US20160225808A1 - Imaging device and electronic device - Google Patents

Imaging device and electronic device Download PDF

Info

Publication number
US20160225808A1
US20160225808A1 US15/007,308 US201615007308A US2016225808A1 US 20160225808 A1 US20160225808 A1 US 20160225808A1 US 201615007308 A US201615007308 A US 201615007308A US 2016225808 A1 US2016225808 A1 US 2016225808A1
Authority
US
United States
Prior art keywords
transistor
oxide semiconductor
layer
wiring
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/007,308
Other languages
English (en)
Inventor
Yoshiyuki Kurokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Assigned to SEMICONDUCTOR ENERGY LABORATORY CO., LTD. reassignment SEMICONDUCTOR ENERGY LABORATORY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUROKAWA, YOSHIYUKI
Publication of US20160225808A1 publication Critical patent/US20160225808A1/en
Priority to US17/008,750 priority Critical patent/US11848341B2/en
Priority to US18/388,893 priority patent/US20240079424A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14696The active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements

Definitions

  • One embodiment of the present invention relates to an imaging device including an oxide semiconductor.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of one embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • One embodiment of the present invention relates to a process, a machine, manufacture, or a composition of matter.
  • examples of the technical field of one embodiment of the present invention disclosed in this specification include a semiconductor device, a display device, a liquid crystal display device, a light-emitting device, a lighting device, a power storage device, a storage device, an imaging device, a method for driving any of them, and a method for manufacturing any of them.
  • a semiconductor device generally means a device that can function by utilizing semiconductor characteristics.
  • a transistor and a semiconductor circuit are embodiments of semiconductor devices.
  • a storage device, a display device, an imaging device, or an electronic device includes a semiconductor device.
  • a technique by which transistors are formed using semiconductor thin films formed over a substrate having an insulating surface has attracted attention.
  • the transistor is used in a wide range of electronic devices such as an integrated circuit (IC) and a display device.
  • IC integrated circuit
  • a silicon-based semiconductor is widely known as a semiconductor material applicable to the transistor.
  • an oxide semiconductor has attracted attention.
  • Patent Documents 1 and 2 For example, a technique for forming a transistor using zinc oxide or an In—Ga—Zn-based oxide semiconductor as an oxide semiconductor is disclosed (see Patent Documents 1 and 2).
  • Patent Document 3 discloses an imaging device in which a transistor including an oxide semiconductor and having extremely low off-state current is used in part of a pixel circuit and a transistor including silicon with which a complementary metal oxide semiconductor (CMOS) circuit can be formed is used in a peripheral circuit.
  • CMOS complementary metal oxide semiconductor
  • Patent Document 1 Japanese Published Patent Application No. 2007-123861
  • Patent Document 2 Japanese Published Patent Application No. 2007-096055
  • Patent Document 3 Japanese Published Patent Application No. 2011-119711
  • an image sensor that includes a highly integrated pixel array is needed.
  • the light-receiving area of a photoelectric conversion element included in the pixel also needs to be reduced.
  • the light-receiving area of the photoelectric conversion element is reduced, it might be difficult to perform imaging under a low illuminance condition because of the decrease in sensitivity to light.
  • An object of one embodiment of the present invention is to provide an imaging device that easily performs imaging under a low illuminance condition. Another object of one embodiment of the present invention is to provide a low-power imaging device. Another object of one embodiment of the present invention is to provide an imaging device that is suitable for high-speed operation. Another object of one embodiment of the present invention is to provide an imaging device with high resolution. Another object of one embodiment of the present invention is to provide a highly integrated imaging device. Another object of one embodiment of the present invention is to provide an imaging device with a wide dynamic range. Another object of one embodiment of the present invention is to provide an imaging device that can be used in a wide temperature range. Another object of one embodiment of the present invention is to provide an imaging device with a high aperture ratio. Another object of one embodiment of the present invention is to provide an imaging device with high reliability. Another object of one embodiment of the present invention is to provide a novel imaging device or the like. Another object of one embodiment of the present invention is to provide a novel semiconductor device or the like.
  • One embodiment of the present invention relates to a highly sensitive imaging device that can perform imaging even under a low illuminance condition.
  • One embodiment of the present invention is an imaging device that includes a first transistor, a second transistor, a third transistor, a fourth transistor, and a photoelectric conversion element.
  • One electrode of the photoelectric conversion element is electrically connected to one of a source electrode and a drain electrode of the first transistor.
  • the one electrode of the photoelectric conversion element is electrically connected to one of a source electrode and a drain electrode of the third transistor.
  • the other of the source electrode and the drain electrode of the first transistor is electrically connected to a gate electrode of the second transistor.
  • One of a source electrode and a drain electrode of the second transistor is electrically connected to one of a source electrode and a drain electrode of the fourth transistor.
  • the other electrode of the photoelectric conversion element is electrically connected to a first wiring.
  • a gate electrode of the first transistor is electrically connected to a second wiring.
  • the other of the source electrode and the drain electrode of the second transistor is electrically connected to a third wiring.
  • a potential supplied to the third wiring is VDD
  • HVDD is higher than VDD
  • the highest value of the potential supplied to the second wiring can be VDD.
  • the first transistor and the third transistor can each include an oxide semiconductor in an active layer.
  • the oxide semiconductor preferably includes In, Zn, and M (M is Al, Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf).
  • the second transistor and the fourth transistor can each include silicon in an active layer or an active region.
  • an imaging device that easily performs imaging under a low illuminance condition can be provided.
  • a low-power imaging device can be provided.
  • An imaging device that is suitable for high-speed operation can be provided.
  • An imaging device with high resolution can be provided.
  • a highly integrated imaging device can be provided.
  • An imaging device with a wide dynamic range can be provided.
  • An imaging device that can be used in a wide temperature range can be provided.
  • An imaging device with a high aperture ratio can be provided.
  • An imaging device with high reliability can be provided.
  • a novel imaging device or the like can be provided.
  • a novel semiconductor device or the like can be provided.
  • one embodiment of the present invention is not limited to these effects. For example, depending on circumstances or conditions, one embodiment of the present invention might produce another effect. Furthermore, depending on circumstances or conditions, one embodiment of the present invention might not produce any of the above effects.
  • FIG. 1 illustrates a pixel circuit
  • FIG. 2 shows I d -V g characteristics of an OS transistor
  • FIG. 3 shows withstand voltage characteristics of an OS transistor
  • FIG. 4 shows withstand voltage characteristics of an OS transistor
  • FIG. 5 shows withstand voltage characteristics of an OS transistor
  • FIG. 6 is a timing chart illustrating operation of imaging
  • FIGS. 7A to 7H are circuit diagrams each illustrating a pixel circuit
  • FIG. 8 is a circuit diagram illustrating a pixel circuit
  • FIGS. 9A to 9C are cross-sectional views each illustrating the structure of an imaging device
  • FIGS. 10A and 10B are timing charts illustrating operations of a global shutter system and a rolling shutter system, respectively;
  • FIGS. 11A to 11D are cross-sectional views each illustrating connection of a photoelectric conversion element
  • FIGS. 12A and 12B are cross-sectional views each illustrating connection of a photoelectric conversion element
  • FIG. 13 is a cross-sectional view illustrating the structure of an imaging device
  • FIGS. 14A to 14F are cross-sectional views each illustrating connection of a photoelectric conversion element
  • FIG. 15 is a cross-sectional view illustrating the structure of an imaging device
  • FIGS. 16A to 16C are cross-sectional views and a circuit diagram illustrating the structure of an imaging device
  • FIG. 17 is a cross-sectional view illustrating the structure of an imaging device
  • FIGS. 18A to 18C are cross-sectional views each illustrating the structure of an imaging device
  • FIG. 19 is a cross-sectional view illustrating the structure of an imaging device
  • FIG. 20 is a cross-sectional view illustrating the structure of an imaging device
  • FIG. 21 is a cross-sectional view illustrating the structure of an imaging device
  • FIG. 22 is a cross-sectional view illustrating the structure of an imaging device
  • FIGS. 23 A 1 , 23 A 2 , 23 A 3 , 23 B 1 , 23 B 2 , and 23 B 3 illustrate a bent imaging device
  • FIGS. 24A to 24F are top views and cross-sectional views illustrating a transistor
  • FIGS. 25A to 25F are top views and cross-sectional views illustrating a transistor
  • FIGS. 26A to 26D each illustrate a cross section of a transistor in a channel width direction
  • FIGS. 27A to 27F each illustrate a cross section of a transistor in a channel length direction
  • FIGS. 28A to 28E are a top view and cross-sectional views illustrating a semiconductor layer
  • FIGS. 29A to 29F are top views and cross-sectional views illustrating a transistor
  • FIGS. 30A to 30F are top views and cross-sectional views illustrating a transistor
  • FIGS. 31A to 31D each illustrate a cross section of a transistor in a channel width direction
  • FIGS. 32A to 32F each illustrate a cross section of a transistor in a channel length direction
  • FIGS. 33A to 33C are top views each illustrating a transistor
  • FIGS. 34A to 34F illustrate electronic devices
  • FIG. 35 illustrates a pixel circuit
  • FIG. 36 illustrates a pixel circuit
  • FIGS. 37A and 37B each illustrate a pixel circuit
  • FIG. 38 illustrates a pixel circuit
  • an explicit description “X and Y are connected” means that X and Y are electrically connected, X and Y are functionally connected, and X and Y are directly connected. Accordingly, without being limited to a predetermined connection relationship, for example, a connection relationship shown in drawings or texts, another connection relationship is included in the drawings or the texts.
  • each of X and Y denotes an object (e.g., a device, an element, a circuit, a wiring, an electrode, a terminal, a conductive film, or a layer).
  • object e.g., a device, an element, a circuit, a wiring, an electrode, a terminal, a conductive film, or a layer.
  • Examples of the case where X and Y are directly connected include the case where an element that enables electrical connection between X and Y (e.g., a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display element, a light-emitting element, or a load) is not connected between X and Y, and the case where X and Y are connected without the element that enables electrical connection between X and Y provided therebetween.
  • an element that enables electrical connection between X and Y e.g., a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display element, a light-emitting element, or a load
  • one or more elements that enable electrical connection between X and Y can be connected between X and Y.
  • the switch is controlled to be turned on or off. That is, the switch is conducting or not conducting (is turned on or off) to determine whether current flows therethrough or not.
  • the switch has a function of selecting and changing a current path. Note that the case where X and Y are electrically connected includes the case where X and Y are directly connected.
  • one or more circuits that enable functional connection between X and Y can be connected between X and Y.
  • a logic circuit such as an inverter, a NAND circuit, or a NOR circuit
  • a signal converter circuit such as a D/A converter circuit, an A/D converter circuit, or a gamma correction circuit
  • a potential level converter circuit such as a power supply circuit (e.g., a step-up circuit or a step-down circuit) or a level shifter circuit for changing the potential level of a signal
  • a voltage source e.g., a step-up circuit or a step-down circuit
  • a level shifter circuit for changing the potential level of a signal
  • a voltage source e.g., a step-up circuit or a step-down circuit
  • an amplifier circuit such as a circuit that can increase signal amplitude, the amount of current, or the like, an operational amplifier, a differential amplifier circuit, a source follower circuit, or a buffer circuit
  • X and Y are functionally connected.
  • the case where X and Y are functionally connected includes the case where X and Y are directly connected and X and Y are electrically connected.
  • an explicit description “X and Y are electrically connected” means that X and Y are electrically connected (i.e., the case where X and Y are connected with another element or another circuit provided therebetween), X and Y are functionally connected (i.e., the case where X and Y are functionally connected with another circuit provided therebetween), and X and Y are directly connected (i.e., the case where X and Y are connected without another element or another circuit provided therebetween). That is, in this specification and the like, the explicit description “X and Y are electrically connected” is the same as the explicit description “X and Y are connected.”
  • the expressions include, for example, “X, Y, a source (or a first terminal or the like) of a transistor, and a drain (or a second terminal or the like) of the transistor are electrically connected to each other, and X, the source (or the first terminal or the like) of the transistor, the drain (or the second terminal or the like) of the transistor, and Y are electrically connected to each other in that order,” “a source (or a first terminal or the like) of a transistor is electrically connected to X, a drain (or a second terminal or the like) of the transistor is electrically connected to Y, and X, the source (or the first terminal or the like) of the transistor, the drain (or the second terminal or the like) of the transistor, and Y are electrically connected to each other in that order,” and “X is electrically connected to Y through a source (or a first terminal or the like) and a drain (or a second terminal or the like) of a transistor, and X, the source (or the
  • a source (or a first terminal or the like) of a transistor is electrically connected to X through at least a first connection path, the first connection path does not include a second connection path, the second connection path is a path between the source (or the first terminal or the like) of the transistor and a drain (or a second terminal or the like) of the transistor, Z1 is on the first connection path, the drain (or the second terminal or the like) of the transistor is electrically connected to Y through at least a third connection path, the third connection path does not include the second connection path, and Z2 is on the third connection path.” It is also possible to use the expression “a source (or a first terminal or the like) of a transistor is electrically connected to X through at least Z1 on a first connection path, the first connection path does not include a second connection path, the second connection path includes a connection path through the transistor, a drain (or a second terminal or the like) of the transistor is electrically connected to Y through at least Z2 on
  • X, Y, Z1, and Z2 each denote an object (e.g., a device, an element, a circuit, a wiring, an electrode, a terminal, a conductive film, or a layer).
  • one component has functions of a plurality of components in some cases.
  • one conductive film functions as the wiring and the electrode.
  • electrical connection in this specification also means such a case where one conductive film has functions of a plurality of components.
  • film and “layer” can be interchanged with each other depending on circumstances or conditions.
  • conductive layer can be changed into the term “conductive film” in some cases.
  • insulating film can be changed into the term “insulating layer” in some cases.
  • a potential (voltage) is relative and is determined depending on the amount relative to a certain potential. Therefore, even when the expression “ground”, “GND”, or the like is used, the potential is not necessarily 0 V.
  • the “ground potential” or “GND” might be defined using the lowest potential in a circuit as a reference.
  • the “ground potential” or “GND” might be defined using an intermediate potential in a circuit as a reference. In those cases, a positive potential and a negative potential are set using the potential as a reference.
  • FIG. 1 illustrates a pixel circuit that can be used for an imaging device in one embodiment of the present invention.
  • the pixel circuit includes a transistor 51 , a transistor 52 , a transistor 53 , a transistor 54 , and a photoelectric conversion element 60 .
  • One electrode of the photoelectric conversion element 60 is electrically connected to one of a source electrode and a drain electrode of the transistor 51 .
  • the one electrode of the photoelectric conversion element 60 is electrically connected to one of a source electrode and a drain electrode of the transistor 53 .
  • the other of the source electrode and the drain electrode of the transistor 51 is electrically connected to a gate electrode of the transistor 52 .
  • One of a source electrode and a drain electrode of the transistor 52 is electrically connected to one of a source electrode and a drain electrode of the transistor 54 .
  • the other electrode of the photoelectric conversion element 60 is electrically connected to a wiring 72 (HVDD).
  • a gate electrode of the transistor 51 is electrically connected to a wiring 75 (TX).
  • the other of the source electrode and the drain electrode of the transistor 52 is electrically connected to a wiring 79 (VDD).
  • a gate electrode of the transistor 53 is electrically connected to a wiring 76 (RS).
  • the other of the source electrode and the drain electrode of the transistor 53 is electrically connected to a wiring 73 (GND).
  • the other of the source electrode and the drain electrode of the transistor 54 is electrically connected to a wiring 71 (OUT).
  • a gate electrode of the transistor 54 is electrically connected to a wiring 78 (SE).
  • the wiring 72 (HVDD) is electrically connected to one terminal of a high voltage power source 56 .
  • the other terminal of the high voltage power source 56 is electrically connected to a wiring 77 (GND).
  • the wiring 71 (OUT) can function as an output line that outputs a signal from a pixel.
  • the wiring 73 (GND), the wiring 77 (GND), and the wiring 79 (VDD) can function as power supply lines.
  • the wiring 73 (GND) and the wiring 77 (GND) can function as low potential power supply lines
  • the wiring 79 (VDD) can function as a high potential power supply line.
  • the wiring 75 (TX), the wiring 76 (RS), and the wiring 78 (SE) can function as signal lines that control the on/off states of the transistors.
  • the wiring 73 (GND) and the wiring 77 (GND) may be provided as one wiring.
  • the potentials of the two wirings are not limited to GND, and may be any potentials as long as they are sufficiently lower than a potential supplied to the wiring 79 (VDD).
  • the photoelectric conversion element 60 exhibits photoelectric characteristics when a potential HVDD that is high voltage is applied.
  • the potential HVDD is higher than a potential VDD supplied to the wiring 79 (VDD).
  • VDD potential supplied to the wiring 79
  • HVDD comparatively high voltage
  • the high voltage power source 56 is capable of supplying HVDD, and HVDD is supplied to the other electrode of the photoelectric conversion element 60 through the wiring 72 (HVDD).
  • the transistor 51 can function as a transfer transistor for transferring the potential of a charge accumulation portion (NR) that changes in response to output of the photoelectric conversion element 60 to a charge accumulation portion (ND).
  • the transistor 53 can function as a reset transistor that initializes the potentials of the charge accumulation portion (NR) and the charge accumulation portion (ND).
  • the transistor 52 can function as an amplifying transistor that outputs a signal based on the potential of the charge accumulation portion (ND).
  • the transistor 54 can function as a selection transistor that selects a pixel from which a signal is read.
  • a transistor to be connected to the photoelectric conversion element 60 needs to withstand the high voltage.
  • a transistor including an oxide semiconductor in an active layer hereinafter referred to as an OS transistor
  • OS transistors are preferably used as the transistors 51 and 53 .
  • the OS transistor has high withstand voltage electrical characteristics.
  • the OS transistor Since the OS transistor has a wide bandgap (>3.0 eV) semiconductor, drain withstand voltage depends not on junction withstand voltage but on the gate insulating film thickness. The OS transistor is less likely to generate a short channel effect, so that the drain withstand voltage is increased by making the gate insulating film thicker and normally-off transistor characteristics are easily obtained. The OS transistor withstands a bias of higher than 20 V that is necessary for avalanche charge multiplication of the photoelectric conversion element. Note that the failure mode of the OS transistor is dielectric breakdown.
  • the high withstand voltage transistor refers to a transistor that can withstand desired high voltage without electrical breakdown.
  • desired high voltage can be applied to a gate electrode without breakdown when GND is applied to a source electrode and a drain electrode.
  • desired high voltage can be applied to the drain electrode without breakdown when GND is applied to the source electrode and the gate electrode.
  • desired high voltage can be applied to the drain electrode without breakdown when GND is applied to the source electrode and VDD is applied to the gate electrode.
  • the transistors 51 and 53 give high priority to switching characteristics
  • the transistor 52 gives high priority to amplifying characteristics; thus, a transistor with high on-state current is preferably used. Therefore, a transistor including silicon in an active layer or an active region (hereinafter referred to as a Si transistor) is preferably used as the transistor 52 .
  • the highest potential of the charge accumulation portion (NR) can be HVDD.
  • the potential of the charge accumulation portion (ND) is not higher than the highest potential that is applied to the gate electrode of the transistor 51 . More properly, the potential of the charge accumulation portion (ND) is not higher than a potential obtained by subtracting the threshold voltage (V th ) of the transistor 51 from the highest potential that is applied to the gate electrode of the transistor 51 .
  • V th threshold voltage
  • the highest potential of the charge accumulation portion (ND) is VDD when the highest potential that is applied to the wiring 75 (TX) is VDD.
  • V th of the transistor 51 is regarded as low voltage, and the description of Vth of the transistor 51 is omitted when the potential of the charge accumulation portion (ND) is described.
  • the transistor 51 when the transistor 51 is normally-off, the potential VDD that is lower than the potential HVDD is power supply voltage for reading. Therefore, high voltage is not applied to the gate electrode of the transistor 52 , so that the use of a Si transistor that includes a thin gate insulating film and has comparatively not so high withstand voltage as the transistor 52 does not pose a problem.
  • the transistors 51 to 54 have the above structures, it is possible to manufacture an imaging device that has high light detection sensitivity under a low illuminance condition and can output a signal with little noise. Since the imaging device has high light detection sensitivity, light capturing time can be shortened and imaging can be performed at high speed.
  • HVDD and GND are supplied to the wiring 76 (RS) connected to the gate electrode of the transistor 53 as an “H” potential and an “L” potential, respectively.
  • VDD and GND are supplied to the wiring 75 (TX) connected to the gate electrode of the transistor 51 as an “H” potential and an “L” potential, respectively.
  • VDD is supplied to the wiring 79 (VDD) connected to the source electrode of the transistor 52 .
  • Other potentials also can be supplied to the wirings.
  • the wiring 76 (RS) is set at “H” and the wiring 75 (TX) is set at “H,” the potentials of the charge accumulation portion (NR) and the charge accumulation portion (ND) are each set to a reset potential (GND) (that is, reset operation). Note that in reset operation, VDD may be supplied to the wiring 76 (RS) as an “H” potential.
  • the potential of the charge accumulation portion (NR) changes (that is, accumulation operation).
  • the potential of the charge accumulation portion (NR) is changed from GND to HVDD at the maximum depending on the intensity of light that enters the photoelectric conversion element 60 .
  • VDD is supplied to the gate electrode of the transistor 51 ; thus, when the potential of the charge accumulation portion (ND) reaches VDD, the transistor 51 is turned off. Therefore, the potential of the charge accumulation portion (ND) is changed from the reset potential (GND) to VDD at the maximum. In other words, VDD is applied to the gate electrode of the transistor 52 at the maximum.
  • the wiring 75 (TX) is set at “L” in the accumulation operation in FIG. 6
  • the wiring 75 (TX) may be set at “H.”
  • the potential of the charge accumulation portion (ND) is changed in accordance with the potential change of the charge accumulation portion (NR); however, VDD is supplied to the gate electrode of the transistor 51 . Therefore, when the potential of the charge accumulation portion (ND) reaches VDD, the transistor 51 is turned off. Thus, the potential of the charge accumulation portion (ND) is changed from the reset potential (GND) to VDD at the maximum. In other words, also in such a case, VDD is applied to the gate electrode of the transistor 52 at the maximum.
  • the wiring 75 (TX) is set at “L” in the accumulation operation, the influence of noise caused by the transistor 51 can be reduced. In contrast, if the wiring 75 (TX) is set at “H,” the influence of noise caused by switching of the transistor 51 can be reduced.
  • a signal based on the potential of the charge accumulation portion (ND) can be output to the wiring 71 (OUT). In other words, an output signal based on the intensity of light that enters the photoelectric conversion element 60 in the accumulation operation can be obtained.
  • the highest voltages applied to the terminals of the transistors are as follows.
  • HVDD is applied to the source electrode of the transistor 51
  • VDD is applied to the gate electrode and the drain electrode of the transistor 51
  • GND is applied to the source electrode of the transistor 53
  • VDD is applied to the source electrode, the drain electrode, and the gate electrode of the transistor 52
  • VDD is applied to the source electrode, the drain electrode, and the gate electrode of the transistor 54 . Therefore, the transistors 51 and 53 need to withstand the high voltage HVDD. In contrast, it is enough for the transistors 52 and 54 to withstand VDD.
  • the pixel circuit used for the imaging device in one embodiment of the present invention may have a structure in FIG. 35 .
  • one of a source electrode and a drain electrode of a transistor 55 is connected to the charge accumulation portion (ND) in FIG. 1 .
  • the other of the source electrode and the drain electrode of the transistor 55 is connected to a wiring 93 (GND).
  • a gate electrode of the transistor 55 is connected to a wiring 96 (RS).
  • the wiring 93 (GND) can have the same potential as the wiring 73 (GND).
  • the wiring 96 (RS) is a signal line for controlling the transistor 55 and can be supplied with a potential similar to that of the wiring 76 (RS).
  • the wiring 76 (RS) and the wiring 96 (RS) can be supplied with different potentials.
  • the wiring 76 (RS) and the wiring 96 (RS) can be electrically connected to each other.
  • the reset operation of the charge accumulation portion (ND) is performed by turning on the transistors 51 and 53 .
  • the charge accumulation portion (ND) can be reset without operation of the transistor 51 ; thus, imaging noise can be reduced.
  • the transistor 54 is provided between the transistor 52 and the wiring 71 (OUT). However, as illustrated in FIG. 36 , the transistor 54 may be provided between the transistor 52 and the wiring 79 (VDD).
  • the other of the source electrode and the drain electrode of the transistor 52 is connected to the high potential power supply line (the wiring 79 (VDD)).
  • the other of the source electrode and the drain electrode of the transistor 52 may be connected to a low potential power supply line (a wiring 99 (GND)).
  • the transistor 52 may be replaced with a p-channel transistor.
  • the transistor 54 may be omitted as illustrated in FIG. 7A .
  • a capacitor 57 may be provided for the charge accumulation portion (NR).
  • a capacitor 58 may be provided for the charge accumulation portion (ND).
  • the capacitors 57 and 58 may be provided. Note that any of the structures in FIGS. 7A to 7D can be optionally combined with any of the structures in FIG. 35 , FIG. 36 , and FIGS. 37A and 37B .
  • the transistors 51 and 53 in the pixel circuit may each include a back gate as illustrated in FIGS. 7E and 7F .
  • FIG. 7E illustrates a structure in which a constant potential is applied to the back gates, which enables control of the threshold voltage.
  • FIG. 7F illustrates a structure in which the back gates are supplied with the same potential as front gates, which enables an increase in on-state current.
  • the transistors 51 to 54 may each include a back gate as illustrated in FIGS. 7G and 7H .
  • the circuits in FIG. 1 , FIGS. 7A to 7D , FIG. 35 , FIG. 36 , FIGS. 37A and 37B can also have transistors having back gates.
  • a structure in which the same potential is applied to a front gate and a back gate, a structure in which a constant potential is applied to a back gate, and a structure without a back gate may be optionally combined as necessary for the transistors included in one pixel circuit.
  • the pixel circuit may have a structure in which the transistors 52 and 54 are shared among a plurality of pixels as illustrated in FIG. 8 .
  • FIG. 8 illustrates a structure in which the transistors 52 and 54 are shared among a plurality of pixels in a perpendicular direction; however, the transistors 52 and 54 may be shared among a plurality of pixels in a horizontal direction or in a horizontal and perpendicular direction. Such a structure can reduce the number of transistors included in one pixel.
  • the charge accumulation portion (ND) may have the reset transistor 55 .
  • FIG. 8 and FIG. 38 each illustrate a structure in which the transistors 52 and 54 are shared among four pixels, the transistors 52 and 54 may be shared among two pixels, three pixels, or five or more pixels. Note that the structure in FIG. 8 or FIG. 38 can be optionally combined with any of the structures in FIGS. 7A to 7H , FIG. 36 , and FIGS. 37A and 37B .
  • Such a structure can provide an imaging device that includes a highly integrated pixel array.
  • an imaging device that easily performs imaging under a low illuminance condition can be provided.
  • FIG. 9A is an example of a cross-sectional view of the imaging device in one embodiment of the present invention and illustrates an example of specific connection between the photoelectric conversion element 60 and the transistors 51 and 53 which are included in the pixel in FIG. 1 . Note that FIG. 9A does not illustrate the transistors 52 and 54 .
  • the imaging device includes a layer 1100 including the transistors 51 to 54 and a layer 1200 including the photoelectric conversion element 60 .
  • the wirings, the electrodes, and conductors 81 are illustrated as independent components in cross-sectional views in this embodiment, some of them are provided as one component in some cases when they are electrically connected to each other.
  • a structure in which a gate electrode, a source electrode, or a drain electrode of the transistor is connected to the wirings through the conductor 81 is only an example, and the gate electrode, the source electrode, and the drain electrode of the transistor might each function as a wiring.
  • insulating layers 82 and 83 and the like that function as protective films, interlayer insulating films, or planarization films are provided over the components.
  • an inorganic insulating film such as a silicon oxide film or a silicon oxynitride film can be used as each of the insulating layers 82 and 83 and the like.
  • an organic insulating film such as an acrylic resin film or a polyimide resin film may be used. Top surfaces of the insulating layers 82 and 83 and the like are preferably planarized by chemical mechanical polishing (CMP) or the like as necessary.
  • CMP chemical mechanical polishing
  • one or more of the wirings and the like illustrated in the drawing are not provided or a wiring, a transistor, or the like that is not illustrated in the drawing is included in each layer.
  • a layer that is not illustrated in the drawing might be included.
  • one or more of the layers illustrated in the drawing are not included in some cases.
  • OS transistors are particularly preferable to use OS transistors as the transistors 51 and 53 .
  • Extremely low off-state current of the OS transistor can widen the dynamic range of imaging.
  • a decrease in the intensity of light entering the photoelectric conversion element 60 reduces the potential of the charge accumulation portion (ND). Since the OS transistor has extremely low off-state current, current based on a gate potential can be accurately output even when the gate potential is extremely low. Thus, it is possible to widen the detection range of illuminance, i.e., the dynamic range.
  • a period during which charge can be held in the charge accumulation portion (ND) and the charge accumulation portion (NR) can be extremely long owing to the low off-state current of the transistors 51 and 53 . Therefore, a global shutter system in which accumulation operation is performed in all the pixels at the same time can be used without a complicated circuit structure and operation method.
  • a rolling shutter system in which imaging operation 11 , retention operation 12 , and read operation 13 are performed row by row as illustrated in FIG. 10A .
  • simultaneousness of imaging is lost. Therefore, when an object moves, an image is distorted.
  • a global shutter system in which the imaging operation 11 can be performed simultaneously in all the rows and the read operation 13 can be sequentially performed row by row as illustrated in FIG. 10B .
  • the global shutter system simultaneousness of imaging in all the pixels in the imaging device can be secured, and an image with little distortion can be easily formed even when an object moves.
  • the OS transistor has lower temperature dependence of change in electrical characteristics than a Si transistor, and thus can be used in an extremely wide range of temperatures. Therefore, an imaging device and a semiconductor device that include the OS transistors are suitable for automobiles, aircrafts, and spacecrafts.
  • the OS transistor has higher drain breakdown voltage than the Si transistor.
  • comparatively high voltage e.g. 10 V or higher
  • a highly reliable imaging device can be obtained.
  • each transistor includes a back gate in FIG. 9A , as illustrated in FIG. 9B , each transistor does not necessarily include a back gate.
  • each transistor does not necessarily include a back gate.
  • one or more transistors for example, only the transistor 51 may include a back gate.
  • the back gate might be electrically connected to a corresponding front gate of the transistor.
  • different fixed potentials might be supplied to the back gate and the front gate. Note that the presence or absence of the back gate can also be applied to another imaging device described in this embodiment.
  • FIG. 9A illustrates the photoelectric conversion element 60 including a selenium-based material for a photoelectric conversion layer 61 .
  • the photoelectric conversion element 60 including a selenium-based material has high external quantum efficiency with respect to visible light.
  • a highly sensitive sensor in which the amount of amplification of electrons with respect to the amount of incident light by an avalanche phenomenon is large can be obtained.
  • the selenium-based material has a high light absorption coefficient, which leads to an advantage that the photoelectric conversion layer 61 is easily formed to be thin.
  • Amorphous selenium or crystalline selenium can be used as a selenium-based material.
  • Crystalline selenium can be obtained by, for example, depositing amorphous selenium and then performing heat treatment. When the crystal grain size of crystalline selenium is smaller than a pixel pitch, variation in characteristics between pixels can be reduced. Moreover, crystalline selenium has higher spectral sensitivity and light-absorption coefficient than those of amorphous selenium.
  • the photoelectric conversion layer 61 may be a layer including a compound of copper, indium, and selenium (CIS).
  • CIS copper, indium, and selenium
  • CIGS copper, indium, gallium, and selenium
  • CIS layer or the CIGS layer a photoelectric conversion element that can utilize an avalanche phenomenon in a manner similar to that of a single layer of selenium can be formed.
  • the photoelectric conversion layer 61 can be provided between a light-transmitting conductive layer 62 and the electrode 66 formed using a metal material or the like.
  • CIS and CIGS are p-type semiconductors and may be formed in contact with an n-type semiconductor such as cadmium sulfide or zinc sulfide to form a j unction.
  • Comparatively high voltage (e.g., 10 V or higher) is preferably applied to the photoelectric conversion element to cause the avalanche phenomenon. Since the OS transistor has higher drain breakdown voltage than the Si transistor, comparatively high voltage can be easily applied to the photoelectric conversion element. Therefore, by combination of the OS transistor with high drain breakdown voltage and the photoelectric conversion element in which the selenium-based material is used for the photoelectric conversion layer, a highly sensitive, highly reliable imaging device can be obtained.
  • the photoelectric conversion layer 61 and the light-transmitting conductive layer 62 are not divided between pixel circuits in FIG. 9A , the photoelectric conversion layer 61 and the light-transmitting conductive layer 62 may be divided between circuits as illustrated in FIG. 11A . Furthermore, a partition wall 67 formed using an insulator is preferably provided in a region between pixels where the electrode 66 is not provided so as not to generate a crack in the photoelectric conversion layer 61 and the light-transmitting conductive layer 62 ; however, the partition wall 67 is not necessarily provided as illustrated in FIG. 11B . Although the light-transmitting conductive layer 62 and the wiring 72 are connected to each other through a wiring 88 and the conductor 81 in FIG. 9A , the light-transmitting conductive layer 62 and the wiring 72 may be in direct contact with each other as in FIGS. 11C and 11D .
  • the electrode 66 , the wiring 72 , and the like may each be a multilayer.
  • the electrode 66 can include two conductive layers 66 a and 66 b and the wiring 72 can include two conductive layers 72 a and 72 b .
  • the conductive layers 66 a and 72 a may be made of a low-resistance metal or the like, and the conductive layers 66 b and 72 b may be made of a metal or the like that exhibits an excellent contact property with the photoelectric conversion layer 61 .
  • Such a structure improves the electrical properties of the photoelectric conversion element.
  • the conductive layer 72 a contains a metal that causes electrolytic corrosion, which occurs when some kinds of metal are in contact with the light-transmitting conductive layer 62 , electrolytic corrosion can be prevented because the conductive layer 72 b is placed between the conductive layer 72 a and the light-transmitting conductive layer 62 .
  • the conductive layers 66 b and 72 b can be formed using, for example, molybdenum, tungsten, or the like.
  • the conductive layers 66 a and 72 a can be formed using, for example, aluminum, titanium, or a stack of titanium, aluminum, and titanium that are layered in that order.
  • the insulating layer 82 and the like may each be a multilayer.
  • the conductor 81 has a difference in level in the case where the insulating layer 82 includes insulating layers 82 a and 82 b that have different etching rates.
  • the conductor 81 also has a difference in level.
  • the insulating layer 82 is formed using two layers here, the insulating layer 82 and another insulating layer may each be formed using three or more layers.
  • the partition wall 67 can be formed using an inorganic insulator, an insulating organic resin, or the like.
  • the partition wall 67 may be colored black or the like in order to shield the transistors and the like from light and/or to determine the area of a light-receiving portion in each pixel.
  • a PIN diode element or the like formed using an amorphous silicon film, a microcrystalline silicon film, or the like may be used as the photoelectric conversion element 60 .
  • FIG. 13 illustrates an example in which a thin film PIN photodiode is used as the photoelectric conversion element 60 .
  • a p-type semiconductor layer 65 In the photodiode, a p-type semiconductor layer 65 , an i-type semiconductor layer 64 , and an n-type semiconductor layer 63 are stacked in that order.
  • the i-type semiconductor layer 64 is preferably formed using amorphous silicon.
  • the n-type semiconductor layer 63 and the p-type semiconductor layer 65 can each be formed using amorphous silicon, microcrystalline silicon, or the like that includes a dopant imparting the corresponding conductivity type.
  • a photodiode in which a photoelectric conversion layer is formed using amorphous silicon has high sensitivity in a visible light wavelength region, and therefore can easily sense weak visible light.
  • the p-type semiconductor layer 65 is electrically connected to the electrode 66 that is electrically connected to the transistors 51 and 53 . Furthermore, the n-type semiconductor layer 63 is electrically connected to the wiring 72 through the conductor 81 .
  • any of examples illustrated in FIGS. 14A to 14F may be applied to the structure of the photoelectric conversion element 60 having a configuration of a PIN thin film photodiode and the connection between the photoelectric conversion element 60 and the wirings.
  • the structure of the photoelectric conversion element 60 and the connection between the photoelectric conversion element 60 and the wirings are not limited thereto, and other configurations may be applied.
  • FIG. 14A illustrates a structure provided with the light-transmitting conductive layer 62 in contact with the n-type semiconductor layer 63 of the photoelectric conversion element 60 .
  • the light-transmitting conductive layer 62 functions as an electrode and can increase the output current of the photoelectric conversion element 60 .
  • the light-transmitting conductive layer 62 is not limited to a single layer, and may be a stacked layer of different films.
  • FIG. 14B illustrates a structure in which the n-type semiconductor layer 63 of the photoelectric conversion element 60 is directly connected to the wiring 88 .
  • FIG. 14C illustrates a structure in which the light-transmitting conductive layer 62 in contact with the n-type semiconductor layer 63 of the photoelectric conversion element 60 is provided, and the wiring 88 is electrically connected to the light-transmitting conductive layer 62 .
  • FIG. 14D illustrates a structure in which an opening portion exposing the n-type semiconductor layer 63 is provided in an insulating layer covering the photoelectric conversion element 60 , and the light-transmitting conductive layer 62 that covers the opening portion is electrically connected to the wiring 88 .
  • FIG. 14E illustrates a structure provided with the conductor 81 that penetrates the photoelectric conversion element 60 .
  • the wiring 72 is electrically connected to the n-type semiconductor layer 63 through the conductor 81 .
  • the wiring 72 appears to be electrically connected to the electrode 66 through the p-type semiconductor layer 65 .
  • resistance in the lateral direction of the p-type semiconductor layer 65 is high; therefore, when an appropriate distance is provided between the wiring 72 and the electrode 66 , the resistance between the wiring 72 and the electrode 66 is extremely high.
  • the photoelectric conversion element 60 can have diode characteristics without a short circuit between the anode and the cathode.
  • two or more conductors 81 that are electrically connected to the n-type semiconductor layer 63 may be provided.
  • FIG. 14F illustrates a structure in which the photoelectric conversion element 60 in FIG. 14E is provided with the light-transmitting conductive layer 62 in contact with the n-type semiconductor layer 63 .
  • each of the photoelectric conversion elements 60 in FIGS. 14D to 14F has an advantage of having a large light-receiving area because wirings and the like do not overlap with a light-receiving region.
  • the photoelectric conversion element 60 can be a photodiode including a silicon substrate 30 as a photoelectric conversion layer.
  • the photoelectric conversion element 60 formed using the selenium-based material, amorphous silicon, or the like can be formed through general semiconductor manufacturing processes such as a deposition process, a lithography process, and an etching process. Furthermore, the resistance of the selenium-based material is high; thus, a structure in which the photoelectric conversion layer 61 is not divided between the circuits can be employed as illustrated in FIG. 9A . Therefore, the imaging device in one embodiment of the present invention can be manufactured with a high yield at low cost. Meanwhile, to form a photodiode including the silicon substrate 30 as the photoelectric conversion layer, processes with high difficulty, such as a polishing process and a bonding process, are needed.
  • the imaging device in one embodiment of the present invention may be stacked over the silicon substrate 30 including circuits.
  • the pixel circuit may overlap with a layer 1400 that includes transistors 31 and 32 whose active regions are formed in the silicon substrate 30 .
  • the circuit formed in the silicon substrate 30 is capable of reading a signal output from the pixel circuit and converting the signal; for example, the circuit can include a CMOS inverter as illustrated in the circuit diagram in FIG. 16B .
  • a gate electrode of the transistor 31 (n-channel transistor) is electrically connected to a gate electrode of the transistor 32 (p-channel transistor).
  • One of a source electrode and a drain electrode of one transistor is electrically connected to one of a source electrode and a drain electrode of the other transistor.
  • the other of the source electrode and the drain electrode of the one transistor is electrically connected to a wiring, and the other of the source electrode and the drain electrode of the other transistor is electrically connected to another wiring.
  • the silicon substrate 30 is not limited to a bulk silicon substrate and can be a substrate made of germanium, silicon germanium, silicon carbide, gallium arsenide, aluminum gallium arsenide, indium phosphide, gallium nitride, or an organic semiconductor.
  • the transistors 31 and 32 may each be a transistor including an active layer 35 formed using a silicon thin film.
  • the active layer 35 can be formed using polycrystalline silicon or single crystal silicon of a silicon-on-insulator (SOI) structure.
  • an insulating layer 80 is provided between a region including an oxide semiconductor transistor and a region including a Si transistor (a Si photodiode in FIG. 15 ).
  • Hydrogen is confined in the one layer by the insulating layer 80 , so that the reliability of the transistors 31 and 32 can be improved. Furthermore, diffusion of hydrogen from the one layer to the other layer is inhibited, so that the reliability of the transistor 51 or the like can also be improved.
  • the insulating layer 80 can be, for example, formed using aluminum oxide, aluminum oxynitride, gallium oxide, gallium oxynitride, yttrium oxide, yttrium oxynitride, hafnium oxide, hafnium oxynitride, or yttria-stabilized zirconia (YSZ).
  • a circuit (e.g., a driver circuit) formed using the silicon substrate 30 , the transistor 51 or the like, and the photoelectric conversion element 60 can overlap with each other; thus, the integration degree of pixels can be increased. In other words, the resolution of the imaging device can be increased.
  • the imaging device is suitable for an imaging device whose number of pixels is 4K2K, 8K4K, 16K8K, or the like.
  • the transistor 52 , the transistor 54 , and the like included in the pixel circuit may have a region that overlaps with the transistor 51 or the like and the photoelectric conversion element 60 .
  • the imaging device in one embodiment of the present invention can have a structure in FIG. 17 .
  • the imaging device in FIG. 17 is a modification example of the imaging device in FIG. 16A .
  • a CMOS inverter is formed using an OS transistor and a Si transistor.
  • the transistor 32 is a p-channel Si transistor provided in the layer 1400
  • the transistor 31 is an n-channel OS transistor provided in the layer 1100 .
  • a step of forming a well, an n-type impurity layer, or the like can be skipped.
  • a PIN thin film photodiode may be used as in FIG. 13 .
  • the transistor 31 can be formed in the same process as the transistors 51 and 53 formed in the layer 1100 .
  • the manufacturing process of the imaging device can be simplified.
  • the structure of the transistor and the photoelectric conversion element included in each of the imaging devices described in this embodiment is only an example. Therefore, for example, one or more of the transistors 51 to 54 can be formed using a transistor in which an active region or an active layer includes silicon or the like. Furthermore, either one or both the transistors 31 and 32 can be formed using a transistor including an oxide semiconductor layer as an active layer.
  • FIG. 18A is a cross-sectional view of an example of a mode in which a color filter and the like are added to the imaging device.
  • the cross-sectional view illustrates part of a region including pixel circuits for three pixels.
  • An insulating layer 2500 is formed over the layer 1200 where the photoelectric conversion element 60 is formed.
  • a silicon oxide film with a high visible-light transmitting property can be used.
  • a silicon nitride film may be stacked as a passivation film.
  • a dielectric film of hafnium oxide or the like may be stacked as an anti-reflection film.
  • a light-blocking layer 2510 may be formed over the insulating layer 2500 .
  • the light-blocking layer 2510 has a function of inhibiting color mixing of light passing through the color filter.
  • the light-blocking layer 2510 can be formed using a metal layer of aluminum, tungsten, or the like, or a stack including the metal layer and a dielectric film functioning as an anti-reflection film.
  • An organic resin layer 2520 can be formed as a planarization film over the insulating layer 2500 and the light-blocking layer 2510 .
  • a color filter 2530 is formed in each pixel.
  • a color filter 2530 a , a color filter 2530 b , and a color filter 2530 c each have a color of red (R), green (G), blue (B), yellow (Y), cyan (C), magenta (M), or the like, so that a color image can be obtained.
  • a light-transmitting insulating layer 2560 or the like can be provided over the color filter 2530 .
  • an optical conversion layer 2550 may be used instead of the color filter 2530 .
  • Such a structure enables the imaging device to capture images in various wavelength regions.
  • an infrared imaging device can be obtained.
  • a far infrared imaging device can be obtained.
  • an ultraviolet imaging device can be obtained.
  • an imaging device that captures an image visualizing the intensity of radiation and is used for an X-ray imaging device, for example, can be obtained.
  • Radiation such as X-rays passes through an object to enter a scintillator, and then is converted into light (fluorescence) such as visible light or ultraviolet light owing to a phenomenon known as photoluminescence. Then, the photoelectric conversion element 60 detects the light to obtain image data.
  • the imaging device having the structure may be used in a radiation detector or the like.
  • a scintillator contains a substance that, when irradiated with radiation such as X-rays or gamma-rays, absorbs energy of the radiation to emit visible light or ultraviolet light.
  • a resin or ceramics in which any of Gd 2 O 2 S:Tb, Gd 2 O 2 S:Pr, Gd 2 O 2 S:Eu, BaFCl:Eu, NaI, CsI, CaF 2 , BaF 2 , CeF 3 , LiF, LiI, and ZnO is dispersed can be used.
  • the scintillator is not necessarily used.
  • a microlens array 2540 may be provided over the color filters 2530 a , 2530 b , and 2530 c .
  • Light penetrating lenses included in the microlens array 2540 goes through the color filters positioned thereunder to reach the photoelectric conversion element 60 .
  • a region other than the layer 1200 in FIGS. 18A to 18C is referred to as a layer 1600 .
  • FIG. 19 The specific structure of the imaging device in FIG. 18C is illustrated in FIG. 19 by taking an example of the imaging device in FIG. 9A .
  • FIG. 20 the specific structure of the imaging device in FIG. 15 .
  • the imaging device in one embodiment of the present invention may be combined with a diffraction grating 1500 as illustrated in FIG. 21 and FIG. 22 .
  • An image of an object through the diffraction grating 1500 i.e., a diffraction pattern
  • an input image an object image
  • the use of the diffraction grating 1500 instead of a lens can reduce the cost of the imaging device.
  • the diffraction grating 1500 can be formed using a light-transmitting material.
  • An inorganic insulating film such as a silicon oxide film or a silicon oxynitride film can be used, for example.
  • an organic insulating film such as an acrylic resin film or a polyimide resin film may be used.
  • a stack of the inorganic insulating film and the organic insulating film may be used.
  • the diffraction grating 1500 can be formed by a lithography process using a photosensitive resin or the like.
  • the diffraction grating 1500 can be formed by a lithography process and an etching process.
  • the diffraction grating 1500 can be formed by nanoimprint lithography, laser scribing, or the like.
  • a space X may be provided between the diffraction grating 1500 and the microlens array 2540 .
  • the space X can be less than or equal to 1 mm, preferably less than or equal to 100 ⁇ m.
  • the space may be an empty space or may be a sealing layer or an adhesion layer formed using a light-transmitting material.
  • an inert gas such as nitrogen or a rare gas can be sealed in the space.
  • an acrylic resin, an epoxy resin, a polyimide resin, or the like may be provided in the space.
  • a liquid such as silicone oil may be provided.
  • the space X may be provided between the color filter 2530 and the diffraction grating 1500 .
  • FIGS. 23 A 1 and 23 B 1 the imaging device may be bent.
  • FIG. 23 A 1 illustrates a state in which the imaging device is bent in the direction of dashed-two dotted line X 1 -X 2 .
  • FIG. 23 A 2 is a cross-sectional view illustrating a portion indicated by dashed-two dotted line X 1 -X 2 in FIG. 23 A 1 .
  • FIG. 23 A 3 is a cross-sectional view illustrating a portion indicated by dashed-two dotted line Y 1 -Y 2 in FIG. 23 A 1 .
  • FIG. 23 B 1 illustrates a state where the imaging device is bent in the direction of dashed-two dotted line X 3 -X 4 and the direction of dashed-two dotted line Y 3 -Y 4 .
  • FIG. 23 B 2 is a cross-sectional view illustrating a portion indicated by dashed-two dotted line X 3 -X 4 in FIG. 23 B 1 .
  • FIG. 23 B 3 is a cross-sectional view illustrating a portion indicated by dashed-two dotted line Y 3 -Y 4 in FIG. 23 B 1 .
  • Bending the imaging device can reduce field curvature and astigmatism.
  • the optical design of the lens and the like, which are used in combination of the imaging device can be facilitated.
  • the number of lenses used for aberration correction can be reduced; accordingly, the size or weight of semiconductor devices including the imaging device can be easily reduced.
  • the quality of captured images can be improved.
  • one embodiment of the present invention has been described. Other embodiments of the present invention are described in the other embodiments. Note that one embodiment of the present invention is not limited thereto. In other words, various embodiments of the invention are described in this embodiment and the other embodiments, and one embodiment of the present invention is not limited to a particular embodiment. Although an example in which one embodiment of the present invention is applied to an imaging device is described, one embodiment of the present invention is not limited thereto. Depending on circumstances or conditions, one embodiment of the present invention is not necessarily applied to an imaging device. One embodiment of the present invention may be applied to a semiconductor device with another function, for example.
  • a channel formation region, a source region, a drain region, or the like of a transistor includes an oxide semiconductor is described as one embodiment of the present invention, one embodiment of the present invention is not limited thereto. Depending on circumstances or conditions, various transistors or a channel formation region, a source region, a drain region, or the like of a transistor in one embodiment of the present invention may include various semiconductors.
  • various transistors or a channel formation region, a source region, a drain region, or the like of a transistor in one embodiment of the present invention may include, for example, at least one of silicon, germanium, silicon germanium, silicon carbide, gallium arsenide, aluminum gallium arsenide, indium phosphide, gallium nitride, and an organic semiconductor.
  • various transistors or a channel formation region, a source region, a drain region, or the like of a transistor in one embodiment of the present invention does not necessarily include an oxide semiconductor.
  • either one or both the transistors 51 and 53 do not necessarily include an oxide semiconductor in the active layer.
  • FIGS. 24A and 24B are a top view and a cross-sectional view illustrating a transistor 101 in one embodiment of the present invention.
  • FIG. 24A is a top view, and a cross section in the direction of dashed-dotted line B 1 -B 2 in FIG. 24A is illustrated in FIG. 24B .
  • a cross section in the direction of dashed-dotted line B 3 -B 4 in FIG. 24A is illustrated in FIG. 26A .
  • the direction of dashed-dotted line B 1 -B 2 is referred to as a channel length direction
  • the direction of dashed-dotted line B 3 -B 4 is referred to as a channel width direction.
  • the transistor 101 includes an insulating layer 120 in contact with a substrate 115 ; an oxide semiconductor layer 130 in contact with the insulating layer 120 ; conductive layers 140 and 150 electrically connected to the oxide semiconductor layer 130 ; an insulating layer 160 in contact with the oxide semiconductor layer 130 and the conductive layers 140 and 150 ; a conductive layer 170 in contact with the insulating layer 160 ; an insulating layer 175 in contact with the conductive layers 140 and 150 , the insulating layer 160 , and the conductive layer 170 ; and an insulating layer 180 in contact with the insulating layer 175 .
  • the insulating layer 180 may function as a planarization film as necessary.
  • the conductive layer 140 , the conductive layer 150 , the insulating layer 160 , and the conductive layer 170 can function as a source electrode layer, a drain electrode layer, a gate insulating film, and a gate electrode layer, respectively.
  • a region 231 , a region 232 , and a region 233 in FIG. 24B can function as a source region, a drain region, and a channel formation region, respectively.
  • the region 231 and the region 232 are in contact with the conductive layer 140 and the conductive layer 150 , respectively.
  • the resistance of the regions 231 and 232 can be reduced.
  • the oxide semiconductor layer 130 is in contact with the conductive layers 140 and 150 , an oxygen vacancy is generated in the oxide semiconductor layer 130 , and interaction between the oxygen vacancy and hydrogen that remains in the oxide semiconductor layer 130 or diffuses into the oxide semiconductor layer 130 from the outside changes the regions 231 and 232 to n-type regions with low resistance.
  • a “source” and a “drain” of a transistor are sometimes interchanged with each other when a transistor of an opposite conductivity type is used or when the direction of current flow is changed in circuit operation, for example. Therefore, the terms “source” and “drain” can be interchanged with each other in this specification.
  • the term “electrode layer” can be changed into the term “wiring”.
  • the conductive layer 170 includes two layers, conductive layers 171 and 172 , but also may be a single layer or a stack of three or more layers. The same applies to other transistors described in this embodiment.
  • Each of the conductive layers 140 and 150 is a single layer, but also may be a stack of two or more layers. The same applies to other transistors described in this embodiment.
  • FIG. 24C is a top view of a transistor 102 .
  • a cross section in the direction of dashed-dotted line C 1 -C 2 in FIG. 24C is illustrated in FIG. 24D .
  • a cross section in the direction of dashed-dotted line C 3 -C 4 in FIG. 24C is illustrated in FIG. 26B .
  • the direction of dashed-dotted line C 1 -C 2 is referred to as a channel length direction
  • the direction of dashed-dotted line C 3 -C 4 is referred to as a channel width direction.
  • the transistor 102 has the same structure as the transistor 101 except that an end portion of the insulating layer 160 functioning as a gate insulating film is not aligned with an end portion of the conductive layer 170 functioning as a gate electrode layer.
  • the transistor 102 wide areas of the conductive layers 140 and 150 are covered with the insulating layer 160 and accordingly the resistance between the conductive layer 170 and the conductive layers 140 and 150 is high; therefore, the transistor 102 has low gate leakage current.
  • the transistors 101 and 102 each have a top-gate structure including a region where the conductive layer 170 overlaps with the conductive layers 140 and 150 .
  • the width of the region in the channel length direction is preferably greater than or equal to 3 nm and less than 300 nm. Since an offset region is not formed in the oxide semiconductor layer 130 in this structure, a transistor with high on-state current can be easily formed.
  • FIG. 24E is a top view of a transistor 103 .
  • a cross section in the direction of dashed-dotted line D 1 -D 2 in FIG. 24E is illustrated in FIG. 24F .
  • a cross section in the direction of dashed-dotted line D 3 -D 4 in FIG. 24E is illustrated in FIG. 26A .
  • the direction of dashed-dotted line D 1 -D 2 is referred to as a channel length direction
  • the direction of dashed-dotted line D 3 -D 4 is referred to as a channel width direction.
  • the transistor 103 includes the insulating layer 120 in contact with the substrate 115 ; the oxide semiconductor layer 130 in contact with the insulating layer 120 ; the insulating layer 160 in contact with the oxide semiconductor layer 130 ; the conductive layer 170 in contact with the insulating layer 160 ; the insulating layer 175 covering the oxide semiconductor layer 130 , the insulating layer 160 , and the conductive layer 170 ; the insulating layer 180 in contact with the insulating layer 175 ; and the conductive layers 140 and 150 electrically connected to the oxide semiconductor layer 130 through openings provided in the insulating layers 175 and 180 .
  • the transistor 103 may further include, for example, an insulating layer (planarization film) in contact with the insulating layer 180 and the conductive layers 140 and 150 as necessary.
  • the conductive layer 140 , the conductive layer 150 , the insulating layer 160 , and the conductive layer 170 can function as a source electrode layer, a drain electrode layer, a gate insulating film, and a gate electrode layer, respectively.
  • the region 231 , the region 232 , and the region 233 in FIG. 24F can function as a source region, a drain region, and a channel formation region, respectively.
  • the regions 231 and 232 are in contact with the insulating layer 175 .
  • an insulating material containing hydrogen is used for the insulating layer 175 , for example, the resistance of the regions 231 and 232 can be reduced.
  • the insulating material containing hydrogen for example, silicon nitride, aluminum nitride, or the like can be used.
  • FIG. 25A is a top view of a transistor 104 .
  • a cross section in the direction of dashed-dotted line E 1 -E 2 in FIG. 25A is illustrated in FIG. 25B .
  • a cross section in the direction of dashed-dotted line E 3 -E 4 in FIG. 25A is illustrated in FIG. 26A .
  • the direction of dashed-dotted line E 1 -E 2 is referred to as a channel length direction
  • the direction of dashed-dotted line E 3 -E 4 is referred to as a channel width direction.
  • the transistor 104 has the same structure as the transistor 103 except that the conductive layers 140 and 150 in contact with the oxide semiconductor layer 130 cover end portions of the oxide semiconductor layer 130 .
  • regions 331 and 334 can function as a source region
  • regions 332 and 335 can function as a drain region
  • a region 333 can function as a channel formation region.
  • the resistance of the regions 331 and 332 can be reduced in a manner similar to that of the regions 231 and 232 in the transistor 101 .
  • the resistance of the regions 334 and 335 can be reduced in a manner similar to that of the regions 231 and 232 in the transistor 103 .
  • the length of the regions 334 and 335 in the channel length direction is less than or equal to 100 nm, preferably less than or equal to 50 nm, a gate electric field prevents a significant decrease in on-state current. Therefore, a reduction in resistance of the regions 334 and 335 is not performed in some cases.
  • the transistors 103 and 104 each have a self-aligned structure that does not include a region where the conductive layer 170 overlaps with the conductive layers 140 and 150 .
  • a transistor with a self-aligned structure which has extremely low parasitic capacitance between a gate electrode layer and source and drain electrode layers, is suitable for applications that require high-speed operation.
  • FIG. 25C is a top view of a transistor 105 .
  • a cross section in the direction of dashed-dotted line F 1 -F 2 in FIG. 25C is illustrated in FIG. 25D .
  • a cross section in the direction of dashed-dotted line F 3 -F 4 in FIG. 25C is illustrated in FIG. 26A .
  • the direction of dashed-dotted line F 1 -F 2 is referred to as a channel length direction
  • the direction of dashed-dotted line F 3 -F 4 is referred to as a channel width direction.
  • the transistor 105 includes the insulating layer 120 in contact with the substrate 115 ; the oxide semiconductor layer 130 in contact with the insulating layer 120 ; conductive layers 141 and 151 electrically connected to the oxide semiconductor layer 130 ; the insulating layer 160 in contact with the oxide semiconductor layer 130 and the conductive layers 141 and 151 ; the conductive layer 170 in contact with the insulating layer 160 ; the insulating layer 175 in contact with the oxide semiconductor layer 130 , the conductive layers 141 and 151 , the insulating layer 160 , and the conductive layer 170 ; the insulating layer 180 in contact with the insulating layer 175 ; and conductive layers 142 and 152 electrically connected to the conductive layers 141 and 151 , respectively, through openings provided in the insulating layers 175 and 180 .
  • the transistor 105 may further include, for example, an insulating layer in contact with the insulating layer 180 and the conductive layers 142 and 152 as necessary.
  • the conductive layers 141 and 151 are in contact with the top surface of the oxide semiconductor layer 130 and are not in contact with side surfaces of the oxide semiconductor layer 130 .
  • the transistor 105 has the same structure as the transistor 101 except that the conductive layers 141 and 151 are provided, that openings are provided in the insulating layers 175 and 180 , and that the conductive layers 142 and 152 electrically connected to the conductive layers 141 and 151 , respectively, through the openings are provided.
  • the conductive layer 140 (the conductive layers 141 and 142 ) can function as a source electrode layer
  • the conductive layer 150 (the conductive layers 151 and 152 ) can function as a drain electrode layer.
  • FIG. 25E is a top view of a transistor 106 .
  • a cross section in the direction of dashed-dotted line G 1 -G 2 in FIG. 25E is illustrated in FIG. 25F .
  • a cross section in the direction of dashed-dotted line G 3 -G 4 in FIG. 25E is illustrated in FIG. 26A .
  • the direction of dashed-dotted line G 1 -G 2 is referred to as a channel length direction
  • the direction of dashed-dotted line G 3 -G 4 is referred to as a channel width direction.
  • the transistor 106 includes the insulating layer 120 in contact with the substrate 115 ; the oxide semiconductor layer 130 in contact with the insulating layer 120 ; the conductive layers 141 and 151 electrically connected to the oxide semiconductor layer 130 ; the insulating layer 160 in contact with the oxide semiconductor layer 130 ; the conductive layer 170 in contact with the insulating layer 160 ; the insulating layer 175 in contact with the insulating layer 120 , the oxide semiconductor layer 130 , the conductive layers 141 and 151 , the insulating layer 160 , and the conductive layer 170 ; the insulating layer 180 in contact with the insulating layer 175 ; and the conductive layers 142 and 152 electrically connected to the conductive layers 141 and 151 , respectively, through openings provided in the insulating layers 175 and 180 .
  • the transistor 106 may further include, for example, an insulating layer (planarization film) in contact with the insulating layer 180 and the conductive layers 142 and 152 as necessary.
  • the conductive layers 141 and 151 are in contact with the top surface of the oxide semiconductor layer 130 and are not in contact with side surfaces of the oxide semiconductor layer 130 .
  • the transistor 106 has the same structure as the transistor 103 except that the conductive layers 141 and 151 are provided.
  • the conductive layer 140 (the conductive layers 141 and 142 ) can function as a source electrode layer, and the conductive layer 150 (the conductive layers 151 and 152 ) can function as a drain electrode layer.
  • the conductive layers 140 and 150 are not in contact with the insulating layer 120 . These structures make the insulating layer 120 less likely to be deprived of oxygen by the conductive layers 140 and 150 and facilitate oxygen supply from the insulating layer 120 to the oxide semiconductor layer 130 .
  • An impurity for forming an oxygen vacancy to increase conductivity may be added to the regions 231 and 232 in the transistor 103 and the regions 334 and 335 in the transistors 104 and 106 .
  • an impurity for forming an oxygen vacancy in an oxide semiconductor layer for example, one or more of the following can be used: phosphorus, arsenic, antimony, boron, aluminum, silicon, nitrogen, helium, neon, argon, krypton, xenon, indium, fluorine, chlorine, titanium, zinc, and carbon.
  • plasma treatment, ion implantation, ion doping, plasma immersion ion implantation, or the like can be used.
  • an oxide conductor When hydrogen is added to an oxide semiconductor in which an oxygen vacancy is formed by addition of an impurity element, hydrogen enters an oxygen vacant site and forms a donor level in the vicinity of the conduction band. Consequently, an oxide conductor can be formed.
  • an oxide conductor refers to an oxide semiconductor having become a conductor. Note that the oxide conductor has a light-transmitting property in a manner similar to the oxide semiconductor.
  • the oxide conductor is a degenerated semiconductor and it is suggested that the conduction band edge equals or substantially equals the Fermi level. For that reason, an ohmic contact is made between an oxide conductor layer and conductive layers functioning as a source electrode layer and a drain electrode layer; thus, contact resistance between the oxide conductor layer and the conductive layers functioning as a source electrode layer and a drain electrode layer can be reduced.
  • the transistor in one embodiment of the present invention may include a conductive layer 173 between the oxide semiconductor layer 130 and the substrate 115 as illustrated in cross-sectional views in the channel length direction in FIGS. 27A to 27F and cross-sectional views in the channel width direction in FIGS. 26C and 26D .
  • the conductive layer 173 is used as a second gate electrode layer (back gate)
  • the on-state current can be increased or the threshold voltage can be controlled.
  • the width of the conductive layer 173 may be shorter than that of the oxide semiconductor layer 130 .
  • the width of the conductive layer 173 may be shorter than that of the conductive layer 170 .
  • the conductive layers 170 and 173 are made to have the same potential, and the transistor is driven as a double-gate transistor. Furthermore, in order to control the threshold voltage, a fixed potential that is different from the potential of the conductive layer 170 is applied to the conductive layer 173 . To set the conductive layers 170 and 173 at the same potential, for example, as illustrated in FIG. 26D , the conductive layers 170 and 173 may be electrically connected to each other through a contact hole.
  • the transistors 101 to 106 in FIGS. 24A to 24F and FIGS. 25A to 25F are examples in which the oxide semiconductor layer 130 is a single layer, the oxide semiconductor layer 130 may be a stacked layer.
  • the oxide semiconductor layer 130 in the transistors 101 to 106 can be replaced with the oxide semiconductor layer 130 in FIG. 28B, 28C, 28D , or 28 E.
  • FIG. 28A is a top view of the oxide semiconductor layer 130
  • FIGS. 28B and 28C are cross-sectional views of the oxide semiconductor layer 130 with a two-layer structure.
  • FIGS. 28D and 28E are cross-sectional views of the oxide semiconductor layer 130 with a three-layer structure.
  • Oxide semiconductor layers with different compositions can be used as an oxide semiconductor layer 130 a , an oxide semiconductor layer 130 b , and an oxide semiconductor layer 130 c.
  • FIG. 29A is a top view of a transistor 107 .
  • a cross section in the direction of dashed-dotted line H 1 -H 2 in FIG. 29A is illustrated in FIG. 29B .
  • a cross section in the direction of dashed-dotted line H 3 -H 4 in FIG. 29A is illustrated in FIG. 31A .
  • the direction of dashed-dotted line H 1 -H 2 is referred to as a channel length direction
  • the direction of dashed-dotted line H 3 -H 4 is referred to as a channel width direction.
  • the transistor 107 includes the insulating layer 120 in contact with the substrate 115 ; a stack of the oxide semiconductor layers 130 a and 130 b in contact with the insulating layer 120 ; the conductive layers 140 and 150 electrically connected to the stack; the oxide semiconductor layer 130 c in contact with the stack and the conductive layers 140 and 150 ; the insulating layer 160 in contact with the oxide semiconductor layer 130 c ; the conductive layer 170 in contact with the insulating layer 160 ; the insulating layer 175 in contact with the conductive layers 140 and 150 , the oxide semiconductor layer 130 c , the insulating layer 160 , and the conductive layer 170 ; and the insulating layer 180 in contact with the insulating layer 175 .
  • the insulating layer 180 may function as a planarization film as necessary.
  • the transistor 107 has the same structure as the transistor 101 except that the oxide semiconductor layer 130 includes two layers (the oxide semiconductor layers 130 a and 130 b ) in the regions 231 and 232 , that the oxide semiconductor layer 130 includes three layers (the oxide semiconductor layers 130 a to 130 c ) in the region 233 , and that part of the oxide semiconductor layer (the oxide semiconductor layer 130 c ) exists between the insulating layer 160 and the conductive layers 140 and 150 .
  • FIG. 29C is a top view of a transistor 108 .
  • a cross section in the direction of dashed-dotted line 11 - 12 in FIG. 29C is illustrated in FIG. 29D .
  • a cross section in the direction of dashed-dotted line 13 - 14 in FIG. 29C is illustrated in FIG. 31B .
  • the direction of dashed-dotted line 11 - 12 is referred to as a channel length direction, and the direction of dashed-dotted line 13 - 14 is referred to as a channel width direction.
  • the transistor 108 differs from the transistor 107 in that end portions of the insulating layer 160 and the oxide semiconductor layer 130 c are not aligned with the end portion of the conductive layer 170 .
  • FIG. 29E is a top view of a transistor 109 .
  • a cross section in the direction of dashed-dotted line J 1 -J 2 in FIG. 29E is illustrated in FIG. 29F .
  • a cross section in the direction of dashed-dotted line J 3 -J 4 in FIG. 29E is illustrated in FIG. 31A .
  • the direction of dashed-dotted line J 1 -J 2 is referred to as a channel length direction
  • the direction of dashed-dotted line J 3 -J 4 is referred to as a channel width direction.
  • the transistor 109 includes the insulating layer 120 in contact with the substrate 115 ; a stack of the oxide semiconductor layers 130 a and 130 b in contact with the insulating layer 120 ; the oxide semiconductor layer 130 c in contact with the stack; the insulating layer 160 in contact with the oxide semiconductor layer 130 c ; the conductive layer 170 in contact with the insulating layer 160 ; the insulating layer 175 covering the stack, the oxide semiconductor layer 130 c , the insulating layer 160 , and the conductive layer 170 ; the insulating layer 180 in contact with the insulating layer 175 ; and the conductive layers 140 and 150 electrically connected to the stack through openings provided in the insulating layers 175 and 180 .
  • the transistor 109 may further include, for example, an insulating layer (planarization film) in contact with the insulating layer 180 and the conductive layers 140 and 150 as necessary.
  • the transistor 109 has the same structure as the transistor 103 except that the oxide semiconductor layer 130 includes two layers (the oxide semiconductor layers 130 a and 130 b ) in the regions 231 and 232 and that the oxide semiconductor layer 130 includes three layers (the oxide semiconductor layers 130 a to 130 c ) in the region 233 .
  • FIG. 30A is a top view of a transistor 110 .
  • a cross section in the direction of dashed-dotted line K 1 -K 2 in FIG. 30A is illustrated in FIG. 30B .
  • a cross section in the direction of dashed-dotted line K 3 -K 4 in FIG. 30A is illustrated in FIG. 31A .
  • the direction of dashed-dotted line K 1 -K 2 is referred to as a channel length direction
  • the direction of dashed-dotted line K 3 -K 4 is referred to as a channel width direction.
  • the transistor 110 has the same structure as the transistor 104 except that the oxide semiconductor layer 130 includes two layers (the oxide semiconductor layers 130 a and 130 b ) in the regions 331 and 332 and that the oxide semiconductor layer 130 includes three layers (the oxide semiconductor layers 130 a to 130 c ) in the region 333 .
  • FIG. 30C is a top view of a transistor 111 .
  • a cross section in the direction of dashed-dotted line L 1 -L 2 in FIG. 30C is illustrated in FIG. 30D .
  • a cross section in the direction of dashed-dotted line L 3 -L 4 in FIG. 30C is illustrated in FIG. 31A .
  • the direction of dashed-dotted line L 1 -L 2 is referred to as a channel length direction
  • the direction of dashed-dotted line L 3 -L 4 is referred to as a channel width direction.
  • the transistor 111 includes the insulating layer 120 in contact with the substrate 115 ; a stack of the oxide semiconductor layers 130 a and 130 b in contact with the insulating layer 120 ; the conductive layers 141 and 151 electrically connected to the stack; the oxide semiconductor layer 130 c in contact with the stack and the conductive layers 141 and 151 ; the insulating layer 160 in contact with the oxide semiconductor layer 130 c ; the conductive layer 170 in contact with the insulating layer 160 ; the insulating layer 175 in contact with the stack, the conductive layers 141 and 151 , the oxide semiconductor layer 130 c , the insulating layer 160 , and the conductive layer 170 ; the insulating layer 180 in contact with the insulating layer 175 ; and the conductive layers 142 and 152 electrically connected to the conductive layers 141 and 151 , respectively, through openings provided in the insulating layers 175 and 180 .
  • the transistor 111 may further include, for example, an insulating layer (planarization
  • the transistor 111 has the same structure as the transistor 105 except that the oxide semiconductor layer 130 includes two layers (the oxide semiconductor layers 130 a and 130 b ) in the regions 231 and 232 , that the oxide semiconductor layer 130 includes three layers (the oxide semiconductor layers 130 a to 130 c ) in the region 233 , and that part of the oxide semiconductor layer (the oxide semiconductor layer 130 c ) exists between the insulating layer 160 and the conductive layers 141 and 151 .
  • FIG. 30E is a top view of a transistor 112 .
  • a cross section in the direction of dashed-dotted line M 1 -M 2 in FIG. 30E is illustrated in FIG. 30F .
  • a cross section in the direction of dashed-dotted line M 3 -M 4 in FIG. 30E is illustrated in FIG. 31A .
  • the direction of dashed-dotted line M 1 -M 2 is referred to as a channel length direction
  • the direction of dashed-dotted line M 3 -M 4 is referred to as a channel width direction.
  • the transistor 112 has the same structure as the transistor 106 except that the oxide semiconductor layer 130 includes two layers (the oxide semiconductor layers 130 a and 130 b ) in the regions 331 , 332 , 334 , and 335 and that the oxide semiconductor layer 130 includes three layers (the oxide semiconductor layers 130 a to 130 c ) in the region 333 .
  • the transistor in one embodiment of the present invention may include the conductive layer 173 between the oxide semiconductor layer 130 and the substrate 115 as illustrated in cross-sectional views in the channel length direction in FIGS. 32A to 32F and cross-sectional views in the channel width direction in FIGS. 31C and 31D .
  • the conductive layer is used as a second gate electrode layer (back gate)
  • the on-state current can be increased or the threshold voltage can be controlled.
  • the width of the conductive layer 173 may be shorter than that of the oxide semiconductor layer 130 .
  • the width of the conductive layer 173 may be shorter than that of the conductive layer 170 .
  • the width (WSD) of the conductive layer 140 (source electrode layer) and the conductive layer 150 (drain electrode layer) in the transistor of one embodiment of the present invention may be either longer than or shorter than the width (W OS ) of the oxide semiconductor layer 130 .
  • W OS ⁇ W SD W SD is less than or equal to W OS
  • a gate electric field is easily applied to the entire oxide semiconductor layer 130 , so that electrical characteristics of the transistor can be improved.
  • the conductive layers 140 and 150 may be formed only in a region that overlaps with the oxide semiconductor layer 130 .
  • the conductive layer 170 functioning as a gate electrode layer electrically surrounds the oxide semiconductor layer 130 in the channel width direction with the insulating layer 160 functioning as a gate insulating film positioned therebetween.
  • This structure increases the on-state current.
  • Such a transistor structure is referred to as a surrounded channel (s-channel) structure.
  • the transistor including the oxide semiconductor layers 130 a and 130 b and the transistor including the oxide semiconductor layers 130 a to 130 c selecting appropriate materials for the two or three layers forming the oxide semiconductor layer 130 makes current flow to the oxide semiconductor layer 130 b . Since current flows to the oxide semiconductor layer 130 b , the current is hardly influenced by interface scattering, leading to high on-state current. Therefore, increasing the thickness of the oxide semiconductor layer 130 b might increase the on-state current.
  • a semiconductor device including a transistor with any of the above structures can have favorable electrical characteristics.
  • the substrate 115 a glass substrate, a quartz substrate, a semiconductor substrate, a ceramic substrate, a metal substrate having a surface subjected to insulation treatment, or the like can be used.
  • the substrate 115 can be a silicon substrate provided with a transistor and/or a photodiode; and an insulating layer, a wiring, a conductor functioning as a contact plug, and the like that are provided over the silicon substrate.
  • a silicon substrate with n ⁇ -type conductivity is preferably used.
  • an SOI substrate including an n ⁇ -type or i-type silicon layer may be used.
  • a surface of the silicon substrate where the transistor is formed preferably has a ( 110 ) plane orientation. Forming a p-channel transistor with the (110) plane can increase mobility.
  • the insulating layer 120 can have a function of supplying oxygen to the oxide semiconductor layer 130 as well as a function of preventing diffusion of impurities from a component included in the substrate 115 .
  • the insulating layer 120 is preferably an insulating film containing oxygen and more preferably, the insulating layer 120 is an insulating film containing oxygen in which the oxygen content is higher than that in the stoichiometric composition.
  • the insulating layer 120 is a film in which the amount of released oxygen when converted into oxygen atoms is preferably greater than or equal to 1.0 ⁇ 10 19 atoms/cm 3 in TDS analysis. In the TDS analysis, the film surface temperature is higher than or equal to 100° C.
  • the insulating layer 120 also functions as an interlayer insulating film.
  • the insulating layer 120 is preferably subjected to planarization treatment such as CMP so as to have a flat surface.
  • the insulating layer 120 can be formed using an oxide insulating film including aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, tantalum oxide, or the like; a nitride insulating film including silicon nitride, silicon nitride oxide, aluminum nitride, aluminum nitride oxide, or the like; or a mixed material of any of these.
  • the insulating layer 120 may be a stack of any of the above materials.
  • the oxide semiconductor layer 130 of the transistor has a three-layer structure in which the oxide semiconductor layers 130 a to 130 c are sequentially stacked from the insulating layer 120 side.
  • oxide semiconductor layer 130 is a single layer, a layer corresponding to the oxide semiconductor layer 130 b described in this embodiment is used.
  • the oxide semiconductor layer 130 has a two-layer structure
  • a stack in which a layer corresponding to the oxide semiconductor layer 130 a and a layer corresponding to the oxide semiconductor layer 130 b are sequentially stacked from the insulating layer 120 side described in this embodiment is used.
  • the oxide semiconductor layers 130 a and 130 b can be replaced with each other.
  • the oxide semiconductor layer 130 has a layered structure of four or more layers, for example, a structure in which another oxide semiconductor layer is added to the three-layer stack of the oxide semiconductor layer 130 described in this embodiment can be employed.
  • the oxide semiconductor layer 130 b for example, an oxide semiconductor whose electron affinity (an energy difference between a vacuum level and the conduction band minimum) is higher than those of the oxide semiconductor layers 130 a and 130 c is used.
  • the electron affinity can be obtained by subtracting an energy difference between the conduction band minimum and the valence band maximum (what is called an energy gap) from an energy difference between the vacuum level and the valence band maximum (what is called an ionization potential).
  • the oxide semiconductor layers 130 a and 130 c each contain one or more kinds of metal elements contained in the oxide semiconductor layer 130 b .
  • the oxide semiconductor layers 130 a and 130 c are preferably formed using an oxide semiconductor whose conduction band minimum is closer to a vacuum level than that of the oxide semiconductor layer 130 b by 0.05 eV or more, 0.07 eV or more, 0.1 eV or more, or 0.15 eV or more and 2 eV or less, 1 eV or less, 0.5 eV or less, or 0.4 eV or less.
  • the oxide semiconductor layer 130 a contains one or more kinds of metal elements contained in the oxide semiconductor layer 130 b , an interface state is unlikely to be formed at the interface between the oxide semiconductor layers 130 a and 130 b , compared with the interface between the oxide semiconductor layer 130 b and the insulating layer 120 on the assumption that the oxide semiconductor layer 130 b is in contact with the insulating layer 120 .
  • the interface state sometimes forms a channel; therefore, the threshold voltage of the transistor is changed in some cases.
  • variations in electrical characteristics of the transistor, such as a threshold voltage can be reduced.
  • the reliability of the transistor can be improved.
  • the oxide semiconductor layer 130 c contains one or more kinds of metal elements contained in the oxide semiconductor layer 130 b , scattering of carriers is unlikely to occur at the interface between the oxide semiconductor layers 130 b and 130 c , compared with the interface between the oxide semiconductor layer 130 b and the gate insulating film (the insulating layer 160 ) on the assumption that the oxide semiconductor layer 130 b is in contact with the gate insulating film.
  • the oxide semiconductor layer 130 c the field-effect mobility of the transistor can be increased.
  • the oxide semiconductor layers 130 a and 130 c for example, a material containing Al, Ti, Ga, Ge, Y, Zr, Sn, La, Ce, or Hf with a higher atomic ratio than that used for the oxide semiconductor layer 130 b can be used.
  • the atomic ratio of any of the above metal elements in the oxide semiconductor layers 130 a and 130 c is 1.5 times or more, preferably 2 times or more, more preferably 3 times or more as large as that in the oxide semiconductor layer 130 b .
  • Any of the above metal elements is strongly bonded to oxygen and thus has a function of suppressing generation of an oxygen vacancy in the oxide semiconductor layers 130 a and 130 c . That is, an oxygen vacancy is less likely to be generated in the oxide semiconductor layers 130 a and 130 c than in the oxide semiconductor layer 130 b.
  • An oxide semiconductor that can be used for each of the oxide semiconductor layers 130 a to 130 c preferably contains at least In or Zn. Both In and Zn are preferably contained.
  • the oxide semiconductor preferably contains a stabilizer in addition to In and Zn.
  • Examples of a stabilizer include Ga, Sn, Hf, Al, and Zr.
  • Other examples of the stabilizer include lanthanoids such as La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • an In—Ga—Zn oxide means an oxide containing In, Ga, and Zn as its main components.
  • the In—Ga—Zn oxide may contain another metal element in addition to In, Ga, and Zn.
  • a film containing the In—Ga—Zn oxide is also referred to as an IGZO film.
  • a material represented by InMO 3 (ZnO) m (m>0, where m is not an integer) may be used.
  • M represents one or more metal elements selected from Ga, Y, Zr, La, Ce, and Nd.
  • a material represented by In 2 SnO 5 (ZnO) n (n>0, where n is an integer) may be used.
  • each of the oxide semiconductor layers 130 a to 130 c is an InM-Zn oxide containing at least indium, zinc, and M (M is a metal such as Al, Ti, Ga, Ge, Y, Zr, Sn, La, Ce, or Hf), in the case where the oxide semiconductor layer 130 a has an atomic ratio of In to M and Zn which is x 1 :y 1 :z 1 , the oxide semiconductor layer 130 b has an atomic ratio of In to M and Zn which is x 2 :y 2 :z 2 , and the oxide semiconductor layer 130 c has an atomic ratio of In to M and Zn which is x 3 :y 3 :z 3 , each of y 1 /x 1 and y 3 /x 3 is preferably larger than y 2 /x 2 .
  • M is a metal such as Al, Ti, Ga, Ge, Y, Zr, Sn, La, Ce, or Hf
  • Each of y 1 /x 1 and y 3 /x 3 is 1.5 times or more, preferably 2 times or more, more preferably 3 times or more as large as y 2 /x 2 .
  • the transistor can have stable electrical characteristics.
  • y 2 is 3 times or more as large as x 2 , the field-effect mobility of the transistor is reduced; accordingly, y 2 is preferably smaller than 3 times x 2 .
  • the proportion of In and the proportion of M in each of the oxide semiconductor layers 130 a and 130 c are preferably less than 50 atomic % and greater than or equal to 50 atomic %, respectively, more preferably less than 25 atomic % and greater than or equal to 75 atomic %, respectively. Furthermore, in the case where Zn and O are not taken into consideration, the proportion of In and the proportion of M in the oxide semiconductor layer 130 b are preferably greater than or equal to 25 atomic % and less than 75 atomic %, respectively, more preferably greater than or equal to 34 atomic % and less than 66 atomic %, respectively.
  • the indium content in the oxide semiconductor layer 130 b is preferably higher than those in the oxide semiconductor layers 130 a and 130 c .
  • the s orbital of heavy metal mainly contributes to carrier transfer, and when the proportion of In in the oxide semiconductor is increased, overlap of the s orbitals is likely to be increased. Therefore, an oxide in which the proportion of In is higher than that of M has higher mobility than an oxide in which the proportion of In is equal to or lower than that of M.
  • the thickness of the oxide semiconductor layer 130 a is greater than or equal to 3 nm and less than or equal to 100 nm, preferably greater than or equal to 5 nm and less than or equal to 50 nm, more preferably greater than or equal to 5 nm and less than or equal to 25 nm.
  • the thickness of the oxide semiconductor layer 130 b is greater than or equal to 3 nm and less than or equal to 200 nm, preferably greater than or equal to 5 nm and less than or equal to 150 nm, more preferably greater than or equal to 10 nm and less than or equal to 100 nm.
  • the thickness of the oxide semiconductor layer 130 c is greater than or equal to 1 nm and less than or equal to 50 nm, preferably greater than or equal to 2 nm and less than or equal to 30 nm, more preferably greater than or equal to 3 nm and less than or equal to 15 nm.
  • the oxide semiconductor layer 130 b is preferably thicker than the oxide semiconductor layer 130 c.
  • substantially intrinsic refers to a state where an oxide semiconductor layer has a carrier density lower than 1 ⁇ 10 15 /cm 3 , preferably lower than 1 ⁇ 10 13 /cm 3 , more preferably lower than 8 ⁇ 10 11 /cm 3 , still more preferably higher than or equal to 1 ⁇ 10 ⁇ 9 /cm 3 and lower than 1 ⁇ 10 8 /cm 3 .
  • hydrogen, nitrogen, carbon, silicon, and a metal element other than main components of the oxide semiconductor layer are impurities.
  • impurities hydrogen and nitrogen form donor levels to increase the carrier density
  • silicon forms impurity levels in the oxide semiconductor layer.
  • the impurity levels serve as traps and might cause deterioration of electrical characteristics of the transistor. Therefore, it is preferable to reduce the concentration of the impurities in the oxide semiconductor layers 130 a to 130 c and at interfaces between the oxide semiconductor layers.
  • the oxide semiconductor layer is controlled to have a region in which the concentration of hydrogen estimated by secondary ion mass spectrometry (SIMS) is lower than or equal to 2 ⁇ 10 20 atoms/cm 3 , preferably lower than or equal to 5 ⁇ 10 19 atoms/cm 3 , more preferably lower than or equal to 1 ⁇ 10 19 atoms/cm 3 , still more preferably higher than or equal to 1 ⁇ 10 17 atoms/cm 3 and lower than or equal to 5 ⁇ 10 18 atoms/cm 3 .
  • SIMS secondary ion mass spectrometry
  • the oxide semiconductor layer is controlled to have a region in which the concentration of nitrogen is lower than 5 ⁇ 10 19 atoms/cm 3 , preferably lower than or equal to 5 ⁇ 10 18 atoms/cm 3 , more preferably lower than or equal to 1 ⁇ 10 18 atoms/cm 3 , still more preferably higher than or equal to 5 ⁇ 10 16 atoms/cm 3 and lower than or equal to 5 ⁇ 10 17 atoms/cm 3 .
  • the high concentration of silicon or carbon might reduce the crystallinity of the oxide semiconductor layer.
  • the oxide semiconductor layer is controlled to have a region in which the concentration of silicon is lower than 1 ⁇ 10 19 atoms/cm 3 , preferably higher than or equal to 1 ⁇ 10 18 atoms/cm 3 and lower than 5 ⁇ 10 18 atoms/cm 3 .
  • the oxide semiconductor layer is controlled to have a region in which the concentration of carbon is lower than 1 ⁇ 10 19 atoms/cm 3 , preferably lower than or equal to 5 ⁇ 10 18 atoms/cm 3 , more preferably higher than or equal to 6 ⁇ 10 17 atoms/cm 3 and lower than 1 ⁇ 10 18 atoms/cm 3 .
  • a transistor in which a highly purified oxide semiconductor film is used for a channel formation region exhibits extremely low off-state current.
  • voltage between a source and a drain is set at about 0.1 V, 5 V, or 10 V, for example, the off-state current per channel width of the transistor can be as low as several yoctoamperes per micrometer to several zeptoamperes per micrometer.
  • the gate insulating film of the transistor an insulating film containing silicon is used in many cases; thus, it is preferable that, as in the transistor in one embodiment of the present invention, a region of the oxide semiconductor layer that serves as a channel not be in contact with the gate insulating film for the above reason. In the case where a channel is formed at the interface between the gate insulating film and the oxide semiconductor layer, scattering of carriers occurs at the interface, so that the field-effect mobility of the transistor is reduced in some cases. Also from the view of the above, it is preferable that the region of the oxide semiconductor layer that serves as a channel be separated from the gate insulating film.
  • the oxide semiconductor layer 130 having a layered structure including the oxide semiconductor layers 130 a to 130 c , a channel can be formed in the oxide semiconductor layer 130 b ; thus, the transistor can have high field-effect mobility and stable electrical characteristics.
  • the conduction band minimums of the oxide semiconductor layers 130 a to 130 c are continuous. This can be understood also from the fact that the compositions of the oxide semiconductor layers 130 a to 130 c are close to one another and oxygen is easily diffused among the oxide semiconductor layers 130 a to 130 c . Thus, the oxide semiconductor layers 130 a to 130 c have a continuous physical property though they have different compositions and form a stack. In the drawings, interfaces between the oxide semiconductor layers of the stack are indicated by dotted lines.
  • the oxide semiconductor layer 130 in which layers containing the same main components are stacked is formed to have not only a simple layered structure of the layers but also a continuous energy band (here, in particular, a well structure having a U shape in which the conduction band minimums are continuous (U-shape well)).
  • the layered structure is formed such that there exists no impurity that forms a defect level such as a trap center or a recombination center at each interface. If impurities exist between the stacked oxide semiconductor layers, the continuity of the energy band is lost and carriers disappear by a trap or recombination at the interface.
  • an In—Ga—Zn oxide whose atomic ratio of In to Ga and Zn is 1:3:2, 1:3:3, 1:3:4, 1:3:6, 1:4:5, 1:6:4, or 1:9:6 can be used for the oxide semiconductor layers 130 a and 130 c
  • an In—Ga—Zn oxide whose atomic ratio of In to Ga and Zn is 1:1:1, 2:1:3, 5:5:6, or 3:1:2 can be used for the oxide semiconductor layer 130 b .
  • each of the oxide semiconductor layers 130 a , 130 b , and 130 c is formed using the above oxide as a sputtering target, the atomic ratio of each sputtering target and that of each formed oxide semiconductor layer are not necessarily consistent with each other.
  • the oxide semiconductor layer 130 b of the oxide semiconductor layer 130 serves as a well, so that a channel is formed in the oxide semiconductor layer 130 b . Since the conduction band minimums are continuous, the oxide semiconductor layer 130 can also be referred to as a U-shaped well. Furthermore, a channel formed to have such a structure can also be referred to as a buried channel.
  • Trap levels due to impurities or defects might be formed in the vicinity of the interface between an insulating layer such as a silicon oxide film and each of the oxide semiconductor layers 130 a and 130 c .
  • the oxide semiconductor layer 130 b can be distanced away from the trap levels owing to existence of the oxide semiconductor layers 130 a and 130 c.
  • the oxide semiconductor layers 130 a to 130 c preferably include crystal parts.
  • the transistor when crystals with c-axis alignment are used, the transistor can have stable electrical characteristics.
  • crystals with c-axis alignment are resistant to bending; therefore, using such crystals can improve the reliability of a semiconductor device using a flexible substrate.
  • the conductive layer 140 functioning as a source electrode layer and the conductive layer 150 functioning as a drain electrode layer for example, a single layer or a stacked layer formed using a material selected from Al, Cr, Cu, Ta, Ti, Mo, W, Ni, Mn, Nd, and Sc and alloys of any of these metal materials can be used.
  • a material selected from Al, Cr, Cu, Ta, Ti, Mo, W, Ni, Mn, Nd, and Sc and alloys of any of these metal materials can be used.
  • Ti which is particularly easily bonded to oxygen, or W, which has a high melting point and thus makes subsequent process temperatures comparatively high.
  • W which has a stack of any of the above materials and Cu or an alloy such as Cu—Mn, which has low resistance.
  • W which is particularly easily bonded to oxygen
  • the above materials are capable of extracting oxygen from an oxide semiconductor film. Therefore, in a region of the oxide semiconductor film that is in contact with any of the above materials, oxygen is released from the oxide semiconductor layer and an oxygen vacancy is formed. Hydrogen slightly contained in the film and the oxygen vacancy are bonded to each other, so that the region is markedly changed to an n-type region. Accordingly, the n-type region can serve as a source or a drain of the transistor.
  • the conductive layers 140 and 150 may be doped with nitrogen. Doping with nitrogen can appropriately lower the capability of extracting oxygen and prevent the n-type region from spreading to a channel region. It is possible to prevent the n-type region from spreading to a channel region also by using a stack of W and an n-type semiconductor layer as the conductive layers 140 and 150 and putting the n-type semiconductor layer in contact with the oxide semiconductor layer.
  • the n-type semiconductor layer an In—Ga—Zn oxide, zinc oxide, indium oxide, tin oxide, indium tin oxide, or the like to which nitrogen is added can be used.
  • the insulating layer 160 functioning as a gate insulating film can be formed using an insulating film containing one or more of aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, and tantalum oxide.
  • the insulating layer 160 may be a stack including any of the above materials.
  • the insulating layer 160 may contain La, N, Zr, or the like as an impurity.
  • the insulating layer 160 includes, for example, oxygen, nitrogen, silicon, or hafnium. Specifically, the insulating layer 160 preferably includes hafnium oxide and silicon oxide or silicon oxynitride.
  • Hafnium oxide and aluminum oxide have higher dielectric constants than silicon oxide and silicon oxynitride. Therefore, the insulating layer 160 using hafnium oxide or aluminum oxide can have larger thickness than the insulating layer 160 using silicon oxide, so that leakage current due to tunnel current can be reduced. That is, a transistor with low off-state current can be provided. Moreover, hafnium oxide with a crystalline structure has a higher dielectric constant than hafnium oxide with an amorphous structure. Therefore, it is preferable to use hafnium oxide with a crystalline structure in order to provide a transistor with low off-state current. Examples of the crystal structure include a monoclinic crystal structure and a cubic crystal structure. Note that one embodiment of the present invention is not limited to the above examples.
  • a film that releases less nitrogen oxide is preferably used.
  • the oxide semiconductor is in contact with an insulating layer that releases a large amount of nitrogen oxide, the density of states due to nitrogen oxide becomes high in some cases.
  • an oxide insulating layer such as a silicon oxynitride film or an aluminum oxynitride film that releases less nitrogen oxide can be used.
  • a silicon oxynitride film that releases less nitrogen oxide is a film of which the amount of released ammonia is larger than the amount of released nitrogen oxide in TDS; the amount of released ammonia is typically greater than or equal to 1 ⁇ 10 18 molecules/cm 3 and less than or equal to 5 ⁇ 10 19 molecules/cm 3 .
  • the amount of released ammonia is the amount of ammonia released by heat treatment with which the surface temperature of the film becomes higher than or equal to 50° C. and lower than or equal to 650° C., preferably higher than or equal to 50° C. and lower than or equal to 550° C.
  • a conductive film formed using Al, Ti, Cr, Co, Ni, Cu, Y, Zr, Mo, Ru, Ag, Mn, Nd, Sc, Ta, W, or the like can be used.
  • an alloy or a conductive nitride of any of these materials may be used.
  • a stack of a plurality of materials selected from these materials, alloys of these materials, and conductive nitrides of these materials may be used.
  • tungsten, a stack of tungsten and titanium nitride, a stack of tungsten and tantalum nitride, or the like can be used.
  • Cu or an alloy such as Cu—Mn, which has low resistance, or a stack of any of the above materials and Cu or an alloy such as Cu—Mn may be used.
  • tantalum nitride is used for the conductive layer 171 and tungsten is used for the conductive layer 172 to form the conductive layer 170 .
  • a silicon nitride film, an aluminum nitride film, or the like containing hydrogen can be used as the insulating layer 175 .
  • a silicon nitride film, an aluminum nitride film, or the like containing hydrogen can be used as the insulating layer 175 .
  • the transistors 103 , 104 , 106 , 109 , 110 , and 112 described in Embodiment 2 when an insulating film containing hydrogen is used as the insulating layer 175 , part of the oxide semiconductor layer can have n-type conductivity.
  • a nitride insulating film functions as a blocking film against moisture and the like and can improve the reliability of the transistor.
  • An aluminum oxide film can also be used as the insulating layer 175 . It is particularly preferable to use an aluminum oxide film as the insulating layer 175 in the transistors 101 , 102 , 105 , 107 , 108 , and 111 described in Embodiment 2.
  • the aluminum oxide film has a high blocking effect of preventing penetration of both oxygen and impurities such as hydrogen and moisture. Accordingly, during and after the manufacturing process of the transistor, the aluminum oxide film can suitably function as a protective film that has effects of preventing entry of impurities such as hydrogen and moisture into the oxide semiconductor layer 130 , preventing release of oxygen from the oxide semiconductor layer, and preventing unnecessary release of oxygen from the insulating layer 120 . Furthermore, oxygen contained in the aluminum oxide film can be diffused into the oxide semiconductor layer.
  • the insulating layer 180 is preferably formed over the insulating layer 175 .
  • the insulating layer 180 can be formed using an insulating film containing one or more of magnesium oxide, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, and tantalum oxide.
  • the insulating layer 180 may be a stack of any of the above materials.
  • the insulating layer 180 preferably contains oxygen more than that in the stoichiometric composition. Oxygen released from the insulating layer 180 can be diffused into the channel formation region in the oxide semiconductor layer 130 through the insulating layer 160 , so that oxygen vacancies formed in the channel formation region can be filled with oxygen. In this manner, stable electrical characteristics of the transistor can be achieved.
  • High integration of a semiconductor device requires miniaturization of a transistor.
  • miniaturization of a transistor causes deterioration of electrical characteristics of the transistor.
  • a decrease in channel width causes a reduction in on-state current.
  • the oxide semiconductor layer 130 c is formed to cover the oxide semiconductor layer 130 b where a channel is formed; thus, a channel formation layer is not in contact with the gate insulating film. Accordingly, scattering of carriers at the interface between the channel formation layer and the gate insulating film can be reduced and the on-state current of the transistor can be increased.
  • the gate electrode layer (the conductive layer 170 ) is formed to electrically surround the oxide semiconductor layer 130 in the channel width direction; accordingly, a gate electric field is applied to the oxide semiconductor layer 130 in a direction perpendicular to its side surface in addition to a direction perpendicular to its top surface.
  • a gate electric field is applied to the entire channel formation layer and effective channel width is increased, leading to a further increase in the on-state current.
  • the oxide semiconductor layer 130 has a two-layer structure or a three-layer structure
  • the oxide semiconductor layer 130 b where a channel is formed is provided over the oxide semiconductor layer 130 a
  • an effect of making an interface state less likely to be formed is obtained.
  • the oxide semiconductor layer 130 b is positioned at the middle of the three-layer structure, an effect of eliminating the influence of an impurity that enters from upper and lower layers on the oxide semiconductor layer 130 b is obtained as well.
  • the transistor can achieve not only the increase in the on-state current of the transistor but also stabilization of the threshold voltage and a reduction in the S value (subthreshold value).
  • current when gate voltage VG is 0 V can be reduced and power consumption can be reduced.
  • the threshold voltage of the transistor becomes stable, long-term reliability of the semiconductor device can be improved.
  • the transistor in one embodiment of the present invention is suitable for a highly integrated semiconductor device because deterioration of electrical characteristics due to miniaturization is reduced.
  • thermal CVD examples include metal organic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD).
  • thermal CVD Since plasma is not used for deposition, thermal CVD has an advantage that no defect due to plasma damage is generated.
  • Deposition by thermal CVD may be performed in such a manner that a source gas and an oxidizer are supplied to the chamber at the same time, the pressure in the chamber is set to an atmospheric pressure or a reduced pressure, and reaction is caused in the vicinity of the substrate or over the substrate.
  • Deposition by ALD is performed in such a manner that the pressure in a chamber is set to an atmospheric pressure or a reduced pressure, source gases for reaction are introduced into the chamber and reacted, and then the sequence of gas introduction is repeated.
  • An inert gas e.g., argon or nitrogen
  • two or more kinds of source gases may be sequentially supplied to the chamber. In that case, after reaction of a first source gas, an inert gas is introduced, and then a second source gas is introduced so that the source gases are not mixed.
  • the first source gas may be exhausted by vacuum evacuation instead of introduction of the inert gas, and then the second source gas may be introduced.
  • the first source gas is adsorbed on the surface of the substrate and reacted to form a first layer, and then, the second source gas introduced is absorbed and reacted. As a result, a second layer is stacked over the first layer, so that a thin film is formed.
  • the sequence of gas introduction is controlled and repeated more than once until desired thickness is obtained, so that a thin film with excellent step coverage can be formed.
  • the thickness of the thin film can be adjusted by the number of repetition times of the sequence of gas introduction; therefore, ALD makes it possible to accurately adjust thickness and thus is suitable for manufacturing a minute FET.
  • the variety of films such as the metal film, the semiconductor film, and the inorganic insulating film that have been disclosed in the embodiments can be formed by thermal CVD such as MOCVD or ALD.
  • thermal CVD such as MOCVD or ALD.
  • trimethylindium (In(CH 3 ) 3 ), trimethylgallium (Ga(CH 3 ) 3 ), and dimethylzinc (Zn(CH 3 ) 2 ) can be used.
  • triethylgallium (Ga(C 2 H 5 ) 3 ) can be used instead of trimethylgallium and diethylzinc (Zn(C 2 H 5 ) 2 ) can be used instead of dimethylzinc.
  • hafnium oxide film is formed by a deposition apparatus using ALD
  • two kinds of gases i.e., ozone (O 3 ) as an oxidizer and a source material gas which is obtained by vaporizing liquid containing a solvent and a hafnium precursor (hafnium alkoxide and a hafnium amide such as tetrakis(dimethylamide)hafnium (TDMAH, Hf[N(CH 3 ) 2 ] 4 ) and tetrakis(ethylmethylamide)hafnium) are used.
  • ozone (O 3 ) as an oxidizer
  • a source material gas which is obtained by vaporizing liquid containing a solvent and a hafnium precursor
  • hafnium alkoxide and a hafnium amide such as tetrakis(dimethylamide)hafnium (TDMAH, Hf[N(CH 3 ) 2 ] 4 ) and tetraki
  • an aluminum oxide film is formed by a deposition apparatus using ALD
  • two kinds of gases i.e., H 2 O as an oxidizer and a source gas which is obtained by vaporizing liquid containing a solvent and an aluminum precursor (e.g., trimethylaluminum (TMA, Al(CH 3 ) 3 ))
  • TMA trimethylaluminum
  • another material include tris(dimethylamide)aluminum, triisobutylaluminum, and aluminum tris(2,2,6,6-tetramethyl-3,5-heptanedionate).
  • hexachlorodisilane is adsorbed on a surface where a film is to be formed, and radicals of an oxidizing gas (e.g., O 2 or dinitrogen monoxide) are supplied to react with an adsorbate.
  • an oxidizing gas e.g., O 2 or dinitrogen monoxide
  • a WF 6 gas and a B 2 H 6 gas are sequentially introduced to form an initial tungsten film, and then a WF 6 gas and an H 2 gas are sequentially introduced to form a tungsten film.
  • an SiH 4 gas may be used instead of a B 2 H 6 gas.
  • an oxide semiconductor film e.g., an In—Ga—Zn—O film is formed by a deposition apparatus using ALD
  • an In(CH 3 ) 3 gas and an O 3 gas are sequentially introduced to form an In—O layer
  • a Ga(CH 3 ) 3 gas and an O 3 gas are sequentially introduced to form a Ga—O layer
  • a Zn(CH 3 ) 2 gas and an O 3 gas are sequentially introduced to form a Zn—O layer.
  • a mixed compound layer such as an In—Ga—O layer, an In—Zn—O layer, or a Ga—Zn—O layer may be formed by using these gases.
  • an H 2 O gas which is obtained by bubbling with an inert gas such as Ar may be used instead of an O 3 gas, it is preferable to use an O 3 gas, which does not contain H.
  • a facing-target-type sputtering apparatus can be used for deposition of an oxide semiconductor layer.
  • Deposition using the facing-target-type sputtering apparatus can also be referred to as vapor deposition SP (VDSP).
  • VDSP vapor deposition SP
  • the facing-target-type sputtering apparatus When an oxide semiconductor layer is deposited using a facing-target-type sputtering apparatus, plasma damage to the oxide semiconductor layer at the time of deposition can be reduced. Thus, oxygen vacancies in a film can be reduced.
  • the use of the facing-target-type sputtering apparatus enables low-pressure deposition. Accordingly, the concentration of impurities (e.g., hydrogen, a rare gas (e.g., argon), or water) in a deposited oxide semiconductor layer can be lowered.
  • impurities e.g., hydrogen, a rare gas (e.g., argon), or water
  • the term “parallel” indicates that the angle formed between two straight lines is greater than or equal to ⁇ 10° and less than or equal to 10°, and accordingly includes the case where the angle is greater than or equal to ⁇ 5° and less than or equal to 5°.
  • the term “perpendicular” indicates that an angle formed between two straight lines is greater than or equal to 80° and less than or equal to 100°, and accordingly includes the case where the angle is greater than or equal to 85° and less than or equal to 95°.
  • the trigonal and rhombohedral crystal systems are included in the hexagonal crystal system.
  • An oxide semiconductor film is roughly classified into a non-single-crystal oxide semiconductor film and a single-crystal oxide semiconductor film.
  • the non-single-crystal oxide semiconductor film means any of a c-axis aligned crystalline oxide semiconductor (CAAC-OS) film, a polycrystalline oxide semiconductor film, a microcrystalline oxide semiconductor film, an amorphous oxide semiconductor film, and the like.
  • CAAC-OS c-axis aligned crystalline oxide semiconductor
  • the CAAC-OS film is one of oxide semiconductor films having a plurality of c-axis aligned crystal parts.
  • TEM transmission electron microscope
  • metal atoms are arranged in a layered manner in the crystal parts.
  • Each metal atom layer has a morphology that reflects a surface over which the CAAC-OS film is formed (also referred to as a formation surface) or a top surface of the CAAC-OS film, and is provided parallel to the formation surface or the top surface of the CAAC-OS film.
  • the CAAC-OS film is subjected to structural analysis with an X-ray diffraction (XRD) apparatus.
  • XRD X-ray diffraction
  • a peak of 2 ⁇ may also be observed at around 36°, in addition to the peak of 2 ⁇ at around 31°.
  • the peak of 2 ⁇ at around 36° indicates that a crystal having no c-axis alignment is included in part of the CAAC-OS film. It is preferable that in the CAAC-OS film, a peak of 2 ⁇ appear at around 31° and a peak of 2 ⁇ not appear at around 36°.
  • the CAAC-OS film is an oxide semiconductor film having low impurity concentration.
  • the impurity is an element other than the main components of the oxide semiconductor film, such as hydrogen, carbon, silicon, or a transition metal element.
  • an element that has higher bonding strength to oxygen than a metal element included in the oxide semiconductor film, such as silicon disturbs the atomic order of the oxide semiconductor film by depriving the oxide semiconductor film of oxygen and causes a decrease in crystallinity.
  • a heavy metal such as iron or nickel, argon, carbon dioxide, or the like has a large atomic radius (molecular radius), and thus disturbs the atomic order of the oxide semiconductor film and causes a decrease in crystallinity when it is contained in the oxide semiconductor film.
  • the impurity contained in the oxide semiconductor film might serve as a carrier trap or a carrier generation source.
  • the CAAC-OS film is an oxide semiconductor film having low density of defect states. In some cases, oxygen vacancies in the oxide semiconductor film serve as carrier traps or serve as carrier generation sources when hydrogen is captured therein.
  • the state in which impurity concentration is low and density of defect states is low (the number of oxygen vacancies is small) is referred to as “highly purified intrinsic” or “substantially highly purified intrinsic.”
  • a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has few carrier generation sources, and thus can have low carrier density.
  • a transistor including the oxide semiconductor film rarely has negative threshold voltage (is rarely normally on).
  • the highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has few carrier traps. Accordingly, the transistor including the oxide semiconductor film has few variations in electrical characteristics and high reliability. Charge trapped by the carrier traps in the oxide semiconductor film takes a long time to be released and may behave like fixed charge. Thus, the transistor that includes the oxide semiconductor film having high impurity concentration and high density of defect states has unstable electrical characteristics in some cases.
  • a microcrystalline oxide semiconductor film has a region where a crystal part is observed in a high-resolution TEM image and a region where a crystal part is not clearly observed in a high-resolution TEM image. In most cases, a crystal part in the microcrystalline oxide semiconductor film is greater than or equal to 1 nm and less than or equal to 100 nm, or greater than or equal to 1 nm and less than or equal to 10 nm.
  • a microcrystal with a size greater than or equal to 1 nm and less than or equal to 10 nm, or a size greater than or equal to 1 nm and less than or equal to 3 nm is specifically referred to as nanocrystal (nc).
  • An oxide semiconductor film including nanocrystal is referred to as a nanocrystalline oxide semiconductor (nc-OS) film. In a high-resolution TEM image, a grain boundary cannot be found clearly in the nc-OS film in some cases.
  • a microscopic region e.g., a region with a size greater than or equal to 1 nm and less than or equal to 10 nm, in particular, a region with a size greater than or equal to 1 nm and less than or equal to 3 nm
  • a microscopic region has periodic atomic order. There is no regularity of crystal orientation between different crystal parts in the nc-OS film. Thus, the orientation of the whole film is not observed. Accordingly, in some cases, the nc-OS film cannot be distinguished from an amorphous oxide semiconductor film depending on an analysis method.
  • nc-OS film when the nc-OS film is subjected to structural analysis by an out-of-plane method with an XRD apparatus using an X-ray having a diameter larger than that of a crystal part, a peak that shows a crystal plane does not appear. Furthermore, a halo pattern is shown in a selected-area electron diffraction pattern of the nc-OS film obtained by using an electron beam having a probe diameter larger than the diameter of a crystal part (e.g., larger than or equal to 50 nm). Meanwhile, spots are shown in a nanobeam electron diffraction pattern of the nc-OS film obtained by using an electron beam having a probe diameter close to or smaller than the diameter of a crystal part.
  • a nanobeam electron diffraction pattern of the nc-OS film regions with high luminance in a circular (ring) pattern are observed in some cases. Also in a nanobeam electron diffraction pattern of the nc-OS film, a plurality of spots are shown in a ring-like region in some cases.
  • the nc-OS film is an oxide semiconductor film that has high regularity than an amorphous oxide semiconductor film.
  • the nc-OS film has a lower density of defect states than the amorphous oxide semiconductor film. Note that there is no regularity of crystal orientation between different crystal parts in the nc-OS film; thus, the nc-OS film has a higher density of defect states than the CAAC-OS film.
  • the amorphous oxide semiconductor film has disordered atomic arrangement and no crystal part.
  • the amorphous oxide semiconductor film does not have a specific state as in quartz.
  • a peak which shows a crystal plane does not appear.
  • a halo pattern is shown in an electron diffraction pattern of the amorphous oxide semiconductor film. Furthermore, a halo pattern is shown but a spot is not shown in a nanobeam electron diffraction pattern of the amorphous oxide semiconductor film.
  • an oxide semiconductor film may have a structure having physical properties between the nc-OS film and the amorphous oxide semiconductor film.
  • the oxide semiconductor film having such a structure is specifically referred to as an amorphous-like oxide semiconductor (amorphous-like OS) film.
  • a void may be seen in a high-resolution TEM image of the amorphous-like OS film. Furthermore, in the high-resolution TEM image, there are a region where a crystal part is clearly observed and a region where a crystal part is not observed. In the amorphous-like OS film, crystallization by a slight amount of electron beam used for TEM observation occurs and growth of the crystal part is found sometimes. In contrast, crystallization by a slight amount of electron beam used for TEM observation is less observed in the nc-OS film having good quality.
  • an InGaZnO 4 crystal has a layered structure in which two Ga—Zn—O layers are included between In—O layers.
  • a unit cell of the InGaZnO 4 crystal has a structure in which nine layers of three In—O layers and six Ga—Zn—O layers are layered in the c-axis direction. Accordingly, the spacing between these adjacent layers is equivalent to the lattice spacing on the (009) plane (also referred to as a d value). The value is calculated to be 0.29 nm from crystal structure analysis.
  • each of the lattice fringes in which the spacing therebetween is from 0.28 nm to 0.30 nm corresponds to the a-b plane of the InGaZnO 4 crystal, focusing on the lattice fringes in the high-resolution TEM image.
  • an oxide semiconductor film may be a stacked film including two or more films of an amorphous oxide semiconductor film, an amorphous-like OS film, a microcrystalline oxide semiconductor film, and a CAAC-OS film, for example.
  • An imaging device in one embodiment of the present invention and a semiconductor device including the imaging device can be used for display devices, personal computers, or image reproducing devices provided with recording media (typically, devices that reproduce the content of recording media such as digital versatile discs (DVD) and have displays for displaying the reproduced images).
  • recording media typically, devices that reproduce the content of recording media such as digital versatile discs (DVD) and have displays for displaying the reproduced images.
  • DVD digital versatile discs
  • FIGS. 34A to 34F illustrate specific examples of these electronic devices.
  • FIG. 34A illustrates a portable game machine, which includes housings 901 and 902 , display portions 903 and 904 , a microphone 905 , speakers 906 , an operation key 907 , a stylus 908 , a camera 909 , and the like.
  • the portable game machine in FIG. 34A includes the two display portions 903 and 904 , the number of display portions included in the portable game machine is not limited to this.
  • the imaging device in one embodiment of the present invention can be used for the camera 909 .
  • FIG. 34B illustrates a portable data terminal, which includes a first housing 911 , a display portion 912 , a camera 919 , and the like.
  • the touch panel function of the display portion 912 enables input and output of information.
  • the imaging device in one embodiment of the present invention can be used for the camera 919 .
  • FIG. 34C illustrates a wrist-watch-type information terminal, which includes a housing 931 , a display portion 932 , a wristband 933 , a camera 939 , and the like.
  • the display portion 932 may be a touch panel.
  • the imaging device in one embodiment of the present invention can be used for the camera 939 .
  • FIG. 34D illustrates a cellular phone, which includes a display portion 952 , a microphone 957 , a speaker 954 , a camera 959 , an input/output terminal 956 , an operation button 955 , and the like in a housing 951 .
  • the imaging device in one embodiment of the present invention can be used for the camera 959 .
  • FIG. 34E illustrates a digital camera, which includes a housing 961 , a shutter button 962 , a microphone 963 , a light-emitting portion 967 , a lens 965 , and the like.
  • the imaging device in one embodiment of the present invention can be used provided in a focus of the lens 965 .
  • FIG. 34F illustrates a video camera, which includes a first housing 971 , a second housing 972 , a display portion 973 , operation keys 974 , a lens 975 , a joint 976 , and the like.
  • the operation keys 974 and the lens 975 are provided in the first housing 971
  • the display portion 973 is provided in the second housing 972 .
  • the first housing 971 and the second housing 972 are connected to each other with the joint 976 , and an angle between the first housing 971 and the second housing 972 can be changed with the joint 976 .
  • An image displayed on the display portion 973 may be switched in accordance with the angle between the first housing 971 and the second housing 972 at the joint 976 .
  • the imaging device in one embodiment of the present invention can be provided in a focus of the lens 975 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Thin Film Transistor (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
US15/007,308 2015-01-30 2016-01-27 Imaging device and electronic device Abandoned US20160225808A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/008,750 US11848341B2 (en) 2015-01-30 2020-09-01 Imaging device and electronic device
US18/388,893 US20240079424A1 (en) 2015-01-30 2023-11-13 Imaging device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015016743 2015-01-30
JP2015-016743 2015-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/008,750 Continuation US11848341B2 (en) 2015-01-30 2020-09-01 Imaging device and electronic device

Publications (1)

Publication Number Publication Date
US20160225808A1 true US20160225808A1 (en) 2016-08-04

Family

ID=56554648

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/007,308 Abandoned US20160225808A1 (en) 2015-01-30 2016-01-27 Imaging device and electronic device
US17/008,750 Active 2037-07-29 US11848341B2 (en) 2015-01-30 2020-09-01 Imaging device and electronic device
US18/388,893 Pending US20240079424A1 (en) 2015-01-30 2023-11-13 Imaging device and electronic device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/008,750 Active 2037-07-29 US11848341B2 (en) 2015-01-30 2020-09-01 Imaging device and electronic device
US18/388,893 Pending US20240079424A1 (en) 2015-01-30 2023-11-13 Imaging device and electronic device

Country Status (4)

Country Link
US (3) US20160225808A1 (ja)
JP (4) JP6647884B2 (ja)
KR (2) KR102502316B1 (ja)
TW (2) TWI792065B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887218B2 (en) 2015-07-16 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Imaging device, operating method thereof, and electronic device
US10020336B2 (en) 2015-12-28 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device using three dimentional (3D) integration
US10033952B2 (en) 2015-09-10 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Imaging device, module, electronic device, and method of operating the imaging device
US10498980B2 (en) 2015-07-07 2019-12-03 Semiconductor Energy Laboratory Co., Ltd. Imaging device comprising n-channel oxide semiconductor transistors, photoelectric conversion element, and capacitor
US11099814B2 (en) * 2016-10-12 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Neural network semiconductor device and system using the same
WO2022253733A1 (de) * 2021-06-02 2022-12-08 Universität Siegen Photonendetektionselement, verfahren zum betrieb eines photonendetektionselements, und verfahren zur herstellung eines bildsensors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792065B (zh) * 2015-01-30 2023-02-11 日商半導體能源研究所股份有限公司 成像裝置及電子裝置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110084316A1 (en) * 2009-10-09 2011-04-14 Canon Kabushiki Kaisha Pickup device and method for manufacturing the same
US20120086095A1 (en) * 2009-04-07 2012-04-12 Rohm Co., Ltd. Photoelectric Conversion Device and Image Pick-Up Device
US20130075594A1 (en) * 2011-09-22 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Photodetector and method for driving photodetector
US20130099093A1 (en) * 2011-10-20 2013-04-25 Canon Kabushiki Kaisha Detection apparatus and detection system
US20130223135A1 (en) * 2012-02-24 2013-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20130288426A1 (en) * 2012-04-25 2013-10-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20140070079A1 (en) * 2012-09-12 2014-03-13 Semiconductor Energy Laboratory Co., Ltd. Photodetector circuit and semiconductor device
US20150349005A1 (en) * 2014-06-03 2015-12-03 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit having a level shifter

Family Cites Families (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
JP3834841B2 (ja) * 1995-08-03 2006-10-18 株式会社日立製作所 固体撮像素子
JPH11505377A (ja) 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 半導体装置
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
EP1443130B1 (en) 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
WO2005088726A1 (ja) 2004-03-12 2005-09-22 Japan Science And Technology Agency アモルファス酸化物及び薄膜トランジスタ
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
CN101057338B (zh) 2004-11-10 2011-03-16 佳能株式会社 采用无定形氧化物的场效应晶体管
CN101057333B (zh) 2004-11-10 2011-11-16 佳能株式会社 发光器件
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
KR100998527B1 (ko) 2004-11-10 2010-12-07 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 비정질 산화물 및 전계 효과 트랜지스터
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI505473B (zh) 2005-01-28 2015-10-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
EP1770788A3 (en) 2005-09-29 2011-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101103374B1 (ko) 2005-11-15 2012-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US8354724B2 (en) * 2007-03-26 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5363237B2 (ja) * 2009-08-10 2013-12-11 ローム株式会社 光電変換回路及びそれに用いる光電変換素子
KR20190006091A (ko) 2009-10-29 2019-01-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101810254B1 (ko) * 2009-11-06 2017-12-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 동작 방법
KR101645680B1 (ko) 2009-11-06 2016-08-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9473714B2 (en) 2010-07-01 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Solid-state imaging device and semiconductor display device
JP2012151369A (ja) * 2011-01-20 2012-08-09 Panasonic Corp 固体撮像装置
JP2015023079A (ja) 2013-07-17 2015-02-02 ソニー株式会社 放射線撮像装置および放射線撮像表示システム
WO2016030801A1 (en) 2014-08-29 2016-03-03 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
KR102393272B1 (ko) 2014-09-02 2022-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 촬상 장치 및 전자 기기
WO2016046685A1 (en) 2014-09-26 2016-03-31 Semiconductor Energy Laboratory Co., Ltd. Imaging device
US9584707B2 (en) 2014-11-10 2017-02-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9548327B2 (en) 2014-11-10 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Imaging device having a selenium containing photoelectric conversion layer
US9773832B2 (en) 2014-12-10 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
TWI792065B (zh) * 2015-01-30 2023-02-11 日商半導體能源研究所股份有限公司 成像裝置及電子裝置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120086095A1 (en) * 2009-04-07 2012-04-12 Rohm Co., Ltd. Photoelectric Conversion Device and Image Pick-Up Device
US20110084316A1 (en) * 2009-10-09 2011-04-14 Canon Kabushiki Kaisha Pickup device and method for manufacturing the same
US20130075594A1 (en) * 2011-09-22 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Photodetector and method for driving photodetector
US20130099093A1 (en) * 2011-10-20 2013-04-25 Canon Kabushiki Kaisha Detection apparatus and detection system
US20130223135A1 (en) * 2012-02-24 2013-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20130288426A1 (en) * 2012-04-25 2013-10-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20140070079A1 (en) * 2012-09-12 2014-03-13 Semiconductor Energy Laboratory Co., Ltd. Photodetector circuit and semiconductor device
US20150349005A1 (en) * 2014-06-03 2015-12-03 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit having a level shifter

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10498980B2 (en) 2015-07-07 2019-12-03 Semiconductor Energy Laboratory Co., Ltd. Imaging device comprising n-channel oxide semiconductor transistors, photoelectric conversion element, and capacitor
US9887218B2 (en) 2015-07-16 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Imaging device, operating method thereof, and electronic device
US10199411B2 (en) 2015-07-16 2019-02-05 Semiconductor Energy Laboratory Co., Ltd. Imaging device comprising photoelectric conversion element, operating method thereof, and electronic device
US10033952B2 (en) 2015-09-10 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Imaging device, module, electronic device, and method of operating the imaging device
US10910427B2 (en) 2015-12-28 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10388687B2 (en) 2015-12-28 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10020336B2 (en) 2015-12-28 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device using three dimentional (3D) integration
US11239273B2 (en) 2015-12-28 2022-02-01 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US11626439B2 (en) 2015-12-28 2023-04-11 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US11942497B2 (en) 2015-12-28 2024-03-26 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US11099814B2 (en) * 2016-10-12 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Neural network semiconductor device and system using the same
US20210326117A1 (en) * 2016-10-12 2021-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and system using the same
US11755286B2 (en) * 2016-10-12 2023-09-12 Semiconductor Energy Laboratory Co., Ltd. Neural network semiconductor device and system using the same
WO2022253733A1 (de) * 2021-06-02 2022-12-08 Universität Siegen Photonendetektionselement, verfahren zum betrieb eines photonendetektionselements, und verfahren zur herstellung eines bildsensors

Also Published As

Publication number Publication date
US20200403016A1 (en) 2020-12-24
JP2023073250A (ja) 2023-05-25
JP2016146626A (ja) 2016-08-12
US20240079424A1 (en) 2024-03-07
JP6913773B2 (ja) 2021-08-04
TW201633523A (zh) 2016-09-16
KR20230021061A (ko) 2023-02-13
KR102502316B1 (ko) 2023-02-23
TWI710124B (zh) 2020-11-11
TW202105707A (zh) 2021-02-01
KR20160094290A (ko) 2016-08-09
US11848341B2 (en) 2023-12-19
TWI792065B (zh) 2023-02-11
JP2021108474A (ja) 2021-07-29
JP2020074564A (ja) 2020-05-14
JP6647884B2 (ja) 2020-02-14

Similar Documents

Publication Publication Date Title
US11676986B2 (en) Semiconductor device and electronic device
US10192913B2 (en) Imaging device and electronic device
US10249658B2 (en) Imaging device comprising a circuit having dual regions each with a transistor electrically connected to a photoelectric conversion element
US10256345B2 (en) Imaging device and electronic device
US10170565B2 (en) Imaging device, method for driving imaging device, and electronic device
US10079253B2 (en) Imaging device and electronic device
US11848341B2 (en) Imaging device and electronic device
US9584707B2 (en) Imaging device and electronic device
US10306168B2 (en) Semiconductor device, imaging system, and electronic device
US20160104734A1 (en) Imaging device
US10389961B2 (en) Imaging device and electronic device
US9685476B2 (en) Imaging device and electronic device
US10180354B2 (en) Imaging device and electronic device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEMICONDUCTOR ENERGY LABORATORY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUROKAWA, YOSHIYUKI;REEL/FRAME:037630/0400

Effective date: 20160108

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION