therefore, the processing unit 130 is capable of calculating the risk coefficient RC1˜RC5 of each node N1˜N5 according to the sensing signal SS1˜SS5 of each node. It is noteworthy that the processing unit 130 of a preferred embodiment of the present invention may detect the temperature, smoke concentration, carbon monoxide concentration, carbon dioxide concentration in the sensing signals SS1˜SS5 and detect the wavelength by the infrared flame sensor before performing the regular planning operation, and then the invention further calculates the risk coefficients RC1˜RC5.
  • With reference to FIG. 2 for a preferred embodiment of the present invention, all of the distances D between adjacent nodes are set to 1 to facilitate the calculation, and the minimum threat coefficient of each node is the numerical value of the risk coefficient (with a weight equal to 1), but the present invention is not just limited to such arrangement only. Assumed that the ignition point is situated at the intersection of the node N1 and the node N4, so that the plurality of sensors S1 and S4 installed on the nodes N1 and N4 detect abnormal situations, and the processing unit 130 calculates the risk coefficient RC1˜RC5 of the nodes N1˜N5 which are equal to 25000 for the node N1, 0 for the node N2, 15625 for the node N3, 125000 for the node N4 and 0 for the node N5.
  • With reference to FIGS. 2 and 3, FIG. 3 is a schematic view of an escape path planning algorithm in accordance with the present invention, the escape path planning algorithm comprises the following steps:
  • In Step a1, the processing unit 130 uses a first node (which is the exit node N1) in the plurality of nodes as a calculation starting point, the minimum threat coefficient of the node N1 to the node N1 (N1->N1) is equal to 125000, and the precursor node is updated to be N1->N1.
  • In Step a2, a specific second node (node N2) having a minimum threat coefficient and connected to the first node (node N1) is selected from the plurality of second nodes (nodes N2, N3, N4, and N5) and added. Now, the minimum threat coefficient from the node N1 to the node N1 (N1->N1) is equal to 125000, and the minimum threat coefficient from the node N2 to the node N1(N2->N1) is equal to 125000, and the precursor node is updated to be N1->N1 and N2->N.
  • In Step a3, a third node (node N3) of the region is added to update the minimum threat coefficient reaching the first node (node N1) and the second node (node N2). Now, the minimum threat coefficient of the node N3 to the node N1(N3->N1) is equal to 125000+0*1+15625*1=140625 and the precursor nodes are updated to N1->N1, N2->N1 and N3->N2, and then a new node (node N4, N5) is added repeatedly until all nodes of the region are added (Steps a4 and a5).
  • For example, a new node N4 is added in Step a4. Now, the minimum threat coefficient from the node N4 to the node N1(N4->N1) is equal to 125000+0*1+125000*1=250000 and the precursor nodes are updated to N1->N1, N2->N1, N3->N2 and N4->N2.
  • In Step a5, a new node N5 is added. Now, the minimum threat coefficient from the node N5 to the node N1(N5->N1) is equal to 125000+0*1+125000*1+0*1=250000 and the precursor nodes are updated to N1->N1, N2->N1, N3->N2, N4->N2 and N5->N4.
  • Finally, confirmation is made in Step a6, and the minimum threat coefficients from the nodes N1, N2, N3, N4 and N5 to the exit node N1 are equal to 125000, 125000, 140625, 250000 and 250000 respectively.
  • In FIGS. 2 and 3, the escape path planning algorithm of this preferred embodiment is used for using each exit node (such as the exit node N3) in the plurality of nodes sequentially as the calculation starting point to form the safest path plan. It is noteworthy that when the processing unit 130 calculates the minimum threat coefficient, the record of the minimum threat coefficient is updated. For example, in Step c1, the node N3 is used as a calculation starting point. Now, the minimum threat coefficient from the node N3 to the node N3(N3->N3) is 15625 which is smaller than 140625 or the original minimum threat coefficient from the node N3 to the node N1(N3->N1), so that the record of the minimum threat coefficient is updated to 15625, and the precursor nodes are updated to N1->N1, N2->N1, N3->N3, N4->N2 and N5->N4.
  • In Step c2, a minimum threat coefficient having a specific second node (node N2) and connected to the first node (node N3) and not selected from the plurality of second nodes (nodes N1, N2, N4, and N5) is selected and added. Now, the minimum threat coefficient from the node N3 to the node N3(N3->N3) is equal to 15625, and minimum threat coefficient from the node N2 to the node N3(N2->N3) is equal to 15625 which is smaller than 125000 or the original minimum threat coefficient from the node N2 to the node N1(N2->N1), so that the record of the minimum threat coefficient is updated to 15625, and the precursor nodes are updated to N1->N1, N2->N3, N3->N3, N4->N2, N5->N4. Similarly, the principle of Steps c3˜c6 is substantially the same as the aforementioned steps, and thus will not be repeated. In the confirmation conducted in the step c6, the minimum threat coefficients from the nodes N1, N2, N3, N4 and N5 to the exit node N1 are equal to 125000, 15626, 15625, 140625 and 140625 respectively. The steps a6 and c6 of FIG. 3 show that the minimum threat coefficient from the node N2 to the exit node N3 is equal to 15625, which is smaller than 125000 or the minimum threat coefficient from the node N2 to the exit node N1. Since the escape direction is the direction of a node of the plurality of nodes reaching a precursor node of the minimum threat coefficient, therefore when a person is situated at the node N2, escaping in the direction towards the node N3 is safer (than the direction from the node N2 to the node N1), and the processing unit 130 will control an indicating lamp DP2 at the node N2 to guide the person in a direction towards the exit node N3.
  • With reference to FIG. 4 for a schematic view of a plurality of nodes N1˜N6 of a first region and a second region of a building in accordance with a preferred embodiment of the present invention, the distance between an exit node N6 of the second region and the node N5 of the first region is equal to 2, and the exit node N6 is a far exit node. With reference to FIGS. 4 and 5, FIG. 5 shows a schematic view of adding an exit node of a second region to the first region to calculate the escape path planning algorithm in accordance with a preferred embodiment of the present invention, the processing unit 130 is used to add an exit node N6 of a second region to the first region to calculate the safest path plan. In Steps f1˜f7, the exit node N3 is used as the calculation starting point to form the safest path plan. Since the principle of the steps f1˜f7 is substantially the same as the aforementioned steps, it will not be repeated. It is noteworthy that the distance between an exit node N6 of the second region and the node N5 of the first region is equal to 2, so that when the node N5 to the node N6(N5->N6) or the node N6 to the node N5(N6->N5) is calculated, the weight is equal to 2. For example, a node N5 is added in the step f2, the minimum threat coefficient from the node N5 to the node N6(N5->N6) is equal to 15625*2+0=31250. Similarly, in the confirmation conducted in the step f7, the minimum threat coefficients from the nodes N1, N2, N3, N4, N4 and N6 to the exit node N6 are equal to 125000, 15626, 15625, 140625, 31250 and 15625 respectively. The steps a6, c6 and f7 of FIG. 3 show that the minimum threat coefficient from the node N5 to the exit node N6 is equal to 15625, which is smaller than 250000 (the minimum threat coefficient from the node N5 to the exit node N1 and 140625 (the minimum threat coefficient from the node N5 to the exit node N3). In other words, it is safer for a person at the node N5 to escape in a direction from the second region to the far exit node N6 (because this path has the minimum threat coefficient), and the processing unit 130 will control an indicating lamp DP5 at the node N5 to guide the person to escape to the far exit node N6 of the second region.
  • In another preferred embodiment of the present invention, the escape path planning algorithm may set the known shortest distance between the plurality of nodes to infinite or a relative larger value and the distance between the calculation starting point and the calculation starting point to 0, but the present invention is not limited to such arrangement only.
  • With reference to FIG. 6 for a flow chart of an intelligent disaster prevention and escape method in accordance with a preferred embodiment of the present invention, the method comprises the following steps: (It is noteworthy that the method may be carried out without following the steps as shown in FIG. 6 to achieve the substantially same result):
  • Step S600: Start.
  • Step S610: Sense surrounding environment information of a plurality of nodes of a region of a building to generate a plurality of sensing signals of the plurality of nodes respectively.
  • In Step S620: Calculate a plurality of risk coefficients of the plurality of nodes according to the plurality of sensing signals.
  • In Step S630: Execute an escape path planning algorithm to produce a safest path plan according to the plurality of risk coefficients and the distances between the plurality of adjacent nodes.
  • In Step S640: Generate a plurality of escape instructions for the plurality of nodes according to the safest path plan.
  • The steps as shown in FIG. 6 and the components as shown in FIG. 1 show the operation of each component. For simplicity, the operation is not repeated. It is noteworthy that the step S610 is carried out by the plurality of sensors S1˜Si; the steps S620 and S630 are executed by the processing unit 130; and the step S640 is executed by the plurality of escape direction instructing devices DP1˜DPj.
  • With reference to FIG. 7 for a flow chart of the operation showing the details of the step S630 of FIG. 6, the operation includes but not limited to the following steps (it is noteworthy that the method may be carried out without following the sequence of the steps as shown in FIG. 7 to achieve the substantially same result):
  • Step S631: Use a first node of the plurality of nodes as a calculation starting point, and select and add a specific second node which is connected to the first node and not selected from the plurality of second nodes yet and has a minimum threat coefficient.
  • Step S632: Add a third node of the region, and update the minimum threat coefficient of the first node and the second node, wherein when the minimum threat coefficient is calculated, the record of the minimum threat coefficient is updated. In other words, after the third node is added, it is necessary to update the threat coefficient of “the third node to the reach the first node” or “the third node to reach the second node”. If a smaller numerical value of the threat coefficient is calculated and obtained, the numerical value of the threat coefficient of the path passing through the third node is updated and replaced. Regardless of the path of the third node reaching the first node or the path reaching the second node, the numerical value of the threat coefficient has the smallest value. The path of “the third node reaching the first node” may be one passing the second node or not passing the second node.
  • Step S633: Repeatedly add a new node, until all nodes of the region are added, wherein the minimum threat coefficient is the minimum of the product of the risk coefficient and the distance.
  • With reference to the steps as shown in FIG. 7, the components as shown in FIG. 1, and the operation of the components in accordance with a preferred embodiment as shown in FIGS. 2 and 3, the description of all of these will not be repeated for simplicity.
  • In summation of the description above, the present invention provides an intelligent disaster prevention and escape method and an intelligent disaster prevention and escape system capable of producing the safest path plan according to a risk coefficient and a distance between adjacent nodes to provide safe, reliable and immediate escape instructions, so as to guide people to escape and evaporate for a disaster site. Compared with the conventional building survival systems, the present invention has the following advantages and effects. The present invention guarantees the safest path for different positions of a floor of a building while taking the emergency situations of a disaster into consideration, or selects the safest and best path for the escape and evacuation according to the emergency situations of the disaster and maximizes the possibility of the escape and the safety of the evacuation. Since the emergency situation may change with time, and channels may be changed accordingly, the present invention can immediately and dynamically select the best and safest path according to the situation of the disaster at different time. In addition, the present invention meets the requirements of the safety, intelligence, reliability, and timeliness for the escape and evacuation of an intelligent building.
  • While the invention has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the invention set forth in the claims.

Claims (9)

What is claimed is:
1. An intelligent disaster prevention and escape method, comprising the steps of:
sensing surrounding environment information of a plurality of nodes of a region of a building to generate a plurality of sensing signals of the plurality of nodes respectively;
calculating a risk coefficient of each node according to the plurality of sensing signals;
calculating a threat coefficient for a plurality of paths according to the plurality of risk coefficients and the distances between the plurality of adjacent nodes, and further executing an escape path planning algorithm to produce a safest path plan; and
producing a plurality of escape instructions for the plurality of nodes respectively according to the safest path plan.
2. The intelligent disaster prevention and escape method of claim 1, wherein the escape path planning algorithm executes the steps of:
setting a first node of the plurality of nodes as a calculation starting point, and then selecting and adding an unselected second node with the minimum threat coefficient from in which the unselected second node is chosen from a plurality of adjacent nodes;
adding a third node of the region, and updating the threat coefficient from the third node to the first node or to the second node, and updating record of the minimum threat coefficient of the path with the third node when the minimum threat coefficient is calculated; and
repeatedly adding a new node and calculating the minimum threat coefficient from the new node to any precursor node until all nodes of the region have been selected and added.
3. The intelligent disaster prevention and escape method of claim 2, wherein the escape path planning algorithm is provided for setting each exit node of the plurality of nodes as the calculation starting point to form the safest path plan, wherein an escape direction is the direction from one node toward the precursor node with the minimum threat coefficient.
4. The intelligent disaster prevention and escape method of claim 1, wherein the threat coefficient of the plurality of paths is calculated according to the risk coefficient and the distance between the adjacent nodes to perform the escape path planning algorithm and the safest path plan, further comprises the step of adding an exit node of a second region to the region for calculating the safest path plan.
5. The intelligent disaster prevention and escape method of claim 1, wherein the step of calculating the risk coefficient of the plurality nodes according to the plurality sensing signals is further carried out for performing a regular operation through the plurality of sensing signals.
6. An intelligent disaster prevention and escape system, comprising: a plurality of sensors installed to the nodes of a region in a building, for sensing surrounding environment information of the plurality of nodes to produce the plurality of sensing signals of plurality of nodes respectively; a plurality of escape direction instructing devices, installed at the plurality of nodes of the region in the building according to a safest path plan to generate a plurality of escape instructions of the plurality of nodes respectively; and a processing unit, coupled to the plurality of sensors and the plurality of escape direction instructing devices, for calculating a plurality of risk coefficients of the plurality of nodes according to the plurality of sensing signals; and calculating a threat coefficient of the plurality of paths according to the plurality of risk coefficients and the distances between the plurality of adjacent nodes for further executing an escape path planning algorithm and producing the safest path plan.
7. The intelligent disaster prevention and escape system of claim 6, wherein the escape path planning algorithm executes the steps of:
setting a first node of the plurality of nodes as a calculation starting point, and then selecting and adding an unselected second node with the minimum threat coefficient from in which the unselected second node is chosen from a plurality of adjacent nodes;
adding a third node of the region, and updating the threat coefficient from the third node to the first node or to the second node, and updating record of the minimum threat coefficient of the path with the third node when the minimum threat coefficient is calculated through the processing unit; and
repeatedly adding a new node and calculating the minimum threat coefficient from the new node to any precursor node until all nodes of the region have been selected and added.
8. The intelligent disaster prevention and escape system of claim 6, wherein the escape path planning algorithm is provided for sequentially setting each exit node of the plurality of nodes as the calculation starting point to form the safest path plan, wherein an escape direction is the direction from one node toward the precursor node with the minimum threat coefficient.
9. The intelligent disaster prevention and escape system of claim 6, wherein the processing unit is provided for adding an exit node of a second region to the region for calculating the safest path plan.
US15/509,862 2014-09-09 2014-09-09 Intelligent disaster prevention and escape method and system Active 2035-01-24 US10322302B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086099 WO2016037308A1 (en) 2014-09-09 2014-09-09 Intelligent disaster prevention and escape method and disaster prevention and escape system thereof

Publications (2)

Publication Number Publication Date
US20170304659A1 true US20170304659A1 (en) 2017-10-26
US10322302B2 US10322302B2 (en) 2019-06-18

Family

ID=55458234

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/509,862 Active 2035-01-24 US10322302B2 (en) 2014-09-09 2014-09-09 Intelligent disaster prevention and escape method and system

Country Status (6)

Country Link
US (1) US10322302B2 (en)
EP (1) EP3192567A4 (en)
JP (1) JP6569964B2 (en)
CN (1) CN106999739B (en)
SG (1) SG11201701864XA (en)
WO (1) WO2016037308A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9898912B1 (en) * 2014-10-07 2018-02-20 State Farm Mutual Automobile Insurance Company Systems and methods for automatically generating an escape route
US10181160B1 (en) 2014-04-25 2019-01-15 State Farm Mutual Automobile Insurance Company Systems and methods for assigning damage caused by an insurance-related event
CN112770462A (en) * 2021-01-18 2021-05-07 海洋王(东莞)照明科技有限公司 Lighting system and control method thereof
US11423758B2 (en) 2018-04-09 2022-08-23 State Farm Mutual Automobile Insurance Company Sensing peripheral heuristic evidence, reinforcement, and engagement system
US20230132523A1 (en) * 2021-11-01 2023-05-04 Jpmorgan Chase Bank, N.A. Systems and methods for wayfinding in hazardous environments
CN117875533A (en) * 2024-03-11 2024-04-12 江苏中矿安华科技发展有限公司 Mining safety escape path planning method and system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111652409A (en) * 2020-04-30 2020-09-11 广州富港万嘉智能科技有限公司 Fire escape scheme planning method, storage medium and fire alarm system for building
CN111982113B (en) * 2020-07-22 2022-09-06 湖南大学 Path generation method, device, equipment and storage medium
CN114255555A (en) * 2020-09-23 2022-03-29 深圳富桂精密工业有限公司 Fire escape guiding method, server and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749986A (en) * 1991-09-24 1995-02-21 Kooatsu:Kk Evacuation guidance system
CN101315725A (en) * 2008-07-14 2008-12-03 浙江工业大学 Fire disaster escaping distribution type node guiding system based on wireless sensing network
CN102324064A (en) * 2011-08-25 2012-01-18 陈�光 Dynamic fire risk assessment method and system based on sensor tape

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543789A (en) * 1994-06-24 1996-08-06 Shields Enterprises, Inc. Computerized navigation system
JP3425276B2 (en) * 1995-08-11 2003-07-14 株式会社日立製作所 Information notification system
US8836580B2 (en) 2005-05-09 2014-09-16 Ehud Mendelson RF proximity tags providing indoor and outdoor navigation and method of use
US8346474B2 (en) 2008-08-28 2013-01-01 Honeywell International Inc. Method of route retrieval
DE102011078965A1 (en) * 2010-11-23 2012-05-24 Siemens Ag Method and system for route calculation
EP2768584A4 (en) * 2011-10-19 2015-08-12 Honeywell Int Inc Model-based generation of information and evacuation messages
CN202995948U (en) * 2012-11-27 2013-06-12 福建省泉州市第七中学 Fire dynamic escape guiding system based on intelligent path
TWI451362B (en) 2012-11-29 2014-09-01 Univ Nat Chiao Tung Fast evacuation system and method thereof
CN203253071U (en) * 2013-01-29 2013-10-30 中国科学院自动化研究所 Intelligent building fire-protection escape route multifunctional indicating device
CN103170071A (en) * 2013-02-26 2013-06-26 中国科学院自动化研究所 Intelligent building fire alarm personnel evacuation dynamic route indicating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749986A (en) * 1991-09-24 1995-02-21 Kooatsu:Kk Evacuation guidance system
CN101315725A (en) * 2008-07-14 2008-12-03 浙江工业大学 Fire disaster escaping distribution type node guiding system based on wireless sensing network
CN102324064A (en) * 2011-08-25 2012-01-18 陈�光 Dynamic fire risk assessment method and system based on sensor tape

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10846800B1 (en) 2014-04-25 2020-11-24 State Farm Mutual Automobile Insurance Company Systems and methods for automatically mitigating risk of property damage
US10181160B1 (en) 2014-04-25 2019-01-15 State Farm Mutual Automobile Insurance Company Systems and methods for assigning damage caused by an insurance-related event
US11966982B2 (en) 2014-04-25 2024-04-23 State Farm Mutual Automobile Insurance Company Systems and methods for automatically mitigating risk of property damage
US10282787B1 (en) 2014-04-25 2019-05-07 State Farm Mutual Automobile Insurance Company Systems and methods for determining cause of loss to a property
US11823281B2 (en) 2014-04-25 2023-11-21 State Farm Mutual Automobile Insurance Company Systems and methods for assigning damage caused by an insurance-related event
US11756134B2 (en) 2014-04-25 2023-09-12 State Farm Mutual Automobile Insurance Company Systems and methods for homeowner-directed risk of property damage mitigation
US11657459B1 (en) 2014-04-25 2023-05-23 State Farm Mutual Automobile Insurance Company Systems and methods for predictively generating an insurance claim
US11651441B2 (en) 2014-04-25 2023-05-16 State Farm Mutual Automobile Insurance Company Systems and methods for homeowner-directed risk of property damage mitigation
US11379924B2 (en) 2014-04-25 2022-07-05 State Farm Mutual Automobile Insurance Company Systems and methods for automatically mitigating risk of property damage
US11361387B1 (en) 2014-04-25 2022-06-14 State Farm Mutual Automobile Insurance Company Systems and methods for managing insurance associated with devices populated within a property
US10514669B1 (en) 2014-04-25 2019-12-24 State Farm Mutual Automobile Insurance Company Systems and methods for managing the operation of devices within a property
US11354748B1 (en) 2014-04-25 2022-06-07 State Farm Mutual Automobile Insurance Company Systems and methods for automatically mitigating risk of water damage
US11270385B1 (en) 2014-04-25 2022-03-08 State Farm Mutual Automobile Insurance Company Systems and methods for homeowner-directed risk of property damage mitigation
US11074659B1 (en) 2014-04-25 2021-07-27 State Farm Mutual Automobile Insurance Company Systems and methods for community-based cause of loss determination
US11042942B1 (en) 2014-04-25 2021-06-22 State Farm Mutual Automobile Insurance Company Systems and methods for determining cause of loss to a property
US10607295B1 (en) 2014-04-25 2020-03-31 State Farm Mutual Automobile Insurance Company Systems and methods for community-based cause of loss determination
US10679292B1 (en) 2014-04-25 2020-06-09 State Farm Mutual Automobile Insurance Company Systems and methods for managing insurance associated with devices populated within a property
US10685402B1 (en) 2014-04-25 2020-06-16 State Farm Mutual Automobile Insurance Company Systems and methods for homeowner-directed risk of property damage mitigation
US10733671B1 (en) 2014-04-25 2020-08-04 State Farm Mutual Automobile Insurance Company Systems and methods for predictively generating an insurance claim
US11042137B1 (en) 2014-04-25 2021-06-22 State Farm Mutual Automobile Insurance Company Systems and methods for managing the operation of devices within a property
US10922756B1 (en) 2014-04-25 2021-02-16 State Farm Mutual Automobile Insurance Company Systems and methods for managing insurance for devices located within a property based on insurance-related events
US10573149B1 (en) * 2014-10-07 2020-02-25 State Farm Mutual Automobile Insurance Company Systems and methods for automatically generating an escape route
US11334040B2 (en) * 2014-10-07 2022-05-17 State Farm Mutual Automobile Insurance Company Systems and methods for automatically responding to a fire
US10943447B1 (en) * 2014-10-07 2021-03-09 State Farm Mutual Automobile Insurance Company Systems and methods for automatically responding to a fire
US10249158B1 (en) * 2014-10-07 2019-04-02 State Farm Mutual Automobile Insurance Company Systems and methods for automatically responding to a fire
US11004320B1 (en) 2014-10-07 2021-05-11 State Farm Mutual Automobile Insurance Company Systems and methods for analyzing sensor data to detect property intrusion events
US10741033B1 (en) 2014-10-07 2020-08-11 State Farm Mutual Automotive Insurance Company System and methods for analyzing sensor data to detect property intrusion events
US10573146B1 (en) 2014-10-07 2020-02-25 State Farm Mutual Automobile Insurance Company Systems and methods for improved assisted or independent living environments
US11043098B1 (en) * 2014-10-07 2021-06-22 State Farm Mutual Automobile Insurance Company Systems and methods for automatically generating an escape route
US11049078B1 (en) 2014-10-07 2021-06-29 State Farm Mutual Automobile Insurance Company Systems and methods for responding to a broken circuit
US9898912B1 (en) * 2014-10-07 2018-02-20 State Farm Mutual Automobile Insurance Company Systems and methods for automatically generating an escape route
US10522009B1 (en) * 2014-10-07 2019-12-31 State Farm Mutual Automobile Insurance Company Systems and methods for automatically responding to a fire
US10282788B1 (en) 2014-10-07 2019-05-07 State Farm Mutual Automobile Insurance Company Systems and methods for managing service log information
US10515372B1 (en) 2014-10-07 2019-12-24 State Farm Mutual Automobile Insurance Company Systems and methods for managing building code compliance for a property
US10388135B1 (en) 2014-10-07 2019-08-20 State Farm Mutual Automobile Insurance Company Systems and methods for analyzing sensor data to detect property intrusion events
US10356303B1 (en) 2014-10-07 2019-07-16 State Farm Mutual Automobile Insurance Company Systems and methods for controlling smart devices based upon image data from image sensors
US10795329B1 (en) 2014-10-07 2020-10-06 State Farm Mutual Automobile Insurance Company Systems and methods for managing smart devices based upon electrical usage data
US11423754B1 (en) 2014-10-07 2022-08-23 State Farm Mutual Automobile Insurance Company Systems and methods for improved assisted or independent living environments
US10282961B1 (en) * 2014-10-07 2019-05-07 State Farm Mutual Automobile Insurance Company Systems and methods for automatically generating an escape route
US11815864B2 (en) 2014-10-07 2023-11-14 State Farm Mutual Automobile Insurance Company Systems and methods for managing building code compliance for a property
US10353359B1 (en) 2014-10-07 2019-07-16 State Farm Mutual Automobile Insurance Company Systems and methods for managing smart devices based upon electrical usage data
US11656585B1 (en) 2014-10-07 2023-05-23 State Farm Mutual Automobile Insurance Company Systems and methods for managing smart devices based upon electrical usage data
US10346811B1 (en) 2014-10-07 2019-07-09 State Farm Mutual Automobile Insurance Company Systems and methods for responding to a broken circuit
US11423758B2 (en) 2018-04-09 2022-08-23 State Farm Mutual Automobile Insurance Company Sensing peripheral heuristic evidence, reinforcement, and engagement system
US11670153B2 (en) 2018-04-09 2023-06-06 State Farm Mutual Automobile Insurance Company Sensing peripheral heuristic evidence, reinforcement, and engagement system
US11462094B2 (en) 2018-04-09 2022-10-04 State Farm Mutual Automobile Insurance Company Sensing peripheral heuristic evidence, reinforcement, and engagement system
US11869328B2 (en) 2018-04-09 2024-01-09 State Farm Mutual Automobile Insurance Company Sensing peripheral heuristic evidence, reinforcement, and engagement system
US11887461B2 (en) 2018-04-09 2024-01-30 State Farm Mutual Automobile Insurance Company Sensing peripheral heuristic evidence, reinforcement, and engagement system
CN112770462A (en) * 2021-01-18 2021-05-07 海洋王(东莞)照明科技有限公司 Lighting system and control method thereof
US20230132523A1 (en) * 2021-11-01 2023-05-04 Jpmorgan Chase Bank, N.A. Systems and methods for wayfinding in hazardous environments
US11972681B2 (en) * 2021-11-01 2024-04-30 Jpmorgan Chase Bank, N.A. Systems and methods for wayfinding in hazardous environments
CN117875533A (en) * 2024-03-11 2024-04-12 江苏中矿安华科技发展有限公司 Mining safety escape path planning method and system

Also Published As

Publication number Publication date
EP3192567A4 (en) 2018-05-02
US10322302B2 (en) 2019-06-18
JP6569964B2 (en) 2019-09-04
CN106999739A (en) 2017-08-01
SG11201701864XA (en) 2017-04-27
JP2017528840A (en) 2017-09-28
WO2016037308A1 (en) 2016-03-17
CN106999739B (en) 2020-04-14
EP3192567A1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
US10322302B2 (en) Intelligent disaster prevention and escape method and system
US9721457B2 (en) Global positioning system equipped with hazard detector and a system for providing hazard alerts thereby
US20120047083A1 (en) Fire Situation Awareness And Evacuation Support
US9644974B2 (en) Model-based generation of information and evacuation messages
KR101475134B1 (en) Intelligent escape guide method and apparatus
KR102157552B1 (en) Fire detector with emergency exit light function and fire detect system uisng the fire detector
KR101034387B1 (en) System for guiding escape direction in the event of fire and the method thereof
KR101631090B1 (en) The fire perception system and the fire fighting system using building modeling data
CN101925934A (en) Evacuation device and escape route display therefor
KR101893040B1 (en) System and method for providing evacuation route
US20200027322A1 (en) Methods and systems for path lighting
CN109035641B (en) Dynamic optimization and visualization method for fire evacuation path considering smoke influence
CN109785550A (en) Escape indicating means, device, control system and storage medium
KR102535539B1 (en) System and method for guiding of evacuation route
KR20200003303A (en) Intelligent evacuation guidance system based on internet of things
JP6310243B2 (en) Automatic fire alarm equipment
TWI567697B (en) Intelligent evacuation system and intelligent evacuation control method thereof
CN109785547A (en) Safety alarm method, device, control system and storage medium
CN109816913A (en) Fire alarm signal transmission method, device, mobile terminal and storage medium
KR20180096308A (en) Safe evacuation system for optimal evacuation in case of emergency and the method therof
KR102492453B1 (en) Fire receiver and fire extinguishing integrated control system
KR20140105678A (en) System for prevention of disasters
JP2014120101A (en) Evacuation guidance system
JP2014170348A (en) Alarm
KR20180049498A (en) Gas mask with evacuation capabilities using location-based services

Legal Events

Date Code Title Description
AS Assignment

Owner name: LIN, XIAO MEI, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, XIAO MEI;CHEN, SHUO HONG;WU, ZHI YING;REEL/FRAME:041564/0162

Effective date: 20170308

Owner name: CHEN, SHUO HONG, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, XIAO MEI;CHEN, SHUO HONG;WU, ZHI YING;REEL/FRAME:041564/0162

Effective date: 20170308

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4