US20160122888A1 - Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures - Google Patents

Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures Download PDF

Info

Publication number
US20160122888A1
US20160122888A1 US14/896,602 US201414896602A US2016122888A1 US 20160122888 A1 US20160122888 A1 US 20160122888A1 US 201414896602 A US201414896602 A US 201414896602A US 2016122888 A1 US2016122888 A1 US 2016122888A1
Authority
US
United States
Prior art keywords
liquid metal
metal structure
electrolyte
container
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/896,602
Inventor
Michael David Dickey
Collin Eaker
Mohammad Rashed Khan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North Carolina State University
Original Assignee
North Carolina State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Carolina State University filed Critical North Carolina State University
Priority to US14/896,602 priority Critical patent/US20160122888A1/en
Publication of US20160122888A1 publication Critical patent/US20160122888A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/0033D structures, e.g. superposed patterned layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/005Contacting devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/007Current directing devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling

Definitions

  • the subject matter described herein relates to controlled reconfiguration of liquid metal structures.
  • Mercury is liquid at room temperature and atmospheric pressure. Because of the liquid nature of mercury, it is possible to change the configuration or shape of a liquid metal structure formed of mercury through application of mechanical force. However, mercury is highly toxic and therefore unsuitable for applications where the likelihood of exposure to humans is high.
  • Gallium alloys like mercury are liquid at room temperature and atmospheric pressure.
  • Gallium metal is also liquid near room temperature and atmospheric pressure.
  • gallium is considered to have low-toxicity. Because of its liquid phase at room temperature and atmospheric pressure and its relative low-toxicity, gallium may be useful for forming reconfigurable electrical, optical, thermal, or mechanical structures, such as filters in optical applications, antennas or wires in electronics applications, heat sinks in thermal applications, or microstructures in mechanical applications.
  • one problem with using gallium as the medium for forming a reconfigurable structure is that an oxide skin forms on gallium. This skin causes the metal to stick to most surfaces and results in residue that remains even after a portion of the liquid gallium is moved, for example, from a fluid channel to a reservoir.
  • a container is provided.
  • An electrolyte is provided in the container.
  • a liquid metal structure is provided in the container and at least partially in contact with the electrolyte.
  • a voltage is applied between the liquid metal structure and the electrolyte to change the shape of the liquid metal structure such that the structure achieves a desired shape for an electrical, mechanical, optical, or thermal application.
  • a controller for voltage controlled spreading of liquid metal structures may be implemented in hardware, software, firmware, or any combination thereof.
  • the terms “function” or “module” as used herein refer to hardware, which may also include software and/or firmware components, for implementing the feature being described.
  • the subject matter described herein may be implemented using a computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps.
  • Exemplary computer readable media suitable for implementing the subject matter described herein include non-transitory computer-readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits.
  • a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.
  • FIG. 1A is a schematic diagram illustrating the application of a reductive potential to a liquid metal structure in a microfluidic channel according to an embodiment of the subject matter described herein;
  • FIGS. 1B-1D illustrate withdrawal of a liquid metal structure from a microfluidic channel into a reservoir upon application of a reductive potential to the liquid metal structure according to an embodiment of the subject matter described herein;
  • FIGS. 2A-2C illustrate the selective withdrawal of a liquid metal structure from two segments of a multi-segment fluid channel and not from a third segment upon application of a reductive potential to the liquid metal structures in the first and second segments but not the third segment according to an embodiment of the subject matter described herein;
  • FIGS. 3A-3D illustrate the application of an oxidative potential to a liquid metal structure immersed in a pool of electrolyte to shape the liquid structure on a surface of a container according to an embodiment of the subject matter described herein;
  • FIGS. 4A-4C illustrate the application of an oxidative potential to a liquid metal structure to cause the liquid metal structure to move from a pipette and form a wire in a container according to an embodiment of the subject matter described herein;
  • FIGS. 5A and 5B illustrate the application of an oxidative potential to a liquid metal structure to cause the liquid metal structure to move from one chamber through a capillary into another chamber of a multi-chamber container according to an embodiment of the subject matter described herein;
  • FIGS. 6A and 6B illustrate the application of an oxidative potential to a liquid metal structure in a container where the liquid metal structure reconfigures itself in a direction that is opposite the direction of gravitational force according to an embodiment of the subject matter described herein;
  • FIGS. 7A-7C illustrate the application of an acid to a liquid metal structure to remove the oxide and cause a capillarity induced contraction of the liquid metal structure on a substrate according to an embodiment of the subject matter described herein;
  • FIGS. 8A and 8B illustrate the application of an oxidative potential to a liquid metal structure immersed in an electrolyte to cause spreading of the liquid metal structure within the electrolyte according to an embodiment of the subject matter described herein;
  • FIGS. 9A-9D illustrate a self-healing wire encapsulated in a self-healing material and the cutting of the self-healing wire according to an embodiment of the subject matter described herein;
  • FIGS. 10A-10D illustrate the reconnection and self-healing of a self-healing wire according to an embodiment of the subject matter described herein;
  • FIG. 11 is a block diagram of a system for voltage controlled reconfiguration of liquid metal structures according to an embodiment of the subject matter described herein;
  • FIG. 12 is a flow chart illustrating an exemplary process for voltage controlled reconfiguration of liquid metal according to an embodiment of the subject matter described herein.
  • FIG. 13 is a schematic diagram illustrating an exemplary utility of oxidative spreading according to an embodiment of the subject matter described herein.
  • FIGS. 1A-1D illustrate the application of a reductive potential to a liquid metal structure to move the liquid metal structure from a microfluidic channel to a reservoir.
  • the term “reductive potential” will be used to refer to the application of a potential to a liquid metal structure that causes a reduction reaction on the surface of the liquid metal structure.
  • negative charges are pushed by the application of the potential from the electrolyte (lighter color) through the circuit to the gallium oxide skin of the liquid metal structure (darker color), which reduces the oxidized gallium in the skin.
  • Known gallium alloys are believed to form oxide skins.
  • the subject matter described herein is applicable to any gallium alloy that forms an oxide skin. The following reduction reaction is believed to occur on the gallium oxide skin:
  • the result of the reduction of the oxide skin is that the high surface tension of the gallium metal causes the metal to spontaneously withdraw into the reservoir (oval shaped ball on left hand side of FIGS. 1A-1D ) without leaving metal in the channel.
  • an oxidative potential may be applied to a liquid metal structure to form a liquid metal structure having a desired shape or to move liquid metal from a reservoir into a microfluidic channel.
  • the liquid metal structure will move from the reservoir into the channel and will remain in the channel even after the oxidative potential is removed due to the oxide skin that forms around the metal.
  • the following reaction is believed to occur when an oxidative potential is applied to the gallium metal:
  • the gallium combines with oxygen or oxygen containing ions in the electrolyte to form the oxide skin. To maintain charge neutrality, an accompanying reduction reaction occurs at the counter electrode contacting the electrolyte.
  • FIG. 1C shows the liquid metal partially withdrawn. If application of the potential ceases, the oxide skin will reform, and the liquid metal structure will halt its movement into the reservoir and hold its shape.
  • Such a property may be useful to define liquid metal structures of desired shape and to stop applying the potential once the desired shape is achieved.
  • oxidative potential will be used to refer to the application of a potential to a liquid metal structure that causes oxidation of the liquid metal structure.
  • oxidative and reductive are defined with respect to the reactions they cause in the liquid metal structure.
  • the liquid metal structure moves in the direction of the arrow when the reductive potential is applied to the liquid metal structure.
  • the liquid metal structure is made of eutectic gallium indium (EGaln).
  • EGaln eutectic gallium indium
  • other gallium based alloys may be used without departing from the scope to the subject matter described herein.
  • the electrolyte can be any solution that includes ions capable of conducting current, such as aqueous solutions of NaCl, NaF, NaOH, HCl, polyelectrolytes, over a wide range of pH, such as 0-14.
  • the electrolyte may be with or without dissolved oxygen, and the electrolyte concentration may vary, for example, between a concentration of 0 and 1M, depending on desired conductivity.
  • the container that holds the liquid metal structure and the electrolyte may be made of any suitable material that is capable of containing gallium and the electrolyte without significant oxidation or reduction of the container.
  • Exemplary container materials suitable for use with the subject matter described herein include glass, Teflon, polystyrene, and tungsten.
  • FIGS. 1B, 1C, and 1D illustrate stages of withdrawal of the liquid metal structure from the microfluidic channel into the reservoir on the left hand side of the channel in response to the application of the reductive potential.
  • FIGS. 2A-2D a reductive potential is applied between two segments of a multi-segment microfluidic channel but not a third segment.
  • the liquid metal structure withdraws from the first and second segments (Segments 1 and 2) but the liquid metal in the third segment (Segment 3) remains stable.
  • the embodiments illustrated in FIGS. 2A-2D demonstrate that applying potentials to liquid metal structures can be used to break wires and form complex patterns.
  • FIGS. 3A-3D a gallium sphere is immersed in an electrolyte, which in FIGS. 3A-3D is aqueous electrolyte.
  • An oxidative potential is applied to the gallium sphere, where the positive electrode contacts the gallium sphere and the negative electrode contacts the electrolyte. Absent an oxidative potential, the metal does not spread due to surface tension and the presence of the oxide skin (see FIG. 3A ).
  • An oxidation reaction occurs on the surface of the gallium metal structure in contact with the electrolyte to form an oxide skin. It is believed that the spreading of the gallium metal occurs when the capacitive energy formed by a capacitor in which the gallium metal is one conductor, the oxide skin is the insulator, and the electrolyte as the other conductor exceeds the surface tension of the gallium structure.
  • the oxide skin forms around the liquid gallium as it is drawn from its original position.
  • FIG. 3D when the electrodes are removed, a shaped liquid metal structure has been deposited on the surface of the container in which the liquid metal structure and the electrolyte reside. Such shaping can be used to form antennas, or wires, or other structures of desired configurations for an electronics application.
  • a pipette containing a liquid metal is placed within a container containing a basic electrolyte, which removes the oxide skin that forms around the liquid gallium. Absent the application of any electric potential, the liquid metal in the pipette or tube is mechanically pumped into the receiving container. A droplet of liquid metal forms at the outlet of the pipette (see FIG. 4A ). When the droplet is large enough, it falls to the bottom of the receiving container because of gravitational forces.
  • a liquid gallium alloy structure with an oxide skin is mechanically stable (i.e., it retains its shape after the cessation of application of the oxidative or reductive potential) unless there is a reductive potential applied or when the electrolyte used is basic (pH>10) or acidic (pH ⁇ 3).
  • FIGS. 5A and 5B illustrate the application of an oxidative potential to a liquid metal structure in a multi-chamber container where a capillary filled with an electrolyte forms a conductive path between the chambers.
  • the electrolyte fills the chamber on the left hand side of the container and extends through a horizontal passageway to the right hand side of the chamber and to a vertical passageway to rest in contact the lower surface of the liquid metal sphere in the right hand chamber. As illustrated in FIG.
  • FIGS. 6A and 6B illustrate the same response that occurs in FIGS. 5A and 5B except that in FIG. 6A and 6B , the liquid metal structure starts in the lower portion of the right hand chamber.
  • an oxidative potential is applied to the liquid metal structure by placing the positive electrode in contact with the liquid metal structure and the negative electrode in contact with the electrolyte. It can be seen in FIG. 6B that the oxidative potential applied to the liquid metal structure causes the liquid metal to flow upwards through the vertical passageway between the lower and upper sub-chambers on the right hand side of the container.
  • FIGS. 6A and 6B illustrate that the movement of the liquid metal is caused by forces other than gravity because the metal flows upwards against the force of gravity.
  • FIGS. 7A-7C illustrate the application of one molar hydrochloric acid to a liquid metal structure on a slide.
  • the oxide skin of the liquid metal structure is reduced, and the surface tension of the liquid metal causes it to form a sphere.
  • a liquid gallium alloy structure with an oxide skin is mechanically stable ( FIG. 8A ) unless there is a reductive potential applied or when the electrolyte used is basic (pH>10) or acidic (pH ⁇ 3).
  • FIGS. 8A and 8B illustrate the application of an oxidative potential to a liquid metal structure immersed within an electrolyte solution. As illustrated in FIG. 8B , the result of application of the oxidative potential is the spreading of the liquid metal structure along a surface of a container that holds the liquid metal structure and the electrolyte.
  • FIGS. 9A-9D illustrate a self-healing wire formed with a liquid metal structure according to an embodiment of the subject matter described herein.
  • a liquid metal wire is encapsulated in a self-healing polymer, such as Reverlink available from Arkema, Inc.
  • the liquid metal wire is connected to a voltage source to light an LED.
  • the self-healing polymer and the liquid metal within the polymer are cut.
  • the self-healing wire is reconnected by mechanically aligning the two halves in physical contact with each other.
  • the two ends of the liquid metal wire reforms such that current flows to the LED and the LED is illuminated.
  • FIGS. 10C and 10D the polymer that surrounded the liquid metal structure is healed.
  • FIG. 11 is a block diagram illustrating a system for voltage controlled reconfiguration of a liquid metal according to an embodiment of the subject matter described herein.
  • the system includes a container, an electrolyte, a liquid metal structure, and a controlled voltage source.
  • the liquid metal structure may be a gallium material, including any known alloy of gallium that is liquid at the temperature and pressure of interest.
  • the electrolyte may be any suitable aqueous or other protic solution or solution capable of conducting ions, including those described above.
  • the container may be a microfluidic channel or any other structure suitable for containing or holding an electrolyte and a liquid metal.
  • the container may be formed of any material suitable for containing the electrolyte and the liquid metal, including the exemplary container materials described above.
  • the controlled voltage source may be any suitable source for applying voltages to the liquid metal structure and the electrolyte.
  • the voltage source may be a controlled AC or DC voltage source capable of applying voltages over any suitable operational range, e.g., 1-12 volts.
  • the controlled voltage source may be configured to apply oxidative or reductive potential to the liquid metal structure so that the liquid metal structure will move to a desired configuration, such as a desired conductor shape or antenna shape.
  • FIG. 12 is a flow chart illustrating exemplary overall steps for voltage controlled reconfiguration of a liquid metal structure.
  • a container is provided.
  • the container may be any container suitable for containing a liquid metal and an electrolyte.
  • an electrolyte is provided in the container.
  • the container may be filled with an aqueous electrolyte solution suitable for conducting ions.
  • a liquid metal structure is provided in the container at least partially in contact with the electrolyte.
  • a gallium alloy or other liquid metal that forms a surface oxide may be provided in the container.
  • a voltage is applied to the liquid metal structure to change the shape of the liquid metal structure such that the structure achieves a desired shape for an electrical, mechanical, optical, or thermal application.
  • a reductive potential may be applied to the liquid metal structure and an electrolyte to withdraw the liquid metal structure from a microfluidic channel into a reservoir.
  • an oxidative potential may be applied to a liquid metal structure in a reservoir to move the liquid metal structure from the reservoir into a microfluidic channel to change its shape to a desired shape for an electrical, optical, thermal, or mechanical application.
  • the liquid metal structure may be shaped to have a desired electrical property, such as a desired conductance, resistance, resonant frequency, inductance, directionality or other desired property.
  • the structure may be shaped to have a desired optical, mechanical, or thermal property.
  • the reconfigured electrical structure may be used for any suitable application, including electrodes, microfluidic structures, optical components, microfluidic cooling, etc.
  • an oxidative potential may be used to cause droplets of a liquid metal to form fibers, as illustrated in FIGS. 13A-13D .
  • metal pumped out the end of the capillary forms beads that fall periodically due to the forces of gravity ( FIG. 13C ).
  • Applying an oxidative potential to the metal relative to a counter electrode in solution causes the metal to form a stable fiber despite its large surface tension ( FIG. 3D ), ii.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

Voltage controlled reconfiguration of liquid metal structures by providing an electrolyte in the container. A liquid metal structure is provided in the container and at least partially in contact with the electrolyte. A voltage is applied between the liquid metal structure and the electrolyte to change the shape of the liquid metal structure such that the structure achieves a desired shape for an electrical, optical, mechanical, or thermal application.

Description

    PRIORITY CLAIM
  • This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/831,597, filed Jun. 5, 2013; the disclosure of which is incorporated herein by reference in its entirety.
  • GOVERNMENT INTEREST
  • This invention was made with government support under Grant No. ECCS-0925797 awarded by the National Science Foundation. The government has certain rights in the invention.
  • TECHNICAL FIELD
  • The subject matter described herein relates to controlled reconfiguration of liquid metal structures.
  • BACKGROUND
  • Mercury is liquid at room temperature and atmospheric pressure. Because of the liquid nature of mercury, it is possible to change the configuration or shape of a liquid metal structure formed of mercury through application of mechanical force. However, mercury is highly toxic and therefore unsuitable for applications where the likelihood of exposure to humans is high.
  • Gallium alloys, like mercury, are liquid at room temperature and atmospheric pressure. Gallium metal is also liquid near room temperature and atmospheric pressure. Unlike mercury, gallium is considered to have low-toxicity. Because of its liquid phase at room temperature and atmospheric pressure and its relative low-toxicity, gallium may be useful for forming reconfigurable electrical, optical, thermal, or mechanical structures, such as filters in optical applications, antennas or wires in electronics applications, heat sinks in thermal applications, or microstructures in mechanical applications. However, one problem with using gallium as the medium for forming a reconfigurable structure is that an oxide skin forms on gallium. This skin causes the metal to stick to most surfaces and results in residue that remains even after a portion of the liquid gallium is moved, for example, from a fluid channel to a reservoir.
  • Accordingly, there exists a need for improved methods for voltage controlled reconfiguration of liquid metal structures.
  • SUMMARY
  • The subject matter described herein relates to voltage controlled reconfiguration of liquid metal structures. According to one exemplary method, a container is provided. An electrolyte is provided in the container. A liquid metal structure is provided in the container and at least partially in contact with the electrolyte. A voltage is applied between the liquid metal structure and the electrolyte to change the shape of the liquid metal structure such that the structure achieves a desired shape for an electrical, mechanical, optical, or thermal application.
  • A controller for voltage controlled spreading of liquid metal structures may be implemented in hardware, software, firmware, or any combination thereof. As such, the terms “function” or “module” as used herein refer to hardware, which may also include software and/or firmware components, for implementing the feature being described. In one exemplary implementation, the subject matter described herein may be implemented using a computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps. Exemplary computer readable media suitable for implementing the subject matter described herein include non-transitory computer-readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject matter described herein will now be explained with reference to the accompanying drawings of which:
  • FIG. 1A is a schematic diagram illustrating the application of a reductive potential to a liquid metal structure in a microfluidic channel according to an embodiment of the subject matter described herein;
  • FIGS. 1B-1D illustrate withdrawal of a liquid metal structure from a microfluidic channel into a reservoir upon application of a reductive potential to the liquid metal structure according to an embodiment of the subject matter described herein;
  • FIGS. 2A-2C illustrate the selective withdrawal of a liquid metal structure from two segments of a multi-segment fluid channel and not from a third segment upon application of a reductive potential to the liquid metal structures in the first and second segments but not the third segment according to an embodiment of the subject matter described herein;
  • FIGS. 3A-3D illustrate the application of an oxidative potential to a liquid metal structure immersed in a pool of electrolyte to shape the liquid structure on a surface of a container according to an embodiment of the subject matter described herein;
  • FIGS. 4A-4C illustrate the application of an oxidative potential to a liquid metal structure to cause the liquid metal structure to move from a pipette and form a wire in a container according to an embodiment of the subject matter described herein;
  • FIGS. 5A and 5B illustrate the application of an oxidative potential to a liquid metal structure to cause the liquid metal structure to move from one chamber through a capillary into another chamber of a multi-chamber container according to an embodiment of the subject matter described herein;
  • FIGS. 6A and 6B illustrate the application of an oxidative potential to a liquid metal structure in a container where the liquid metal structure reconfigures itself in a direction that is opposite the direction of gravitational force according to an embodiment of the subject matter described herein;
  • FIGS. 7A-7C illustrate the application of an acid to a liquid metal structure to remove the oxide and cause a capillarity induced contraction of the liquid metal structure on a substrate according to an embodiment of the subject matter described herein;
  • FIGS. 8A and 8B illustrate the application of an oxidative potential to a liquid metal structure immersed in an electrolyte to cause spreading of the liquid metal structure within the electrolyte according to an embodiment of the subject matter described herein;
  • FIGS. 9A-9D illustrate a self-healing wire encapsulated in a self-healing material and the cutting of the self-healing wire according to an embodiment of the subject matter described herein;
  • FIGS. 10A-10D illustrate the reconnection and self-healing of a self-healing wire according to an embodiment of the subject matter described herein;
  • FIG. 11 is a block diagram of a system for voltage controlled reconfiguration of liquid metal structures according to an embodiment of the subject matter described herein; and
  • FIG. 12 is a flow chart illustrating an exemplary process for voltage controlled reconfiguration of liquid metal according to an embodiment of the subject matter described herein.
  • FIG. 13 is a schematic diagram illustrating an exemplary utility of oxidative spreading according to an embodiment of the subject matter described herein. (a) A schematic diagram depicting the electrochemical setup of injecting liquid metal into a capillary channel (˜0.9 mm ID). b) Four sequential top-down, optical micrographs of metal filling a glass capillary (˜0.9 mm ID) in response to an oxidative potential. c) Side view of a small droplet of EGaln pumped at a flow rate in am electrolyte, d) Formation of an oxide coated liquid metal fiber coming out of the tube.
  • DETAILED DESCRIPTION
  • The subject matter described herein includes methods, systems, and computer readable media for voltage controlled reconfiguration liquid metal structures. FIGS. 1A-1D illustrate the application of a reductive potential to a liquid metal structure to move the liquid metal structure from a microfluidic channel to a reservoir. As used herein, the term “reductive potential” will be used to refer to the application of a potential to a liquid metal structure that causes a reduction reaction on the surface of the liquid metal structure. In FIG. 1A, negative charges are pushed by the application of the potential from the electrolyte (lighter color) through the circuit to the gallium oxide skin of the liquid metal structure (darker color), which reduces the oxidized gallium in the skin. Known gallium alloys are believed to form oxide skins. Hence, the subject matter described herein is applicable to any gallium alloy that forms an oxide skin. The following reduction reaction is believed to occur on the gallium oxide skin:

  • Ga3++3e→Ga
  • The result of the reduction of the oxide skin is that the high surface tension of the gallium metal causes the metal to spontaneously withdraw into the reservoir (oval shaped ball on left hand side of FIGS. 1A-1D) without leaving metal in the channel.
  • As will be described in more detail below, an oxidative potential may be applied to a liquid metal structure to form a liquid metal structure having a desired shape or to move liquid metal from a reservoir into a microfluidic channel. For example, if, after the liquid metal is in the reservoir as illustrated in FIG. 1D, the potential in FIG. 1A is reversed so that the positive electrode contacts the liquid metal in the reservoir and the negative counter electrode contacts the electrolyte, the liquid metal structure will move from the reservoir into the channel and will remain in the channel even after the oxidative potential is removed due to the oxide skin that forms around the metal. The following reaction is believed to occur when an oxidative potential is applied to the gallium metal:

  • Ga→Ga3++3e
  • The gallium combines with oxygen or oxygen containing ions in the electrolyte to form the oxide skin. To maintain charge neutrality, an accompanying reduction reaction occurs at the counter electrode contacting the electrolyte.
  • In addition, after application of the reductive or oxidative potential is ceased, the liquid metal structure holds its shape. For example, FIG. 1C shows the liquid metal partially withdrawn. If application of the potential ceases, the oxide skin will reform, and the liquid metal structure will halt its movement into the reservoir and hold its shape. Such a property may be useful to define liquid metal structures of desired shape and to stop applying the potential once the desired shape is achieved.
  • As used herein, the term “oxidative potential” will be used to refer to the application of a potential to a liquid metal structure that causes oxidation of the liquid metal structure. Thus, the terms “oxidative” and “reductive” are defined with respect to the reactions they cause in the liquid metal structure.
  • In FIG. 1A, the liquid metal structure moves in the direction of the arrow when the reductive potential is applied to the liquid metal structure. In this example, the liquid metal structure is made of eutectic gallium indium (EGaln). However, other gallium based alloys may be used without departing from the scope to the subject matter described herein. The electrolyte can be any solution that includes ions capable of conducting current, such as aqueous solutions of NaCl, NaF, NaOH, HCl, polyelectrolytes, over a wide range of pH, such as 0-14. The electrolyte may be with or without dissolved oxygen, and the electrolyte concentration may vary, for example, between a concentration of 0 and 1M, depending on desired conductivity. In some experiments, reduction-induced withdrawal and oxidative spreading of a liquid metal structure occurred at voltages ranging from 1V to 5V DC. AC voltages and larger ranges of DC voltages can also be used to reconfigure liquid metal structures without departing from the scope of the subject matter described herein. Larger voltages may result in generation of gas bubbles, such as hydrogen gas bubbles, which should be avoided due to the disruptive effect of bubbles on the electrical pathway in the electrolyte. Also, reductive voltage ranges that are applied to a liquid metal structure in accordance with embodiments of the subject matter described herein may be the same in magnitude but opposite in polarity with respect to the oxidative voltage ranges.
  • The container that holds the liquid metal structure and the electrolyte may be made of any suitable material that is capable of containing gallium and the electrolyte without significant oxidation or reduction of the container. Exemplary container materials suitable for use with the subject matter described herein include glass, Teflon, polystyrene, and tungsten.
  • FIGS. 1B, 1C, and 1D illustrate stages of withdrawal of the liquid metal structure from the microfluidic channel into the reservoir on the left hand side of the channel in response to the application of the reductive potential.
  • In FIGS. 2A-2D, a reductive potential is applied between two segments of a multi-segment microfluidic channel but not a third segment. As a result, the liquid metal structure withdraws from the first and second segments (Segments 1 and 2) but the liquid metal in the third segment (Segment 3) remains stable. The embodiments illustrated in FIGS. 2A-2D demonstrate that applying potentials to liquid metal structures can be used to break wires and form complex patterns.
  • In FIGS. 3A-3D, a gallium sphere is immersed in an electrolyte, which in FIGS. 3A-3D is aqueous electrolyte. An oxidative potential is applied to the gallium sphere, where the positive electrode contacts the gallium sphere and the negative electrode contacts the electrolyte. Absent an oxidative potential, the metal does not spread due to surface tension and the presence of the oxide skin (see FIG. 3A). When the positive electrode is applied to the gallium metal structure and the negative electrode is immersed in the electrolyte, negative charge flows from the gallium metal structure, through the positive electrode, through the electrical circuit formed by the power supply outside of the electrolyte, and into the electrolyte through the negative electrode, causing the reduction of hydrogen ions to hydrogen atoms at the negative electrode. The bubbles in the electrolyte around the negative electrode in FIGS. 3B and 3C are believed to be caused by the reduction of hydrogen ions (protons) in the electrolyte and the resulting formation of hydrogen gas.
  • An oxidation reaction occurs on the surface of the gallium metal structure in contact with the electrolyte to form an oxide skin. It is believed that the spreading of the gallium metal occurs when the capacitive energy formed by a capacitor in which the gallium metal is one conductor, the oxide skin is the insulator, and the electrolyte as the other conductor exceeds the surface tension of the gallium structure. When the negative electrode is moved away from the original liquid metal structure, the oxide skin forms around the liquid gallium as it is drawn from its original position. As illustrated in FIG. 3D, when the electrodes are removed, a shaped liquid metal structure has been deposited on the surface of the container in which the liquid metal structure and the electrolyte reside. Such shaping can be used to form antennas, or wires, or other structures of desired configurations for an electronics application.
  • In FIGS. 4A-4D, a pipette containing a liquid metal is placed within a container containing a basic electrolyte, which removes the oxide skin that forms around the liquid gallium. Absent the application of any electric potential, the liquid metal in the pipette or tube is mechanically pumped into the receiving container. A droplet of liquid metal forms at the outlet of the pipette (see FIG. 4A). When the droplet is large enough, it falls to the bottom of the receiving container because of gravitational forces. However, when an oxidative potential is applied to the liquid metal structure by placing the positive electrode in contact with the liquid metal structure in the pipette and the negative electrode in contact with the electrolyte, the protons in the electrolyte are reduced, and the gallium metal exiting the tubing is oxidized. The gallium begins to flow into the receiving container, and a gallium oxide skin forms around the liquid metal as it flows into the second container, creating a flowing wire from the pipette to the receiving container, as illustrated in FIG. 4B. In FIG. 4C, when the electrodes are removed, the formation of the wire ceases and the surface tension of the liquid metal in the receiving container causes it to form a sphere because the basic electrolyte removes the oxide skin if there is no oxidative potential. A liquid gallium alloy structure with an oxide skin is mechanically stable (i.e., it retains its shape after the cessation of application of the oxidative or reductive potential) unless there is a reductive potential applied or when the electrolyte used is basic (pH>10) or acidic (pH<3).
  • FIGS. 5A and 5B illustrate the application of an oxidative potential to a liquid metal structure in a multi-chamber container where a capillary filled with an electrolyte forms a conductive path between the chambers. In FIGS. 5A and 5B, the electrolyte fills the chamber on the left hand side of the container and extends through a horizontal passageway to the right hand side of the chamber and to a vertical passageway to rest in contact the lower surface of the liquid metal sphere in the right hand chamber. As illustrated in FIG. 5B, when an oxidizing potential is applied to the liquid metal structure by placing a positive electrode in contact with the liquid metal structure and the negative electrode in contact with the electrolyte, the liquid metal oxidizes and flows through the vertical passageway into the lower part of the right hand chamber.
  • FIGS. 6A and 6B illustrate the same response that occurs in FIGS. 5A and 5B except that in FIG. 6A and 6B, the liquid metal structure starts in the lower portion of the right hand chamber. In FIG. 6B, an oxidative potential is applied to the liquid metal structure by placing the positive electrode in contact with the liquid metal structure and the negative electrode in contact with the electrolyte. It can be seen in FIG. 6B that the oxidative potential applied to the liquid metal structure causes the liquid metal to flow upwards through the vertical passageway between the lower and upper sub-chambers on the right hand side of the container. Thus, FIGS. 6A and 6B illustrate that the movement of the liquid metal is caused by forces other than gravity because the metal flows upwards against the force of gravity.
  • FIGS. 7A-7C illustrate the application of one molar hydrochloric acid to a liquid metal structure on a slide. As illustrated in FIG. 8B and 8C, when the acid is applied to the liquid metal structure, the oxide skin of the liquid metal structure is reduced, and the surface tension of the liquid metal causes it to form a sphere. A liquid gallium alloy structure with an oxide skin is mechanically stable (FIG. 8A) unless there is a reductive potential applied or when the electrolyte used is basic (pH>10) or acidic (pH<3).
  • FIGS. 8A and 8B illustrate the application of an oxidative potential to a liquid metal structure immersed within an electrolyte solution. As illustrated in FIG. 8B, the result of application of the oxidative potential is the spreading of the liquid metal structure along a surface of a container that holds the liquid metal structure and the electrolyte.
  • FIGS. 9A-9D illustrate a self-healing wire formed with a liquid metal structure according to an embodiment of the subject matter described herein. Referring to FIG. 9A, a liquid metal wire is encapsulated in a self-healing polymer, such as Reverlink available from Arkema, Inc. In FIG. 9B, the liquid metal wire is connected to a voltage source to light an LED. In FIGS. 9C and 9D, the self-healing polymer and the liquid metal within the polymer are cut.
  • In FIG. 10A, the self-healing wire is reconnected by mechanically aligning the two halves in physical contact with each other. In FIG. 10B, the two ends of the liquid metal wire reforms such that current flows to the LED and the LED is illuminated. In FIGS. 10C and 10D, the polymer that surrounded the liquid metal structure is healed.
  • FIG. 11 is a block diagram illustrating a system for voltage controlled reconfiguration of a liquid metal according to an embodiment of the subject matter described herein. Referring to FIG. 11, the system includes a container, an electrolyte, a liquid metal structure, and a controlled voltage source. The liquid metal structure may be a gallium material, including any known alloy of gallium that is liquid at the temperature and pressure of interest. The electrolyte may be any suitable aqueous or other protic solution or solution capable of conducting ions, including those described above. The container may be a microfluidic channel or any other structure suitable for containing or holding an electrolyte and a liquid metal. The container may be formed of any material suitable for containing the electrolyte and the liquid metal, including the exemplary container materials described above. The controlled voltage source may be any suitable source for applying voltages to the liquid metal structure and the electrolyte. The voltage source may be a controlled AC or DC voltage source capable of applying voltages over any suitable operational range, e.g., 1-12 volts. The controlled voltage source may be configured to apply oxidative or reductive potential to the liquid metal structure so that the liquid metal structure will move to a desired configuration, such as a desired conductor shape or antenna shape.
  • FIG. 12 is a flow chart illustrating exemplary overall steps for voltage controlled reconfiguration of a liquid metal structure. Referring to FIG. 14, in step 1200 a container is provided. For example, the container may be any container suitable for containing a liquid metal and an electrolyte. In step 1202, an electrolyte is provided in the container. For example, the container may be filled with an aqueous electrolyte solution suitable for conducting ions. In step 1204, a liquid metal structure is provided in the container at least partially in contact with the electrolyte. For example, a gallium alloy or other liquid metal that forms a surface oxide may be provided in the container. In step 1206, a voltage is applied to the liquid metal structure to change the shape of the liquid metal structure such that the structure achieves a desired shape for an electrical, mechanical, optical, or thermal application. For example, a reductive potential may be applied to the liquid metal structure and an electrolyte to withdraw the liquid metal structure from a microfluidic channel into a reservoir. In an alternate implementation, an oxidative potential may be applied to a liquid metal structure in a reservoir to move the liquid metal structure from the reservoir into a microfluidic channel to change its shape to a desired shape for an electrical, optical, thermal, or mechanical application. In one example, the liquid metal structure may be shaped to have a desired electrical property, such as a desired conductance, resistance, resonant frequency, inductance, directionality or other desired property. In another example, the structure may be shaped to have a desired optical, mechanical, or thermal property. The reconfigured electrical structure may be used for any suitable application, including electrodes, microfluidic structures, optical components, microfluidic cooling, etc.
  • According to another aspect of the subject matter described herein, an oxidative potential may be used to cause droplets of a liquid metal to form fibers, as illustrated in FIGS. 13A-13D. In the absence of applied potential, metal pumped out the end of the capillary forms beads that fall periodically due to the forces of gravity (FIG. 13C). Applying an oxidative potential to the metal relative to a counter electrode in solution causes the metal to form a stable fiber despite its large surface tension (FIG. 3D), ii.
  • It will be understood that various details of the presently disclosed subject matter may be changed without departing from the scope of the presently disclosed subject matter. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.

Claims (30)

What is claimed is:
1. A method for voltage controlled reconfiguration of a liquid metal structure, the method comprising:
providing a container;
providing an electrolyte in the container;
providing a liquid metal structure in the container and at least partially in contact with the electrolyte; and
applying a voltage between the liquid metal structure and the electrolyte to change the shape of the liquid metal structure such that the structure achieves a desired shape.
2. The method of claim 1 wherein the container defines an elongate fluid channel and a reservoir connected to the fluid channel.
3. The method of claim 2 wherein applying a voltage between the liquid metal structure and the electrolyte includes applying a reductive potential to the liquid metal structure to electrochemically reduce an oxide skin of the liquid metal structure and cause at least a portion of the liquid metal structure to withdraw from the fluid channel.
4. The method of claim 2 wherein applying a voltage between the liquid metal structure and the electrolyte includes applying an oxidative potential to the liquid metal structure to form an oxide skin around the liquid metal structure and cause the at least a portion of the liquid metal structure to move from the reservoir into the fluid channel.
5. The method of claim 1 wherein the container defines a plurality of segments, each of which includes a portion of the liquid metal structure and each of which is coupled to the electrolyte, wherein applying the voltage includes applying a reductive potential to the liquid metal structure in one of the segments to selectively withdraw the liquid metal structure portions from the two segments.
6. The method of claim 1 wherein the container defines a pool for holding the electrolyte and wherein applying a voltage between the liquid metal structure and the electrolyte includes applying a first electrode to the liquid metal structure, applying a second electrode to the electrolyte in proximity to the liquid metal structure, applying an oxidative potential to the liquid metal structure through the first electrode, and moving the second electrode while maintaining contact with the electrolyte to oxidize at least a portion of the liquid metal structure and form a desired shape of the liquid metal structure within the container.
7. The method of claim 1 wherein the container comprises a first container for holding the electrolyte and a second container for holding the liquid metal structure and wherein applying a voltage between the liquid metal structure and the electrolyte includes applying an oxidative potential to the liquid metal structure to move the liquid metal structure from the second container into the first container and form a wire in the first container.
8. The method of claim 1 wherein the container includes a first chamber for holding the electrolyte and a second chamber for holding the liquid metal structure, the first and second chambers being electrically coupled to each other via the electrolyte, and wherein applying the voltage between the liquid metal structure and the electrolyte includes applying a first electrode to the electrolyte, applying a second electrode to the liquid metal structure, and applying an oxidative potential to the liquid metal structure to move the liquid metal structure from the second container.
9. The method of claim 1 wherein the liquid metal structure is immersed within the electrolyte and wherein applying a voltage between the liquid metal structure and the electrolyte includes applying an oxidative potential to the liquid metal structure to spread the liquid metal structure along a surface of the container.
10. The method of claim 1 wherein the structure includes one of a wire, an interconnect, and an antenna.
11. The method of claim 1 wherein the structure includes a mechanical, optical, or thermal structure.
12. The method of claim 1 wherein the liquid metal structure comprises liquid gallium or a liquid gallium alloy.
13. The method of claim 1 comprising ceasing application of the voltage between the liquid metal structure and the electrolyte when the liquid metal structure has formed a desired shape.
14. The method of claim 1 wherein the liquid metal structure comprises a fiber.
15. A method for manufacturing a self-healing electrical structure, the method comprising:
providing a liquid metal structure comprising a liquid metal material having a liquid metal core and an oxide skin formed around the liquid metal core; and
encapsulating the liquid metal structure in a self-healing polymer surrounding the oxide skin of the liquid metal structure.
16. A system for voltage control reconfiguration of a liquid metal structure in a fluid channel, the method comprising:
a container;
an electrolyte located and at least partially in contact with the electrolyte in the container;
a liquid metal structure located in the container; and
a controlled voltage source configured to apply an electrical stimulus to the liquid metal structure to change the shape of the liquid metal structure such that the structure achieves a desired shape.
17. The system of claim 16 wherein the container defines an elongate fluid channel and a reservoir connected to the fluid channel.
18. The system of claim 17 wherein the controlled voltage source is configured to apply a reductive potential to the liquid metal structure to electrochemically reduce an oxide skin of the liquid metal structure and cause at least a portion of the liquid metal structure to withdraw from the fluid channel.
19. The system of claim 17 wherein the controlled voltage source is configured to apply an oxidative potential to the liquid metal structure to form an oxide skin around the liquid metal structure and cause the at least a portion of the liquid metal structure to move from the reservoir into the fluid channel.
20. The system of claim 16 wherein the container defines a plurality of segments, each of which includes a portion of the liquid metal structure and each of which is coupled to the electrolyte, wherein the controlled voltage source is configured to apply a reductive potential to the liquid metal structure in one of the segments to selectively withdraw the liquid metal structure portions from the two segments.
21. The system of claim 16 wherein the container defines a pool for holding the electrolyte and wherein the controlled voltage source includes a first electrode for contacting the liquid metal structure, a second electrode for contacting the electrolyte in proximity to the liquid metal structure, and wherein the controlled voltage source is configured to apply an oxidative potential to the liquid metal structure through the first electrode, and the second electrode is configured to move while maintaining contact with the electrolyte to oxidize at least a portion of the liquid metal structure and form a desired shape of the liquid metal structure within the container.
22. The system of claim 16 wherein the container comprises a first container for holding the electrolyte and a second container for holding the liquid metal structure and wherein the controlled voltage source is configured to apply an oxidative potential to the liquid metal structure to move the liquid metal structure from the second container into the first container and form a wire in the first container.
23. The system of claim 16 wherein the container includes a first chamber for holding the electrolyte and a second chamber for holding the liquid metal structure, the first and second chambers being electrically coupled to each other via the electrolyte, and wherein the controlled voltage source includes a first electrode for contacting the electrolyte, a second electrode for contacting the liquid metal structure, and wherein the controlled voltage source is configured to apply an oxidative potential to the liquid metal structure to move the liquid metal structure from the second container.
24. The system of claim 16 wherein the liquid metal structure is immersed within the electrolyte and wherein the controlled voltage source is configured to apply an oxidative potential to the liquid metal structure to spread the liquid metal structure along a surface of the container.
25. The system of claim 16 wherein the liquid metal structure comprises a fiber.
26. The system of claim 16 wherein the structure includes one of a wire, an interconnect, and an antenna.
27. The system of claim 16 wherein the structure includes a mechanical, optical, or thermal structure, and the property comprises a desired mechanical, optical, or thermal property.
28. The system of claim 16 wherein the liquid metal structure comprises liquid gallium or a gallium alloy.
29. The system of claim 16 wherein the controlled voltage source is configured to cease application of the voltage when a desired shape of the liquid metal structure is achieved.
30. A self-healing electrical structure:
a liquid metal conductive structure comprising a liquid metal material having a liquid metal core and an oxide skin formed around the liquid metal core; and
a self-healing polymer surrounding the oxide skin of the liquid metal structure.
US14/896,602 2013-06-05 2014-06-05 Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures Abandoned US20160122888A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/896,602 US20160122888A1 (en) 2013-06-05 2014-06-05 Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361831597P 2013-06-05 2013-06-05
PCT/US2014/041117 WO2014197707A2 (en) 2013-06-05 2014-06-05 Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures
US14/896,602 US20160122888A1 (en) 2013-06-05 2014-06-05 Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures

Publications (1)

Publication Number Publication Date
US20160122888A1 true US20160122888A1 (en) 2016-05-05

Family

ID=52008750

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/896,602 Abandoned US20160122888A1 (en) 2013-06-05 2014-06-05 Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures

Country Status (2)

Country Link
US (1) US20160122888A1 (en)
WO (1) WO2014197707A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108549932A (en) * 2018-03-22 2018-09-18 清华大学 A kind of quasi- neuristor of the class brain based on liquid metal
US10834829B1 (en) 2019-08-26 2020-11-10 International Business Machines Corporation Variable inductor through electrochemically controlled capillarity
CN115548643A (en) * 2021-06-30 2022-12-30 ***通信有限公司研究院 Communication sensing antenna and antenna sensor system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8587493B2 (en) 2010-09-23 2013-11-19 North Carolina State University Reversibly deformable and mechanically tunable fluidic antennas
US9899732B2 (en) 2016-02-15 2018-02-20 The Boeing Company Structural reconfigurable antenna
CN110676590B (en) * 2019-11-08 2021-01-29 哈尔滨工业大学 Frequency-reconfigurable electrically-driven liquid metal dipole antenna

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1001539A3 (en) * 1988-03-17 1989-11-21 Bekaert Sa Nv Metal fibers obtained by bundled PULLING.
US5516408A (en) * 1993-04-19 1996-05-14 Magma Copper Company Process for making copper wire
US5676005A (en) * 1995-05-12 1997-10-14 H. C. Starck, Inc. Wire-drawing lubricant and method of use
JP2005505095A (en) * 2001-02-23 2005-02-17 エヴィオニクス,インコーポレイティッド Fibrous electrodes for metal-air electrochemical cells
KR20060014360A (en) * 2003-01-10 2006-02-15 어드밴스드 파워 디바이스, 인코포레이티드 47 59 ELECTRICALLY CONDUCTIVE FIBERS OF Ti4O7 AND Ti5O9
US8529738B2 (en) * 2005-02-08 2013-09-10 The Trustees Of Columbia University In The City Of New York In situ plating and etching of materials covered with a surface film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108549932A (en) * 2018-03-22 2018-09-18 清华大学 A kind of quasi- neuristor of the class brain based on liquid metal
US10834829B1 (en) 2019-08-26 2020-11-10 International Business Machines Corporation Variable inductor through electrochemically controlled capillarity
CN115548643A (en) * 2021-06-30 2022-12-30 ***通信有限公司研究院 Communication sensing antenna and antenna sensor system

Also Published As

Publication number Publication date
WO2014197707A3 (en) 2015-01-08
WO2014197707A2 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
US20160122888A1 (en) Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures
Song et al. Interfacial tension modulation of liquid metal via electrochemical oxidation
Cheng et al. Self-assembly of metallic nanowires from aqueous solution
Khan et al. Giant and switchable surface activity of liquid metal via surface oxidation
Tang et al. Steering liquid metal flow in microchannels using low voltages
Li et al. Printable liquid metal microparticle ink for ultrastretchable electronics
Paxton et al. Catalytically induced electrokinetics for motors and micropumps
US10451494B2 (en) Methods of rapid 3D nano/microfabrication of multifunctional shell-stabilized liquid metal pipe networks and insulating/metal liquids electro-mechanical switch and capacitive strain sensor
JP7029798B2 (en) Lithium isotope concentrator and multi-stage lithium isotope concentrator, and lithium isotope enrichment method
Chong et al. Formation mechanism of gaps and ribs around anodic TiO2 nanotubes and method to avoid formation of ribs
Cole et al. Liquid metals as soft electromechanical actuators
JP6268769B2 (en) Method for forming conductive thin wire and wire and substrate used therefor
WO2007015250A3 (en) Method for production of nanoporous electrodes for photoelectrochemical applications
Hu et al. Physics of nanoporation and water entry driven by a high-intensity, ultrashort electrical pulse in the presence of membrane hydrophobic interactions
Zhang et al. Electrochemical dealloying using pulsed voltage waveforms and its application for supercapacitor electrodes
Kang et al. Facile fabrication of flexible in‐plane graphene micro‐supercapacitor via flash reduction
TW201243321A (en) Electric field generator and electric field generation method
US20180233733A1 (en) Methods and apparatus for controlling electrodeposition using surface charge properties
US9702507B2 (en) Device for controlling particles
US10745816B2 (en) Transfer of vertically aligned ultra-high density nanowires onto flexible substrates
CN106512191B (en) Self-driven drug delivery device
CN109950686B (en) Electric control structure for reconstructing liquid metal and reconstruction method thereof
EP3013737B1 (en) Apparatus for selective deposition of nanotubes, using a charging element, a template membrane and a filter
WO2011121427A3 (en) A method to produce a microfluidic device having vertical electrodes and a device obtained from it
JP4520383B2 (en) Electrodeposition method

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION