US20170167369A1 - Variable compression ratio device - Google Patents

Variable compression ratio device Download PDF

Info

Publication number
US20170167369A1
US20170167369A1 US15/233,339 US201615233339A US2017167369A1 US 20170167369 A1 US20170167369 A1 US 20170167369A1 US 201615233339 A US201615233339 A US 201615233339A US 2017167369 A1 US2017167369 A1 US 2017167369A1
Authority
US
United States
Prior art keywords
eccentric cam
chamber
compression ratio
crank pin
variable compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/233,339
Other versions
US9995214B2 (en
Inventor
Myungsik Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Assigned to HYUNDAI MOTOR COMPANY reassignment HYUNDAI MOTOR COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, MYUNGSIK
Publication of US20170167369A1 publication Critical patent/US20170167369A1/en
Application granted granted Critical
Publication of US9995214B2 publication Critical patent/US9995214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/048Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable crank stroke length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/045Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable connecting rod length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/10Bearings, parts of which are eccentrically adjustable with respect to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/06Adjustable connecting-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof

Definitions

  • the present disclosure relates to a variable compression ratio device. More particularly, the present disclosure relates to a variable compression ratio device for varying a compression ratio by changing a volume of a combustion chamber.
  • the compression ratio refers to a ratio of a volume of air which is compressed in a cylinder by a piston. That is, if a volume of a combustion chamber is changed, the compression ratio may be changed.
  • fuel efficiency may be improved in a low load condition of the engine by raising the compression ratio of an fuel-air mixture, and the occurrence of knocking may be prevented and engine output may be improved in a high load condition of the engine by lowering the compression ratio of the fuel-air mixture.
  • VCR variable compression ratio
  • variable compression ratio apparatus of the related art requires a power source such as a plurality of links, and a motor to change the top dead center of the piston. Therefore, a weight of the engine is increased due to weight of the links and the motor, and a complicated design is required to prevent interference of the plurality of links. In addition, in a case in which it is not easy to change a volume of compressed air, it may be difficult to change the compression ratio.
  • the present disclosure provides a variable compression ratio device varying a compression ratio of a fuel-air mixture by being equipped with an eccentric cam on a big end of a connecting rod and rotating the eccentric cam by using a supplied hydraulic pressure.
  • An aspect of the present disclosure may include a variable compression ratio device mounted to an engine, the engine rotating a crankshaft using a combustion force of a gas mixture and a piston, the variable compression ratio device changing a compression ratio of the mixture and may include: a connecting rod including a small end rotatably connected to the piston and a big end formed with a circular hole to be eccentrically rotatably connected to the crankshaft; a crank pin provided in the crankshaft; an eccentric cam provided to be concentrically rotatable in the hole of the big end and having a crank pin mounting hole eccentrically inserted with the crank pin to be rotatably connected; and a cam rotation unit provided inside the eccentric cam and rotating the eccentric cam in a clockwise or counterclockwise direction in a hole of the big end by a selectively supplied hydraulic pressure.
  • the cam rotation unit may include a diaphragm formed toward a center of the eccentric cam from an exterior circumference of the eccentric cam; a first chamber formed at one side of the diaphragm in the circumferential direction inside the eccentric cam based on the diaphragm; a second chamber formed at another side of the diaphragm in the circumferential direction inside the eccentric cam based on the diaphragm; a first oil passage connecting the interior circumference of the crank pin mounting hole and the first chamber and selectively supplying a hydraulic pressure to the first chamber; and a second oil passage connecting the interior circumference of the crank pin mounting hole and the second chamber and selectively supplying the hydraulic pressure to the second chamber.
  • the first chamber and the second chamber may be formed to be rounded in the circumferential direction of the eccentric cam at both sides of the diaphragm.
  • the first oil passage may be formed through the eccentric cam such that one end of the first oil passage is connected to the interior circumference of the crank pin mounting hole and the other end is connected to the first chamber.
  • the second oil passage may be formed through the eccentric cam such that one end is connected to the interior circumference of the crank pin mounting hole and the other end is connected to the second chamber, and is positioned to be separated from the first oil passage.
  • the eccentric cam may be rotated by the hydraulic pressure that selectively inflows to the first chamber and the second chamber depending on a driving condition of the engine and may vary the relative position of the crank pin to the big end.
  • the eccentric cam may rotate the crank pin mounting hole in the counterclockwise direction when the hydraulic pressure is supplied to the first chamber such that the relative position of the crank pin center to the eccentric cam center is lowered.
  • the eccentric cam may rotate the crank pin mounting hole in the clockwise direction when the hydraulic pressure is supplied to the second chamber such that the relative position of the crank pin center to the eccentric cam center is higher.
  • the diaphragm may be fixed to the interior circumference of the big end through an upper surface.
  • the diaphragm may divide the first and second chambers to selectively supply the hydraulic pressure to the first chamber or the second chamber.
  • the eccentric cam may be mounted on the big end portion of the connecting rod and the hydraulic pressure may be selectively supplied to the eccentric cam depending on the operation state of the engine to change the compression ratio of the mixture, thereby improving the fuel consumption.
  • variable compression ratio device of a conventional link type
  • the structure is simpler, the weight is reduced, and the frictional forces according to the operation are reduced such that the durability may be improved.
  • variable compression ratio device may be mounted while minimizing structural changes of the conventional engine.
  • FIG. 1 is a schematic diagram of a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a front view of a connecting rod applied to a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • FIG. 3 is a perspective view of an eccentric cam of a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • FIGS. 4A and 4B are operation diagrams of a cam rotation unit applied to a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • FIGS. 5A and 5B is an operation diagram of a variable compression ratio device in a high compression ratio state and a low compression ratio state according to an exemplary embodiment of the present disclosure.
  • . . . unit means”, “ . . . part”, and “ . . . member” described in the specification mean units of a general configuration performing at least one function or operation.
  • FIG. 1 is a schematic diagram of a variable compression ratio device according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a front view of a connecting rod applied to a variable compression ratio device according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a projected perspective view of an eccentric cam of a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • FIG. 1 illustrates a cross section of a piston 10 for representing a configuration of a variable compression ratio apparatus 100 . That is, the illustration of the piston 10 based on the cross section is for easily representing a configuration of a connection of the variable compression ratio apparatus 100 inside the piston 10 .
  • variable compression ratio device 1 As illustrated in FIG. 1 , the variable compression ratio device 1 according to the exemplary embodiment of the present disclosure is mounted in an engine (not illustrated) for rotating a crank shaft 30 by receiving a combustion force of an exploded gas mixture from the piston 10 , and changes a mixing ratio according to an operation condition of the engine
  • the piston 10 vertically moves inside a cylinder (not illustrated), and a combustion chamber is formed between the piston 10 and the cylinder.
  • the crankshaft 30 may receive the combustion force from the piston 10 , convert the transmitted combustion force into torque, and transmit the torque to a transmission (not illustrated).
  • the crankshaft 30 may be mounted inside a crank case (not illustrated) formed at a lower end of the cylinder. Further, a plurality of balance weights 32 , or counterweights, is mounted in the crank shaft 30 .
  • the balance weight 32 may decrease a vibration generated during a rotation of the crank shaft 30 .
  • the configuration of the engine including the piston 10 and the crank shaft 30 may be obvious to a person of ordinary skill in the art, and a more detailed description will be omitted.
  • variable compression ratio device 1 may include a connecting rod 20 , a crank pin 34 , an eccentric cam 40 and a cam rotation unit 50 .
  • the connecting rod 20 may receive the combustion force from the piston 10 to be transmitted to the crankshaft 30 .
  • one end of the connecting rod 20 may be rotatably connected to the piston 10 by a piston pin 12
  • the other end of the connecting rod 20 may be rotatably connected to the crankshaft 30 .
  • the other end of the connecting rod 20 may be eccentrically connected to one side of the crankshaft 30 .
  • the one end portion of the connecting rod 20 connected with the piston 10 may be referred to as a small end portion 22
  • the other end portion of the connecting rod 20 connected with the crankshaft 30 may be referred to as a big end portion 24 .
  • the connecting rod 20 may include the small end portion 22 connected rotatably to the piston 10 and the big end portion 24 formed with a hole of a circular shape to be eccentrically and rotatably connected to the crankshaft 30 .
  • the entire shape of the connecting rod 20 having the above-described configuration may be similar to a conventional connecting rod. Accordingly, the variable compression ratio device 1 may be realized while minimizing a structural change of the conventional engine.
  • the crank pin 34 may be provided in the crankshaft 30 .
  • the eccentric cam 40 may include a crank pin mounting hole 42 .
  • the crank pin mounting hole 42 may be eccentrically formed in the eccentric cam 40 .
  • the crank pin 34 may be inserted to the crank pin mounting hole 42 such that the connecting rod 20 and the eccentric cam 40 are connected to the crankshaft 30 to be rotatable relatively. That is, the eccentric cam 40 may be provided in the hole formed in the big end portion 24 of the connecting rod 20 to be concentrically rotatable, thereby being rotated around the center of the crank pin 34 .
  • crank pin 34 may be inserted to the eccentric cam 40 to be eccentric to the crank pin mounting hole 42 to be rotatably connected.
  • a center C 2 of the crank pin 34 may be separated from a center C 2 of the eccentric cam 40 by a predetermined distance.
  • the relative position of the crank pin 45 for the center C 1 of the eccentric cam 40 may be changed. That is, the relative position of the connecting rod 20 and the piston 10 for the crankshaft 30 may be changed. Accordingly, the compression ratio of the mixture may be changed.
  • the cam rotation unit 50 may be provided inside the eccentric cam 40 and rotate the eccentric cam 40 by the selectively supplied hydraulic pressure in the hole of the big end portion 24 in a clockwise, or first direction from the perspective as shown in FIG. 4B , or a counterclockwise, or second, direction, from the perspective as shown in FIG. 4A
  • the cam rotation unit 50 may include a diaphragm 51 , a first chamber 52 , a second chamber 53 , a first oil passage 54 and a second oil passage 55 .
  • the diaphragm 51 may be formed toward the center of the eccentric cam 40 from an exterior circumference of the eccentric cam 40 .
  • the diaphragm 51 may be fixed to an interior circumference of the big end portion 24 through an upper surface.
  • the first chamber 52 may be formed at one side based on the diaphragm 51 in a circumferential direction, or arrangement, inside the eccentric cam 40 .
  • the hydraulic pressure may be selectively supplied inside the first chamber 52 .
  • the second chamber 53 may be formed at another side based on the diaphragm 51 in the circumferential direction, or arrangement, inside the eccentric cam 40 .
  • the hydraulic pressure may be selectively supplied inside the second chamber 53 .
  • first chamber 52 and the second chamber 53 may be formed to be rounded in the circumferential direction, or arrangement, of the eccentric cam 40 at both sides of the diaphragm 51 .
  • the diaphragm 51 may divide the first and second chambers 52 and 53 to selectively supply the hydraulic pressure to the first chamber 52 or the second chamber 53 .
  • the eccentric cam 40 may be rotated in the clockwise, or first, direction with respect to the diaphragm 51 fixed to the hole of the big end portion 24 , and the second chamber 53 may be moved toward the diaphragm 51 .
  • the eccentric cam 40 may be rotated in the counterclockwise, or second, direction with respect to the diaphragm 51 fixed to the hole of the big end portion 24 , and the first chamber 52 may be moved toward the diaphragm 51 .
  • the first oil passage 54 may connect the interior circumference of the crank pin mounting hole 42 and the first chamber 52 and selectively supply the hydraulic pressure to the first chamber 52 .
  • the second oil passage 55 may connect the interior circumference of the crank pin mounting hole 42 and the second chamber 53 and selectively supply the hydraulic pressure to the second chamber 53 .
  • the first oil passage 54 may be formed through the inside of the eccentric cam 40 such that one end of the first oil passage 54 is connected to the interior circumference of the crank pin mounting hole 42 and another end thereof is connected to the first chamber 52 .
  • the second oil passage 55 may be formed through the inside of the eccentric cam 40 such that one end thereof is connected to the interior circumference of the crank pin mounting hole 42 and another end thereof is connected to the second chamber 53 , and the second oil passage 55 may be positioned to be separated from the first oil passage 54 .
  • the eccentric cam 40 may be rotated by the hydraulic pressure that selectively inflows to the first chamber 52 and the second chamber 53 depending on a driving condition of the engine, and a relative position of the crank pin 34 for the big end portion 24 may be varied.
  • the cam rotation unit 50 may vary the relative position of the center C 2 of the crank pin 34 to the center C 1 of the eccentric cam 40 by using the hydraulic pressure that is selectively supplied to the first chamber 52 or the second chamber 53 depending on the driving condition of the engine to vary the compression ratio of the engine.
  • a separate oil supply passage connected to a journal formed in the crankshaft 30 is connected to at least one spool valve and an oil control valve such that the cam rotation unit 50 may be supplied with the oil stored in an oil pan.
  • variable compression ratio device 1 Next, an operation and an action of the variable compression ratio device 1 according to an exemplary embodiment of the present disclosure will be described.
  • FIGS. 4A and 4B are operation diagrams of a cam rotation unit applied to a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • the eccentric cam 40 may be rotated in a counterclockwise, or second, direction with respect to the diaphragm 51 by the hydraulic pressure supplied to the first chamber 52 .
  • the second chamber 53 may be moved toward the diaphragm 51 .
  • the eccentric cam 40 may rotate the crank pin mounting hole 42 in a counterclockwise, or second, direction to decrease the relative position of the center C 2 of the crank pin 34 and the center C 1 of the eccentric cam 40 .
  • the relative position of the center C 2 of the crank pin 34 to the center C 1 of the eccentric cam 40 is lowered, as shown in FIG. 4B .
  • the relative position of the connecting rod 20 and the piston 10 to the crankshaft 30 may be higher than in the state shown in FIG. 4B at an upper changeover point. Accordingly, a distance between the piston pin 12 and the crank pin 34 may increase such that the high compression ratio of the engine is realized.
  • the eccentric cam 40 may be rotated in the clockwise, first, direction with respect to the diaphragm 51 by the hydraulic pressure supplied to the second chamber 53 .
  • the first chamber 52 may be moved toward the diaphragm 51 .
  • the eccentric cam 40 may rotate the crank pin mounting hole 42 in the clockwise, or second, direction such that the relative position of the center C 2 of the crank pin 34 to the center C 1 of the eccentric cam 40 is higher relative to the position shown in FIG. 4A .
  • the relative position of the center C 2 of the crank pin 34 to the center C 1 of the eccentric cam 40 is higher, as shown in FIG. 4B .
  • the relative position of the connecting rod 20 and the piston 10 to the crankshaft 30 may be lower than in the state shown in FIG. 4A at an upper changeover point. Accordingly, a distance between the piston pin 12 and the crank pin 34 may decrease such that the low compression ratio of the engine is realized.
  • the cam rotation unit 50 may vary the relative position of the center C 2 of the crank pin 34 to the center C 1 of the eccentric cam 40 .
  • the relative position of the connecting rod 20 and the piston 10 to the crankshaft 30 may be lower or higher. Accordingly, the high compression ratio or the low compression ratio of the engine may be realized while the distance between the piston pin 12 and the crank pin 34 is changed.
  • FIGS. 5A and 5B are operation diagrams of a variable compression ratio device in a high compression ratio state and a low compression ratio state, respectively, according to an exemplary embodiment of the present disclosure.
  • FIGS. 5A and 5B illustrate, for visual comparison of the low compression ratio and the high compression ratio of the engine, a height P 1 of the piston 10 and a height E 1 of the center C 2 of the eccentric cam 40 in the high compression ratio state of FIG. 5A is indicated by an auxiliary line, and a height P 2 of the piston 10 and a height E 2 of the center C 2 of the eccentric cam 40 in the low compression ratio state of FIG. 5B is indicated by the auxiliary line.
  • the height P 1 of the piston 10 in the high compression ratio state of the engine may be positioned higher than the height P 2 of the piston 10 in the low compression ratio state of the engine.
  • the height E 1 of the center C 1 of the eccentric cam 40 is positioned higher than the height E 2 of the center C 2 of the eccentric cam 40 in the low compression ratio state of the engine.
  • the cam rotation unit 50 if the hydraulic pressure is supplied to the first chamber 52 , while the eccentric cam 40 is rotated in the counterclockwise direction ( FIG. 5A ), the relative position of the center C 2 of the crank pin 34 to the center C 1 of the eccentric cam 40 is lowered. Thus, the distance between the piston pin 12 and the crank pin 34 increases.
  • variable compression ratio device 1 rotates the eccentric cam 40 in the clockwise or the counterclockwise by using the hydraulic pressure supplied to the cam rotation unit 50 to change the relative position of the center C 2 of the crank pin 34 to the center C 1 of the eccentric cam 40 . Accordingly, while the distance between the piston pin 12 and the crank pin 34 is changed, the high compression ratio or the low compression ratio of the engine may be realized.
  • the eccentric cam 40 is mounted on the big end portion 24 of the connecting rod 20 and the hydraulic pressure is selectively supplied to the eccentric cam 40 depending on the operation state of the engine to change the compression ratio of the air-fuel mixture, thereby improving fuel consumption.
  • variable compression ratio device of a conventional link type
  • the structure is simpler, the weight is reduced, and the frictional forces according to the operation are reduced such that the durability may be improved.
  • variable compression ratio device may be mounted while minimizing structural changes of a conventional engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Ocean & Marine Engineering (AREA)

Abstract

A variable compression ratio device mounted to an engine, the engine rotating a crankshaft using a combustion force of a gas mixture and a piston, the variable compression ratio device changing a compression ratio of the mixture and including a connecting rod including a small end rotatably connected to the piston and a big end formed with a circular hole to be eccentrically rotatably connected to the crankshaft, a crank pin provided in the crankshaft, an eccentric cam provided to be concentrically rotatable in the hole of the big end and having a crank pin mounting hole eccentrically inserted with the crank pin to be rotatably connected, and a cam rotation unit provided inside the eccentric cam and rotating the eccentric cam in a clockwise or counterclockwise direction in a hole of the big end by a selectively supplied hydraulic pressure.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of priority to Korean Patent Application No. 10-2015-0177014, filed in the Korean Intellectual Property Office on Dec. 11, 2015, the entire contents of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates to a variable compression ratio device. More particularly, the present disclosure relates to a variable compression ratio device for varying a compression ratio by changing a volume of a combustion chamber.
  • BACKGROUND
  • In general, thermal efficiency of a heat engine increases as a compression ratio becomes higher. Here, the compression ratio refers to a ratio of a volume of air which is compressed in a cylinder by a piston. That is, if a volume of a combustion chamber is changed, the compression ratio may be changed.
  • By changing the compression ratio in accordance with an operational state of an engine, fuel efficiency may be improved in a low load condition of the engine by raising the compression ratio of an fuel-air mixture, and the occurrence of knocking may be prevented and engine output may be improved in a high load condition of the engine by lowering the compression ratio of the fuel-air mixture.
  • In the related art, a variable compression ratio (VCR) apparatus, which changes the compression ratio by changing a top dead center of the piston, has been used.
  • However, the variable compression ratio apparatus of the related art requires a power source such as a plurality of links, and a motor to change the top dead center of the piston. Therefore, a weight of the engine is increased due to weight of the links and the motor, and a complicated design is required to prevent interference of the plurality of links. In addition, in a case in which it is not easy to change a volume of compressed air, it may be difficult to change the compression ratio.
  • The above information disclosed in this Background section is only for enhancement of understanding of the background of the disclosure and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
  • SUMMARY
  • The present disclosure provides a variable compression ratio device varying a compression ratio of a fuel-air mixture by being equipped with an eccentric cam on a big end of a connecting rod and rotating the eccentric cam by using a supplied hydraulic pressure.
  • An aspect of the present disclosure may include a variable compression ratio device mounted to an engine, the engine rotating a crankshaft using a combustion force of a gas mixture and a piston, the variable compression ratio device changing a compression ratio of the mixture and may include: a connecting rod including a small end rotatably connected to the piston and a big end formed with a circular hole to be eccentrically rotatably connected to the crankshaft; a crank pin provided in the crankshaft; an eccentric cam provided to be concentrically rotatable in the hole of the big end and having a crank pin mounting hole eccentrically inserted with the crank pin to be rotatably connected; and a cam rotation unit provided inside the eccentric cam and rotating the eccentric cam in a clockwise or counterclockwise direction in a hole of the big end by a selectively supplied hydraulic pressure.
  • The cam rotation unit may include a diaphragm formed toward a center of the eccentric cam from an exterior circumference of the eccentric cam; a first chamber formed at one side of the diaphragm in the circumferential direction inside the eccentric cam based on the diaphragm; a second chamber formed at another side of the diaphragm in the circumferential direction inside the eccentric cam based on the diaphragm; a first oil passage connecting the interior circumference of the crank pin mounting hole and the first chamber and selectively supplying a hydraulic pressure to the first chamber; and a second oil passage connecting the interior circumference of the crank pin mounting hole and the second chamber and selectively supplying the hydraulic pressure to the second chamber.
  • The first chamber and the second chamber may be formed to be rounded in the circumferential direction of the eccentric cam at both sides of the diaphragm.
  • The first oil passage may be formed through the eccentric cam such that one end of the first oil passage is connected to the interior circumference of the crank pin mounting hole and the other end is connected to the first chamber.
  • The second oil passage may be formed through the eccentric cam such that one end is connected to the interior circumference of the crank pin mounting hole and the other end is connected to the second chamber, and is positioned to be separated from the first oil passage.
  • The eccentric cam may be rotated by the hydraulic pressure that selectively inflows to the first chamber and the second chamber depending on a driving condition of the engine and may vary the relative position of the crank pin to the big end.
  • The eccentric cam may rotate the crank pin mounting hole in the counterclockwise direction when the hydraulic pressure is supplied to the first chamber such that the relative position of the crank pin center to the eccentric cam center is lowered.
  • The eccentric cam may rotate the crank pin mounting hole in the clockwise direction when the hydraulic pressure is supplied to the second chamber such that the relative position of the crank pin center to the eccentric cam center is higher.
  • The diaphragm may be fixed to the interior circumference of the big end through an upper surface.
  • The diaphragm may divide the first and second chambers to selectively supply the hydraulic pressure to the first chamber or the second chamber.
  • According to the variable compression ratio device according to an exemplary embodiment of the present disclosure, the eccentric cam may be mounted on the big end portion of the connecting rod and the hydraulic pressure may be selectively supplied to the eccentric cam depending on the operation state of the engine to change the compression ratio of the mixture, thereby improving the fuel consumption.
  • Also, compared with the variable compression ratio device of a conventional link type, the structure is simpler, the weight is reduced, and the frictional forces according to the operation are reduced such that the durability may be improved.
  • Also, by using the connecting rod and the crankshaft that are applicable to the conventional engine, the variable compression ratio device may be mounted while minimizing structural changes of the conventional engine.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a front view of a connecting rod applied to a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • FIG. 3 is a perspective view of an eccentric cam of a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • FIGS. 4A and 4B are operation diagrams of a cam rotation unit applied to a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • FIGS. 5A and 5B is an operation diagram of a variable compression ratio device in a high compression ratio state and a low compression ratio state according to an exemplary embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • An exemplary embodiment of the present disclosure will hereinafter be described in detail with reference to the accompanying drawings.
  • Exemplary embodiments described in this specification and drawings are merely exemplary embodiments of the present disclosure. It is to be understood that there may be various modifications and equivalents included in the spirit of the present disclosure.
  • The drawings and description are to be regarded as illustrative in nature, and not restrictive. Like reference numerals designate like elements throughout the specification.
  • Further, in the drawings, a size and thickness of each element may be represented for better understanding and ease of description, and the present disclosure is not limited thereto and the thickness of layers, films, panels, regions, etc., may be exaggerated for clarity.
  • In addition, throughout the specification, unless explicitly described to the contrary, the word “comprise” and variations such as “comprises” or “comprising”, will be understood to imply the inclusion of stated elements but not the exclusion of any other elements.
  • In addition, the terms “ . . . unit”, “ . . . means”, “ . . . part”, and “ . . . member” described in the specification mean units of a general configuration performing at least one function or operation.
  • FIG. 1 is a schematic diagram of a variable compression ratio device according to an exemplary embodiment of the present disclosure, FIG. 2 is a front view of a connecting rod applied to a variable compression ratio device according to an exemplary embodiment of the present disclosure, and FIG. 3 is a projected perspective view of an eccentric cam of a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • FIG. 1 illustrates a cross section of a piston 10 for representing a configuration of a variable compression ratio apparatus 100. That is, the illustration of the piston 10 based on the cross section is for easily representing a configuration of a connection of the variable compression ratio apparatus 100 inside the piston 10.
  • As illustrated in FIG. 1, the variable compression ratio device 1 according to the exemplary embodiment of the present disclosure is mounted in an engine (not illustrated) for rotating a crank shaft 30 by receiving a combustion force of an exploded gas mixture from the piston 10, and changes a mixing ratio according to an operation condition of the engine
  • The piston 10 vertically moves inside a cylinder (not illustrated), and a combustion chamber is formed between the piston 10 and the cylinder.
  • The crankshaft 30 may receive the combustion force from the piston 10, convert the transmitted combustion force into torque, and transmit the torque to a transmission (not illustrated). The crankshaft 30 may be mounted inside a crank case (not illustrated) formed at a lower end of the cylinder. Further, a plurality of balance weights 32, or counterweights, is mounted in the crank shaft 30. The balance weight 32 may decrease a vibration generated during a rotation of the crank shaft 30.
  • The configuration of the engine including the piston 10 and the crank shaft 30 may be obvious to a person of ordinary skill in the art, and a more detailed description will be omitted.
  • The variable compression ratio device 1 according to an exemplary embodiment of the present disclosure may include a connecting rod 20, a crank pin 34, an eccentric cam 40 and a cam rotation unit 50.
  • The connecting rod 20 may receive the combustion force from the piston 10 to be transmitted to the crankshaft 30. In order to transmit the combustion force, one end of the connecting rod 20 may be rotatably connected to the piston 10 by a piston pin 12, and the other end of the connecting rod 20 may be rotatably connected to the crankshaft 30.
  • Further, the other end of the connecting rod 20 may be eccentrically connected to one side of the crankshaft 30. In general, the one end portion of the connecting rod 20 connected with the piston 10 may be referred to as a small end portion 22, and the other end portion of the connecting rod 20 connected with the crankshaft 30 may be referred to as a big end portion 24.
  • That is, the connecting rod 20 may include the small end portion 22 connected rotatably to the piston 10 and the big end portion 24 formed with a hole of a circular shape to be eccentrically and rotatably connected to the crankshaft 30.
  • The entire shape of the connecting rod 20 having the above-described configuration may be similar to a conventional connecting rod. Accordingly, the variable compression ratio device 1 may be realized while minimizing a structural change of the conventional engine.
  • The crank pin 34 may be provided in the crankshaft 30. The eccentric cam 40 may include a crank pin mounting hole 42. The crank pin mounting hole 42 may be eccentrically formed in the eccentric cam 40. Also, the crank pin 34 may be inserted to the crank pin mounting hole 42 such that the connecting rod 20 and the eccentric cam 40 are connected to the crankshaft 30 to be rotatable relatively. That is, the eccentric cam 40 may be provided in the hole formed in the big end portion 24 of the connecting rod 20 to be concentrically rotatable, thereby being rotated around the center of the crank pin 34.
  • Also, the crank pin 34 may be inserted to the eccentric cam 40 to be eccentric to the crank pin mounting hole 42 to be rotatably connected.
  • Accordingly, a center C2 of the crank pin 34 may be separated from a center C2 of the eccentric cam 40 by a predetermined distance.
  • Here, if the eccentric cam 40 is rotated, the relative position of the crank pin 45 for the center C1 of the eccentric cam 40 may be changed. That is, the relative position of the connecting rod 20 and the piston 10 for the crankshaft 30 may be changed. Accordingly, the compression ratio of the mixture may be changed.
  • Also, the cam rotation unit 50 may be provided inside the eccentric cam 40 and rotate the eccentric cam 40 by the selectively supplied hydraulic pressure in the hole of the big end portion 24 in a clockwise, or first direction from the perspective as shown in FIG. 4B, or a counterclockwise, or second, direction, from the perspective as shown in FIG. 4A
  • The cam rotation unit 50, as shown in FIG. 3, may include a diaphragm 51, a first chamber 52, a second chamber 53, a first oil passage 54 and a second oil passage 55.
  • The diaphragm 51 may be formed toward the center of the eccentric cam 40 from an exterior circumference of the eccentric cam 40. Here, the diaphragm 51 may be fixed to an interior circumference of the big end portion 24 through an upper surface.
  • The first chamber 52 may be formed at one side based on the diaphragm 51 in a circumferential direction, or arrangement, inside the eccentric cam 40. The hydraulic pressure may be selectively supplied inside the first chamber 52.
  • Also, the second chamber 53 may be formed at another side based on the diaphragm 51 in the circumferential direction, or arrangement, inside the eccentric cam 40. The hydraulic pressure may be selectively supplied inside the second chamber 53.
  • Accordingly, the first chamber 52 and the second chamber 53 may be formed to be rounded in the circumferential direction, or arrangement, of the eccentric cam 40 at both sides of the diaphragm 51.
  • Here, the diaphragm 51 may divide the first and second chambers 52 and 53 to selectively supply the hydraulic pressure to the first chamber 52 or the second chamber 53.
  • Accordingly, if the hydraulic pressure is supplied to the first chamber 52, the eccentric cam 40 may be rotated in the clockwise, or first, direction with respect to the diaphragm 51 fixed to the hole of the big end portion 24, and the second chamber 53 may be moved toward the diaphragm 51.
  • In contrast, if the hydraulic pressure is supplied to the second chamber 53, the eccentric cam 40 may be rotated in the counterclockwise, or second, direction with respect to the diaphragm 51 fixed to the hole of the big end portion 24, and the first chamber 52 may be moved toward the diaphragm 51.
  • The first oil passage 54 may connect the interior circumference of the crank pin mounting hole 42 and the first chamber 52 and selectively supply the hydraulic pressure to the first chamber 52.
  • Also, the second oil passage 55 may connect the interior circumference of the crank pin mounting hole 42 and the second chamber 53 and selectively supply the hydraulic pressure to the second chamber 53.
  • Here, the first oil passage 54 may be formed through the inside of the eccentric cam 40 such that one end of the first oil passage 54 is connected to the interior circumference of the crank pin mounting hole 42 and another end thereof is connected to the first chamber 52.
  • Also, the second oil passage 55 may be formed through the inside of the eccentric cam 40 such that one end thereof is connected to the interior circumference of the crank pin mounting hole 42 and another end thereof is connected to the second chamber 53, and the second oil passage 55 may be positioned to be separated from the first oil passage 54.
  • Accordingly, the eccentric cam 40 may be rotated by the hydraulic pressure that selectively inflows to the first chamber 52 and the second chamber 53 depending on a driving condition of the engine, and a relative position of the crank pin 34 for the big end portion 24 may be varied.
  • That is, the cam rotation unit 50 may vary the relative position of the center C2 of the crank pin 34 to the center C1 of the eccentric cam 40 by using the hydraulic pressure that is selectively supplied to the first chamber 52 or the second chamber 53 depending on the driving condition of the engine to vary the compression ratio of the engine.
  • On the other hand, in an exemplary embodiment, a separate oil supply passage connected to a journal formed in the crankshaft 30 is connected to at least one spool valve and an oil control valve such that the cam rotation unit 50 may be supplied with the oil stored in an oil pan.
  • Next, an operation and an action of the variable compression ratio device 1 according to an exemplary embodiment of the present disclosure will be described.
  • FIGS. 4A and 4B are operation diagrams of a cam rotation unit applied to a variable compression ratio device according to an exemplary embodiment of the present disclosure.
  • As shown in FIG. 4A, in a condition where the engine is operated with a high compression ratio, the hydraulic pressure inflows to the first chamber 52 through the first oil passage 54. Thus, the eccentric cam 40 may be rotated in a counterclockwise, or second, direction with respect to the diaphragm 51 by the hydraulic pressure supplied to the first chamber 52. In this case, the second chamber 53 may be moved toward the diaphragm 51.
  • That is, when the hydraulic pressure is supplied to the first chamber 52, the eccentric cam 40 may rotate the crank pin mounting hole 42 in a counterclockwise, or second, direction to decrease the relative position of the center C2 of the crank pin 34 and the center C1 of the eccentric cam 40.
  • Accordingly, the relative position of the center C2 of the crank pin 34 to the center C1 of the eccentric cam 40 is lowered, as shown in FIG. 4B. In this case, since the actual position of the crankshaft 30 and the crank pin 34 is not changed, the relative position of the connecting rod 20 and the piston 10 to the crankshaft 30 may be higher than in the state shown in FIG. 4B at an upper changeover point. Accordingly, a distance between the piston pin 12 and the crank pin 34 may increase such that the high compression ratio of the engine is realized.
  • As shown in FIG. 4B, in a condition where the engine is operated with a low compression ratio, the hydraulic pressure inflows to the second chamber 53 through the second oil passage 55. Thus, the eccentric cam 40 may be rotated in the clockwise, first, direction with respect to the diaphragm 51 by the hydraulic pressure supplied to the second chamber 53. In this case, the first chamber 52 may be moved toward the diaphragm 51.
  • That is, when the hydraulic pressure is supplied to the second chamber 53, the eccentric cam 40 may rotate the crank pin mounting hole 42 in the clockwise, or second, direction such that the relative position of the center C2 of the crank pin 34 to the center C1 of the eccentric cam 40 is higher relative to the position shown in FIG. 4A.
  • Accordingly, the relative position of the center C2 of the crank pin 34 to the center C1 of the eccentric cam 40 is higher, as shown in FIG. 4B. In this case, since the actual position of the crankshaft 30 and the crank pin 34 is not changed, the relative position of the connecting rod 20 and the piston 10 to the crankshaft 30 may be lower than in the state shown in FIG. 4A at an upper changeover point. Accordingly, a distance between the piston pin 12 and the crank pin 34 may decrease such that the low compression ratio of the engine is realized.
  • That is, if the hydraulic pressure is supplied to the first chamber 52 or the second chamber 53, the cam rotation unit 50 may vary the relative position of the center C2 of the crank pin 34 to the center C1 of the eccentric cam 40.
  • In this case, since the actual position of the crankshaft 30 and the crank pin 34 is not changed, the relative position of the connecting rod 20 and the piston 10 to the crankshaft 30 may be lower or higher. Accordingly, the high compression ratio or the low compression ratio of the engine may be realized while the distance between the piston pin 12 and the crank pin 34 is changed.
  • FIGS. 5A and 5B are operation diagrams of a variable compression ratio device in a high compression ratio state and a low compression ratio state, respectively, according to an exemplary embodiment of the present disclosure.
  • FIGS. 5A and 5B illustrate, for visual comparison of the low compression ratio and the high compression ratio of the engine, a height P1 of the piston 10 and a height E1 of the center C2 of the eccentric cam 40 in the high compression ratio state of FIG. 5A is indicated by an auxiliary line, and a height P2 of the piston 10 and a height E2 of the center C2 of the eccentric cam 40 in the low compression ratio state of FIG. 5B is indicated by the auxiliary line.
  • That is, referring to FIGS. 5A and 5B, the height P1 of the piston 10 in the high compression ratio state of the engine may be positioned higher than the height P2 of the piston 10 in the low compression ratio state of the engine. In this case, the height E1 of the center C1 of the eccentric cam 40 is positioned higher than the height E2 of the center C2 of the eccentric cam 40 in the low compression ratio state of the engine.
  • Accordingly, in the cam rotation unit 50, if the hydraulic pressure is supplied to the first chamber 52, while the eccentric cam 40 is rotated in the counterclockwise direction (FIG. 5A), the relative position of the center C2 of the crank pin 34 to the center C1 of the eccentric cam 40 is lowered. Thus, the distance between the piston pin 12 and the crank pin 34 increases.
  • In contrast, in the cam rotation unit 50, if the hydraulic pressure is supplied to the second chamber 53, while the eccentric cam 40 is rotated in the clockwise direction (FIG. 5B), the relative position of the center C2 of the crank pin 34 to the center C1 of the eccentric cam 40 is higher than as shown in the state of FIG. 5A. Thus, the distance between the piston pin 12 and the crank pin 34 decreases.
  • As described above, the variable compression ratio device 1 according to an exemplary embodiment of the present disclosure rotates the eccentric cam 40 in the clockwise or the counterclockwise by using the hydraulic pressure supplied to the cam rotation unit 50 to change the relative position of the center C2 of the crank pin 34 to the center C1 of the eccentric cam 40. Accordingly, while the distance between the piston pin 12 and the crank pin 34 is changed, the high compression ratio or the low compression ratio of the engine may be realized.
  • Accordingly, if the variable compression ratio device 1 according to the exemplary embodiment of the present disclosure is applied, the eccentric cam 40 is mounted on the big end portion 24 of the connecting rod 20 and the hydraulic pressure is selectively supplied to the eccentric cam 40 depending on the operation state of the engine to change the compression ratio of the air-fuel mixture, thereby improving fuel consumption.
  • Also, compared with the variable compression ratio device of a conventional link type, the structure is simpler, the weight is reduced, and the frictional forces according to the operation are reduced such that the durability may be improved.
  • Also, by using the connecting rod and the crankshaft that are applicable to the conventional engine, the variable compression ratio device may be mounted while minimizing structural changes of a conventional engine.
  • While this disclosure has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the disclosure is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (10)

What is claimed is:
1. A variable compression ratio device mounted to an engine, the engine rotating a crankshaft using a combustion force of a gas mixture and a piston, the variable compression ratio device changing a compression ratio of the mixture and comprising:
a connecting rod including a small end rotatably connected to the piston and a big end formed with a circular hole to be eccentrically rotatably connected to the crankshaft;
a crank pin provided in the crankshaft;
an eccentric cam provided to be concentrically rotatable in the hole of the big end and having a crank pin mounting hole eccentrically inserted with the crank pin to be rotatably connected; and
a cam rotation unit provided inside the eccentric cam and rotating the eccentric cam in a clockwise or counterclockwise direction in a hole of the big end by a selectively supplied hydraulic pressure.
2. The variable compression ratio device of claim 1, wherein the cam rotation unit includes:
a diaphragm formed toward a center of the eccentric cam from an exterior circumference of the eccentric cam;
a first chamber formed at one side of the diaphragm in the circumferential direction inside the eccentric cam based on the diaphragm;
a second chamber formed at the other side of the diaphragm in the circumferential direction inside the eccentric cam based on the diaphragm;
a first oil passage connecting the interior circumference of the crank pin mounting hole and the first chamber and selectively supplying a hydraulic pressure to the first chamber; and
a second oil passage connecting the interior circumference of the crank pin mounting hole and the second chamber and selectively supplying the hydraulic pressure to the second chamber.
3. The variable compression ratio device of claim 2, wherein the first chamber and the second chamber are formed to be rounded in the circumferential direction of the eccentric cam at both sides of the diaphragm.
4. The variable compression ratio device of claim 2, wherein the first oil passage is formed through the eccentric cam such that one end of the first oil passage is connected to the interior circumference of the crank pin mounting hole and the other end is connected to the first chamber.
5. The variable compression ratio device of claim 2, wherein the second oil passage is formed through the eccentric cam such that one end is connected to the interior circumference of the crank pin mounting hole and the other end is connected to the second chamber, and is positioned to be separated from the first oil passage.
6. The variable compression ratio device of claim 2, wherein the eccentric cam is rotated by the hydraulic pressure that selectively inflows to the first chamber and the second chamber depending on a driving condition of the engine and, varies the relative position of the crank pin to the big end.
7. The variable compression ratio device of claim 2, wherein the eccentric cam rotates the crank pin mounting hole in the counterclockwise direction when the hydraulic pressure is supplied to the first chamber such that the relative position of the crank pin center to the eccentric cam center is lowered.
8. The variable compression ratio device of claim 2, wherein the eccentric cam rotates the crank pin mounting hole in the clockwise direction when the hydraulic pressure is supplied to the second chamber such that the relative position of the crank pin center to the eccentric cam center is higher.
9. The variable compression ratio device of claim 2, wherein the diaphragm is fixed to the interior circumference of the big end through an upper surface.
10. The variable compression ratio device of claim 2, wherein the diaphragm divides the first and second chambers to selectively supply the hydraulic pressure to the first chamber or the second chamber.
US15/233,339 2015-12-11 2016-08-10 Variable compression ratio device Active US9995214B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150177014A KR20170069601A (en) 2015-12-11 2015-12-11 Variable compression ratio device
KR10-2015-0177014 2015-12-11

Publications (2)

Publication Number Publication Date
US20170167369A1 true US20170167369A1 (en) 2017-06-15
US9995214B2 US9995214B2 (en) 2018-06-12

Family

ID=58773691

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/233,339 Active US9995214B2 (en) 2015-12-11 2016-08-10 Variable compression ratio device

Country Status (4)

Country Link
US (1) US9995214B2 (en)
KR (1) KR20170069601A (en)
CN (1) CN106870128B (en)
DE (1) DE102016118492A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10526962B2 (en) * 2016-11-23 2020-01-07 Hyundai Motor Company Variable compression ratio apparatus
CN110792510A (en) * 2018-08-03 2020-02-14 现代自动车株式会社 Variable compression ratio apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190018822A (en) * 2017-08-16 2019-02-26 현대자동차주식회사 Variable compression ratio device, and the control method thereof
CN107882861A (en) * 2017-09-30 2018-04-06 中国第汽车股份有限公司 The connecting rod that a kind of length with eccentric part can become
KR20190126504A (en) * 2018-05-02 2019-11-12 현대자동차주식회사 Variable compression ratio engine
KR20200015305A (en) * 2018-08-03 2020-02-12 현대자동차주식회사 Variable compression ratio apparatus
KR20200042755A (en) * 2018-10-16 2020-04-24 현대자동차주식회사 Variable compression ratio device
CN109779754A (en) * 2019-03-18 2019-05-21 杨德涛 A kind of cam control piston type circulator for automobile engine
US11421588B2 (en) 2020-04-02 2022-08-23 Soon Gil Jang Variable compression ratio engine
CN111520396B (en) * 2020-06-05 2021-04-30 武汉理工大学 Crank length variable crankshaft for realizing engine continuous variable compression ratio
CN115653766B (en) * 2022-10-26 2024-05-14 重庆长安汽车股份有限公司 Variable compression ratio engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562068A (en) * 1994-07-13 1996-10-08 Honda Giken Kogyo Kabushiki Kaisha Compression ratio changing device in internal combustion engine
US6622669B1 (en) * 2000-10-18 2003-09-23 Ford Global Technologies, Llc Hydraulic circuit having accumulator for unlocking variable compression ratio connecting rod locking mechanisms-II
US6705255B2 (en) * 2002-06-25 2004-03-16 Ford Global Technologies, Llc Crankshaft for use with a variable compression ratio system
US20130247879A1 (en) * 2012-03-23 2013-09-26 Michael von Mayenburg Combustion engine with stepwise variable compression ratio (svcr)
US9574495B2 (en) * 2013-12-25 2017-02-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Variable compression ratio device for internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3093581B2 (en) 1994-10-13 2000-10-03 株式会社東芝 Rotating anode X-ray tube and method of manufacturing the same
KR101028181B1 (en) 2009-06-25 2011-04-08 현대자동차주식회사 Variable Compression Ratio Engine
KR101510321B1 (en) 2009-06-30 2015-04-08 현대자동차 주식회사 Variable compression ratio apparatus
KR101459428B1 (en) * 2009-12-02 2014-11-10 현대자동차 주식회사 Variable compression ratio device
KR20120010881A (en) 2010-07-27 2012-02-06 현대자동차주식회사 a variable compression ratio apparatus for a vehicle's engine
KR101518945B1 (en) * 2013-12-11 2015-05-12 현대자동차 주식회사 Varialble compression ratio engine that varies compression ratio
KR101510352B1 (en) * 2013-12-30 2015-04-08 현대자동차 주식회사 Variable compression ratio engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562068A (en) * 1994-07-13 1996-10-08 Honda Giken Kogyo Kabushiki Kaisha Compression ratio changing device in internal combustion engine
US6622669B1 (en) * 2000-10-18 2003-09-23 Ford Global Technologies, Llc Hydraulic circuit having accumulator for unlocking variable compression ratio connecting rod locking mechanisms-II
US6705255B2 (en) * 2002-06-25 2004-03-16 Ford Global Technologies, Llc Crankshaft for use with a variable compression ratio system
US20130247879A1 (en) * 2012-03-23 2013-09-26 Michael von Mayenburg Combustion engine with stepwise variable compression ratio (svcr)
US9574495B2 (en) * 2013-12-25 2017-02-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Variable compression ratio device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10526962B2 (en) * 2016-11-23 2020-01-07 Hyundai Motor Company Variable compression ratio apparatus
CN110792510A (en) * 2018-08-03 2020-02-14 现代自动车株式会社 Variable compression ratio apparatus

Also Published As

Publication number Publication date
CN106870128A (en) 2017-06-20
DE102016118492A1 (en) 2017-06-14
CN106870128B (en) 2020-08-21
KR20170069601A (en) 2017-06-21
US9995214B2 (en) 2018-06-12

Similar Documents

Publication Publication Date Title
US9995214B2 (en) Variable compression ratio device
US8555829B2 (en) Variable compression ratio apparatus
KR101020826B1 (en) Variable compression ratio apparatus
US8539917B2 (en) Variable compression ratio apparatus
US8733302B1 (en) Variable compression ratio apparatus
US8646420B2 (en) Variable compression ratio apparatus
US20090107139A1 (en) Variable compression ratio dual crankshaft engine
US9359945B2 (en) Variable compression ratio apparatus
US20090241910A1 (en) Variable Compression Ratio Apparatus
US8499725B2 (en) Variable compression ratio apparatus
JP2009516123A (en) Reciprocating piston type internal combustion engine with variable compression ratio
KR20100005565A (en) Variable compression ratio apparatus
US8720395B2 (en) Variable compression ratio apparatus
CN102889142A (en) Variable compression ratio device with self-locking structure
KR20170071316A (en) Variable compression ratio apparatus
US8757112B2 (en) Variable compression ratio apparatus
US8776736B2 (en) Variable compression ratio apparatus
WO2020135672A1 (en) Engine and automobile having same
US9140182B2 (en) Variable compression ratio control system
KR102525254B1 (en) internal combustion engine
US20130118454A1 (en) Variable compression ratio apparatus
JP2007071155A (en) Compression ratio variable reciprocating cylinder device
US10208662B2 (en) Internal combustion engine
JP2006226115A (en) Hydraulic driving device for internal combustion engine
US10677156B2 (en) Variable compression ratio apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHOI, MYUNGSIK;REEL/FRAME:039782/0936

Effective date: 20160704

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4