US20160113901A1 - Cyclic Peptidomimetic Compounds as Immunomodulators - Google Patents

Cyclic Peptidomimetic Compounds as Immunomodulators Download PDF

Info

Publication number
US20160113901A1
US20160113901A1 US14/989,954 US201614989954A US2016113901A1 US 20160113901 A1 US20160113901 A1 US 20160113901A1 US 201614989954 A US201614989954 A US 201614989954A US 2016113901 A1 US2016113901 A1 US 2016113901A1
Authority
US
United States
Prior art keywords
cancer
compound
amino acid
hydrogen
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/989,954
Other languages
English (en)
Inventor
Pottayil Govindan Nair Sasikumar
Muralidhara Ramachandra
Seetharamaiah Setty Sudarshan Naremaddepalli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aurigene Oncology Ltd
Original Assignee
Aurigene Discovery Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/478,806 external-priority patent/US9233940B2/en
Application filed by Aurigene Discovery Technologies Ltd filed Critical Aurigene Discovery Technologies Ltd
Priority to US14/989,954 priority Critical patent/US20160113901A1/en
Publication of US20160113901A1 publication Critical patent/US20160113901A1/en
Priority to US15/332,805 priority patent/US10106581B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/26Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one amino group bound to the carbon skeleton, e.g. lysine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C243/00Compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C243/24Hydrazines having nitrogen atoms of hydrazine groups acylated by carboxylic acids
    • C07C243/26Hydrazines having nitrogen atoms of hydrazine groups acylated by carboxylic acids with acylating carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/06Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C275/16Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton being further substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D259/00Heterocyclic compounds containing rings having more than four nitrogen atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D273/00Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to cyclic peptidomimetic compounds therapeutically useful as immune modulators.
  • the invention also relates to pharmaceutical compositions comprising said cyclic peptidomimetic compounds as therapeutic agents.
  • PD-1 Programmed cell death-1
  • PD-L1 or PD-L2 are members of the CD28 superfamily that delivers negative signals upon interaction with its two ligands, PD-L1 or PD-L2.
  • PD-1 and its ligands are broadly expressed and exert a wider range of immunoregulatory roles in T cells activation and tolerance compared with other CD28 members.
  • PD-1 and its ligands are involved in attenuating infectious immunity and tumor immunity, and facilitating chronic infection and tumor progression.
  • the biological significance of PD-1 and its ligand suggests the therapeutic potential of manipulation of PD-1 pathway against various human diseases (Ariel Pedoeem et al., Curr Top Microbiol Immunol. (2011); 350:17-37).
  • T-cell activation and dysfunction relies on direct and modulated receptors. Based on their functional outcome, co-signaling molecules can be divided as co-stimulators and co-inhibitors, which positively and negatively control the priming, growth, differentiation and functional maturation of a T-cell response (Li Shi, et al., Journal of Hematology & Oncology 2013, 6:74).
  • PD-1 programmed cell death protein-1
  • Several PD-1 pathway inhibitors have shown robust activity in various phases of on-going clinical trials (RD Harvey, Clinical Pharmacology & Therapeutics (2014); 96 2, 214-223).
  • PD-1 Programmed death-1
  • PD-L1 or PD-L2 The binding of PD-1 to its ligands, PD-L1 or PD-L2, is vital for the physiological regulation of the immune system.
  • a major functional role of the PD-1 signaling pathway is the inhibition of self-reactive T cells, which serve to protect against autoimmune diseases. Elimination of the PD-1 pathway can therefore result in the breakdown of immune tolerance that can ultimately lead to the development of pathogenic autoimmunity.
  • tumor cells can at times co-opt the PD-1 pathway to escape from immunosurveillance mechanisms. Therefore, blockade of the PD-1 pathway has become an attractive target in cancer therapy.
  • the present invention provides cyclic peptidomimetic compounds which are capable of suppressing and/or inhibiting the programmed cell death 1 (PD1) signaling pathway.
  • PD1 programmed cell death 1
  • cyclic peptidomimetic compounds or a stereoisomer thereof or a pharmaceutically acceptable salt thereof or pharmaceutical compositions thereof are provided which suppress and/or inhibit the programmed cell death 1 (PD1) signalling pathway.
  • PD1 programmed cell death 1
  • the present invention provides cyclic peptidomimetic compounds of formula (I):
  • R 1 is a side chain of amino acid Ala, Ser, Thr or Leu;
  • R 2 is a side chain of amino acid Asp, Glu, Gln or Asn;
  • [Aaa] is an amino acid residue selected from Ser, Asp, Ala, Ile, Phe, Trp, Lys, Glu or Thr;
  • R 3 is hydrogen or alkyl
  • each of R 4 and R 4 ′ independently are hydrogen or alkyl
  • both R a and R a ′ are hydrogen; or together are an oxo ( ⁇ O) group;
  • both R b and R b ′ are hydrogen; or together are an oxo ( ⁇ O) group;
  • X is CH 2 , 0 or S
  • R 5 is hydrogen or alkyl
  • n is an integer from 1 to 3;
  • n is an integer from 2 to 20.
  • a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt or a stereoisomer and processes for preparing thereof.
  • PD1 programmed cell death 1
  • methods for suppressing and/or inhibiting the programmed cell death 1 (PD1) signaling pathway in a subject by administering cyclic peptidomimetic compounds of formula (I) or a pharmaceutically acceptable salt or a stereoisomer thereof or pharmaceutical compositions thereof.
  • FIGS. 1A-1C depict the chemical synthetic scheme for Compound 1.
  • FIGS. 2A-2B depict the chemical synthetic scheme for Compound 2.
  • FIGS. 3A-3C depict the chemical synthetic scheme for Compound 3.
  • the present invention provides cyclic peptidomimetic compounds as therapeutic agents useful for treatment of disorders via immunopotentiation comprising inhibition of immunosuppressive signal induced due to PD-1, PD-L1, or PD-L2 and therapies using them.
  • the present invention relates to compounds of formula (I)
  • R 1 is side chain of amino acid Ala, Ser, Thr or Leu;
  • R 2 is a side chain of amino acid Asp, Glu, Gln or Asn;
  • [Aaa] is an amino acid residue Ser, Asp, Ala, Ile, Phe, Trp, Lys, Glu, or Thr;
  • R 3 is hydrogen or alkyl
  • each of R 4 and R 4 ′ independently are hydrogen or alkyl
  • both R a and R a ′ are hydrogen; or together are an oxo ( ⁇ O) group;
  • both R b and R b ′ are hydrogen; or together are an oxo ( ⁇ O) group;
  • X is CH 2 , O or S
  • R 5 is hydrogen or alkyl
  • n is an integer from 1 to 3;
  • n is an integer from 2 to 20.
  • the invention comprises a particular series of compounds of formula (IA):
  • R 1 , R 2 , R 3 , R 4 , R 4 ′, R a , R a ′, R b , R b ′ and [Aaa] are same as defined in formula (I).
  • the invention comprises a particular series of compounds of formula (IB):
  • R 1 , R 2 and [Aaa] are same as defined in formula (I).
  • the invention comprises a particular series of compounds of formula (IC):
  • R 1 , R 2 and [Aaa] are same as defined in formula (I).
  • the present invention provides compounds of formula (I), wherein,
  • R 1 is a side chain of amino acid Ser or Thr
  • R 2 is a side chain of amino acid of Asp, Asn or Glu
  • [Aaa] is an amino acid residue selected from Ser or Thr;
  • R 3 , R 4 and R 4 ′ independently are hydrogen
  • both R a and R a ′ together are an oxo ( ⁇ O) group
  • both R b and R b ′ together are an oxo ( ⁇ O) group
  • L is —C(O)—(CH 2 ) m —(X—CH 2 —CH 2 ) n —NH—;
  • X is CH 2 or O
  • n is an integer from 1 to 3;
  • n is an integer from 2 to 20;
  • R 4 ′ is C 1-5 alkyl such as methyl.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising the compound as disclosed, and a pharmaceutically acceptable carrier or diluent.
  • the pharmaceutical composition comprises at least one additional pharmaceutical agent wherein the additional pharmaceutical agent is an anticancer agent, chemotherapy agent, or antiproliferative compound.
  • the compounds as disclosed in the present invention are formulated for pharmaceutical administration.
  • the present invention provides use of the compounds as disclosed in the present invention for the preparation of a medicament for the treatment of cancer.
  • the present invention provides use of the compounds as disclosed in the present invention for the preparation of a medicament for the treatment of infectious diseases or bacterial, viral and fungal infections.
  • the present invention provides a method of treatment of cancer, wherein the method comprises administration of an effective amount of the compound of the present invention or of a pharmaceutical composition thereof to the subject in need thereof.
  • the present invention provides a method for inhibiting growth of tumour cells and/or metastasis by administering an effective amount of the compound of the present invention or of a pharmaceutical composition thereof to the subject in need thereof.
  • tumour cells include cancer such as but not limited to melanoma, renal cancer, prostate cancer, breast cancer, colon cancer and lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, non-Hodgkin's lymphoma, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, chronic or acute leukemias including acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia,
  • Still yet another embodiment of the present invention provides a method of treatment of infection via immunopotentiation caused by inhibition of immunosuppressive signal induced by PD-1, PD-L1, or PD-L2, wherein the method comprises administration of an effective amount of the compound of the present invention or of a pharmaceutical composition thereof to the subject in need thereof.
  • the infectious disease includes but not limited to HIV, Influenza, Herpes, Giardia , Malaria, Leishmania , the pathogenic infection by the virus Hepatitis (A, B, & C), herpes virus (e.g., VZV, HSV-I, HAV-6, HSV-II, and CMV, Epstein Barr virus), adenovirus, influenza virus, flaviviruses, echovirus, rhinovirus, coxsackie virus, cornovirus, respiratory syncytial virus, mumps virus, rotavirus, measles virus, rubella virus, parvovirus, vaccinia virus, HTLV virus, dengue virus, papillomavirus, molluscum virus, poliovirus, rabies virus, JC virus and arboviral encephalitis virus, pathogenic infection by the bacteria chlamydia, rickettsial bacteria, mycobacteria, staphylococci, streptococci, pneumonococci, mening
  • coli legionella , diphtheria, salmonella , bacilli, cholera, tetanus, botulism, anthrax, plague, leptospirosis, and Lyme's disease bacteria, pathogenic infection by the fungi Candida ( albicans, krusei, glabrata, tropicalis , etc.), Cryptococcus neoformans, Aspergillus ( fumigatus, niger , etc.), Genus Mucorales ( mucor, absidia, rhizophus ), Sporothrix schenkii, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Coccidioides immitis and Histoplasma capsulatum , and pathogenic infection by the parasites Entamoeba histolytica, Balantidium coli, Naegleria fowleri, Acanthamoeba sp., Giardia lambia, Cryptosporidium sp
  • the compounds of the present invention may be used as single drugs or as a pharmaceutical composition in which the compound is mixed with various pharmacologically acceptable materials.
  • compositions are usually administered by oral or inhalation routes, but can be administered by parenteral administration route.
  • compositions can be administered, for example, by orally, intravenous infusion, topically, intraperitoneally, intravesically or intrathecally.
  • parenteral administration includes but not limited to intraarticular (in the joints), intravenous, intramuscular, intradermal, intraperitoneal, and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.
  • Oral administration, parenteral administration, subcutaneous administration and intravenous administration are the preferred methods of administration.
  • the dosage of the compounds of the present invention varies depending on age, weight, symptom, therapeutic efficacy, dosing regimen and/or treatment time. Generally, they may be administered by oral or inhalation routes, in an amount of 1 mg to 100 mg per time, from once a couple of days, once 3 days, once 2 days, once a day to a couple of times a day, in the case of an adult, or continuously administered by oral or inhalation routes from 1 to 24 hours a day. Since the dosage is affected by various conditions, an amount less than the above dosage may sometimes work well enough, or higher dosage may be required in some cases.
  • the compounds of the present invention may be administered in combination with other drugs for (1) complementation and/or enhancement of prevention and/or therapeutic efficacy of the preventive and/or therapeutic drug of the present invention, (2) dynamics, absorption improvement, dosage reduction of the preventive and/or therapeutic drug of the present invention, and/or (3) reduction of the side effects of the preventive and/or therapeutic drug of the present invention.
  • a concomitant medicine comprising the compounds of the present invention and other drug may be administered as a combination preparation in which both components are contained in a single formulation, or administered as separate formulations.
  • the administration by separate formulations includes simultaneous administration and administration with some time intervals.
  • the compound of the present invention can be administered first, followed by another drug or another drug can be administered first, followed by the compound of the present invention.
  • the administration method of the respective drugs may be the same or different.
  • the dosage of the other drug can be properly selected, based on a dosage that has been clinically used.
  • the compounding ratio of the compound of the present invention and the other drug can be properly selected according to age and weight of a subject to be administered, administration method, administration time, disorder to be treated, symptom and combination thereof.
  • the other drug may be used in an amount of 0.01 to 100 parts by mass, based on 1 part by mass of the compound of the present invention.
  • the other drug may be a combination of two or more kind of arbitrary drugs in a proper proportion.
  • the other drug that complements and/or enhances the preventive and/or therapeutic efficacy of the compound of the present invention includes not only those that have already been discovered, but those that will be discovered in future, based on the above mechanism.
  • the concomitant medicine can be used for any diseases, as long as it complements and/or enhances the preventive and/or therapeutic efficacy of the compound of the present invention.
  • the compound of the present invention can be used with an existing chemotherapeutic concomitantly or in a mixture form.
  • the chemotherapeutic include an alkylation agent, nitrosourea agent, antimetabolite, anticancer antibiotics, vegetable-origin alkaloid, topoisomerase inhibitor, hormone drug, hormone antagonist, aromatase inhibitor, P-glycoprotein inhibitor, platinum complex derivative, other immunotherapeutic drugs and other anticancer drugs.
  • a cancer treatment adjunct such as a leucopenia (neutropenia) treatment drug, thrombocytopenia treatment drug, antiemetic and cancer pain intervention drug, concomitantly or in a mixture form.
  • the compound(s) of the present invention can be used with other immunomodulators and/or a potentiating agent concomitantly or in a mixture form.
  • the immunomodulator include various cytokines, vaccines and adjuvants.
  • these cytokines, vaccines and adjuvants that stimulates immune responses include but not limited to GM-CSF, M-CSF, G-CSF, interferon- ⁇ , ⁇ , or ⁇ , IL-1, IL-2, IL-3, IL-12, Poly (I:C) and C p G.
  • the potentiating agents includes cyclophosphamide and analogs of cyclophosphamide, anti-TGF ⁇ and Imatinib (Gleevac), a mitosis inhibitor, such as paclitaxel, Sunitinib (Sutent) or other antiangiogenic agents, an aromatase inhibitor, such as letrozole, an A2a adenosine receptor (A2AR) antagonist, an angiogenesis inhibitor, anthracyclines, oxaliplatin, doxorubicin, TLR4 antagonists, and IL-18 antagonists.
  • a mitosis inhibitor such as paclitaxel, Sunitinib (Sutent) or other antiangiogenic agents
  • an aromatase inhibitor such as letrozole
  • A2a adenosine receptor (A2AR) antagonist an angiogenesis inhibitor
  • anthracyclines oxaliplatin
  • doxorubicin TLR4 antagonists
  • alkyl refers to a hydrocarbon chain radical that includes solely carbon and hydrogen atoms in the backbone, containing no unsaturation, having from one to twenty carbon atoms (i.e., C 1-20 alkyl) or one to ten carbon atoms (i.e., C 1-10 alkyl) or one to five carbon atoms (i.e., C 1-5 alkyl) and which is attached to the rest of the molecule by a single bond, e.g., including but not limited to methyl, ethyl, propyl, butyl, isobutyl, sec-butyl, tert-butyl, isopentyl or neopentyl.
  • amino acid refers to amino acids having L or D stereochemistry at the alpha carbon.
  • “Pharmaceutically acceptable salt” is taken to mean an active ingredient, which comprises a compound of the formula (I) in the form of one of its salts, in particular if this salt form imparts improved pharmacokinetic properties on the active ingredient compared with the free form of the active ingredient or any other salt form of the active ingredient used earlier.
  • the pharmaceutically acceptable salt form of the active ingredient can also provide this active ingredient for the first time with a desired pharmacokinetic property which it did not have earlier and can even have a positive influence on the pharmacodynamics of this active ingredient with respect to its therapeutic efficacy in the body.
  • “Pharmaceutically acceptable” means that which is useful in preparing a pharmaceutical composition that is generally safe, non-toxic, and neither biologically nor otherwise undesirable and includes that which is acceptable for veterinary as well as human pharmaceutical use.
  • stereoisomer refers to any enantiomers, diastereomers, or geometrical isomers of the compounds of formula (I), wherever they are chiral or when they bear one or more double bond.
  • the compounds of the formula (I) and related formulae are chiral, they can exist in racemic or in optically active form. Since the pharmaceutical activity of the racemates or stereoisomers of the compounds according to the invention may differ, it may be desirable to use the enantiomers. In these cases, the end product or even the intermediates can be separated into enantiomeric compounds by chemical or physical measures known to the person skilled in the art or even employed as such in the synthesis.
  • diastereomers are formed from the mixture by reaction with an optically active resolving agent.
  • optically active acids such as the R and S forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid, suitable N-protected amino acids (for example N-benzoylproline or N-benzenesulfonylproline), or the various optically active camphorsulfonic acids.
  • optically active resolving agent for example dinitrobenzoylphenylglycine, cellulose triacetate or other derivatives of carbohydrates or chirally derivatised methacrylate polymers immobilised on silica gel.
  • subject includes mammals (especially humans) and other animals, such as domestic animals (e.g., household pets including cats and dogs) and non-domestic animals (such as wildlife).
  • domestic animals e.g., household pets including cats and dogs
  • non-domestic animals such as wildlife.
  • “Therapeutically effective amount” or “efficient amount” refers to sufficient amount of the compound(s) of the present invention that (i) treats or prevents the particular disease, disorder or syndrome (ii) attenuates, ameliorates or eliminates one or more symptoms of the particular disease, disorder or syndrome or (iii) prevents or delays the onset of one or more symptoms of the particular disease, disorder or syndrome described herein.
  • the therapeutically effective amount of the drug may decrease the number of cancer cells; decrease the cancer size; inhibit (i.e., slow to some extent and alternatively stop) cancer cell infiltration into peripheral organs; suppress (i.e., slow to some extent and alternatively stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer.
  • the therapeutic effective amount is an amount sufficient to decrease or alleviate an infectious diseases, the symptoms of an infections caused by bacterial, viral and fungal.
  • An embodiment of the present invention provides the preparation of compounds of formula (I) according to the procedures of the following examples, using appropriate materials. Those skilled in the art will understand that known variations of the conditions and processes of the following preparative procedures can be used to prepare these compounds. Moreover, by utilizing the procedures described in detail, one of ordinary skill in the art can prepare additional compounds of the present invention.
  • the starting materials are generally available from commercial sources such as Sigma-Aldrich, USA or Germany; Chem-Impex USA; G.L. Biochem, China and Spectrochem, India.
  • Analytical HPLC method Analytical HPLC was performed using on ZIC HILIC 200A° column (4.6 mm ⁇ 250 mm, 5 ⁇ m), Flow rate: 1.0 mL/min. The elution conditions used are: Buffer A: 5 mmol ammonium acetate, Buffer B: Acetonitrile, Equilibration of the column with 90% buffer B and elution by a gradient of 90% to 40% buffer B during 30 min.
  • Preparative HPLC Method B Prep HPLC was performed using on ZIC HILIC 200A° column (10 mm ⁇ 250 mm, 5 ⁇ m), Flow rate: 5.0 mL/min. The elution conditions used are: Buffer A: 5 mmol ammonium acetate, Buffer B: Acetonitrile, Equilibration of the column with 90% buffer B and elution by a gradient of 90% to 40% buffer B during 20 min.
  • LCMS was performed on AP1 2000 LC/MS/MS triple quad (Applied biosystems) with Agilent 1100 series HPLC with G1315 B DAD, using Mercury MS column or using Agilent LC/MSD VL single quad with Agilent 1100 series HPLC with G1315 B DAD, using Mercury MS column or using Shimadzu LCMS 2020 single quad with Prominence UFLC system with SPD-20 A DAD.
  • FIGS. 1A-1C illustrate Steps 1a to 1c.
  • Step 1a Sodium hydroxide (12.2 g, 305 mmol) and Cbz-Cl (12.5 g, 73 mmol) were added to a solution of compound 1a (10.0 g, 61 mmol) in water (100 mL) and stirred at room temperature for 3 h. The completeness of the reaction was confirmed by TLC analysis. The reaction mass was partitioned between citric acid solution and ethyl acetate. Organic layer was washed with water, brine, dried over Na 2 SO 4 and evaporated under reduced pressure to yield 11 g of compound 1b (Yield: 61.1%). LCMS: 298.0 (M+H) + .
  • Step 1b DIPEA (3.5 g, 26.8 mmol) was added slowly to a stirred solution of compound 1b (4.0 g, 13.4 mmol) and HATU (5.6 g, 14.7 mmol) in DMF (50 mL) and was allowed to stir at room temperature for 5 more min.
  • L-Ser( t Bu)-OMe.HCl (3.5 g, 20.1 mmol) was added slowly and stirred at room temperature for 12 h. The completeness of the reaction was confirmed by TLC analysis. The reaction mixture was quenched with ice, precipitated solid was filtered and re-crystallized with CH 2 Cl 2 to yield 6 g of compound 1c, LCMS: 454.8 (M+H) + .
  • Step 1c 99% Hydrazine hydrate solution (10 mL) was added slowly to a stirred solution of compound 1c (6 g) in methanol (50 mL) and stirred at room temperature for 2 h. The completion of the reaction was confirmed by TLC. The reaction mixture on evaporation under reduced pressure yielded 5.8 g of compound 1d. LCMS: 455.0 (M+H) + .
  • Step 1d DIPEA (3.3 g, 25.4 mmol) was added slowly to a stirred solution of compound 1d (5.8 g, 12.7 mmol), HATU (5.8 g, 15.2 mmol) in DMF (50 mL) and was allowed to stir at room temperature for 5 min. Fmoc-L-Asn-OH (4.9 g, 14.0 mmol) was further added to reaction mixture and stirred at room temperature for 12 h. The completeness of the reaction was confirmed by TLC analysis. The reaction mixture was then quenched with ice, precipitated solid was filtered and re-crystallized with CH 2 Cl 2 to yield 5.9 g of compound 1e, LCMS: 791.0 (M+H) + .
  • Step 1e Fmoc group of compound 1e [(5.9 g in CH 2 Cl 2 (60 mL)] was deprotected using diethylamine (60 mL) and the completion of the reaction was confirmed by TLC analysis. The reaction mixture on evaporation under reduced pressure yielded 1.6 g of compound 1f. LCMS: 568.8 (M+H) + .
  • Step 1f Compound 1l (1.3 g, 3.0 mmol) and compound 1f (1.60 g, 2.8 mmol) was dissolved in THF (10 mL) and stirred at room temperature. Coupling was initiated by the addition of triethylamine (0.57 g, 5.6 mmol) to the above reaction mixture and the reaction was allowed to stir for 12 h at room temperature. The completeness of the reaction was confirmed by TLC analysis. Organic layer was washed with NaHCO 3 , citric acid solution, brine, dried over Na 2 SO 4 and evaporated under reduced pressure to yield 0.45 g of compound1g.
  • Step 1g Cbz group and benzyl ester deprotection was carried out on compound 1g (0.45 g) in methanol using palladium hydroxide (0.5 g) for 1 h at room temperature. The completeness of the reaction was confirmed by TLC analysis. Palladium hydroxide was removed by Celite® bed filtration and the filtrate was evaporated under reduced pressure to yield 0.34 g of compound 1h. LCMS: 636.0 (M+H) + .
  • Step 1h Cyclization of compound 1h (0.1 g, 0.15 mmol) was carried out using HOBT (0.06 g, 0.47 mmol) and PyBOP (0.24 g, 0.47 mmol) in THF (50 mL). The reaction was initiated by slow addition of DIPEA (0.06 g, 0.47 mmol) and further stirred at room temperature for 12 h. The reaction mixture was evaporated and washed with diethyl ether to yield 0.05 g of compound1i. LCMS: 617.9 (M+H) + .
  • FIGS. 2A-2B illustrates Steps 2a and 2h.
  • Step 2a DIPEA (2.71 g, 21 mmol) was added slowly to a stirred solution of compound 1b (3.12 g, 10.5 mmol), HATU (4.41 g, 11.6 mmol) in DMF (30 mL) and was allowed to stir at room temperature for 5 min.
  • D-Thr( t Bu)-OMe.HCl 2.0 g, 10.5 mmol was added slowly and stirred at room temperature for 12 h. The completeness of the reaction was confirmed by TLC analysis. The reaction mixture was then quenched with ice, precipitate was filtered and re-crystallized with CH 2 Cl 2 to yield 4.2 g of compound 2a.
  • Step 2b 99% Hydrazine hydrate solution (5 mL) was added slowly to a stirred solution of compound 2a (4.2 g) in methanol (40 mL) and the completion of the reaction was confirmed by TLC analysis. The reaction mixture on evaporation under reduced pressure yielded 4.2 g of compound 2b (Yield: 90%). LCMS: 469.4 (M+H) + .
  • Step 2c DIPEA (2.7 mL, 20.9 mmol) was added slowly to a stirred solution of compound 2b (4.9 g, 10.5 mmol), HATU (4.8 g, 12.5 mmol) in DMF (50 mL). To the above stirred solution, Fmoc-D-Asn(Trt)-OH (6.2 g, 10.5 mmol) was added and further stirred at room temperature for 12 h. The completeness of the reaction was confirmed by TLC analysis.
  • reaction mixture was diluted with EtOAc (30 mL) and washed with 1.0 M sodium carbonate (20 mL ⁇ 2), 10% citric acid (20 mL ⁇ 2), water (20 mL ⁇ 2), dried over Na 2 SO 4 and evaporated under reduced pressure to yield 10 g of crude intermediate 2c and was further purified by silica gel column chromatography (eluent: 0-5% MeOH in EtOAc) to yield 5 g of compound 2c.
  • Step 2d Fmoc deprotection of compound2c [(3.2 g) in CH 2 Cl 2 (10 mL)] was carried out using diethylamine (10 mL). The completion of the reaction was confirmed by TLC analysis. The resulting solution on evaporation under reduced pressure yielded 1.2 g of compound 2d.
  • Step 2e Triethylamine (0.32 g, 3.2 mmol) was added slowly to initiate the coupling of compound 2d (1.3 g, 1.6 mmol) and compound 2h (0.79 g, 1.9 mmol) in THF (20 mL). The resulting solution was further allowed to stir for 12 h at room temperature and completeness of the reaction was confirmed by TLC analysis. Organic layer was washed with NaHCO 3 , citric acid solution, brine, dried over Na 2 SO 4 and evaporated under reduced pressure to yield 1.3 g of compound 2e.
  • Step 2f Cbz group and benzyl ester deprotection was carried out on compound 2e (1.3 g) in methanol using palladium hydroxide (1.0 g) for 1 h at room temperature. The completeness of the reaction was confirmed by TLC analysis. Palladium hydroxide was removed by Celite® bed filtration and the filtrate was evaporated under reduced pressure to yield 0.45 g of compound 2f. LCMS: 878.4 (M+H) + .
  • Step 2g DIPEA (0.2 g, 1.5 mmol) was added slowly to a stirred solution of compound 2f (0.45 g, 0.51 mmol), HOBT (0.21 g, 1.53 mmol) and PyBOP (0.8 g, 1.53 mmol) in THF (200 mL). The reaction mixture was further stirred at room temperature for 12 h. The completeness of the reaction was confirmed by TLC analysis. The reaction mixture was evaporated and washed with diethyl ether to yield 0.41 g of intermediate 2g. LCMS: 860.7 (M+H) + .
  • FIGS. 3A-3C illustrates Steps 3a and 3k.
  • Step 3b DIPEA (6.5 mL, 37.8 mmol) was added slowly to a stirred solution of compound 3b (5 g, 12.6 mmol), compound 3c (2.72 g, 15 mmol), HOBt (2.55 g, 18.9 mmol) and EDC.HCl (3.62 g, 18.9 mmol) in DMF (75 mL) at 0° C.
  • the reaction mixture was further stirred at room temperature for 12 h. The progress of the reaction was confirmed by TLC analysis.
  • the reaction mass was partitioned between ethyl acetate and water. Organic layer was washed with water, brine, dried over Na 2 SO 4 and evaporated under reduced pressure to yield crude.
  • Step 3c To a stirred solution of compound 3d (5 g, 8.9 mmol) in dry DCM, diethylamine (50 mL) was added dropwise at ⁇ 10° C. and stirred for 1 h at room temperature. After completion of reaction, the mixture was evaporated under reduced pressure to give crude compound. The crude was purified with (1:1) n-pentane/diethyl ether wash and dried under high vacuum to yield 3.5 g of compound 3e.LCMS: 338.58 (M+H) + .
  • Step 3d NMM (1.4 mL, 14.0 mmol) was added slowly to a stirred solution of compound 3a (3 g, 11.3 mmol), compound 3e (4.3 g, 12.9 mmol) and HATU (6.5 g, 17.1 mmol) in DMF (75 mL) at 0° C.
  • the reaction mixture was further stirred for 6 h at room temperature. Progress of reaction was monitored by TLC. After completion, the reaction mass was partitioned between ethyl acetate and water. Organic layer was washed with water, brine, dried over Na 2 SO 4 and evaporated under reduced pressure to give crude compound.
  • the crude was purified by silica gel column chromatography (Eluent: 50% hexane in ethyl acetate) to yield 4.8 g of compound 3f, LCMS: 583.7 (M+H) + .
  • Step 3e To a stirred solution of compound 3f (4.5 g, 7.7 mmol) in MeOH, Pd/C (2.0 g) was added slowly and stirred under H 2 atmosphere for 4 h at room temperature. Progress of reaction was monitored by TLC. After completion, the reaction mass was filtered through Celite® and washed with MeOH (2 ⁇ 150 mL). The resulting filtrate was evaporated under reduced pressure to yield 3 g of compound 3g LCMS: 448.6 (M+H) + .
  • Step 3f To a stirred solution of Cbz-D-Asn-OH (1.78 g, 6.7 mmol) and compound 3g (3.0 g, 6.8 mmol) in DMF (75 mL), DCC (4.12 g, 20.3 mmol) and HOBT (1.8 g, 13.5 mmol) were added slowly at 0° C. The reaction mixture was stirred for 48 h at room temperature. Progress of reaction was monitored by TLC. After completion, the reaction mass was partitioned between ethyl acetate and water. Organic layer was washed with water, brine, dried over Na 2 SO 4 and evaporated under reduced pressure to yield crude. The crude compound was purified by silica gel (60-120 mesh) column chromatography (Eluent: 4% MeOH in DCM) to yield 2.5 g of Compound 3h, LCMS: 697.50 (M+H) + .
  • Step 3g To a stirred solution of compound 3h (2.5 g, 3.6 mmol) in MeOH (50 mL), Pd/C (1.2 g) was added and stirred under H 2 atmosphere for 4 h at room temperature. Progress of reaction was monitored by TLC. After completion, the reaction mass was filtered through Celite® and washed with MeOH (2 ⁇ 150 mL). The resulting filtrate was evaporated under reduced pressure to yield 1.5 g of compound 3i, LCMS: 563.6 (M+H) + .
  • Step 3h Compound 3i (1.3 g, 2.3 mmol), TEA (0.43 mL, 3.5 mmol) in DMF (25 mL) and was added dropwise slowly to a solution of 3j(1.1 g, 2.6 mmol) at ⁇ 10° C. The mixture was further stirred at room temperature for 2h. Progress of reaction was monitored by TLC. After completion, the reaction mass was partitioned between ethyl acetate and water. Organic layer was washed with NaHCO 3 , citric acid solution, brine, then organic layer was dried over Na 2 SO 4 and evaporated under reduced pressure to give crude.
  • Step 3i To a solution of compound 3k (1.0 g, 1.2 mmol) in CH 2 Cl 2 (10 mL), trifluoroacetic acid (10 mL) and catalytic amount of triisopropylsilane were added and stirred for 3 h at room temperature to remove the acid sensitive protecting groups. The resulting solution was concentrated in vacuum and washed with diethyl ether to afford 1.0 g of crude compound 31, LCMS: 628.65 (M+H) + .
  • Step 3j To a stirred solution of compound 31 (1.0 g, 1.5 mmol) in THF, PyBOP (2.4 g, 4.7 mmol), HOBT (0.6, 4.7 mmol) and DIPEA (0.8 mL, 4.7 mmol) were added slowly and stirred for 12 h at room temperature. The reaction mass was partitioned between water and ethyl acetate. Organic layer was washed with water, brine, dried over Na 2 SO 4 and evaporated under reduced pressure to give crude. Crude compound was washed with diethyl ether to yield 0.8 g of compound 3m, LCMS: 610.5 (M+H) + .
  • Step 3k To a stirred solution of compound 3m (0.8 g, 1.3 mmol) in MeOH (30 mL), Pd(OH) 2 (0.4 g) was added and stirred under H 2 atmosphere for 4 h at room temperature. Progress of reaction was monitored by TLC. After completion, the reaction mass was filtered through Celite® and washed with MeOH (2 ⁇ 150 mL). The resulting filtrate was evaporated under reduced pressure to yield 0.7 g of compound3.
  • LCMS: 520.5 (M+H) + ; HPLC: t R 9.9 min.
  • Example 2 The compound was synthesised using similar procedure as depicted in Example 2 (compound 2) using 7-aminoheptanoic acid instead compound 1a to yield0.3 g crude material of the title compound.
  • mice PD-L1 Recombinant mouse PD-L1 (rm-PDL-1, cat no: 1019-B7-100; R&D Systems) were used as the source of PD-L1.
  • Splenocytes harvested in a 50 mL falcon tube by mashing mouse spleen in a 40 ⁇ m cell strainer were further treated with 1 ml ACK lysis buffer for 5 mins at room temperature. After washing with 9 mL of RPMI complete media, cells were re-suspended in 3 ml of 1 ⁇ PBS in a 15 mL tube. 3 mL of Histopaque was added carefully to the bottom of the tube without disturbing overlaying splenocyte suspension. After centrifuging at 800 ⁇ g for 20 min. at room temperature, the opaque layer of splenocytes was collected carefully without disturbing/mixing the layers. Splenocytes were washed twice with cold 1 ⁇ PBS followed by total cell counting using Trypan Blue exclusion method and used further for cell based assays.
  • Splenocytes were cultured in RPMI complete media (RPMI+10% fetal bovine serum+1 mM sodium pyruvate+10,000 units/mL penicillin and 10,000 ⁇ g/mL streptomycin) and maintained in a CO 2 incubator with 5% CO 2 at 37° C.
  • RPMI complete media RPMI+10% fetal bovine serum+1 mM sodium pyruvate+10,000 units/mL penicillin and 10,000 ⁇ g/mL streptomycin
  • CFSE is a dye that passively diffuses into cells and binds to intracellular proteins. 1 ⁇ 10 6 cells/ml of harvested splenocytes were treated with 5 ⁇ m of CFSE in pre-warmed 1 ⁇ PBS/0.1% BSA solution for 10 mins at 37° C. Excess CFSE was quenched using 5 volumes of ice-cold culture media to the cells and incubated on ice for 5 min. CFSE labelled splenocytes were further given three washes with ice cold complete RPMI media.
  • CFSE labelled 1 ⁇ 10 5 splenocytes added to wells containing either MDA-MB231 cells (1 ⁇ 10 5 cells cultured in high glucose DMEM medium) or recombinant human PDL-1 (100 ng/mL) and test compounds.
  • Splenocytes were stimulated with anti-mouse CD3 and anti-mouse CD28 antibody (1 ⁇ g/mL each), and the culture was further incubated for 72 h at 37° C. with 5% CO 2 .
  • Cells were harvested and washed thrice with ice cold FACS buffer and % proliferation was analysed by flow cytometry with 488 nm excitation and 521 nm emission filters.
  • Percent splenocyte proliferation was analysed using cell quest FACS program and percent rescue of splenocyte proliferation by compound was estimated after deduction of % background proliferation value and normalising to % stimulated splenocyte proliferation (positive control) as 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Hydrogenated Pyridines (AREA)
US14/989,954 2013-09-06 2016-01-07 Cyclic Peptidomimetic Compounds as Immunomodulators Abandoned US20160113901A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/989,954 US20160113901A1 (en) 2013-09-06 2016-01-07 Cyclic Peptidomimetic Compounds as Immunomodulators
US15/332,805 US10106581B2 (en) 2013-09-06 2016-10-24 Cyclic peptidomimetic compounds as immunomodulators

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IN4010CH2013 2013-09-06
IN4010/CHE/2013 2013-09-06
US14/478,806 US9233940B2 (en) 2013-09-06 2014-09-05 Cyclic peptidomimetic compounds as immunomodulators
US14/989,954 US20160113901A1 (en) 2013-09-06 2016-01-07 Cyclic Peptidomimetic Compounds as Immunomodulators

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/478,806 Division US9233940B2 (en) 2013-09-06 2014-09-05 Cyclic peptidomimetic compounds as immunomodulators

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/332,805 Continuation US10106581B2 (en) 2013-09-06 2016-10-24 Cyclic peptidomimetic compounds as immunomodulators

Publications (1)

Publication Number Publication Date
US20160113901A1 true US20160113901A1 (en) 2016-04-28

Family

ID=51688370

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/989,954 Abandoned US20160113901A1 (en) 2013-09-06 2016-01-07 Cyclic Peptidomimetic Compounds as Immunomodulators
US15/332,805 Expired - Fee Related US10106581B2 (en) 2013-09-06 2016-10-24 Cyclic peptidomimetic compounds as immunomodulators

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/332,805 Expired - Fee Related US10106581B2 (en) 2013-09-06 2016-10-24 Cyclic peptidomimetic compounds as immunomodulators

Country Status (24)

Country Link
US (2) US20160113901A1 (lt)
EP (2) EP3041468B1 (lt)
JP (1) JP6474412B2 (lt)
KR (1) KR20160075506A (lt)
CN (1) CN105813640A (lt)
AU (2) AU2014316686B2 (lt)
CA (1) CA2922982A1 (lt)
CU (1) CU24363B1 (lt)
CY (1) CY1120747T1 (lt)
DK (1) DK3041468T3 (lt)
EA (2) EA031325B1 (lt)
ES (1) ES2683356T3 (lt)
HR (1) HRP20181271T1 (lt)
HU (1) HUE039012T2 (lt)
IL (2) IL244388A0 (lt)
LT (1) LT3041468T (lt)
MX (1) MX2016002970A (lt)
PH (1) PH12016500413B1 (lt)
PL (1) PL3041468T3 (lt)
PT (1) PT3041468T (lt)
RS (1) RS57628B1 (lt)
SG (1) SG11201601685TA (lt)
SI (1) SI3041468T1 (lt)
WO (1) WO2015033303A1 (lt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
WO2021067500A1 (en) 2019-09-30 2021-04-08 California Institute Of Technology Integrated electronic-photonic devices, systems and methods of making thereof

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329170B2 (ja) 2012-12-07 2018-05-23 ケモセントリックス,インコーポレイティド ジアゾールラクタム
US9308236B2 (en) 2013-03-15 2016-04-12 Bristol-Myers Squibb Company Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(B7-1)/PD-L1 protein/protein interactions
EP3191113B1 (en) 2014-09-11 2019-11-06 Bristol-Myers Squibb Company Macrocyclic inhibitors of the pd-1/pd-l1 and cd80 (b7-1)/pd-l1 protein/protein interactions
US9732119B2 (en) 2014-10-10 2017-08-15 Bristol-Myers Squibb Company Immunomodulators
US9856292B2 (en) 2014-11-14 2018-01-02 Bristol-Myers Squibb Company Immunomodulators
US9861680B2 (en) 2014-12-18 2018-01-09 Bristol-Myers Squibb Company Immunomodulators
US9944678B2 (en) 2014-12-19 2018-04-17 Bristol-Myers Squibb Company Immunomodulators
US20160222060A1 (en) 2015-02-04 2016-08-04 Bristol-Myers Squibb Company Immunomodulators
WO2016142835A1 (en) * 2015-03-10 2016-09-15 Aurigene Discovery Technologies Limited Therapeutic cyclic compounds as immunomodulators
US9809625B2 (en) 2015-03-18 2017-11-07 Bristol-Myers Squibb Company Immunomodulators
US10143746B2 (en) 2016-03-04 2018-12-04 Bristol-Myers Squibb Company Immunomodulators
US10358463B2 (en) 2016-04-05 2019-07-23 Bristol-Myers Squibb Company Immunomodulators
US10568870B2 (en) 2016-04-07 2020-02-25 Chemocentryx, Inc. Reducing tumor burden by administering CCR1 antagonists in combination with PD-1 inhibitors or PD-L1 inhibitors
PT3458111T (pt) 2016-05-19 2021-04-09 Bristol Myers Squibb Co Imunomoduladores para imagiologia tep
CR20190181A (es) 2016-10-14 2019-08-21 Prec Biosciences Inc Meganucleasas diseñadas específicamente para el reconocimiento de secuencias en el genoma del virus de la hepatitis b.
ES2910832T3 (es) 2016-11-07 2022-05-13 Bristol Myers Squibb Co Inmunomoduladores
CN108395443B (zh) * 2017-02-04 2021-05-04 广州丹康医药生物有限公司 抑制程序性死亡受体配体1的环状化合物及其用途
WO2018237153A1 (en) * 2017-06-23 2018-12-27 Bristol-Myers Squibb Company IMMUNOMODULATORS ACTING AS PD-1 ANTAGONISTS
CN111051332A (zh) 2017-10-03 2020-04-21 百时美施贵宝公司 免疫调节剂
JP2021502066A (ja) 2017-11-06 2021-01-28 ジェネンテック, インコーポレイテッド がんの診断及び療法
AU2018392212B9 (en) 2017-12-20 2021-03-18 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3' cyclic dinucleotides with phosphonate bond activating the STING adaptor protein
EP3728283B1 (en) 2017-12-20 2023-11-22 Institute of Organic Chemistry and Biochemistry ASCR, V.V.I. 3'3' cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
CN108409830B (zh) * 2018-02-05 2021-04-23 郑州大学 一种人pd-1蛋白胞外段亲和环肽c8及其应用
JP7050165B2 (ja) 2018-02-26 2022-04-07 ギリアード サイエンシーズ, インコーポレイテッド Hbv複製阻害剤としての置換ピロリジン化合物
EP3774883A1 (en) 2018-04-05 2021-02-17 Gilead Sciences, Inc. Antibodies and fragments thereof that bind hepatitis b virus protein x
CA3093888A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides
TW202005654A (zh) 2018-04-06 2020-02-01 捷克科學院有機化學與生物化學研究所 2,2,─環二核苷酸
TWI818007B (zh) 2018-04-06 2023-10-11 捷克科學院有機化學與生物化學研究所 2'3'-環二核苷酸
TW201945388A (zh) 2018-04-12 2019-12-01 美商精密生物科學公司 對b型肝炎病毒基因體中之識別序列具有特異性之最佳化之經工程化巨核酸酶
WO2019211799A1 (en) 2018-05-03 2019-11-07 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide
EP3810109A4 (en) 2018-05-31 2022-03-16 Peloton Therapeutics, Inc. COMPOSITIONS AND METHODS FOR INHIBITING CD73
MA52968A (fr) 2018-06-23 2021-04-28 Hoffmann La Roche Méthodes de traitement du cancer du poumon à l'aide d'un antagoniste de liaison à l'axe pd-1, d'un agent de platine et d'un inhibiteur de la topoisomérase ii
MX2021000558A (es) 2018-07-18 2021-04-13 Genentech Inc Metodos para tratar el cancer de pulmon con un antagonista de fijacion al eje pd-1, un antimetabolito y un agente de platino.
WO2020028097A1 (en) 2018-08-01 2020-02-06 Gilead Sciences, Inc. Solid forms of (r)-11-(methoxymethyl)-12-(3-methoxypropoxy)-3,3-dimethyl-8-0x0-2,3,8,13b-tetrahydro-1h-pyrido[2,1-a]pyrrolo[1,2-c] phthalazine-7-c arboxylic acid
CN112805267B (zh) 2018-09-03 2024-03-08 豪夫迈·罗氏有限公司 用作tead调节剂的甲酰胺和磺酰胺衍生物
CA3116347A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds having hpk1 inhibitory activity
IL282535B2 (en) 2018-10-31 2024-05-01 Gilead Sciences Inc Transformed 6-azabanzimidazole compounds as HPK1 inhibitors
EP3911678A1 (en) 2019-01-14 2021-11-24 Genentech, Inc. Methods of treating cancer with a pd-1 axis binding antagonist and an rna vaccine
KR20210137517A (ko) 2019-03-07 2021-11-17 인스티튜트 오브 오가닉 케미스트리 앤드 바이오케미스트리 에이에스 씨알 브이.브이.아이. 2'3'-사이클릭 다이뉴클레오티드 및 이의 프로드럭
EP3935065A1 (en) 2019-03-07 2022-01-12 Institute of Organic Chemistry and Biochemistry ASCR, V.V.I. 3'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
CN113574063A (zh) 2019-03-07 2021-10-29 捷克共和国有机化学与生物化学研究所 3’3’-环二核苷酸及其前药
TWI751517B (zh) 2019-04-17 2022-01-01 美商基利科學股份有限公司 類鐸受體調節劑之固體形式
TW202210480A (zh) 2019-04-17 2022-03-16 美商基利科學股份有限公司 類鐸受體調節劑之固體形式
JP2022529154A (ja) 2019-04-19 2022-06-17 ジェネンテック, インコーポレイテッド 抗mertk抗体及びその使用方法
US11453681B2 (en) 2019-05-23 2022-09-27 Gilead Sciences, Inc. Substituted eneoxindoles and uses thereof
CN112010940B (zh) * 2019-05-31 2022-09-20 中国药科大学 抑制pd-1/pd-l1的大环化合物及其应用
US20220296619A1 (en) 2019-08-19 2022-09-22 Gilead Sciences, Inc. Pharmaceutical formulations of tenofovir alafenamide
PE20221111A1 (es) 2019-09-30 2022-07-11 Gilead Sciences Inc Vacunas para vhb y metodos de tratamiento de vhb
CR20220207A (es) 2019-11-13 2022-06-06 Genentech Inc Compuestos terapéuticos y métodos de uso
EP4069729A1 (en) 2019-12-06 2022-10-12 Precision BioSciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
CA3163389A1 (en) 2020-01-03 2021-07-08 Mi ZENG Biphenyl derivative inhibitor, preparation method therefor and use thereof
TW202142257A (zh) 2020-01-31 2021-11-16 美商建南德克公司 用pd-1軸結合拮抗劑及rna疫苗誘導新抗原決定基特異性t細胞之方法
CA3169348A1 (en) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
US11787775B2 (en) 2020-07-24 2023-10-17 Genentech, Inc. Therapeutic compounds and methods of use
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
EP4255481A1 (en) 2020-12-02 2023-10-11 Genentech, Inc. Methods and compositions for neoadjuvant and adjuvant urothelial carcinoma therapy
EP4330436A1 (en) 2021-04-30 2024-03-06 Genentech, Inc. Therapeutic and diagnostic methods and compositions for cancer
TW202348237A (zh) 2021-05-13 2023-12-16 美商基利科學股份有限公司 TLR8調節化合物及抗HBV siRNA療法之組合
US11931424B2 (en) 2021-06-11 2024-03-19 Gilead Sciences, Inc. Combination MCL-1 inhibitors with anti-body drug conjugates
AU2022291381A1 (en) 2021-06-11 2023-11-30 Gilead Sciences, Inc. Combination mcl-1 inhibitors with anti-cancer agents
AU2022299051A1 (en) 2021-06-23 2023-12-07 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271677A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
US11926628B2 (en) 2021-06-23 2024-03-12 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271659A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
TW202309078A (zh) 2021-07-02 2023-03-01 美商建南德克公司 治療癌症之方法及組成物
WO2023010095A1 (en) 2021-07-28 2023-02-02 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
TW202320848A (zh) 2021-07-28 2023-06-01 美商建南德克公司 治療癌症之方法及組成物
TW202321308A (zh) 2021-09-30 2023-06-01 美商建南德克公司 使用抗tigit抗體、抗cd38抗體及pd—1軸結合拮抗劑治療血液癌症的方法
WO2023051926A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023080900A1 (en) 2021-11-05 2023-05-11 Genentech, Inc. Methods and compositions for classifying and treating kidney cancer
WO2023097194A2 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic compounds and methods of use
US20230202984A1 (en) 2021-11-24 2023-06-29 Genentech, Inc. Therapeutic compounds and methods of use
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024077095A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating bladder cancer
WO2024077166A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating lung cancer
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0013581A (pt) 1999-08-23 2002-07-02 Dana Faber Cancer Inst Inc Pd-1, um receptor para b7-4, e usos para isto
CA2442066C (en) 2001-04-02 2005-11-01 Wyeth Pd-1, a receptor for b7-4, and uses therefor
US7794710B2 (en) 2001-04-20 2010-09-14 Mayo Foundation For Medical Education And Research Methods of enhancing T cell responsiveness
WO2003042402A2 (en) 2001-11-13 2003-05-22 Dana-Farber Cancer Institute, Inc. Agents that modulate immune cell activation and methods of use thereof
EP3287144A1 (en) 2002-07-03 2018-02-28 ONO Pharmaceutical Co., Ltd. Immunopotentiating compositions
JP4511943B2 (ja) 2002-12-23 2010-07-28 ワイス エルエルシー Pd−1に対する抗体およびその使用
EP2418278A3 (en) 2005-05-09 2012-07-04 Ono Pharmaceutical Co., Ltd. Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
EP3222634A1 (en) 2007-06-18 2017-09-27 Merck Sharp & Dohme B.V. Antibodies to human programmed death receptor pd-1
PE20120341A1 (es) 2008-12-09 2012-04-24 Genentech Inc Anticuerpos anti-pd-l1 y su uso para mejorar la funcion de celulas t
KR101934071B1 (ko) 2009-11-24 2019-01-02 메디뮨 리미티드 B7―h1에 대한 표적화된 결합 물질
US8907053B2 (en) * 2010-06-25 2014-12-09 Aurigene Discovery Technologies Limited Immunosuppression modulating compounds
US9096642B2 (en) * 2011-06-08 2015-08-04 Aurigene Discovery Technologies Limited Therapeutic compounds for immunomodulation
EP2822957A1 (en) 2012-03-07 2015-01-14 Aurigene Discovery Technologies Limited Peptidomimetic compounds as immunomodulators
MX2014011353A (es) 2012-03-29 2014-12-05 Aurigene Discovery Tech Ltd Inmunomodulacion de compuestos ciclicos del bucle bc de muerte celular programada (pd1) humana.
US20150071918A1 (en) 2012-05-09 2015-03-12 H. Lee Moffitt Cancer Center And Research Institute, Inc. Peptides for the treatment of cancer
BR112015007672A2 (pt) 2012-10-04 2017-08-08 Dana Farber Cancer Inst Inc anticorpos anti-pd-l1 monoclonais humanos e métodos de uso
DK2906684T3 (da) 2012-10-10 2020-09-28 Sangamo Therapeutics Inc T-celle-modificerende forbindelser og anvendelser deraf
AR093984A1 (es) 2012-12-21 2015-07-01 Merck Sharp & Dohme Anticuerpos que se unen a ligando 1 de muerte programada (pd-l1) humano
CN108715615B (zh) 2013-09-13 2020-11-27 百济神州(广州)生物科技有限公司 抗pd1抗体及其作为治疗剂与诊断剂的用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
WO2021067500A1 (en) 2019-09-30 2021-04-08 California Institute Of Technology Integrated electronic-photonic devices, systems and methods of making thereof

Also Published As

Publication number Publication date
IL262485A (en) 2018-12-31
JP2016531922A (ja) 2016-10-13
CA2922982A1 (en) 2015-03-12
HRP20181271T1 (hr) 2018-10-05
PH12016500413A1 (en) 2016-05-16
SI3041468T1 (sl) 2018-10-30
JP6474412B2 (ja) 2019-02-27
US10106581B2 (en) 2018-10-23
EP3041468A1 (en) 2016-07-13
CU24363B1 (es) 2018-10-04
IL244388A0 (en) 2016-04-21
EA201891818A2 (ru) 2019-01-31
PL3041468T3 (pl) 2018-12-31
CN105813640A (zh) 2016-07-27
WO2015033303A1 (en) 2015-03-12
LT3041468T (lt) 2018-10-25
EA201600235A1 (ru) 2016-08-31
HUE039012T2 (hu) 2018-12-28
MX2016002970A (es) 2016-10-07
EA201891818A3 (ru) 2019-03-29
PT3041468T (pt) 2018-09-28
CU20160027A7 (es) 2016-12-23
US20170101444A1 (en) 2017-04-13
EA031325B1 (ru) 2018-12-28
KR20160075506A (ko) 2016-06-29
ES2683356T3 (es) 2018-09-26
AU2018271235A1 (en) 2018-12-13
EP3041468B1 (en) 2018-06-13
PH12016500413B1 (en) 2016-05-16
AU2014316686A1 (en) 2016-04-28
RS57628B1 (sr) 2018-11-30
EP3366289A1 (en) 2018-08-29
SG11201601685TA (en) 2016-04-28
DK3041468T3 (en) 2018-08-13
AU2014316686B2 (en) 2018-11-22
CY1120747T1 (el) 2019-12-11

Similar Documents

Publication Publication Date Title
US10106581B2 (en) Cyclic peptidomimetic compounds as immunomodulators
US10961205B2 (en) 1,2,4-oxadiazole derivatives as immunomodulators
US10160736B2 (en) 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives as immunomodulators
WO2015036927A1 (en) Immunomodulating peptidomimetic derivatives
NZ718711B2 (en) 1,2,4-oxadiazole derivatives as immunomodulators

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION