US20160230525A1 - Fracturing system layouts - Google Patents

Fracturing system layouts Download PDF

Info

Publication number
US20160230525A1
US20160230525A1 US14/735,745 US201514735745A US2016230525A1 US 20160230525 A1 US20160230525 A1 US 20160230525A1 US 201514735745 A US201514735745 A US 201514735745A US 2016230525 A1 US2016230525 A1 US 2016230525A1
Authority
US
United States
Prior art keywords
high pressure
pressure pumps
variable frequency
formation
fracturing fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/735,745
Inventor
Robert Lestz
Audis Byrd
Norman Myers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PROSTIM LABS LLC
Original Assignee
PROSTIM LABS LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/199,461 external-priority patent/US20140251623A1/en
Priority claimed from US14/511,858 external-priority patent/US20150114652A1/en
Priority to US14/735,745 priority Critical patent/US20160230525A1/en
Application filed by PROSTIM LABS LLC filed Critical PROSTIM LABS LLC
Priority to US14/825,089 priority patent/US20150353816A1/en
Priority to EP16731336.0A priority patent/EP3353377A1/en
Priority to PCT/IB2016/053419 priority patent/WO2016199075A1/en
Priority to UY0001036721A priority patent/UY36721A/en
Priority to US15/179,616 priority patent/US20160281484A1/en
Priority to ARP160101744A priority patent/AR104974A1/en
Assigned to PROSTIM LABS, LLC reassignment PROSTIM LABS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LESTZ, ROBERT, BYRD, AUDIS, MYERS, NORMAN
Priority to US15/186,153 priority patent/US9850422B2/en
Priority to US15/186,162 priority patent/US20160298425A1/en
Priority to US15/186,159 priority patent/US20160298025A1/en
Publication of US20160230525A1 publication Critical patent/US20160230525A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0085Adaptations of electric power generating means for use in boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • Embodiments usable within the scope of the present disclosure relate, generally, to systems and methods for flowing fluid in association with a wellbore, and more specifically, to systems and methods usable for performing fracturing operations on a formation to stimulate production (e.g., of hydrocarbons) therefrom.
  • fracturing operations e.g., of hydrocarbons
  • fracturing To stimulate and/or increase the production of hydrocarbons from a well, a process known as fracturing (colloquially referred to as “fracing”) is performed.
  • a pressurized fluid often water—is pumped into a producing region of a formation at a pressure sufficient to create fractures in the formation, thereby enabling hydrocarbons to flow from the formation with less impedance.
  • Solid matter such as sand, ceramic beads, and/or similar particulate-type materials, can be mixed with the fracturing fluid, this material generally remaining within the fractures after the fractures are formed.
  • proppant serves to prevent the fractures from closing and/or significantly reducing in size following the fracturing operation, e.g., by “propping” the fractures in an open position.
  • proppant can also facilitate the formation of fractures when pumped into the formation under pressure.
  • Non-aqueous fracturing fluids have been used as an alternative to water and other aqueous media, one such successful class including hydrocarbon-based fluids (e.g., crude/refined oils, methanol, diesel, condensate, liquid petroleum glass (LPG) and/or other aliphatic or aromatic compounds).
  • hydrocarbon-based fracturing fluids are inherently compatible with most reservoir formations, being generally non-damaging to formations while creating acceptable fracture geometry.
  • LPG liquid petroleum glass
  • enhanced safety preparations and equipment are necessary when using such fluids for wellbore operations.
  • hydrocarbon-based fluids are volatile and/or otherwise unsuitable for use at wellbore temperatures and pressures, while lacking the density sufficient to carry many types of proppant.
  • chemical additives e.g., gelling agents, viscosifiers, etc.
  • An example a system describing use of liquid petroleum gas is described in U.S. Pat. No. 8,408,289, which is incorporated by reference herein in its entirety.
  • a fracturing operation typically requires use of one or more high pressure pumps to pressurize the fracturing fluid that is pumped into a wellbore.
  • diesel engines which can be responsible for significant quantities of noise, pollution, and expense at a worksite.
  • Electric drive systems have been contemplated as an alternative to diesel engines; however, such systems require numerous pieces of equipment, extensive cabling and/or similar conduits, and typically utilize on-site power generation, such as a natural gas turbine.
  • Use of turbine prime movers and similar equipment may be unsuitable when utilizing fracturing fluids that include flammable components.
  • An exemplary electrically powered system for use in fracturing underground formations is described in published United States Patent Application 2012/0255734, which is incorporated by reference herein in its entirety.
  • Embodiments usable within the scope of the present disclosure include systems and methods usable to perform fracturing operations on a formation using an electrically powered fracturing spread.
  • FIG. 1 enumerates numerous benefits relating to safety, economy, and sustainability of electrically powered fracturing systems.
  • a power source e.g., a turbine generator and/or a grid-based power source
  • VFDs Variable Frequency Drives
  • the pumps are usable to pressurize a fracturing fluid (e.g., water, propane, or other suitable media, typically combined with proppant) prior to injection of the pressurized fluid into a wellbore to fracture the underlying formation.
  • a fracturing fluid e.g., water, propane, or other suitable media, typically combined with proppant
  • a high pressure pump can be subject to a maximum rate and/or torque at which the pump can be operated without damaging components thereof, and as such, a single VFD or set of VFDs may provide horsepower in excess of what is required by a pump to operate the pump at a maximum rate.
  • embodiments usable within the scope of the present disclosure can include multiple high pressure pumps associated with a single VFD.
  • pumps can be provided with a “breakaway” usable to disconnect a selected pump from a VFD to enable the full power thereof to be provided to one or more pumps that remain connected therewith.
  • a VFD can be associated with different types of pumps (e.g., a qunitiplex and/or a triplex pump), to enable selective use of one or both types of pumps in a manner that minimizes harmonic resonance.
  • disclosed systems can be used with medium voltage (e.g., 4160 volts), enabling smaller, lighter power conduits to be used, facilitating transport, installation, and safety, while minimizing line loss and the required amperage to operate the system.
  • medium voltage e.g., 4160 volts
  • VFDs and/or similar components can be positioned a selected distance (e.g., 30 meters) from the high pressure pumps, thereby minimizing risks of ignition when pumping a flammable medium, such as propane and/or other hydrocarbon-based fracturing fluids. Separation of potential ignition sources from flammable components can eliminate the need to utilize explosion-proof measures (e.g., explosion-proof housings, pressurized environments, etc.)
  • explosion-proof measures e.g., explosion-proof housings, pressurized environments, etc.
  • FIG. 1 depicts a list describing benefits attainable through use of embodiments of systems usable within the scope of the present disclosure.
  • FIG. 2 depicts a diagrammatic view of an embodiment of a system usable within the scope of the present disclosure.
  • FIG. 3 depicts a diagrammatic view of an embodiment of a system usable within the scope of the present disclosure.
  • FIG. 2 depicts a diagrammatic view of an embodiment of a system usable within the scope of the present disclosure, usable to perform fracturing operations on a formation associated with a wellhead.
  • the diagram depicts a cleared zone (e.g., having a radius of about 30 meters) about the wellhead, outside of which the depicted system can be positioned.
  • a plurality of fracturing fluid storage vessels are shown (e.g., six propane storage tanks; however any number and/or type of storage vessel can be used without departing from the scope of the present disclosure), in association with a proppant storage vessel (which can be representative of any number or type of proppant sources and/or containers).
  • the fracturing fluid and proppant storage vessels are shown proximate to the low pressure manifold of the system, where the fracturing fluid and/or proppant can be injected (e.g., as a slurry).
  • a plurality of high pressure pumps (each powered using an associated electric motor) is shown, the pumps being usable to pressurize the fracturing fluid and/or proppant (e.g., at the high pressure manifold of the system) prior to flowing the fracturing fluid and/or proppant to the wellhead (and subsequently into the wellbore to the formation). While the depicted diagram shows eight high pressure pumps and associated motors, it should be understood that any number of high pressure pumps can be used depending on the nature of the operation.
  • FIG. 2 depicts the eight high pressure pumps divided into three groups—two sets of three pumps and one set of two pumps—each grouping of pumps representative of a single transport load (e.g., the number of pumps that could be transported to an operational site on a single trailer.) It should be understood that this division of pumps is merely conceptual, and that depending on the means of transport and/or the characteristics of the pumps, motors, and/or associated equipment, any number of transport loads could be used without departing from the scope of the present disclosure.
  • VFDs Variable Frequency Drives
  • Placement of the VFDs a safe distance from the high pressure pumps can allow propane or a similar flammable medium to be used as a fracturing fluid while minimizing the risk of ignition created by the proximity of VFDs or similar potential ignition sources.
  • FIG. 2 depicts four VFDs (used in association with the eight depicted high pressure pumps and associated electric motors), it should be understood that any number of VFDs or similar devices can be used depending on the nature and/or requirements of an operation and/or characteristics of equipment being used.
  • FIG. 2 depicts the four VFDs as a single grouping of devices, representative of a single transport load—e.g., it is contemplated that four VFDs could be transported to an operational site on a single trailer.
  • any number of transport loads could be used without departing from the scope of the present disclosure.
  • four transport loads could be used to position each of the depicted pumps, motors, and VFDs, which is one half the number of loads required to deploy such a quantity of equipment using conventional configurations.
  • Each VFD is shown in operative association with two high pressure pumps (via the associated electric motors).
  • the maximum rate at which a high pressure pump can be operated is typically limited to the maximum torque able to be withstood by the components thereof.
  • a single VFD may produce horsepower in excess of that which is required to operate a high pressure pump at its maximum rate, and in an embodiment, the horsepower output of a VFD can be generally sufficient to operate two high pressure pumps at a rate suitable for performing a fracturing operation.
  • four conventional VFDs may output approximately 10,000 horsepower, which would be sufficient to operate eight high pressure pumps at approximately their maximum rate.
  • the type and quantity of VFDs and/or pumps and/or electric motors can be selected such that the output of the VFDs is generally equal to the horsepower requirements to operate the associated pumps.
  • one or both pumps coupled with a VFD can include a breakaway or similar means for decoupling from the VFD, such that the entirety of the output from the VFD can be used to drive a single pump (e.g., at an enhanced rate), and/or to enable a second pump to be used as a backup/redundant pump in the case of a fault or failure of a first pump.
  • two pumps associated with a single VFD can include different types of pumps, such that a desired type of pump can be selected for use (e.g., depending on operational conditions, wellbore conditions, types of equipment present/available, etc.). For example, selection between a quintiplex and/or a triplex pump can be used to minimize harmonic resonance.
  • the depicted VFDs are shown in communication with a power source, which can include one or more generators, one or more power storage devices, one or more grid power sources, or combinations thereof.
  • the incoming power can include a medium voltage source (e.g., 4160 volts), allowing use of smaller and lighter conduits, less line loss, lower amperage, etc.
  • a medium voltage source e.g. 4160 volts
  • the need for a separate transformer e.g., to alter the incoming voltage and/or the voltage transmitted between components
  • a separate transformer e.g., to alter the incoming voltage and/or the voltage transmitted between components
  • FIG. 2 depicts eight high pressure pumps and associated electric motors, and four VFDs, independent from trailers or similar transport vehicles (e.g., frame-mounted on the ground or an operational platform or similar surface), in various embodiments, system components could remain in association with trailers or similar transport vehicles to facilitate mobility thereof.
  • trailers or similar transport vehicles e.g., frame-mounted on the ground or an operational platform or similar surface
  • FIG. 3 depicts a diagrammatic view of an embodiment of a system usable within the scope of the present disclosure, usable to perform fracturing operations on a formation associated with a wellhead.
  • the diagram depicts a cleared zone (e.g., having a radius of about 30 meters) about the wellhead, outside of which the depicted system can be positioned.
  • a plurality of fracturing fluid storage vessels are shown (e.g., six water storage tanks; however any number and/or type of storage vessel can be used without departing from the scope of the present disclosure), in association with a proppant storage vessel (which can be representative of any number or type of proppant sources and/or containers).
  • the depicted system describes use of water storage tanks (e.g., containing water for use as a fracturing fluid), the depicted system can incorporate use of any fracturing fluid without departing from the scope of the present disclosure. Due to the close proximity of the depicted VFDs to the depicted high pressure pumps, the depicted configuration is contemplated to be of particular use with non-flammable fracturing fluids.
  • the fracturing fluid and proppant storage vessels are shown proximate to the low pressure manifold of the system, where the fracturing fluid and/or proppant can be injected (e.g., as a slurry).
  • a plurality of high pressure pumps each powered using an associated electric motor and each mounted on an associated trailer, is shown, the pumps being usable to pressurize the fracturing fluid and/or proppant (e.g., at the high pressure manifold of the system) prior to flowing the fracturing fluid and/or proppant to the wellhead (and subsequently into the wellbore to the formation). While the depicted diagram shows eight high pressure pumps and associated motors, it should be understood that any number of high pressure pumps can be used depending on the nature of the operation.
  • VFDs Variable Frequency Drives
  • each trailer is shown having one VFD mounted thereon, adjacent to two high pressure pumps and associated motors.
  • FIG. 3 depicts four VFDs (each used in association with two high pressure pumps and associated electric motors), mounted on four trailers, it should be understood that any number of VFDs or similar devices, and any number of trailers, can be used depending on the nature and/or requirements of an operation and/or characteristics of equipment being used.
  • four transport loads could be used to position each of the depicted pumps, motors, and VFDs, which is one half the number of loads required to deploy such a quantity of equipment using conventional configurations.
  • each VFD is shown in operative association with two high pressure pumps.
  • one or both pumps coupled with a VFD can include a breakaway or similar means for decoupling from the VFD, such that the entirety of the output from the VFD can be used to drive a single pump (e.g., at an enhanced rate), and/or to enable a second pump to be used as a backup/redundant pump in the case of a fault or failure of a first pump.
  • two pumps associated with a single VFD can include different types of pumps, such that a desired type of pump can be selected for use (e.g., depending on operational conditions, wellbore conditions, types of equipment present/available, etc.).
  • the depicted VFDs are shown in communication with one or more power sources, which can include one or more generators, one or more power storage devices, one or more grid power sources, or combinations thereof.
  • the incoming power can include a medium voltage source (e.g., 4160 volts), allowing use of smaller and lighter conduits, less line loss, lower amperage, etc.
  • a medium voltage source e.g. 4160 volts
  • the need for a separate transformer e.g., to alter the incoming voltage and/or the voltage transmitted between components
  • a separate transformer e.g., to alter the incoming voltage and/or the voltage transmitted between components
  • FIG. 3 depicts four mobile trailers, each trailer having two high pressure pumps and a single VFD mounted thereon, in various embodiments, system components could be removed from trailers (e.g., frame mounted on the ground or a similar operational platform) to reduce the footprint of the system and allow use of the trailers for other purposes while the system is deployed.
  • trailers e.g., frame mounted on the ground or a similar operational platform
  • use of two high pressure pumps and a single VFD on a single trailer can enable the two pumps to be operated via the VFD using a single tie line.
  • Using a reduced number of lines for the system in this manner enables the manifold trailer to be reduced in size (e.g., one half of its conventional length), reducing the footprint of the system and facilitating transport thereof.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Systems for stimulation a formation include a plurality of variable frequency drives, each in communication with at least two high pressure pumps. A variable frequency drive actuates at least two electric motors associated with the high pressure pumps, such that the pumps pressurize fracturing fluid, proppant, or combinations thereof for flowing the fracturing fluid, proppant, or combinations thereof into the formation.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority to the U.S. Provisional Patent Application Ser. No. 62/010,302, filed Jun. 10, 2014; U.S. Provisional Patent Application Ser. No. 62/036,284, filed Aug. 12, 2014; U.S. Provisional Patent Application Ser. No. 62/036,297, filed Aug. 12, 2014; is a continuation-in-part of United States Application for Patent having the application Ser. No. 14/199,461, filed Mar. 6, 2014; and is a continuation-in-part of United States Application for Patent having the application Ser. No. 14/511,858, filed Oct. 10, 2014. Each of the above-referenced applications is incorporated by reference herein in its entirety. Additionally incorporated by reference in their entirety, but not claimed for priority, are U.S. Provisional Patent Application Ser. No. 61/774,237, filed Mar. 7, 2013, U.S. Provisional Patent Application Ser. No. 61/790,942, filed Mar. 15, 2013, U.S. Provisional Patent Application Ser. No. 61/807,699, filed Apr. 2, 2013, and U.S. Provisional Patent Application Ser. No. 61/870,350, filed Aug. 27, 2013.
  • FIELD
  • Embodiments usable within the scope of the present disclosure relate, generally, to systems and methods for flowing fluid in association with a wellbore, and more specifically, to systems and methods usable for performing fracturing operations on a formation to stimulate production (e.g., of hydrocarbons) therefrom.
  • BACKGROUND
  • To stimulate and/or increase the production of hydrocarbons from a well, a process known as fracturing (colloquially referred to as “fracing”) is performed. In brief summary, a pressurized fluid—often water—is pumped into a producing region of a formation at a pressure sufficient to create fractures in the formation, thereby enabling hydrocarbons to flow from the formation with less impedance. Solid matter, such as sand, ceramic beads, and/or similar particulate-type materials, can be mixed with the fracturing fluid, this material generally remaining within the fractures after the fractures are formed. The solid material, known as proppant, serves to prevent the fractures from closing and/or significantly reducing in size following the fracturing operation, e.g., by “propping” the fractures in an open position. Some types of proppant can also facilitate the formation of fractures when pumped into the formation under pressure.
  • Non-aqueous fracturing fluids have been used as an alternative to water and other aqueous media, one such successful class including hydrocarbon-based fluids (e.g., crude/refined oils, methanol, diesel, condensate, liquid petroleum glass (LPG) and/or other aliphatic or aromatic compounds). Hydrocarbon-based fracturing fluids are inherently compatible with most reservoir formations, being generally non-damaging to formations while creating acceptable fracture geometry. However, due to the flammability of hydrocarbon-based fluids, enhanced safety preparations and equipment are necessary when using such fluids for wellbore operations. Additionally, many hydrocarbon-based fluids are volatile and/or otherwise unsuitable for use at wellbore temperatures and pressures, while lacking the density sufficient to carry many types of proppant. As such, it is common practice to use chemical additives (e.g., gelling agents, viscosifiers, etc.) to alter the characteristics of the fluids. An example a system describing use of liquid petroleum gas is described in U.S. Pat. No. 8,408,289, which is incorporated by reference herein in its entirety.
  • Independent of the type of fracturing fluid and proppant used, a fracturing operation typically requires use of one or more high pressure pumps to pressurize the fracturing fluid that is pumped into a wellbore. Conventionally, such equipment is driven/powered using diesel engines, which can be responsible for significant quantities of noise, pollution, and expense at a worksite. Electric drive systems have been contemplated as an alternative to diesel engines; however, such systems require numerous pieces of equipment, extensive cabling and/or similar conduits, and typically utilize on-site power generation, such as a natural gas turbine. Use of turbine prime movers and similar equipment may be unsuitable when utilizing fracturing fluids that include flammable components. An exemplary electrically powered system for use in fracturing underground formations is described in published United States Patent Application 2012/0255734, which is incorporated by reference herein in its entirety.
  • A need exists for systems and methods for fracturing and/or stimulating a subterranean formation that can overcome issues of formation damage/compatibility, flammability, proppant delivery, and/or power supply.
  • SUMMARY
  • Embodiments usable within the scope of the present disclosure include systems and methods usable to perform fracturing operations on a formation using an electrically powered fracturing spread. FIG. 1 enumerates numerous benefits relating to safety, economy, and sustainability of electrically powered fracturing systems.
  • A power source (e.g., a turbine generator and/or a grid-based power source) can be used to provide electrical power to one or more Variable Frequency Drives (VFDs), which in turn actuate electric motors, used to power associated high pressure pumps (e.g., fracturing pumps). The pumps are usable to pressurize a fracturing fluid (e.g., water, propane, or other suitable media, typically combined with proppant) prior to injection of the pressurized fluid into a wellbore to fracture the underlying formation.
  • A high pressure pump can be subject to a maximum rate and/or torque at which the pump can be operated without damaging components thereof, and as such, a single VFD or set of VFDs may provide horsepower in excess of what is required by a pump to operate the pump at a maximum rate. As such, embodiments usable within the scope of the present disclosure can include multiple high pressure pumps associated with a single VFD. In an embodiment, pumps can be provided with a “breakaway” usable to disconnect a selected pump from a VFD to enable the full power thereof to be provided to one or more pumps that remain connected therewith. In a further embodiment, a VFD can be associated with different types of pumps (e.g., a qunitiplex and/or a triplex pump), to enable selective use of one or both types of pumps in a manner that minimizes harmonic resonance.
  • In various embodiments, disclosed systems can be used with medium voltage (e.g., 4160 volts), enabling smaller, lighter power conduits to be used, facilitating transport, installation, and safety, while minimizing line loss and the required amperage to operate the system.
  • In various embodiments, VFDs and/or similar components can be positioned a selected distance (e.g., 30 meters) from the high pressure pumps, thereby minimizing risks of ignition when pumping a flammable medium, such as propane and/or other hydrocarbon-based fracturing fluids. Separation of potential ignition sources from flammable components can eliminate the need to utilize explosion-proof measures (e.g., explosion-proof housings, pressurized environments, etc.)
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the detailed description of various embodiments usable within the scope of the present disclosure, presented below, reference is made to the accompanying drawings, in which:
  • FIG. 1 depicts a list describing benefits attainable through use of embodiments of systems usable within the scope of the present disclosure.
  • FIG. 2 depicts a diagrammatic view of an embodiment of a system usable within the scope of the present disclosure.
  • FIG. 3 depicts a diagrammatic view of an embodiment of a system usable within the scope of the present disclosure.
  • One or more embodiments are described below with reference to the listed Figures.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Before describing selected embodiments of the present invention in detail, it is to be understood that the present invention is not limited to the particular embodiments described herein. The disclosure and description herein is illustrative and explanatory of one or more presently preferred embodiments of the invention and variations thereof, and it will be appreciated by those skilled in the art that various changes in the design, organization, order of operation, means of operation, equipment structures and location, methodology, and use of mechanical equivalents may be made without departing from the spirit of the invention.
  • As well, it should be understood the drawings are intended illustrate and plainly disclose presently preferred embodiments of the invention to one of skill in the art, but are not intended to be manufacturing level drawings or renditions of final products and may include simplified conceptual views as desired for easier and quicker understanding or explanation of the invention. As well, the relative size and arrangement of the components may differ from that shown and still operate within the spirit of the invention as described throughout the present application.
  • Moreover, it will be understood that various directions such as “upper”, “lower”, “bottom”, “top”, “left”, “right”, and so forth are made only with respect to explanation in conjunction with the drawings, and that the components may be oriented differently, for instance, during transportation and manufacturing as well as operation. Because many varying and different embodiments may be made within the scope of the inventive concept(s) herein taught, and because many modifications may be made in the embodiments described herein, it is to be understood that the details herein are to be interpreted as illustrative and non-limiting.
  • FIG. 2 depicts a diagrammatic view of an embodiment of a system usable within the scope of the present disclosure, usable to perform fracturing operations on a formation associated with a wellhead. The diagram depicts a cleared zone (e.g., having a radius of about 30 meters) about the wellhead, outside of which the depicted system can be positioned. At the far left of the diagram a plurality of fracturing fluid storage vessels are shown (e.g., six propane storage tanks; however any number and/or type of storage vessel can be used without departing from the scope of the present disclosure), in association with a proppant storage vessel (which can be representative of any number or type of proppant sources and/or containers).
  • It should be understood that while the depicted system describes use of propane storage tanks (e.g., containing propane for use as a fracturing fluid), the depicted system can incorporate use of water or any other fracturing fluid without departing from the scope of the present disclosure.
  • The fracturing fluid and proppant storage vessels are shown proximate to the low pressure manifold of the system, where the fracturing fluid and/or proppant can be injected (e.g., as a slurry). A plurality of high pressure pumps (each powered using an associated electric motor) is shown, the pumps being usable to pressurize the fracturing fluid and/or proppant (e.g., at the high pressure manifold of the system) prior to flowing the fracturing fluid and/or proppant to the wellhead (and subsequently into the wellbore to the formation). While the depicted diagram shows eight high pressure pumps and associated motors, it should be understood that any number of high pressure pumps can be used depending on the nature of the operation. Conceptually, FIG. 2 depicts the eight high pressure pumps divided into three groups—two sets of three pumps and one set of two pumps—each grouping of pumps representative of a single transport load (e.g., the number of pumps that could be transported to an operational site on a single trailer.) It should be understood that this division of pumps is merely conceptual, and that depending on the means of transport and/or the characteristics of the pumps, motors, and/or associated equipment, any number of transport loads could be used without departing from the scope of the present disclosure.
  • A plurality of Variable Frequency Drives (VFDs) is shown spaced a selected distance (e.g., 30 meters) from the high pressure pumps. Placement of the VFDs a safe distance from the high pressure pumps can allow propane or a similar flammable medium to be used as a fracturing fluid while minimizing the risk of ignition created by the proximity of VFDs or similar potential ignition sources. By placing the VFDs remote from the high pressure pumps, the need for explosion proof housings, pressurized environments, and/or use of similar explosion-proof measures can be eliminated.
  • While FIG. 2 depicts four VFDs (used in association with the eight depicted high pressure pumps and associated electric motors), it should be understood that any number of VFDs or similar devices can be used depending on the nature and/or requirements of an operation and/or characteristics of equipment being used. Conceptually, FIG. 2 depicts the four VFDs as a single grouping of devices, representative of a single transport load—e.g., it is contemplated that four VFDs could be transported to an operational site on a single trailer. As noted above, depending on the means of transport and/or the characteristics of the equipment utilized, any number of transport loads could be used without departing from the scope of the present disclosure. In the depicted embodiment, four transport loads could be used to position each of the depicted pumps, motors, and VFDs, which is one half the number of loads required to deploy such a quantity of equipment using conventional configurations.
  • Each VFD is shown in operative association with two high pressure pumps (via the associated electric motors). As described above, the maximum rate at which a high pressure pump can be operated is typically limited to the maximum torque able to be withstood by the components thereof. As such, a single VFD may produce horsepower in excess of that which is required to operate a high pressure pump at its maximum rate, and in an embodiment, the horsepower output of a VFD can be generally sufficient to operate two high pressure pumps at a rate suitable for performing a fracturing operation. For example, four conventional VFDs may output approximately 10,000 horsepower, which would be sufficient to operate eight high pressure pumps at approximately their maximum rate. It should be understood that the type and quantity of VFDs and/or pumps and/or electric motors can be selected such that the output of the VFDs is generally equal to the horsepower requirements to operate the associated pumps.
  • As described above, in various embodiments, one or both pumps coupled with a VFD can include a breakaway or similar means for decoupling from the VFD, such that the entirety of the output from the VFD can be used to drive a single pump (e.g., at an enhanced rate), and/or to enable a second pump to be used as a backup/redundant pump in the case of a fault or failure of a first pump. Additionally or alternatively, two pumps associated with a single VFD can include different types of pumps, such that a desired type of pump can be selected for use (e.g., depending on operational conditions, wellbore conditions, types of equipment present/available, etc.). For example, selection between a quintiplex and/or a triplex pump can be used to minimize harmonic resonance.
  • The depicted VFDs are shown in communication with a power source, which can include one or more generators, one or more power storage devices, one or more grid power sources, or combinations thereof. In an embodiment, the incoming power can include a medium voltage source (e.g., 4160 volts), allowing use of smaller and lighter conduits, less line loss, lower amperage, etc. Depending on the characteristics of the VFDs, power source, motors, and/or pumps used, the need for a separate transformer (e.g., to alter the incoming voltage and/or the voltage transmitted between components) can be obviated.
  • It should be understood that while FIG. 2 depicts eight high pressure pumps and associated electric motors, and four VFDs, independent from trailers or similar transport vehicles (e.g., frame-mounted on the ground or an operational platform or similar surface), in various embodiments, system components could remain in association with trailers or similar transport vehicles to facilitate mobility thereof.
  • FIG. 3 depicts a diagrammatic view of an embodiment of a system usable within the scope of the present disclosure, usable to perform fracturing operations on a formation associated with a wellhead. The diagram depicts a cleared zone (e.g., having a radius of about 30 meters) about the wellhead, outside of which the depicted system can be positioned. At the bottom of the diagram, a plurality of fracturing fluid storage vessels are shown (e.g., six water storage tanks; however any number and/or type of storage vessel can be used without departing from the scope of the present disclosure), in association with a proppant storage vessel (which can be representative of any number or type of proppant sources and/or containers). It should be understood that while the depicted system describes use of water storage tanks (e.g., containing water for use as a fracturing fluid), the depicted system can incorporate use of any fracturing fluid without departing from the scope of the present disclosure. Due to the close proximity of the depicted VFDs to the depicted high pressure pumps, the depicted configuration is contemplated to be of particular use with non-flammable fracturing fluids.
  • The fracturing fluid and proppant storage vessels are shown proximate to the low pressure manifold of the system, where the fracturing fluid and/or proppant can be injected (e.g., as a slurry). A plurality of high pressure pumps, each powered using an associated electric motor and each mounted on an associated trailer, is shown, the pumps being usable to pressurize the fracturing fluid and/or proppant (e.g., at the high pressure manifold of the system) prior to flowing the fracturing fluid and/or proppant to the wellhead (and subsequently into the wellbore to the formation). While the depicted diagram shows eight high pressure pumps and associated motors, it should be understood that any number of high pressure pumps can be used depending on the nature of the operation.
  • A plurality of Variable Frequency Drives (VFDs) is shown in association with the depicted high pressure pumps. Specifically, each trailer is shown having one VFD mounted thereon, adjacent to two high pressure pumps and associated motors. While FIG. 3 depicts four VFDs (each used in association with two high pressure pumps and associated electric motors), mounted on four trailers, it should be understood that any number of VFDs or similar devices, and any number of trailers, can be used depending on the nature and/or requirements of an operation and/or characteristics of equipment being used. In the depicted embodiment, four transport loads could be used to position each of the depicted pumps, motors, and VFDs, which is one half the number of loads required to deploy such a quantity of equipment using conventional configurations.
  • Due to the horsepower limitations of a typical high pressure pump, described previously, each VFD is shown in operative association with two high pressure pumps. As described above, in various embodiments, one or both pumps coupled with a VFD can include a breakaway or similar means for decoupling from the VFD, such that the entirety of the output from the VFD can be used to drive a single pump (e.g., at an enhanced rate), and/or to enable a second pump to be used as a backup/redundant pump in the case of a fault or failure of a first pump. Additionally or alternatively, two pumps associated with a single VFD can include different types of pumps, such that a desired type of pump can be selected for use (e.g., depending on operational conditions, wellbore conditions, types of equipment present/available, etc.).
  • The depicted VFDs are shown in communication with one or more power sources, which can include one or more generators, one or more power storage devices, one or more grid power sources, or combinations thereof. In an embodiment, the incoming power can include a medium voltage source (e.g., 4160 volts), allowing use of smaller and lighter conduits, less line loss, lower amperage, etc. Depending on the characteristics of the VFDs, power sources, motors, and/or pumps used, the need for a separate transformer (e.g., to alter the incoming voltage and/or the voltage transmitted between components) can be obviated.
  • It should be understood that while FIG. 3 depicts four mobile trailers, each trailer having two high pressure pumps and a single VFD mounted thereon, in various embodiments, system components could be removed from trailers (e.g., frame mounted on the ground or a similar operational platform) to reduce the footprint of the system and allow use of the trailers for other purposes while the system is deployed.
  • In the depicted embodiment, use of two high pressure pumps and a single VFD on a single trailer can enable the two pumps to be operated via the VFD using a single tie line. Using a reduced number of lines for the system in this manner enables the manifold trailer to be reduced in size (e.g., one half of its conventional length), reducing the footprint of the system and facilitating transport thereof.
  • While various embodiments usable within the scope of the present disclosure have been described with emphasis, it should be understood that within the scope of the appended claims, the present invention can be practiced other than as specifically de scribed herein.

Claims (20)

What is claimed is:
1. A system for stimulating a formation, the system comprising:
a source of fracturing fluid in communication with the formation;
a source of proppant in communication with the formation;
a power source;
a plurality of variable frequency drives in communication with the power source; and
at least two high pressure pumps in communication with each of said variable frequency drives,
wherein a variable frequency drive receives power from the power source and actuates at least two electric motors associated with said at least two high pressure pumps, and wherein said at least two high pressure pumps pressurize fracturing fluid, proppant, or combinations thereof for flowing said fracturing fluid, proppant, or combinations thereof into the formation.
2. The system of claim 1, wherein the power source comprises a medium voltage power source.
3. The system of claim 1, wherein the plurality of variable frequency drives comprises four variable frequency drives.
4. The system of claim 3, wherein said four variable frequency drives are transportable on a single trailer.
5. The system of claim 3, wherein said four variable frequency drives are in association with at least eight high pressure pumps, and wherein said at least eight high pressure pumps are transportable on three or fewer trailers.
6. The system of claim 1, wherein the plurality of variable frequency drives are spaced a distance from said at least two high pressure pumps sufficient to minimize ignition of fracturing fluid pressurized by said at least two high pressure pumps by said plurality of variable frequency drives.
7. The system of claim 6, wherein the distance comprises at least 30 meters.
8. The system of claim 6, wherein the source of fracturing fluid comprises propane.
9. The system of claim 1, further comprising a wellhead in association with the formation, wherein said at least two high pressure pumps are spaced a distance from the wellhead sufficient to minimize ignition of fracturing fluid pressurized by said at least two high pressure pumps.
10. The system of claim 9, wherein the distance comprise at least 30 meters.
11. A system for stimulating a formation, the system comprising:
a source of fracturing fluid in communication with the formation;
a source of proppant in communication with the formation;
at least one power source;
at least one mobile platform comprising a variable frequency drive and at least two high pressure pumps mounted thereon, wherein said at least two high pressure pumps are coupled to the variable frequency drive,
wherein the variable frequency drive receives power from said at least one power source and actuates at least two electric motors associated with said at least two high pressure pumps, and wherein said at least two high pressure pumps pressurize fracturing fluid, proppant, or combinations thereof for flowing said fracturing fluid, proppant, or combinations thereof into the formation.
12. The system of claim 11, wherein the power source comprises a medium voltage power source.
13. The system of claim 11, wherein said at least one mobile platform comprises four mobile platforms, each of said mobile platforms having a variable frequency drive and at least two high pressure pumps mounted thereon.
14. The system of claim 11, wherein said at least two high pressure pumps engage the variable frequency drive via a single tie line.
15. The system of claim 11, further comprising a wellhead in association with the formation, wherein said at least two high pressure pumps are spaced a distance from the wellhead sufficient to minimize ignition of fracturing fluid pressurized by said at least two high pressure pumps.
16. The system of claim 15, wherein the distance comprise at least 30 meters.
17. The system of claim 11, wherein at least one of said high pressure pumps comprises a breakway feature adapted to decouple said at least one of said high pressure pumps from the variable frequency drive to enable substantially all output from the variable frequency drive to be provided to at least one other of said high pressure pumps.
18. The system of claim 17, wherein said at least two high pressure pumps comprise a first high pressure pump of a first type and a second high pressure pump of a second type different than the first type.
19. The system of claim 18, wherein the first type comprises a qunitplex pump and the second type comprises a triplex pump.
20. The system of claim 18, wherein the first type, the second type, or combinations thereof is selectable to reduce harmonic resonance, vibration, or combinations thereof generated by said at least two high pressure pumps, the variable frequency drive, or combinations thereof.
US14/735,745 2013-03-07 2015-06-10 Fracturing system layouts Abandoned US20160230525A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US14/735,745 US20160230525A1 (en) 2013-03-07 2015-06-10 Fracturing system layouts
US14/825,089 US20150353816A1 (en) 2013-03-07 2015-08-12 Fracturing systems and methods incorporating human ingestible products
PCT/IB2016/053419 WO2016199075A1 (en) 2015-06-10 2016-06-09 Fracturing system layouts
EP16731336.0A EP3353377A1 (en) 2015-06-10 2016-06-09 Fracturing system layouts
ARP160101744A AR104974A1 (en) 2015-06-10 2016-06-10 FRACTURE SYSTEM PROVISIONS
UY0001036721A UY36721A (en) 2015-06-10 2016-06-10 FRACTURE SYSTEM PROVISIONS
US15/179,616 US20160281484A1 (en) 2013-03-07 2016-06-10 Fracturing system layouts
US15/186,153 US9850422B2 (en) 2013-03-07 2016-06-17 Hydrocarbon-based fracturing fluid composition, system, and method
US15/186,162 US20160298425A1 (en) 2013-03-07 2016-06-17 System and Method for Permanent Storage of Carbon Dioxide in Shale Reservoirs
US15/186,159 US20160298025A1 (en) 2013-03-07 2016-06-17 Fracturing systems and methods including human ingestible materials

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201361774237P 2013-03-07 2013-03-07
US201361790942P 2013-03-15 2013-03-15
US201361807699P 2013-04-02 2013-04-02
US201361870350P 2013-08-27 2013-08-27
US14/199,461 US20140251623A1 (en) 2013-03-07 2014-03-06 Fracturing systems and methods for a wellbore
US201462010302P 2014-06-10 2014-06-10
US201462036284P 2014-08-12 2014-08-12
US201462036297P 2014-08-12 2014-08-12
US14/511,858 US20150114652A1 (en) 2013-03-07 2014-10-10 Fracturing systems and methods for a wellbore
US14/735,745 US20160230525A1 (en) 2013-03-07 2015-06-10 Fracturing system layouts

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US14/199,461 Continuation-In-Part US20140251623A1 (en) 2013-03-07 2014-03-06 Fracturing systems and methods for a wellbore
US14/511,858 Continuation-In-Part US20150114652A1 (en) 2013-03-07 2014-10-10 Fracturing systems and methods for a wellbore
US15/186,153 Continuation-In-Part US9850422B2 (en) 2013-03-07 2016-06-17 Hydrocarbon-based fracturing fluid composition, system, and method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/825,089 Continuation-In-Part US20150353816A1 (en) 2013-03-07 2015-08-12 Fracturing systems and methods incorporating human ingestible products
US15/179,616 Continuation-In-Part US20160281484A1 (en) 2013-03-07 2016-06-10 Fracturing system layouts

Publications (1)

Publication Number Publication Date
US20160230525A1 true US20160230525A1 (en) 2016-08-11

Family

ID=56566639

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/735,745 Abandoned US20160230525A1 (en) 2013-03-07 2015-06-10 Fracturing system layouts

Country Status (1)

Country Link
US (1) US20160230525A1 (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US10036238B2 (en) 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US10107086B2 (en) 2012-11-16 2018-10-23 U.S. Well Services, LLC Remote monitoring for hydraulic fracturing equipment
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US10280724B2 (en) * 2017-07-07 2019-05-07 U.S. Well Services, Inc. Hydraulic fracturing equipment with non-hydraulic power
US10337308B2 (en) 2012-11-16 2019-07-02 U.S. Well Services, Inc. System for pumping hydraulic fracturing fluid using electric pumps
US20190211814A1 (en) * 2016-10-17 2019-07-11 Halliburton Energy Services, Inc. Improved distribution unit
US10408031B2 (en) 2017-10-13 2019-09-10 U.S. Well Services, LLC Automated fracturing system and method
US10408030B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Electric powered pump down
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US10526882B2 (en) 2012-11-16 2020-01-07 U.S. Well Services, LLC Modular remote power generation and transmission for hydraulic fracturing system
US10598258B2 (en) 2017-12-05 2020-03-24 U.S. Well Services, LLC Multi-plunger pumps and associated drive systems
US10648270B2 (en) 2018-09-14 2020-05-12 U.S. Well Services, LLC Riser assist for wellsites
US10648311B2 (en) 2017-12-05 2020-05-12 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
US10655435B2 (en) 2017-10-25 2020-05-19 U.S. Well Services, LLC Smart fracturing system and method
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US10961908B1 (en) 2020-06-05 2021-03-30 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US10989180B2 (en) 2019-09-13 2021-04-27 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US20210140423A1 (en) * 2016-12-02 2021-05-13 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11015536B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11022526B1 (en) 2020-06-09 2021-06-01 Bj Energy Solutions, Llc Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11035207B2 (en) 2018-04-16 2021-06-15 U.S. Well Services, LLC Hybrid hydraulic fracturing fleet
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11067481B2 (en) 2017-10-05 2021-07-20 U.S. Well Services, LLC Instrumented fracturing slurry flow system and method
US11066912B2 (en) 2012-11-16 2021-07-20 U.S. Well Services, LLC Torsional coupling for electric hydraulic fracturing fluid pumps
US11098651B1 (en) 2019-09-13 2021-08-24 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11114857B2 (en) 2018-02-05 2021-09-07 U.S. Well Services, LLC Microgrid electrical load management
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11208878B2 (en) 2018-10-09 2021-12-28 U.S. Well Services, LLC Modular switchgear system and power distribution for electric oilfield equipment
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11211801B2 (en) 2018-06-15 2021-12-28 U.S. Well Services, LLC Integrated mobile power unit for hydraulic fracturing
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11236739B2 (en) 2019-09-13 2022-02-01 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11268346B2 (en) 2019-09-13 2022-03-08 Bj Energy Solutions, Llc Fuel, communications, and power connection systems
US20220136489A1 (en) * 2020-10-29 2022-05-05 Halliburton Energy Services, Inc. Distributed in-field powered pumping configuration
US20220220836A1 (en) * 2021-01-11 2022-07-14 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Switchable apparatus, well site and control method thereof, device, and storage medium
US11408794B2 (en) 2019-09-13 2022-08-09 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11415125B2 (en) 2020-06-23 2022-08-16 Bj Energy Solutions, Llc Systems for utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11421673B2 (en) 2016-09-02 2022-08-23 Halliburton Energy Services, Inc. Hybrid drive systems for well stimulation operations
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US20220389844A1 (en) * 2021-06-07 2022-12-08 Bj Energy Solutions, Llc Multi-stage power generation using byproducts for enhanced generation
US11542786B2 (en) 2019-08-01 2023-01-03 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11635074B2 (en) 2020-05-12 2023-04-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
US11702919B2 (en) 2019-09-20 2023-07-18 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Adaptive mobile power generation system
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11788519B2 (en) 2019-09-20 2023-10-17 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Turbine fracturing equipment
US11828277B2 (en) 2019-09-20 2023-11-28 Yantal Jereh Petroleum Equipment & Technologies Co., Ltd. Turbine-driven fracturing system on semi-trailer
US11867118B2 (en) 2019-09-13 2024-01-09 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11959371B2 (en) 2012-11-16 2024-04-16 Us Well Services, Llc Suction and discharge lines for a dual hydraulic fracturing unit
US11994014B2 (en) 2023-01-25 2024-05-28 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations

Cited By (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934824B2 (en) 2012-11-16 2021-03-02 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US10927802B2 (en) 2012-11-16 2021-02-23 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US10036238B2 (en) 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US10107086B2 (en) 2012-11-16 2018-10-23 U.S. Well Services, LLC Remote monitoring for hydraulic fracturing equipment
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US11136870B2 (en) 2012-11-16 2021-10-05 U.S. Well Services, LLC System for pumping hydraulic fracturing fluid using electric pumps
US10337308B2 (en) 2012-11-16 2019-07-02 U.S. Well Services, Inc. System for pumping hydraulic fracturing fluid using electric pumps
US11181879B2 (en) 2012-11-16 2021-11-23 U.S. Well Services, LLC Monitoring and control of proppant storage from a datavan
US11091992B2 (en) 2012-11-16 2021-08-17 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US10408030B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Electric powered pump down
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US10526882B2 (en) 2012-11-16 2020-01-07 U.S. Well Services, LLC Modular remote power generation and transmission for hydraulic fracturing system
US11066912B2 (en) 2012-11-16 2021-07-20 U.S. Well Services, LLC Torsional coupling for electric hydraulic fracturing fluid pumps
US10947829B2 (en) 2012-11-16 2021-03-16 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US10686301B2 (en) 2012-11-16 2020-06-16 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US10731561B2 (en) 2012-11-16 2020-08-04 U.S. Well Services, LLC Turbine chilling for oil field power generation
US11674352B2 (en) 2012-11-16 2023-06-13 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US11959371B2 (en) 2012-11-16 2024-04-16 Us Well Services, Llc Suction and discharge lines for a dual hydraulic fracturing unit
US11713661B2 (en) 2012-11-16 2023-08-01 U.S. Well Services, LLC Electric powered pump down
US11850563B2 (en) 2012-11-16 2023-12-26 U.S. Well Services, LLC Independent control of auger and hopper assembly in electric blender system
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US11913316B2 (en) 2016-09-02 2024-02-27 Halliburton Energy Services, Inc. Hybrid drive systems for well stimulation operations
US11808127B2 (en) 2016-09-02 2023-11-07 Halliburton Energy Services, Inc. Hybrid drive systems for well stimulation operations
US11421673B2 (en) 2016-09-02 2022-08-23 Halliburton Energy Services, Inc. Hybrid drive systems for well stimulation operations
US20190211814A1 (en) * 2016-10-17 2019-07-11 Halliburton Energy Services, Inc. Improved distribution unit
US10900475B2 (en) * 2016-10-17 2021-01-26 Halliburton Energy Services, Inc. Distribution unit
US11952996B2 (en) * 2016-12-02 2024-04-09 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US11181107B2 (en) 2016-12-02 2021-11-23 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US20210140423A1 (en) * 2016-12-02 2021-05-13 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US10280724B2 (en) * 2017-07-07 2019-05-07 U.S. Well Services, Inc. Hydraulic fracturing equipment with non-hydraulic power
US11067481B2 (en) 2017-10-05 2021-07-20 U.S. Well Services, LLC Instrumented fracturing slurry flow system and method
US11203924B2 (en) 2017-10-13 2021-12-21 U.S. Well Services, LLC Automated fracturing system and method
US10408031B2 (en) 2017-10-13 2019-09-10 U.S. Well Services, LLC Automated fracturing system and method
US10655435B2 (en) 2017-10-25 2020-05-19 U.S. Well Services, LLC Smart fracturing system and method
US10648311B2 (en) 2017-12-05 2020-05-12 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
US11959533B2 (en) 2017-12-05 2024-04-16 U.S. Well Services Holdings, Llc Multi-plunger pumps and associated drive systems
US10598258B2 (en) 2017-12-05 2020-03-24 U.S. Well Services, LLC Multi-plunger pumps and associated drive systems
US11114857B2 (en) 2018-02-05 2021-09-07 U.S. Well Services, LLC Microgrid electrical load management
US11035207B2 (en) 2018-04-16 2021-06-15 U.S. Well Services, LLC Hybrid hydraulic fracturing fleet
US11211801B2 (en) 2018-06-15 2021-12-28 U.S. Well Services, LLC Integrated mobile power unit for hydraulic fracturing
US10648270B2 (en) 2018-09-14 2020-05-12 U.S. Well Services, LLC Riser assist for wellsites
US11208878B2 (en) 2018-10-09 2021-12-28 U.S. Well Services, LLC Modular switchgear system and power distribution for electric oilfield equipment
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11542786B2 (en) 2019-08-01 2023-01-03 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
US11415056B1 (en) 2019-09-13 2022-08-16 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
US11268346B2 (en) 2019-09-13 2022-03-08 Bj Energy Solutions, Llc Fuel, communications, and power connection systems
US11971028B2 (en) 2019-09-13 2024-04-30 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11512642B1 (en) 2019-09-13 2022-11-29 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11149726B1 (en) 2019-09-13 2021-10-19 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11156159B1 (en) 2019-09-13 2021-10-26 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US10907459B1 (en) 2019-09-13 2021-02-02 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11098651B1 (en) 2019-09-13 2021-08-24 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11867118B2 (en) 2019-09-13 2024-01-09 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11092152B2 (en) 2019-09-13 2021-08-17 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11859482B2 (en) 2019-09-13 2024-01-02 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US10961912B1 (en) 2019-09-13 2021-03-30 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11852001B2 (en) 2019-09-13 2023-12-26 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11530602B2 (en) 2019-09-13 2022-12-20 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11555756B2 (en) 2019-09-13 2023-01-17 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11767791B2 (en) 2019-09-13 2023-09-26 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11761846B2 (en) 2019-09-13 2023-09-19 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11015536B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11236739B2 (en) 2019-09-13 2022-02-01 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11473503B1 (en) 2019-09-13 2022-10-18 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11725583B2 (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11719234B2 (en) 2019-09-13 2023-08-08 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11598263B2 (en) 2019-09-13 2023-03-07 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10982596B1 (en) 2019-09-13 2021-04-20 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11280331B2 (en) 2019-09-13 2022-03-22 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11280266B2 (en) 2019-09-13 2022-03-22 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11287350B2 (en) 2019-09-13 2022-03-29 Bj Energy Solutions, Llc Fuel, communications, and power connection methods
US11473997B2 (en) 2019-09-13 2022-10-18 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11560848B2 (en) 2019-09-13 2023-01-24 Bj Energy Solutions, Llc Methods for noise dampening and attenuation of turbine engine
US11459954B2 (en) 2019-09-13 2022-10-04 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
US10989180B2 (en) 2019-09-13 2021-04-27 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11319878B2 (en) 2019-09-13 2022-05-03 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11655763B1 (en) 2019-09-13 2023-05-23 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11649766B1 (en) 2019-09-13 2023-05-16 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11346280B1 (en) 2019-09-13 2022-05-31 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11460368B2 (en) 2019-09-13 2022-10-04 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11629584B2 (en) 2019-09-13 2023-04-18 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11578660B1 (en) 2019-09-13 2023-02-14 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11619122B2 (en) 2019-09-13 2023-04-04 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11401865B1 (en) 2019-09-13 2022-08-02 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11613980B2 (en) 2019-09-13 2023-03-28 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11408794B2 (en) 2019-09-13 2022-08-09 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11060455B1 (en) 2019-09-13 2021-07-13 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11608725B2 (en) 2019-09-13 2023-03-21 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11604113B2 (en) 2019-09-13 2023-03-14 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11828277B2 (en) 2019-09-20 2023-11-28 Yantal Jereh Petroleum Equipment & Technologies Co., Ltd. Turbine-driven fracturing system on semi-trailer
US11746637B2 (en) 2019-09-20 2023-09-05 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Adaptive mobile power generation system
US11788519B2 (en) 2019-09-20 2023-10-17 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Turbine fracturing equipment
US11702919B2 (en) 2019-09-20 2023-07-18 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Adaptive mobile power generation system
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
US11635074B2 (en) 2020-05-12 2023-04-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11898504B2 (en) 2020-05-14 2024-02-13 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11698028B2 (en) 2020-05-15 2023-07-11 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11624321B2 (en) 2020-05-15 2023-04-11 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11434820B2 (en) 2020-05-15 2022-09-06 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11959419B2 (en) 2020-05-15 2024-04-16 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11542868B2 (en) 2020-05-15 2023-01-03 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11365616B1 (en) 2020-05-28 2022-06-21 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11814940B2 (en) 2020-05-28 2023-11-14 Bj Energy Solutions Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11313213B2 (en) 2020-05-28 2022-04-26 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11603745B2 (en) 2020-05-28 2023-03-14 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US10961908B1 (en) 2020-06-05 2021-03-30 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11891952B2 (en) 2020-06-05 2024-02-06 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11746698B2 (en) 2020-06-05 2023-09-05 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11723171B2 (en) 2020-06-05 2023-08-08 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11300050B2 (en) 2020-06-05 2022-04-12 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11129295B1 (en) 2020-06-05 2021-09-21 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11378008B2 (en) 2020-06-05 2022-07-05 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11627683B2 (en) 2020-06-05 2023-04-11 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11598264B2 (en) 2020-06-05 2023-03-07 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11339638B1 (en) 2020-06-09 2022-05-24 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11208881B1 (en) 2020-06-09 2021-12-28 Bj Energy Solutions, Llc Methods and systems for detection and mitigation of well screen out
US11015423B1 (en) 2020-06-09 2021-05-25 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11085281B1 (en) 2020-06-09 2021-08-10 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11566506B2 (en) 2020-06-09 2023-01-31 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11174716B1 (en) 2020-06-09 2021-11-16 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11261717B2 (en) 2020-06-09 2022-03-01 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11867046B2 (en) 2020-06-09 2024-01-09 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11512570B2 (en) 2020-06-09 2022-11-29 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11939854B2 (en) 2020-06-09 2024-03-26 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11629583B2 (en) 2020-06-09 2023-04-18 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11022526B1 (en) 2020-06-09 2021-06-01 Bj Energy Solutions, Llc Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit
US11319791B2 (en) 2020-06-09 2022-05-03 Bj Energy Solutions, Llc Methods and systems for detection and mitigation of well screen out
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11643915B2 (en) 2020-06-09 2023-05-09 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11598188B2 (en) 2020-06-22 2023-03-07 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11952878B2 (en) 2020-06-22 2024-04-09 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11236598B1 (en) 2020-06-22 2022-02-01 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11639655B2 (en) 2020-06-22 2023-05-02 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11898429B2 (en) 2020-06-22 2024-02-13 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11732565B2 (en) 2020-06-22 2023-08-22 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11572774B2 (en) 2020-06-22 2023-02-07 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11208879B1 (en) 2020-06-22 2021-12-28 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11408263B2 (en) 2020-06-22 2022-08-09 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11428218B2 (en) 2020-06-23 2022-08-30 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11719085B1 (en) 2020-06-23 2023-08-08 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11649820B2 (en) 2020-06-23 2023-05-16 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11415125B2 (en) 2020-06-23 2022-08-16 Bj Energy Solutions, Llc Systems for utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11939974B2 (en) 2020-06-23 2024-03-26 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11566505B2 (en) 2020-06-23 2023-01-31 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11661832B2 (en) 2020-06-23 2023-05-30 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11255174B2 (en) 2020-06-24 2022-02-22 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11299971B2 (en) 2020-06-24 2022-04-12 Bj Energy Solutions, Llc System of controlling a hydraulic fracturing pump or blender using cavitation or pulsation detection
US11746638B2 (en) 2020-06-24 2023-09-05 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11506040B2 (en) 2020-06-24 2022-11-22 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11391137B2 (en) 2020-06-24 2022-07-19 Bj Energy Solutions, Llc Systems and methods to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11512571B2 (en) 2020-06-24 2022-11-29 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11542802B2 (en) 2020-06-24 2023-01-03 Bj Energy Solutions, Llc Hydraulic fracturing control assembly to detect pump cavitation or pulsation
US11668175B2 (en) 2020-06-24 2023-06-06 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11692422B2 (en) 2020-06-24 2023-07-04 Bj Energy Solutions, Llc System to monitor cavitation or pulsation events during a hydraulic fracturing operation
US11274537B2 (en) 2020-06-24 2022-03-15 Bj Energy Solutions, Llc Method to detect and intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11603744B2 (en) 2020-07-17 2023-03-14 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11255175B1 (en) 2020-07-17 2022-02-22 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11920450B2 (en) 2020-07-17 2024-03-05 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11608727B2 (en) 2020-07-17 2023-03-21 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11365615B2 (en) 2020-07-17 2022-06-21 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US20220136489A1 (en) * 2020-10-29 2022-05-05 Halliburton Energy Services, Inc. Distributed in-field powered pumping configuration
US11655807B2 (en) * 2020-10-29 2023-05-23 Halliburton Energy Services, Inc. Distributed in-field powered pumping configuration
US20220220836A1 (en) * 2021-01-11 2022-07-14 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Switchable apparatus, well site and control method thereof, device, and storage medium
US11608726B2 (en) * 2021-01-11 2023-03-21 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Switchable apparatus, well site and control method thereof, device, and storage medium
US11867045B2 (en) 2021-05-24 2024-01-09 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
US11732563B2 (en) 2021-05-24 2023-08-22 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
US20220389844A1 (en) * 2021-06-07 2022-12-08 Bj Energy Solutions, Llc Multi-stage power generation using byproducts for enhanced generation
US11994014B2 (en) 2023-01-25 2024-05-28 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations

Similar Documents

Publication Publication Date Title
US20160230525A1 (en) Fracturing system layouts
US20160281484A1 (en) Fracturing system layouts
US11713661B2 (en) Electric powered pump down
US11118438B2 (en) Turbine driven electric fracturing system and method
US20190106970A1 (en) Electric powered hydraulic fracturing system without gear reduction
US20130306322A1 (en) System and process for extracting oil and gas by hydraulic fracturing
US20150114652A1 (en) Fracturing systems and methods for a wellbore
US8789601B2 (en) System for pumping hydraulic fracturing fluid using electric pumps
US20160290114A1 (en) Modular remote power generation and transmission for hydraulic fracturing system
US20160319650A1 (en) Suction and Discharge Lines for a Dual Hydraulic Fracturing Unit
US11913315B2 (en) Fracturing blender system and method using liquid petroleum gas
BR122020025369A2 (en) systems for use in delivering pressurized fluid to a wellbore and method of delivering a fracturing fluid to a wellbore
US11939852B2 (en) Dual pump VFD controlled motor electric fracturing system
CA2927031A1 (en) Fracturing systems and methods for a wellbore
EP3353377A1 (en) Fracturing system layouts
CA2928717C (en) Cable management of electric powered hydraulic fracturing pump unit
CA2945281C (en) Electric powered pump down

Legal Events

Date Code Title Description
AS Assignment

Owner name: PROSTIM LABS, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MYERS, NORMAN;BYRD, AUDIS;LESTZ, ROBERT;SIGNING DATES FROM 20160609 TO 20160610;REEL/FRAME:038907/0655

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION