US20170294315A1 - Semiconductor structure and fabrication method thereof - Google Patents

Semiconductor structure and fabrication method thereof Download PDF

Info

Publication number
US20170294315A1
US20170294315A1 US15/476,249 US201715476249A US2017294315A1 US 20170294315 A1 US20170294315 A1 US 20170294315A1 US 201715476249 A US201715476249 A US 201715476249A US 2017294315 A1 US2017294315 A1 US 2017294315A1
Authority
US
United States
Prior art keywords
layer
metal layer
temperature
planarization process
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/476,249
Other versions
US10062572B2 (en
Inventor
Wu Feng DENG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Assigned to SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION reassignment SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DENG, WU FENG
Publication of US20170294315A1 publication Critical patent/US20170294315A1/en
Application granted granted Critical
Publication of US10062572B2 publication Critical patent/US10062572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28123Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium

Definitions

  • the present invention generally relates to the field of semiconductor manufacturing and, more particularly, relates to a semiconductor structure and fabrication techniques thereof.
  • each layer of the semiconductor structure first needs to have a high level of flatness: and the semiconductor structures on the wafer also need to be planarzed.
  • a chemical mechanical polishing (CMP) process is one of the most common planarization processes.
  • the planarization efficiency of the chemical mechanical polishing process is high, and CMP process has become an indispensable semiconductor process technology.
  • the disclosed device structures and methods are directed to solve one or more problems set forth above and other problems.
  • One aspect of the present disclosure includes a method for fabricating a semiconductor structure.
  • the method includes providing a substrate having a dielectric layer formed on the substrate, wherein an opening is formed in the dielectric layer, and bottom of the opening exposes surface of the substrate.
  • the method also includes forming a first metal layer over of the dielectric layer, wherein a temperature for forming the first metal layer is a first temperature.
  • the method includes forming a second metal layer filling the opening, wherein a temperature for forminig the second metal layer is a second temperature, and the second temperature is higher than the first temperature.
  • the method includes planarizing the second metal layer and the first metal layer until the top surface of the dielectric layer is exposed.
  • FIGS. 1-2 illustrate cross-sectional views of semiconductor structures corresponding to certain stages of an existing fabrication process of a semiconductor structure
  • FIGS. 3-8 illustrate cross-sectional views of semiconductor structures corresponding to certain stages of a fabrication,process of a semiconductor structure consistent with the disclosed embodiments.
  • FIG. 9 illustrates an exemplary fabrication process to form a semiconductor structure consistent with the disclosed embodiments.
  • FIGS. 1-2 illustrate cross-sectional views of semiconductor structures corresponding to certain stages of an existing fabrication process of a semiconductor structure.
  • a fabrication process to form a metal gate structure is described as an example.
  • the fabrication process includes providing a substrate 10 , forming a dielectric layer 20 on the substrate 10 , and forming an opening in the dielectric layer 20 .
  • the fabrication process also includes forming a liner material layer 30 , where the liner material layer 30 covers the bottom and side surfaces of the opening and the top surface of the dielectric layer 20 ; and forming a metal layer 40 , where the metal layer 40 fills the opening and covers the liner material layer 30 formed on the top surface of the dielectric layer 20 .
  • the existing fabrication process includes forming a metal gate 40 g and a liner layer 30 r by planarizing the metal layer 40 to remove the metal layer 40 and the liner material layer 30 formed on the top surface of the dielectric layer 20 .
  • the top surfaces of the metal gate 40 g, the liner layer Or and the dielectric layer 20 are flush.
  • the metal layer 40 is formed by a film deposition process at one time, and temperature in the process of forming the metal layer 40 is high.
  • the temperature of fotming the metal layer 40 is approximately 430° C. Therefore, the density of the formed metal layer 40 is small. That is, the metal layer 40 is not cot pact enough, thus the strength of the metal layer 40 is small.
  • the metal gate 40 g it is easy to form metal fragments or particles. During the planarization process, the metal fragments or particles tend to scratch the wafer surface, thus resulting in scratches on the wafer surface, and impacting improving the flatness of the wafer surface.
  • FIG. 9 illustrates an exemplary fabrication process to form a semiconductor structure consistent with the disclosed embodiments; and FIGS. 3-8 illustrate cross-sectional views of semiconductor structures co esponding to certain stages of the exemplary fabrication process.
  • a fabrication process to form a metal gate structure is described as an example.
  • the disclosed embodiments can also be configured to form a metal plug, metal interconnect lines, and other semiconductor structures.
  • FIG. 9 at the beginning of the fabrication process, a substrate with certain structures may be provided (S 201 ).
  • FIG. 3 illustrates a corresponding semiconductor structure.
  • a substrate 100 may be provided, a dielectric layer 200 may be formed on the substrate 100 , and an opening 100 may be formed in the dielectric layer 200 . Bottom of the opening 300 may expose the sunt ace of the substrate 100 .
  • the substrate 100 may be configured as a platform for subsequent fabrication processes.
  • the substrate 100 may include monocrystalline silicon, polycrystalline silicon, amorphous silicon.
  • the substrate 100 may also include silicon (Si), germanium (Ge), germanium-silicon alloy (GeSi), or gaallium arsenide (GaAs) and other compounds.
  • the substrate 100 may include other semiconductor materials.
  • the substrate 100 may include a silicon material having an epitaxial layer or on an epitaxial layer. In one embodiment, a aate structure for forming a planar transistor is described as an example, therefore, the substrate 100 may be a monocrystalline silicon substrate.
  • the dielectric layer 200 may be formed to provide electrical isolation between different semiconductor devices, and may also be configured to define the shape and dimensions of subsequently formed gate.
  • the opening 300 may be formed in the dielectric layer 200 .
  • a metal gate structure may be subsequently formed by filling the opening 300 with metal material.
  • the dielectric layer 200 may be made of silicon oxide.
  • Forming the dielectric layer 200 may include: forming a dielectric material layer on the substrate 100 by a chemical vapor deposition process, a physical vapor deposition process, an atomic layer deposition process, or other film deposition processes; forming a patterned layer on the dielectric material layer; and using fhe patterned layer as a mask to etch the dielectric material layer unti the surface of the substrate 100 is exposed to form the opening 300 .
  • the patterned layer may be a patterned photoresist layer, and may be formed by coating and photolithography processes.
  • the patterned layer may be formed by a multiple patterned mask process.
  • the multiple patterned mask process may include a self-aligned double patterned (SaDP) process, a self aligned triple patterned (SaTP) process, or a self-aligned double double patterned (SaDDP) process, etc.
  • the opening 300 may be formed by etching the dielectric layer 200 . In certain other embodiments, the opening may also be formed by removing the dummy gate formed in the dielectric layer, and other processes may also be used.
  • a gate sidewall spacer may be formed on the side wall of the opening 300 (not labeled).
  • the gate sidewall spacer may be made of nitride, or oxide, etc.
  • the gate sidewall spacer may be made of silicon nitride.
  • forming the gate sidewall spacer may include: forming a sidewall spacer material layer covering the top surface of the dielectric layer 200 and the bottom and side surfaces of the opening 300 by a chemical vapor deposition process, a physical vapor deposition process, an atomic layer deposition process, or other film deposition processes; and then performing an anisotropic dry etching process to remove the sidewall spacer material layer on the top surface of the dielectric layer 200 and the bottom of the opening 300 until the top surface of the dielectric layer 200 and the bottom of the opening 300 are exposed.
  • the sidewall spacer material layer on the side surface of the opening 300 may be retained to form the gate sidewall spacer.
  • FIG. 4 illustrates a corresponding semiconductor structure.
  • a gate dielectric layer 410 may be formed.
  • the gate dielectric layer 410 may cover the bottom and side sutfaces of the opening 300 .
  • the gate dielectric layer 410 may be made of oxide, or high-K materials, such as silicon oxide, hafnium oxide, zirconium oxide, hafnium silicon oxide, lanthanum oxide, silica, zirconium oxide, titanium oxide, tantalum oxide, barium strontium titanium, barium titanium oxide, strontium titanium oxide, or alumina oxide, etc.
  • the fabrication process may also include forming a liner structure layer 400 on the gate dielectric layer 410 .
  • the liner structure layer 400 may include a barrier layer 420 , a work function layer 430 , and an adhesive layer 440 . Other layers may also be included.
  • the liner structure layer 400 may be sequentially formed on the gate dielectric layer 410 by a chemical vapor deposition process, a physical vapor deposition process, an atomic layer deposition process, or other film deposition processes.
  • the barrier layer 420 may be configured to prevent diffusion of metal ions in subsequently formed film structure and the metal gate structure, which impacts the insulating property of the gate dielectric layer 410 and the performance of the channel in the substrate 100 .
  • the barrier layer 420 may be configured to stop etching during the subsequent planarization process.
  • the barrier layer 420 may be made of titanium nitride, or tantalum nitride, etc.
  • the barrier layer 420 may be formed on the gate dielectric layer 410 over the top surface of the dielectric layer 200 and the bottom and side surfaces of the opening 300 by a chemical vapor deposition process, a physical vapor deposition process, or an atomic layer deposition process, etc.
  • the barrier layer 420 may include a tantalum nitride layer.
  • the work function layer 430 may be configured to adjust the work function of the formed gate structure, and to adjust threshold voltage of the formed semiconductor device.
  • the gate structure may be made of a PMOS device. Therefore, the work function layer 430 may include a titanium aluminum layer, an aluminum nitride layer, and a titanium layer. By adjusting the thicknesses of the titanium aluminum layer, the aluminum nitride layer, and the titanium layer, the function of adjusting the work funtion of the formed gate structure may be achieved.
  • the adhesive layer 440 may be configured to improve the connection strength between the metal material and the liner structure layer 400 .
  • the material of the adhesive layer 440 may be the same as the material of the subsequently formed first metal layer.
  • the adhesive layer 440 may include an aluminum seed layer formed by a chemical vapor deposition process, and an aluminum layer formed by a physical vapor deposition process.
  • FIG. 5 illustrates a corresponding semiconductor structure.
  • a first metal layer 510 may be formed on the liner structure layer 400 over the top surface of the dielectric layer 200 .
  • the liner structure layer 400 may be omitted, and the first metal layer 510 may be formed on the top surface of the dielectric layer 200 .
  • other intermediate layer(s) may also be formed between the first metal layer 510 and the dielectric layer 200 .
  • the first metal layer 510 may cover the top surface of the liner structure layer 400 , and protect the liner structure layer 400 from damages caused by the subsequent planarization process.
  • the first metal layer 510 may be made of aluminum and formed by a physical vapor deposition process.
  • the temperature for forming the first metal layer 510 may be the first temperature.
  • the first temperature may be in a range of approximately 300-350° C. Compared to the temperature for forming aluminum gate by the existing techniques, the first temperature is lower. Therefore, the first metal layer 510 may have more compact structure, smaller grains, and stronger strength.
  • the thickness of the first metal layer 510 may be above 300 ⁇ .
  • the first metal layer 510 may have more complete crystal structure and fewer defects.
  • the first metal layer 510 may also cover the liner structure layer 400 over the bottom of the opening 300 to improve the performance of interface between subsequently formed second metal layer and the liner structure layer 400 , and to improve the lattice mismatch issue. Similar to the existing techniques, the first metal layer 510 may also cover the liner structure layer 400 over the side surface of the opening 300 (not labeled).
  • FIG. 6 illustrates a corresponding semiconductor structure.
  • a second metal layer 520 may be formed.
  • the second metal layer 520 may be configured to fill the opening 300 (shown in FIG. 5 ) to form a metal gate structure.
  • the metal gate structure may be an aluminum gate. Therefore, both the second metal layer 520 and the first metal layer 510 may be made of the same material, aluminum.
  • the second metal layer 520 may be formed in the opening 300 by a physical vapor deposition process.
  • the first metal layer 510 may also cover the liner structure layer 400 over the bottom of the opening 300 (shown in FIG. 5 ). Therefore, the formed metal gate structure may include the first metal layer 510 and the second metal layer 520 filling the opening 300 .
  • the temperature for forming the second metal layer 520 may be the second temperature.
  • the second temperature may be higher than the first temperature. Therefore, compared to the first metal layer 510 formed at the first temperature, the second metal layer 520 may have a higher conductivity and better electrical performance, and may improve the electrical performance of the formed metal gate structure.
  • the second temperature may be in a range of approximately 400-450° C.
  • the second metal layer 520 may be made of aluminum, and the second temperature may be approximately 430° C.
  • the second metal layer 520 may be formed on the first metal layer 510 .
  • the first metal layer 510 may have lower formation temperature and fewer structural defects. Compared to the metal gate structure directly formed at a high temperature in the existing techniques, the second metal layer 520 may have smaller grains and greater hardness.
  • the thickness of the second metal layer 520 may be in a range of approximately 2000-5000 ⁇ .
  • the second metal layer 520 may also be formed over the dielectric layer 200 .
  • the second metal layer 520 may also cover part of the first metal layer 510 over the dielectric layer 200 .
  • a metal gate structure may be formed by planarizing the second metal layer and the first metal layer (S 205 ).
  • FIGS. 7-8 illustrate corresponding semiconductor structures.
  • a metal gate structure may be formed by planarizing the second metal layer and the first metal layer until the top surface of the dielectric layer 200 is exposed.
  • the planarization process may include performing a first planarization process to remove the second metal layer 520 formed over the dielectric layer 200 (shown in FIG. 6 ).
  • a chemical mechanical polishing process may be performed to remove the second metal layer 520 formed over the dielectric layer 200 .
  • the applied pressure may be greater than 1.5 Pa, and the hardness of polishing pad may be in a range of approximately 80-100 MPa.
  • the second metal layer 520 may have even smaller grains and even greater hardness. Therefore, during the first planarization process, amount of the formed fragments may be small, which may effectively reduce the possibility of scratching the wafer surface, reduce scratches on the wafer surface, and improve the flatness of the wafer surface after the planarization process.
  • part of thickness of the first metal layer 510 over the dielectric layer 200 may also be removed, such that the thickness of the first metal layer 510 over the dielectric layer 200 may reach a preset thickness.
  • the preset thickness is too small, the remaining first metal layer 510 A may be difficult to protect the liner structure layer 400 . If the preset thickness is too large, it may impact increasing the speed of the planarization process. Specifically, the preset distance may be in a range of approximately 300-1000 ⁇ . Therefore, in one embodiment, during the first planarization process, the total thickness of removing the first metal layer 510 and the second metal layer 520 may be above 3000 ⁇ .
  • the planarization process may also include performing a second planarization process to remove the first metal layer 510 or the remaining first metal layer 510 A over the dielectric layer 200 until the top surface of the liner structure layer 400 is exposed.
  • the second planarization process may be performed by a chemical mechanical polishing process.
  • the chemical mechanical polishing process may stop when the top surface of the liner structure layer 400 is exposed.
  • the applied pressure may be in a range of approximately 1-2 Pa, and the hardness of the polishing pad may be in a range of approximately 20-40 MPa.
  • the first metal layer 510 may have complete crystal structure, small grains and great hardness. Therefore, during the second planarization process, amount of the formed fragments may be small, which may effectively reduce scratches formed on the wafer surface, and improve the flatness of the wafer surface after the planarization process.
  • polishing liquid may be added.
  • the polishing liquid may have an etching effect to improve the efficiency of the chemical mechanical polishing process. Therefore, the liner structure layer 400 may be configured to stop etching during the chemical mechanical polishing process, and to effectively protect the dielectric layer from effects of the second planarization process.
  • the planarization process may include performing a third planarization process until the top surface of the remaining second metal layer 520 and the top surface of the dielectric layer 200 are flush.
  • the third planarization process may be performed by a chemical mechanical polishing process.
  • the applied pressure may be in a range of approximately 1-2 Pa, and the hardness of the polishing pad may be in a range of approximately 20-40 MPa. Therefore, during the third planarization process, a polishing grinding process may be performed onto the wafer surface to improve the flatness of the wafer surface.
  • the second metal layer 520 in the opening may have complete crystal structure, small grains and great hardness.
  • amount of the formed fragments may be small, which may effectively reduce scratches formed on the wafer surface, and improve the flatness of the wafer surface after the planarization process.
  • the chemical mechanical polishing process may stop when the top surface of the dielectric layer 200 is exposed. Or the chemical mechanical polishing process may remove part of thickness of the dielectric layer 200 and the second metal layer 520 , to ensure the liner structure layer 400 and the gate dielectric layer 410 formed on the dielectric layer 200 are thoroughly removed.
  • the metal layer may be formed by a film deposition process at one time.
  • the reflectivity of the wafer surface may be 51.3%, and the roughness of the wafer surface may be 10.1%.
  • the disclosed embodiments by forming the first metal layer at a low temperature before forming the second metal layer at a high temperature, after forming the metal gate structure by the planarization process, the reflectivity of the wafer surface may be 81.9%, and the roughness of the wafer surface may be 1.64%. Therefore, the disclosed embodiments may effectively improve the flatness of the wafer surface after the planarization process, improve the accuracy of the process, and improve manufacturing yield of the devices.
  • the first metal layer may be formed over the dielectric layer and the bottom of the opening.
  • the second metal layer may be formed, filling the opening.
  • the first metal layer may be formed at the first temperature
  • the second metal layer may be formed at the second temperature.
  • the second temperature may be higher than the first temperature. Therefore, the first metal layer may have complete crystal structure, small grains and great hardness. Because of the buffering effect of the first metal layer, the second metal layer may have even smaller grains and even greater hardness. Therefore, during the polishing process, amount of the formed fragments may be small, which may effectively reduce the possibility of scratching the wafer surface, to improve the flatness of the wafer surface after the planarization process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method is provided for fabricating a semiconductor structure. The method includes providing a substrate having a dielectric layer formed on the substrate, where an opening is formed in the dielectric layer, and bottom of the opening exposes surface of the substrate. The method also includes forming a first metal layer over of the dielectric layer, where a temperature for forming the first metal layer is a first temperature. In addition, the method includes forming a second metal layer filling the opening, where a temperature for forming the second metal layer is a second temperature, and the second temperature is higher than the first temperature. Further, the method includes planarizing the second metal layer and the first metal layer until the top surface of the dielectric layer is exposed.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application claims the priority of Chinese patent application No. 201610213621.7, filed on Apr. 7, 2016, the entirety of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention generally relates to the field of semiconductor manufacturing and, more particularly, relates to a semiconductor structure and fabrication techniques thereof.
  • BACKGROUND
  • With the rapid development of ultra-large-scale integration, the fabrication process of integrated circuits becomes more and more complex and sophisticated. To improve integration degree and to reduce manufacturing cost, the number of semiconductor components per unit area in the chip increases. Planar wiring has been difficult to meet the demand of high-density distribution of semiconductor components. Multi-layer wiring technology is performed to use vertical space of the chip to further improve the integration degree of the devices. However, using the multi-layer wiring technology can cause rough surface of the silicon wafer, which may affect patterning processes. Therefore, to realize the multi-layer wiring structure, each layer of the semiconductor structure first needs to have a high level of flatness: and the semiconductor structures on the wafer also need to be planarzed.
  • A chemical mechanical polishing (CMP) process is one of the most common planarization processes. The planarization efficiency of the chemical mechanical polishing process is high, and CMP process has become an indispensable semiconductor process technology.
  • However, after performing the planarization process onto semiconductor structures formed by existing fabrication techniques, the wafer surface is prone to scratches. The disclosed device structures and methods are directed to solve one or more problems set forth above and other problems.
  • BRIEF SUMMARY OF THE DISCLOSURE
  • One aspect of the present disclosure includes a method for fabricating a semiconductor structure. The method includes providing a substrate having a dielectric layer formed on the substrate, wherein an opening is formed in the dielectric layer, and bottom of the opening exposes surface of the substrate. The method also includes forming a first metal layer over of the dielectric layer, wherein a temperature for forming the first metal layer is a first temperature. In addition, the method includes forming a second metal layer filling the opening, wherein a temperature for forminig the second metal layer is a second temperature, and the second temperature is higher than the first temperature. Further, the method includes planarizing the second metal layer and the first metal layer until the top surface of the dielectric layer is exposed.
  • Other aspects of the present disclosure can be understood by those skilled in the art in light of the description, the claims, and the drawings of the present disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1-2 illustrate cross-sectional views of semiconductor structures corresponding to certain stages of an existing fabrication process of a semiconductor structure;
  • FIGS. 3-8 illustrate cross-sectional views of semiconductor structures corresponding to certain stages of a fabrication,process of a semiconductor structure consistent with the disclosed embodiments; and
  • FIG. 9 illustrates an exemplary fabrication process to form a semiconductor structure consistent with the disclosed embodiments.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to exemplary embodiments of the invention, which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or the alike parts.
  • FIGS. 1-2 illustrate cross-sectional views of semiconductor structures corresponding to certain stages of an existing fabrication process of a semiconductor structure. A fabrication process to form a metal gate structure is described as an example.
  • As shown in FIG. 1, the fabrication process includes providing a substrate 10, forming a dielectric layer 20 on the substrate 10, and forming an opening in the dielectric layer 20. The fabrication process also includes forming a liner material layer 30, where the liner material layer 30 covers the bottom and side surfaces of the opening and the top surface of the dielectric layer 20; and forming a metal layer 40, where the metal layer 40 fills the opening and covers the liner material layer 30 formed on the top surface of the dielectric layer 20.
  • As shown in FIG. 2, further, the existing fabrication process includes forming a metal gate 40 g and a liner layer 30 r by planarizing the metal layer 40 to remove the metal layer 40 and the liner material layer 30 formed on the top surface of the dielectric layer 20. The top surfaces of the metal gate 40 g, the liner layer Or and the dielectric layer 20 are flush.
  • In the existing techniques, the metal layer 40 is formed by a film deposition process at one time, and temperature in the process of forming the metal layer 40 is high. When the metaI layer 40 is made of aluminum, the temperature of fotming the metal layer 40 is approximately 430° C. Therefore, the density of the formed metal layer 40 is small. That is, the metal layer 40 is not cot pact enough, thus the strength of the metal layer 40 is small. During formine the metal gate 40 g, it is easy to form metal fragments or particles. During the planarization process, the metal fragments or particles tend to scratch the wafer surface, thus resulting in scratches on the wafer surface, and impacting improving the flatness of the wafer surface.
  • The present disclosure provides an improved semiconductor structure and fabrication process. FIG. 9 illustrates an exemplary fabrication process to form a semiconductor structure consistent with the disclosed embodiments; and FIGS. 3-8 illustrate cross-sectional views of semiconductor structures co esponding to certain stages of the exemplary fabrication process. In one embodiment, a fabrication process to form a metal gate structure is described as an example. In certain other embodiments, the disclosed embodiments can also be configured to form a metal plug, metal interconnect lines, and other semiconductor structures.
  • As shown in FIG. 9, at the beginning of the fabrication process, a substrate with certain structures may be provided (S201). FIG. 3 illustrates a corresponding semiconductor structure.
  • Referring to FIG. 3, a substrate 100 may be provided, a dielectric layer 200 may be formed on the substrate 100, and an opening 100 may be formed in the dielectric layer 200. Bottom of the opening 300 may expose the sunt ace of the substrate 100.
  • The substrate 100 may be configured as a platform for subsequent fabrication processes. The substrate 100 may include monocrystalline silicon, polycrystalline silicon, amorphous silicon. The substrate 100 may also include silicon (Si), germanium (Ge), germanium-silicon alloy (GeSi), or gaallium arsenide (GaAs) and other compounds. In addition, the substrate 100 may include other semiconductor materials. Further, the substrate 100 may include a silicon material having an epitaxial layer or on an epitaxial layer. In one embodiment, a aate structure for forming a planar transistor is described as an example, therefore, the substrate 100 may be a monocrystalline silicon substrate.
  • The dielectric layer 200 may be formed to provide electrical isolation between different semiconductor devices, and may also be configured to define the shape and dimensions of subsequently formed gate. The opening 300 may be formed in the dielectric layer 200. A metal gate structure may be subsequently formed by filling the opening 300 with metal material. Specifically, in one embodiment, the dielectric layer 200 may be made of silicon oxide.
  • Forming the dielectric layer 200 may include: forming a dielectric material layer on the substrate 100 by a chemical vapor deposition process, a physical vapor deposition process, an atomic layer deposition process, or other film deposition processes; forming a patterned layer on the dielectric material layer; and using fhe patterned layer as a mask to etch the dielectric material layer unti the surface of the substrate 100 is exposed to form the opening 300.
  • The patterned layer may be a patterned photoresist layer, and may be formed by coating and photolithography processes. In addition, to decrease the dimensions of the subsequently formed metal gate structure, and to decrease the dimensions of the semiconductor device, the patterned layer may be formed by a multiple patterned mask process. The multiple patterned mask process may include a self-aligned double patterned (SaDP) process, a self aligned triple patterned (SaTP) process, or a self-aligned double double patterned (SaDDP) process, etc.
  • In one embodiment, the opening 300 may be formed by etching the dielectric layer 200. In certain other embodiments, the opening may also be formed by removing the dummy gate thrilled in the dielectric layer, and other processes may also be used.
  • To prevent damages to the formed channel region of the semiconductor device caused by the subsequent semiconductor processes, and to reduce occurrence of source-drain punch-through phenomenon, a gate sidewall spacer may be formed on the side wall of the opening 300 (not labeled). The gate sidewall spacer may be made of nitride, or oxide, etc. In one embodiment, the gate sidewall spacer may be made of silicon nitride.
  • Specifically, forming the gate sidewall spacer may include: forming a sidewall spacer material layer covering the top surface of the dielectric layer 200 and the bottom and side surfaces of the opening 300 by a chemical vapor deposition process, a physical vapor deposition process, an atomic layer deposition process, or other film deposition processes; and then performing an anisotropic dry etching process to remove the sidewall spacer material layer on the top surface of the dielectric layer 200 and the bottom of the opening 300 until the top surface of the dielectric layer 200 and the bottom of the opening 300 are exposed. The sidewall spacer material layer on the side surface of the opening 300 may be retained to form the gate sidewall spacer.
  • Returning to FIG. 9, after providing the substrate having certain structures, a gate dielectric layer and a liner structure layer may be formed (S202). FIG. 4 illustrates a corresponding semiconductor structure.
  • As shown in FIG. 4, a gate dielectric layer 410 may be formed. The gate dielectric layer 410 may cover the bottom and side sutfaces of the opening 300.
  • The gate dielectric layer 410 may be made of oxide, or high-K materials, such as silicon oxide, hafnium oxide, zirconium oxide, hafnium silicon oxide, lanthanum oxide, silica, zirconium oxide, titanium oxide, tantalum oxide, barium strontium titanium, barium titanium oxide, strontium titanium oxide, or alumina oxide, etc.
  • After forming the gate dielectric layer 410 and before forming a first metal layer over the gate dielectric layer 410, the fabrication process may also include forming a liner structure layer 400 on the gate dielectric layer 410.
  • Along a direction away from the substrate 100, the liner structure layer 400 may include a barrier layer 420, a work function layer 430, and an adhesive layer 440. Other layers may also be included.
  • Specifically, the liner structure layer 400 may be sequentially formed on the gate dielectric layer 410 by a chemical vapor deposition process, a physical vapor deposition process, an atomic layer deposition process, or other film deposition processes.
  • The barrier layer 420 may be configured to prevent diffusion of metal ions in subsequently formed film structure and the metal gate structure, which impacts the insulating property of the gate dielectric layer 410 and the performance of the channel in the substrate 100. In addition, the barrier layer 420 may be configured to stop etching during the subsequent planarization process. The barrier layer 420 may be made of titanium nitride, or tantalum nitride, etc. Specifically, the barrier layer 420 may be formed on the gate dielectric layer 410 over the top surface of the dielectric layer 200 and the bottom and side surfaces of the opening 300 by a chemical vapor deposition process, a physical vapor deposition process, or an atomic layer deposition process, etc. In one embodiment, the barrier layer 420 may include a tantalum nitride layer.
  • The work function layer 430 may be configured to adjust the work function of the formed gate structure, and to adjust threshold voltage of the formed semiconductor device. Specifically, in one embodiment, the gate structure may be made of a PMOS device. Therefore, the work function layer 430 may include a titanium aluminum layer, an aluminum nitride layer, and a titanium layer. By adjusting the thicknesses of the titanium aluminum layer, the aluminum nitride layer, and the titanium layer, the function of adjusting the work funtion of the formed gate structure may be achieved.
  • The adhesive layer 440 may be configured to improve the connection strength between the metal material and the liner structure layer 400. Specifically, the material of the adhesive layer 440 may be the same as the material of the subsequently formed first metal layer. In one embodiment, the adhesive layer 440 may include an aluminum seed layer formed by a chemical vapor deposition process, and an aluminum layer formed by a physical vapor deposition process.
  • Returning to FIG. 9, after forming the gate dielectric layer and the liner structure layer, a firstmetal layer may be formed (S203). FIG. 5 illustrates a corresponding semiconductor structure.
  • As shown in FIG. 5, a first metal layer 510 may be formed on the liner structure layer 400 over the top surface of the dielectric layer 200. In certain embodiments, the liner structure layer 400 may be omitted, and the first metal layer 510 may be formed on the top surface of the dielectric layer 200. In certain other embodiments, other intermediate layer(s) may also be formed between the first metal layer 510 and the dielectric layer 200.
  • The first metal layer 510 may cover the top surface of the liner structure layer 400, and protect the liner structure layer 400 from damages caused by the subsequent planarization process. Specifically, in one embodiment, the first metal layer 510 may be made of aluminum and formed by a physical vapor deposition process.
  • The temperature for forming the first metal layer 510 may be the first temperature. Specifically, the first temperature may be in a range of approximately 300-350° C. Compared to the temperature for forming aluminum gate by the existing techniques, the first temperature is lower. Therefore, the first metal layer 510 may have more compact structure, smaller grains, and stronger strength.
  • If the thickness of the first metal layer 510 is too small, it is difficult to protect the liner structure layer 400 during the subsequent planarization process. Therefore, in one embodiment, the thickness of the first metal layer 510 may be above 300 Å.
  • In addition, because the temperature for forming the first metal layer 510 is low, the first metal layer 510 may have more complete crystal structure and fewer defects. In one embodiment, the first metal layer 510 may also cover the liner structure layer 400 over the bottom of the opening 300 to improve the performance of interface between subsequently formed second metal layer and the liner structure layer 400, and to improve the lattice mismatch issue. Similar to the existing techniques, the first metal layer 510 may also cover the liner structure layer 400 over the side surface of the opening 300 (not labeled).
  • Returning to FIG. 9, after forming the first metal layer, a second metal layer may be formed (S204). FIG. 6 illustrates a corresponding semiconductor structure.
  • As shown in FIG. 6, a second metal layer 520 may be formed. The second metal layer 520 may be configured to fill the opening 300 (shown in FIG. 5) to form a metal gate structure. Specifically, in one embodiment, the metal gate structure may be an aluminum gate. Therefore, both the second metal layer 520 and the first metal layer 510 may be made of the same material, aluminum. The second metal layer 520 may be formed in the opening 300 by a physical vapor deposition process.
  • In one embodiment, the first metal layer 510 may also cover the liner structure layer 400 over the bottom of the opening 300 (shown in FIG. 5). Therefore, the formed metal gate structure may include the first metal layer 510 and the second metal layer 520 filling the opening 300.
  • The temperature for forming the second metal layer 520 may be the second temperature. The second temperature may be higher than the first temperature. Therefore, compared to the first metal layer 510 formed at the first temperature, the second metal layer 520 may have a higher conductivity and better electrical performance, and may improve the electrical performance of the formed metal gate structure. Specifically, the second temperature may be in a range of approximately 400-450° C. In one embodiment, the second metal layer 520 may be made of aluminum, and the second temperature may be approximately 430° C.
  • Further, the second metal layer 520 may be formed on the first metal layer 510. The first metal layer 510 may have lower formation temperature and fewer structural defects. Compared to the metal gate structure directly formed at a high temperature in the existing techniques, the second metal layer 520 may have smaller grains and greater hardness.
  • If the thickness of the second metal layer 520 is too small, it is difficult to sufficiently fill the opening 300 (shown in FIG. 5), thus impacting the electrical performance of the formed metal gate structure. If the thickness of the second metal layer 520 is too large, it is easy to waste materials and to increase the fabrication difficulty. In one embodiment, the thickness of the second metal layer 520 may be in a range of approximately 2000-5000 Å.
  • To ensure the second metal layer 520 completely fill the opening 300 (shown in FIG. 5), in one embodiment, the second metal layer 520 may also be formed over the dielectric layer 200. In other words, the second metal layer 520 may also cover part of the first metal layer 510 over the dielectric layer 200.
  • Returning to FIG. 9, after forming the second metal layer, a metal gate structure may be formed by planarizing the second metal layer and the first metal layer (S205). FIGS. 7-8 illustrate corresponding semiconductor structures.
  • As shown in FIGS. 7-8, a metal gate structure may be formed by planarizing the second metal layer and the first metal layer until the top surface of the dielectric layer 200 is exposed.
  • As shown in FIG. 7, the planarization process may include performing a first planarization process to remove the second metal layer 520 formed over the dielectric layer 200 (shown in FIG. 6).
  • Specifically, a chemical mechanical polishing process may be performed to remove the second metal layer 520 formed over the dielectric layer 200. To improve the efficiency of the planarization process and to shorten the time of forming the metal gate structure, in one embodiment, during performing the first planarization process by the chemical mechanical polishing process, the applied pressure may be greater than 1.5 Pa, and the hardness of polishing pad may be in a range of approximately 80-100 MPa.
  • Because of the buffering effect of the first metal layer 510, the second metal layer 520 may have even smaller grains and even greater hardness. Therefore, during the first planarization process, amount of the formed fragments may be small, which may effectively reduce the possibility of scratching the wafer surface, reduce scratches on the wafer surface, and improve the flatness of the wafer surface after the planarization process.
  • In one embodiment, to improve the speed of the planarization process, during performing the first planarization process, part of thickness of the first metal layer 510 over the dielectric layer 200 may also be removed, such that the thickness of the first metal layer 510 over the dielectric layer 200 may reach a preset thickness.
  • If the preset thickness is too small, the remaining first metal layer 510A may be difficult to protect the liner structure layer 400. If the preset thickness is too large, it may impact increasing the speed of the planarization process. Specifically, the preset distance may be in a range of approximately 300-1000 Å. Therefore, in one embodiment, during the first planarization process, the total thickness of removing the first metal layer 510 and the second metal layer 520 may be above 3000 Å.
  • As shown in FIG. 8, the planarization process may also include performing a second planarization process to remove the first metal layer 510 or the remaining first metal layer 510A over the dielectric layer 200 until the top surface of the liner structure layer 400 is exposed.
  • Specifically, the second planarization process may be performed by a chemical mechanical polishing process. The chemical mechanical polishing process may stop when the top surface of the liner structure layer 400 is exposed. In one embodiment, during performing the second planarization process by the chemical mechanical polishing process, the applied pressure may be in a range of approximately 1-2 Pa, and the hardness of the polishing pad may be in a range of approximately 20-40 MPa.
  • Because the temperature for forming the first metal layer 510 is low, the first metal layer 510 may have complete crystal structure, small grains and great hardness. Therefore, during the second planarization process, amount of the formed fragments may be small, which may effectively reduce scratches formed on the wafer surface, and improve the flatness of the wafer surface after the planarization process.
  • During the chemical mechanical polishing process, polishing liquid may be added. The polishing liquid may have an etching effect to improve the efficiency of the chemical mechanical polishing process. Therefore, the liner structure layer 400 may be configured to stop etching during the chemical mechanical polishing process, and to effectively protect the dielectric layer from effects of the second planarization process.
  • Further, as shown in FIG. 8, the planarization process may include performing a third planarization process until the top surface of the remaining second metal layer 520 and the top surface of the dielectric layer 200 are flush.
  • Specifically, the third planarization process may be performed by a chemical mechanical polishing process. In one embodiment, during performing the third planarization process by the chemical mechanical polishing process, the applied pressure may be in a range of approximately 1-2 Pa, and the hardness of the polishing pad may be in a range of approximately 20-40 MPa. Therefore, during the third planarization process, a polishing grinding process may be performed onto the wafer surface to improve the flatness of the wafer surface.
  • Since the first metal layer 510 may be formed over the bottom of the opening, the second metal layer 520 in the opening may have complete crystal structure, small grains and great hardness. During the third planarization process, amount of the formed fragments may be small, which may effectively reduce scratches formed on the wafer surface, and improve the flatness of the wafer surface after the planarization process.
  • The chemical mechanical polishing process may stop when the top surface of the dielectric layer 200 is exposed. Or the chemical mechanical polishing process may remove part of thickness of the dielectric layer 200 and the second metal layer 520, to ensure the liner structure layer 400 and the gate dielectric layer 410 formed on the dielectric layer 200 are thoroughly removed.
  • Specifically, in the existing techniques, the metal layer may be formed by a film deposition process at one time. After the planarization process, the reflectivity of the wafer surface may be 51.3%, and the roughness of the wafer surface may be 10.1%. In the disclosed embodiments, by forming the first metal layer at a low temperature before forming the second metal layer at a high temperature, after forming the metal gate structure by the planarization process, the reflectivity of the wafer surface may be 81.9%, and the roughness of the wafer surface may be 1.64%. Therefore, the disclosed embodiments may effectively improve the flatness of the wafer surface after the planarization process, improve the accuracy of the process, and improve manufacturing yield of the devices.
  • Accordingly, the first metal layer may be formed over the dielectric layer and the bottom of the opening. The second metal layer may be formed, filling the opening. The first metal layer may be formed at the first temperature, and the second metal layer may be formed at the second temperature. The second temperature may be higher than the first temperature. Therefore, the first metal layer may have complete crystal structure, small grains and great hardness. Because of the buffering effect of the first metal layer, the second metal layer may have even smaller grains and even greater hardness. Therefore, during the polishing process, amount of the formed fragments may be small, which may effectively reduce the possibility of scratching the wafer surface, to improve the flatness of the wafer surface after the planarization process.
  • The above detailed descriptions only illustrate certain exemplary embodiments of the present invention, and are not intended to limit the scope of the present invention. Those skilled in the art can understand the specification as whole and technical features in the various embodiments can be combined into other embodiments understandable to those persons of ordinary skill in the art. Any equivalent or modification thereof, without departing from the spirit and principle of the present invention, falls within the true scope of the present invention.

Claims (20)

What is claimed is:
1. A method for fabricating a semiconductor structure, comprising:
providing a substrate having a dielectric layer formed on the substrate, wherein an opening is formed in the dielectric layer, and bottom of the opening exposes surface of the substrate;
forming a first metal layer over the top of the dielectric layer, wherein a temperature for forming the first metal layer is a first temperature;
forming a second metal layer filling the opening, wherein a temperature for forming the second metal layer is a second temperature, and the second temperature is higher than the first temperature; and
planarizing the second metal layer and the first metal layer until the top surface of the dielectric layer is exposed.
2. The method according to claim 1, wherein:
the first temperature is in a range of approximately 300-350° C.
3. The method according to claim 1, wherein:
the second temperature is in a range of approximately 400-450° C.
4. The method according to claim 1, wherein:
the first metal layer and the second metal layer are made of a same material.
5. The method according to claim 1, wherein:
the first metal layer and the second metal layer are made of aluminum.
6. The method according to claim 1, wherein:
a physical vapor deposition process is performed to form the first metal layer or the second metal layer.
7. The method according to claim 1, wherein
a thickness of the first metal layer is larger than 300 Å.
8. The method according to claim 1, wherein:
a thickness of the second metal layer is in a range of approximately 2000-5000 Å.
9. The method according to claim 1, wherein:
the first metal layer is also formed over the bottom of the opening; and
the second metal layer is also formed over the dielectric layer.
10. The method according to claim 1, wherein a planarization process includes:
performing a first planarization process to remove the second metal layer formed over the dielectric layer;
performing a second planarization process to remove the first metal layer formed over the dielectric layer until the top surface of the liner structure layer is exposed; and
performing a third planarization process until the top surface of the remaining second metal layer and the top surface of the dielectric layer are flush.
11. The method according to claim 10, wherein the first, planarization process also includes:
removing part of thickness of the first metal layer formed over the dielectric layer, such that the thickness of the first metal layer formed over the dielectric layer reaches a preset thickness.
12. The method according to claim 11, wherein:
the preset thickness is in a range of approximately 300-1000 Å.
13. The method according to claim 10, wherein one or more processes in the first planarization process, the second planarization process and the third planarization process include:
a chemical mechanical polishing process.
14. The method according to claim 13, wherein, during the first planarization process performed by the chemical mechanical polishing process:
pressure is larger than 1.5 Pa; and
a hardness of the polishing pad is in a range of approximately 80-100 MPa.
15. The method according to claim 13, wherein, during the second planarization process performed by the chemical mechanical polishing process:
a pressure is in a range of approximately 1-2 Pa; and
a hardness of the polishing pad is in a range of approximately 20-40 MPa.
16. The method according to claim 13, wherein, during the third planarization process performed by the chemical mechanical polishing process:
a pressure is in a range of approximately 1-2 Pa; and
a hardness of the polishing pad is in a range of approximately 20-40 MPa.
17. The method according to claim 1, after providing the substrate and before forming the first metal layer, further including:
forming a liner structure layer over the bottom and side surfaces of the opening.
18. The method according to claim 17, wherein, along a direction away from the substrate, the liner structure layer sequentially includes:
a barrier layer;
a work fUnction layer; and
an adhesive layer.
19. The method according to claim 18, wherein:
the barrier layer includes a tantalum nitride layer;
the work function layer includes a titanium aluminum layer, an aluminum nitride layer, and a titanium layer sequentially formed on the barrier layer; and
the adhesive layer is made of the same material as the first metal layer.
20. The method according to claim 1, after providing the substrate and before forming the first metal layer, further including:
the semiconductor structure is a metal gate structure; and
forming a gate dielec tric layer covering the bottom of the opening.
US15/476,249 2016-04-07 2017-03-31 Semiconductor structure and fabrication method thereof Active US10062572B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610213621 2016-04-07
CN201610213621.7 2016-04-07
CN201610213621.7A CN107275278A (en) 2016-04-07 2016-04-07 The forming method of semiconductor structure

Publications (2)

Publication Number Publication Date
US20170294315A1 true US20170294315A1 (en) 2017-10-12
US10062572B2 US10062572B2 (en) 2018-08-28

Family

ID=58464299

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/476,249 Active US10062572B2 (en) 2016-04-07 2017-03-31 Semiconductor structure and fabrication method thereof

Country Status (3)

Country Link
US (1) US10062572B2 (en)
EP (1) EP3240021B1 (en)
CN (1) CN107275278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190067296A1 (en) * 2017-08-24 2019-02-28 United Microelectronics Corp. Buried word line of a dynamic random access memory and method for fabricating the same
US11164957B2 (en) * 2017-05-30 2021-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with adhesion layer and method of making

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108573871B (en) * 2017-03-07 2021-06-08 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method of forming the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090229667A1 (en) * 2008-03-14 2009-09-17 Solarmer Energy, Inc. Translucent solar cell
US20120164923A1 (en) * 2010-12-23 2012-06-28 Semiconductor Manufacturing International (Beijing) Corporation Polishing method
US20130001706A1 (en) * 2011-06-28 2013-01-03 International Business Machines Corporation Method and Structure for Low Resistive Source and Drain Regions in a Replacement Metal Gate Process Flow
US20130193577A1 (en) * 2012-02-01 2013-08-01 I-Ming Tseng Structure of electrical contact and fabrication method thereof
US20130302974A1 (en) * 2012-05-08 2013-11-14 Globalfoundries Inc. Replacement gate electrode fill at reduced temperatures

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930005238B1 (en) * 1990-10-25 1993-06-16 현대전자산업 주식회사 Metal thin film flatness method
US6287963B1 (en) * 1990-11-05 2001-09-11 Stmicroelectronics, Inc. Method for forming a metal contact
EP0799903A3 (en) * 1996-04-05 1999-11-17 Applied Materials, Inc. Methods of sputtering a metal onto a substrate and semiconductor processing apparatus
US6881664B2 (en) * 2001-08-28 2005-04-19 Lsi Logic Corporation Process for planarizing upper surface of damascene wiring structure for integrated circuit structures
KR100455382B1 (en) * 2002-03-12 2004-11-06 삼성전자주식회사 Method for forming metal interconnections of semiconductor device having dual damascene structure
JP2005116592A (en) * 2003-10-03 2005-04-28 Takehide Shirato Field effect transistor
US20120326243A1 (en) * 2011-06-22 2012-12-27 Hsin-Fu Huang Transistor having aluminum metal gate and method of making the same
US8525232B2 (en) * 2011-08-10 2013-09-03 International Business Machines Corporation Semiconductor structure having a wetting layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090229667A1 (en) * 2008-03-14 2009-09-17 Solarmer Energy, Inc. Translucent solar cell
US20120164923A1 (en) * 2010-12-23 2012-06-28 Semiconductor Manufacturing International (Beijing) Corporation Polishing method
US20130001706A1 (en) * 2011-06-28 2013-01-03 International Business Machines Corporation Method and Structure for Low Resistive Source and Drain Regions in a Replacement Metal Gate Process Flow
US20130193577A1 (en) * 2012-02-01 2013-08-01 I-Ming Tseng Structure of electrical contact and fabrication method thereof
US20130302974A1 (en) * 2012-05-08 2013-11-14 Globalfoundries Inc. Replacement gate electrode fill at reduced temperatures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11164957B2 (en) * 2017-05-30 2021-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with adhesion layer and method of making
US11177365B2 (en) * 2017-05-30 2021-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with adhesion layer
US20190067296A1 (en) * 2017-08-24 2019-02-28 United Microelectronics Corp. Buried word line of a dynamic random access memory and method for fabricating the same
US11251187B2 (en) * 2017-08-24 2022-02-15 United Microelectronics Corp. Buried word line of a dynamic random access memory and method for fabricating the same

Also Published As

Publication number Publication date
CN107275278A (en) 2017-10-20
US10062572B2 (en) 2018-08-28
EP3240021B1 (en) 2020-09-23
EP3240021A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US10347729B2 (en) Device for improving performance through gate cut last process
US9105632B2 (en) Semiconductor structures
US11877442B2 (en) Semiconductor memory device
CN107833891B (en) Semiconductor device and method for manufacturing the same
CN107346759B (en) Semiconductor structure and manufacturing method thereof
US9384978B1 (en) Method of forming trenches
US10410920B2 (en) Semiconductor structure and fabrication method thereof
US10062572B2 (en) Semiconductor structure and fabrication method thereof
US10056407B2 (en) Semiconductor device and a method for fabricating the same
CN103904028A (en) Semiconductor structure and manufacturing method thereof
US9543212B2 (en) Preventing over-polishing of poly gate in metal-gate CMP
TWI531028B (en) High performance self aligned contacts and method of forming same
US8435900B2 (en) Method for manufacturing a transistor
US9646840B2 (en) Method for CMP of high-K metal gate structures
KR101695902B1 (en) Method of manufacturing a semiconductor device
CN109727919B (en) Semiconductor device, manufacturing method thereof and electronic device
CN108428633A (en) Semiconductor structure with gate height scaling
US9105748B1 (en) Integration of a non-volatile memory (NVM) cell and a logic transistor and method therefor
CN111599756B (en) Method for manufacturing semiconductor device
US11232981B2 (en) Semiconductor device and fabrication method thereof
US10573553B2 (en) Semiconductor product and fabrication process
CN114078744A (en) Semiconductor structure and forming method thereof
US20080303098A1 (en) Semiconductor Device Manufactured Using a Method to Reduce CMP Damage to Low-K Dielectric Material

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DENG, WU FENG;REEL/FRAME:041814/0163

Effective date: 20170316

Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DENG, WU FENG;REEL/FRAME:041814/0163

Effective date: 20170316

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4