US20170241449A1 - Jet Pipe Arrangement For A Servo Valve - Google Patents

Jet Pipe Arrangement For A Servo Valve Download PDF

Info

Publication number
US20170241449A1
US20170241449A1 US15/363,704 US201615363704A US2017241449A1 US 20170241449 A1 US20170241449 A1 US 20170241449A1 US 201615363704 A US201615363704 A US 201615363704A US 2017241449 A1 US2017241449 A1 US 2017241449A1
Authority
US
United States
Prior art keywords
jet pipe
servo valve
electromagnet
pipe arrangement
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/363,704
Inventor
Lukasz WIKTORKO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Assigned to HS WROCLAW SP. Z O.O reassignment HS WROCLAW SP. Z O.O ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WIKTORKO, Lukasz
Assigned to HAMILTON SUNDSTRAND CORPORATION reassignment HAMILTON SUNDSTRAND CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HS WROCLAW SP. Z.O.O.
Publication of US20170241449A1 publication Critical patent/US20170241449A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • F15B13/0436Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves the pilot valves being of the steerable jet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0402Valve members; Fluid interconnections therefor for linearly sliding valves, e.g. spool valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • F15B2013/0448Actuation by solenoid and permanent magnet

Definitions

  • Servo valves are generally used when accurate position control is required, such as, for example, control of a primary flight surface. Servo valves can be used to control hydraulic actuators or hydraulic motors. They are common in industries which include, but are not limited to, automotive systems, aircraft and the space industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Servomotors (AREA)

Abstract

A jet pipe arrangement for a servo valve, the jet pipe arrangement including a jet pipe, at least two receivers in operable communication with the jet pipe. The jet pip arrangement further includes an electromagnet in direct magnetic communication with the jet pipe such that, in use, the jet pipe is movable in response to changes in a magnetic field created by the electromagnet to distribute flow from the jet pipe asymmetrically between the at least two receivers.

Description

    FOREIGN PRIORITY
  • This application claims priority to European Patent Application No. 16156561.9 filed Feb. 19, 2016, the entire contents of which is incorporated herein by reference.
  • TECHNICAL FIELD
  • This disclosure relates generally to a hydraulic servo valve. In particular, the disclosure relates to an electromagnetic jet pipe arrangement within a hydraulic servo valve.
  • BACKGROUND OF THE INVENTION
  • Servo valves are generally used when accurate position control is required, such as, for example, control of a primary flight surface. Servo valves can be used to control hydraulic actuators or hydraulic motors. They are common in industries which include, but are not limited to, automotive systems, aircraft and the space industry.
  • A known type of hydraulic servo valve is a flapper or jet pipe arrangement. In this arrangement, the primary components in the servo valve are the torque motor, flapper nozzle or jet pipe and one or more servos.
  • SUMMARY OF THE INVENTION
  • In one example, there is provided a jet pipe arrangement for a servo valve, the jet pipe arrangement including a jet pipe, at least two receivers in operable communication with the jet pipe. The jet pip arrangement further includes an electromagnet in direct magnetic communication with the jet pipe such that, in use, the jet pipe is movable in response to changes in a magnetic field created by the electromagnet to distribute flow from the jet pipe asymmetrically between the at least two receivers.
  • In another example, there is provided a servo valve. The servo valve includes the jet pipe arrangement discussed above and a spool located between a first chamber and a second chamber, wherein the spool is movable between the first chamber and the second chamber. The servo valve further includes a supply pressure inlet and a flexible tube connected to the supply pressure inlet and the first end of the jet pipe. The one or more receivers are fluidly connected to the first and second chambers, such that, in use, when the torque motor is activated, the spool can move position between the first and second chambers.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a known arrangement of a servo valve; and
  • FIG. 2 shows an example of a new type of servo valve.
  • DETAILED DESCRIPTION
  • FIG. 1 shows generally a known arrangement of a hydraulic servo valve 10. The hydraulic servo valve 10 shown in FIG. 1 represents a jet pipe type arrangement as discussed above. The primary components of the jet pipe type arrangement are the jet tube 101 for receiving a supply pressure, an armature 102 connected to the jet pipe 101, and an electromagnet 105 surrounding the armature 102. In known arrangements, the jet pipe 101 and the armature 102 are separate components. An electrical input (not shown) is connected to the electromagnet 105. When an electrical current is supplied to the electromagnet 105, the armature 102 changes position due to electromagnetic forces supplied by the electromagnet 105. The jet pipe arrangement shown in FIG. 1 may be contained within a housing 106.
  • In the example shown, the armature 102 is connected in a perpendicular manner to the jet pipe 101, or is an integral part of the jet pipe 101—the integral part being perpendicular to the jet pipe 101. The electromagnet 105 provides a torque that is proportional to the electrical current that is provided by the electrical input. The armature 102 may include coils (not shown) and the electromagnet 105 consists of a set of permanent magnets (not shown) surrounding the armature 102. When a current is applied to the armature 102, magnetic flux acting on the ends of the armature 102 is developed. The direction of the magnetic flux (force) depends on the sign (direction) of the current. The magnetic flux will cause the armature tips (102 a, 102 b) to be attracted to the electromagnet 105 (current direction determines which magnetic pole is attracting and which one is repelling). This magnetic force creates an applied torque on the jet pipe 101, which is proportional to applied current. The jet pipe 101 rotates and interacts with a spool portion (shown generally as 107 in FIG. 1).
  • The primary components of the spool portion 107 are receivers 108 a and 108 b that are in fluid communication with chambers 104 a and 104 b. There is also provided a spool 103 which is movable between chambers 104 a and 104 b. The movement of the spool 103 is accurately controlled by the jet pipe 101 and the pressure provided in chambers 104 a and 104 b.
  • The hydraulic servo valve 10 also includes a supply pressure inlet flexible tube 111 connected to a supply pressure inlet 109 that provides fluid into the flexible tube 111. The fluid passes through a filter 112 and then through jet pipe 101. At the end of the jet pipe 101 is a nozzle 113.
  • In use, the jet pipe 101 converts kinetic energy of moving fluid into static pressure. When the jet pipe 101 is centred between the receivers 108 a and 108 b, the pressure on the spool 103 is equal. However, when the jet pipe 101 is rotated by the armature 102 and electromagnet 105 toward one of the receivers—say 108 a, the pressure at this receiver 108 a is greater than the other receiver 108 b. This creates a load of imbalance on the servo 103 causing the spool 103 to move. If, for example, the jet pipe 101 is rotated toward the receiver 108 a, this could cause the spool 103 to move to the right and into chamber 104 b, as the pressure would be greater in chamber 104 a, and the pressure would be decreased in chamber 104 b. As the spool 103 moves from a null position—i.e., when the pressure is equal in chambers 104 a and 104 b — outlets 110 a and 110 b can control pressure in an actuator (not shown). The actuator part of the servoactuator has the same characteristics as any known hydraulic actuator.
  • Whilst the type of arrangement shown in FIG. 1 controls the position of the jet pipe 101 and the spool 103, this arrangement is costly and complex due to the amount of components necessary for the servo valve 10. What is needed therefore is a new type of servo valve that reduces the weight and size of known arrangements of servo valves, and to simplify the structure in order to reduce costs and complexity of the device.
  • FIG. 2 shows a new type of hydraulic servo valve 20. Here, the jet type arrangement includes a jet pipe 201 for receiving a supply pressure, and an electromagnet 205. The jet pipe arrangement shown in FIG. 2 may be contained within a housing 206. The jet pipe 201 may have a first end 201 a and a second end 201 b. The electromagnet 205 is arranged to surround the jet pipe 201. In the example shown in FIG. 2, the electromagnet 205 surrounds the second end 201 b. However, it is to be understood that the electromagnet 205 may surround the first end 201 a or any portion of the jet pipe 201 extending between the first end 201 a and the second end 201 b. The jet pipe 201, of FIG. 2, has no armature. Therefore, the electromagnet 205 interacts with the jet pipe 201 only. The jet pipe 201 of FIG. 2 may include a coating (not shown) with magnetic properties that interact with the electromagnet 205. In one example, the coating of the jet pipe may be iron oxide nanoparticles. In another example, the jet pipe 201 of FIG. 2 may include neodymium magnets (not shown) on an outer surface of the jet pipe 201 that interact with the electromagnet 205. In a further example, the jet pipe 201 may include windings around the outer surface of the jet pipe 201 to interact with the electromagnet 205.
  • An electrical input (not shown) is applied to the electromagnet 205. When an electrical current is supplied to the electromagnet 205, the jet pipe 201 changes position due to electromagnetic forces supplied by the electromagnet 205. The rotation of the jet pipe 201 is controlled by the electromagnetic forces supplied by the electromagnet 205. In the example shown in FIG. 2, there is no armature—therefore, the electromagnet 205 directly causes the jet pipe 201 to rotate. Advantageously, this reduces the overall weight of a servo valve and reduces the number of parts in the servo valve, which reduces the overall complexity and cost of the servo valve.
  • The electromagnet 205 provides a torque that is proportional to the electrical current that is provided by the electrical input. The jet pipe 201 may include a coating or windings, as discussed above, and the electromagnet 205 may consist of a set of permanent magnets surrounding the jet pipe 201. When a current is applied to the jet pipe 201, magnetic flux acting on the jet pipe 201 is developed. The direction of the magnetic flux (force) depends on the sign (direction) of the current. The magnetic flux will cause the jet pipe 201 to be attracted to the torque motor 205 (current direction determines which magnetic pole is attracting and which one is repelling). This magnetic force creates an applied torque on the jet pipe 201, which is proportional to applied current. The jet pipe 201 rotates and interacts with a spool portion (shown generally as 207 in FIG. 2).
  • The spool portion 207 may include receivers 208 a and 208 b that are in fluid communication with chambers 204 a and 204 b. There is also provided a spool 203 which is movable between chambers 204 a and 204 b. The movement of the spool 203 is accurately controlled by the jet pipe 201 and the pressure provided in chambers 204 a and 204 b.
  • The hydraulic servo valve 20 may also include a supply pressure inlet flexible tube 211 connected to a supply pressure inlet 209 that may provide fluid into the flexible tube 211. The fluid may pass through a filter 212 and then through jet pipe 201. At the end of the jet pipe 201 may be a nozzle 213.
  • In use, the jet pipe 201 converts kinetic energy of moving fluid into static pressure. When the jet pipe 201 is positioned relative to the receivers 208 a and 208 b such that fluid flow through the jet pipe 201 is evenly divided between the receivers 208 a and 208 b, the pressure in the chambers 204 a and 204 b on opposing sides of the spool 203 is equal. However, when at least a portion of the jet pipe 201, such as second end 201 b, for example, of the whole of the jet pipe 201 is moved by the electromagnet 205 such that fluid flow through the jet pipe 201 is unevenly distributed between the receivers 208 a and 208 b, the pressure in the receiver that receives the greater flow causes a load of imbalance on the spool 203 by providing greater pressure to the chamber 204 a or 204 b that is fluidically connected to the receiver 208 a, 208 b receiving the greater flow. This pressure difference causes the spool 203 to move. If, for example, the jet pipe 201 is rotated toward the receiver 208 a, this could cause the spool 203 to move to the right and into chamber 204 b, as the pressure would be greater in chamber 204 a, and the pressure would be decreased in chamber 204 b. As the spool 203 moves from a null position—i.e., when the pressure is equal in chambers 204 a and 204 b— outlets 210 a and 210 b can control pressure in an actuator (not shown). The actuator part of the servoactuator has the same characteristics as any known hydraulic actuator.
  • Although this disclosure has been described in terms of preferred examples, it should be understood that these examples are illustrative only and that the claims are not limited to those examples. Those skilled in the art will be able to make modifications and alternatives in view of the disclosure which are contemplated as falling within the scope of the appended claims.

Claims (10)

1. A jet pipe arrangement for a servo valve, said jet pipe arrangement comprising:
a jet pipe;
at least two receivers in operable communication with the jet pipe; and
an electromagnet in direct magnetic communication with the jet pipe such that, in use, the jet pipe is movable in response to changes in a magnetic field created by the electromagnet to distribute flow from the jet pipe asymmetrically between the at least two receivers.
2. The jet pipe arrangement of claim 1, wherein the jet pipe arrangement has no armature.
3. The jet pipe arrangement of claim 1, wherein the electromagnet is in direct magnetic communication with a first end of the jet pipe.
4. The jet pipe arrangement of claim 1, wherein the electromagnet is in direct magnetic communication with a second end of the jet pipe.
5. The jet pipe arrangement of claim 1, wherein the electromagnet is in direct communication with a section between a first end and a second end of the jet pipe.
6. The jet pipe arrangement of claim 1, wherein the jet pipe has a coating on its outer surface, wherein the coating has magnetic properties.
7. The jet pipe arrangement of claim 6, wherein the coating is iron oxide nanoparticles.
8. The jet pipe arrangement of claim 1, wherein the jet pipe includes neodymium magnets positioned on its outer surface.
9. A servo valve, said servo valve comprising:
the jet pipe arrangement of any preceding claim;
a spool located between a first chamber and a second chamber, wherein the spool is movable between the first chamber and the second chamber;
a supply pressure inlet;
a flexible tube connected to the supply pressure inlet and the first end of the jet pipe; and
wherein the one or more receivers are fluidly connected to the first and second chambers, such that, in use, when the torque motor is activated, the spool can move position between the first and second chambers.
10. The servo valve of claim 9, wherein the servo valve further comprises:
one or more outlets to withdraw fluid from the servo valve.
US15/363,704 2016-02-19 2016-11-29 Jet Pipe Arrangement For A Servo Valve Abandoned US20170241449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16156561.9A EP3208473B1 (en) 2016-02-19 2016-02-19 Jet pipe arrangement for a servo valve
EP16156561.9 2016-02-19

Publications (1)

Publication Number Publication Date
US20170241449A1 true US20170241449A1 (en) 2017-08-24

Family

ID=55411263

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/363,704 Abandoned US20170241449A1 (en) 2016-02-19 2016-11-29 Jet Pipe Arrangement For A Servo Valve

Country Status (2)

Country Link
US (1) US20170241449A1 (en)
EP (1) EP3208473B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108506257A (en) * 2018-02-07 2018-09-07 同济大学 A kind of threeway jet pipe servo valve jet axis track debugging apparatus and method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282283A (en) * 1963-12-23 1966-11-01 Gocko Regulator Co Ltd Hydraulic regulating system and apparatus
US3286719A (en) * 1963-12-30 1966-11-22 Ling Temco Vought Inc Piezoelectric fluid jet transfer valve
US3390613A (en) * 1967-05-31 1968-07-02 Hobson Ltd H M Electrohydraulic actuators
US3528446A (en) * 1968-02-27 1970-09-15 Sperry Rand Corp Servo valve with resiliently mounted jet pipe
US3835888A (en) * 1971-12-07 1974-09-17 Bosch Gmbh Robert Electro hydraulic servo control valve
US3939857A (en) * 1975-06-24 1976-02-24 Bernaerts Henry J Dual piezoelectric fluid jet transfer valve
US4061155A (en) * 1975-05-28 1977-12-06 Robert Bosch G.M.B.H. Electrohydraulic control system
US4227443A (en) * 1978-09-25 1980-10-14 General Electric Company Fail-fixed servovalve
US4378031A (en) * 1979-05-22 1983-03-29 Koehring Company Electrohydraulic servovalve
US20020047426A1 (en) * 1994-02-04 2002-04-25 Pop Stephen L. Motor including embedded permanent-magnet and method for making the same
US20020135256A1 (en) * 2001-03-20 2002-09-26 Nikolic Nikola Tomislav Vicente Electric motor
US6640833B2 (en) * 2000-12-19 2003-11-04 Snecma Moteurs Fail-freeze servovalve
US20130221253A1 (en) * 2012-02-14 2013-08-29 Liebherr-Aerospace Lindenberg Gmbh Servo valve
US20160146228A1 (en) * 2014-11-24 2016-05-26 Goodrich Actuation Systems Sas Servovalve jet pipe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331383A (en) * 1966-04-29 1967-07-18 J D Buchanan Electro-hydraulic servo valves
DE2256208A1 (en) * 1972-11-16 1974-05-22 Bosch Gmbh Robert PRESSURE CONTROL VALVE FOR HYDRAULIC SYSTEMS
IT1126899B (en) * 1979-02-26 1986-05-21 Honeywell Inc IMPROVEMENT IN SERVO VALVE COMPLEXES

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282283A (en) * 1963-12-23 1966-11-01 Gocko Regulator Co Ltd Hydraulic regulating system and apparatus
US3286719A (en) * 1963-12-30 1966-11-22 Ling Temco Vought Inc Piezoelectric fluid jet transfer valve
US3390613A (en) * 1967-05-31 1968-07-02 Hobson Ltd H M Electrohydraulic actuators
US3528446A (en) * 1968-02-27 1970-09-15 Sperry Rand Corp Servo valve with resiliently mounted jet pipe
US3835888A (en) * 1971-12-07 1974-09-17 Bosch Gmbh Robert Electro hydraulic servo control valve
US4061155A (en) * 1975-05-28 1977-12-06 Robert Bosch G.M.B.H. Electrohydraulic control system
US3939857A (en) * 1975-06-24 1976-02-24 Bernaerts Henry J Dual piezoelectric fluid jet transfer valve
US4227443A (en) * 1978-09-25 1980-10-14 General Electric Company Fail-fixed servovalve
US4378031A (en) * 1979-05-22 1983-03-29 Koehring Company Electrohydraulic servovalve
US20020047426A1 (en) * 1994-02-04 2002-04-25 Pop Stephen L. Motor including embedded permanent-magnet and method for making the same
US6640833B2 (en) * 2000-12-19 2003-11-04 Snecma Moteurs Fail-freeze servovalve
US20020135256A1 (en) * 2001-03-20 2002-09-26 Nikolic Nikola Tomislav Vicente Electric motor
US20130221253A1 (en) * 2012-02-14 2013-08-29 Liebherr-Aerospace Lindenberg Gmbh Servo valve
US20160146228A1 (en) * 2014-11-24 2016-05-26 Goodrich Actuation Systems Sas Servovalve jet pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108506257A (en) * 2018-02-07 2018-09-07 同济大学 A kind of threeway jet pipe servo valve jet axis track debugging apparatus and method

Also Published As

Publication number Publication date
EP3208473A1 (en) 2017-08-23
EP3208473B1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
EP3129660B1 (en) Servo valve
EP3321513B1 (en) Servovalve
EP2765314B1 (en) High gain servo valve
CN105556133A (en) Improvements in hydraulic servovalves
US20170241449A1 (en) Jet Pipe Arrangement For A Servo Valve
US10683943B2 (en) Servovalve
US10598297B2 (en) Servovalve
EP3521636B1 (en) Servovalve assembly
EP3412921B1 (en) Servovalve assembly
US11047403B2 (en) Hydraulic servo valve
EP3597939A1 (en) Servo valve
EP3597937B1 (en) Servo valve
US11359731B2 (en) Servo valve assembly
EP3190325B1 (en) Heating of solenoids
US20230003310A1 (en) Electromagnetic valve
US10145490B2 (en) Enhanced pilot stage servovalve
US11629794B2 (en) Servo valve assembly
US11050333B2 (en) Torque motor assembly
EP3626978A1 (en) Servovalve
EP3715644A1 (en) Spool servo valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: HS WROCLAW SP. Z O.O, POLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WIKTORKO, LUKASZ;REEL/FRAME:040952/0806

Effective date: 20160404

Owner name: HAMILTON SUNDSTRAND CORPORATION, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HS WROCLAW SP. Z.O.O.;REEL/FRAME:040952/0830

Effective date: 20160805

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION