US20160097304A1 - Gas turbine engine with low stage count low pressure turbine - Google Patents

Gas turbine engine with low stage count low pressure turbine Download PDF

Info

Publication number
US20160097304A1
US20160097304A1 US14/966,538 US201514966538A US2016097304A1 US 20160097304 A1 US20160097304 A1 US 20160097304A1 US 201514966538 A US201514966538 A US 201514966538A US 2016097304 A1 US2016097304 A1 US 2016097304A1
Authority
US
United States
Prior art keywords
engine
low pressure
recited
stages
mount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/966,538
Inventor
Gabriel L. Suciu
Brian D. Merry
Christopher M. Dye
Steven B. Johnson
Frederick M. Schwarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46599717&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20160097304(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US12/131,876 external-priority patent/US8128021B2/en
Priority claimed from US13/340,834 external-priority patent/US8695920B2/en
Application filed by United Technologies Corporation filed Critical United Technologies Corporation
Priority to US14/966,538 priority Critical patent/US20160097304A1/en
Publication of US20160097304A1 publication Critical patent/US20160097304A1/en
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS. Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to RTX CORPORATION reassignment RTX CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RAYTHEON TECHNOLOGIES CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • B64D27/402Arrangements for mounting power plants in aircraft comprising box like supporting frames, e.g. pylons or arrangements for embracing the power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • B64D27/404Suspension arrangements specially adapted for supporting vertical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/12Combinations with mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/105Final actuators by passing part of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/128Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type

Definitions

  • the present invention relates to a gas turbine engine and more particularly to an engine mounting configuration for the mounting of a turbofan gas turbine engine to an aircraft pylon.
  • a gas turbine engine may be mounted at various points on an aircraft such as a pylon integrated with an aircraft structure.
  • An engine mounting configuration ensures the transmission of loads between the engine and the aircraft structure.
  • the loads typically include the weight of the engine, thrust, aerodynamic side loads, and rotary torque about the engine axis.
  • the engine mount configuration must also absorb the deformations to which the engine is subjected during different flight phases and the dimensional variations due to thermal expansion and retraction.
  • One conventional engine mounting configuration includes a pylon having a forward mount and an aft mount with relatively long thrust links which extend forward from the aft mount to the engine intermediate case structure.
  • one disadvantage of this conventional type mounting arrangement is the relatively large “punch loads” into the engine cases from the thrust links which react the thrust from the engine and couple the thrust to the pylon. These loads tend to distort the intermediate case and the low pressure compressor (LPC) cases. The distortion may cause the clearances between the static cases and rotating blade tips to increase which may negatively affect engine performance and increase fuel burn.
  • LPC low pressure compressor
  • a gas turbine engine includes a fan section, and a low spool including a low pressure compressor section and a low pressure turbine.
  • the low pressure compressor section includes three (3) or more stages, and the low pressure turbine including three to six (3-6) stages.
  • a high spool includes a high pressure compressor section.
  • the high pressure compressor section includes eight to thirteen (8-13) stages.
  • a gear arrangement is defined along an engine axis.
  • the low spool is operable to drive the fan section through the gear arrangement.
  • a mount system includes an aft mount configured to react at least a portion of a thrust load at an engine case generally parallel to an engine axis.
  • the engine case is defined about the engine axis.
  • the aft mount is attachable to a mid-turbine frame contained at least partially within the engine case.
  • the mid-turbine frame supports at least one bearing.
  • the fan section is configured to deliver a portion of air into the low pressure compressor section, and a portion of air into a bypass duct, and wherein a bypass ratio, which is defined as a volume of air passing to the bypass duct compared to a volume of air passing into the low pressure compressor section, is greater than ten (10).
  • a further embodiment of any of the foregoing embodiments includes a forward mount located forward of the aft mount relative to the engine axis, the forward mount configured to react at least a vertical load.
  • the forward mount is attachable to an engine intermediate case.
  • the forward mount is configured to react a side load.
  • the low pressure compressor includes between three and four (3-4) stages.
  • the low pressure compressor includes three (3) stages.
  • the high pressure compressor includes eight (8) stages.
  • the low pressure turbine includes three (3) stages, and the low pressure turbine defines a low pressure turbine pressure ratio that is greater than about five (5).
  • a pressure ratio across the fan section is less than about 1.45.
  • the low pressure turbine includes three (3) stages
  • the high spool includes a high pressure turbine with two (2) stages
  • the low pressure compressor includes three (3) stages
  • the high pressure compressor includes eight (8) stages.
  • the low pressure turbine defines a low pressure turbine pressure ratio that is greater than five (5), and the gear arrangement defines a gear reduction ratio that is greater than about 2.3.
  • the gear arrangement defines a gear reduction ratio that is greater than or equal to about 2.5.
  • a method of designing a gas turbine engine includes providing a fan section including a fan, and providing a low spool including a low pressure compressor section and a low pressure turbine, the low pressure compressor section including three (3) or more stages, and the low pressure turbine including three to six (3-6) stages, and providing a high spool including a high pressure compressor section and a high pressure turbine.
  • the high pressure compressor section includes thirteen (13) or fewer stages.
  • the method includes providing a gear arrangement defined along an engine axis, the low spool being operable to drive the fan section through the gear arrangement, and providing a mount system including an aft mount located aft of the high pressure turbine relative to the engine axis.
  • the aft mount is configured to react at least a portion of a thrust load at an engine case generally parallel to the engine axis.
  • the aft mount is attachable to a mid-turbine frame contained at least partially within the engine case, the mid-turbine frame supporting at least one bearing.
  • the at least one bearing includes a first bearing and a second bearing.
  • a further embodiment of any of the foregoing embodiments includes providing a forward mount located forward of the aft mount relative to the engine axis, wherein the forward mount is configured to react at least one of a vertical load and a side load, and the forward mount is attachable to an engine intermediate case.
  • the low pressure turbine defines a low pressure turbine pressure ratio that is greater than five (5), and the gear arrangement defines a gear reduction ratio that is greater than or equal to about 2.5.
  • FIG. 1A is a general schematic sectional view through a gas turbine engine along the engine longitudinal axis;
  • FIG. 1B is a general sectional view through a gas turbine engine along the engine longitudinal axis illustrating an engine static structure case arrangement on the lower half thereof;
  • FIG. 1C is a side view of an mount system illustrating a rear mount attached through an engine thrust case to a mid-turbine frame between a first and second bearing supported thereby;
  • FIG. 1D is a forward perspective view of an mount system illustrating a rear mount attached through an engine thrust case to a mid-turbine frame between a first and second bearing supported thereby;
  • FIG. 2A is a top view of an engine mount system
  • FIG. 2B is a side view of an engine mount system within a nacelle system
  • FIG. 2C is a forward perspective view of an engine mount system within a nacelle system
  • FIG. 3 is a side view of an engine mount system within another front mount
  • FIG. 4A is an aft perspective view of an aft mount
  • FIG. 4B is an aft view of an aft mount of FIG. 4A ;
  • FIG. 4C is a front view of the aft mount of FIG. 4A ;
  • FIG. 4D is a side view of the aft mount of FIG. 4A ;
  • FIG. 4E is a top view of the aft mount of FIG. 4A ;
  • FIG. 5A is a side view of the aft mount of FIG. 4A in a first slide position
  • FIG. 5B is a side view of the aft mount of FIG. 4A in a second slide position
  • FIG. 6 shows another embodiment
  • FIG. 7 shows yet another embodiment.
  • FIG. 1A illustrates a general partial fragmentary schematic view of a gas turbofan engine 10 suspended from an engine pylon 12 within an engine nacelle assembly N as is typical of an aircraft designed for subsonic operation.
  • the turbofan engine 10 includes a core engine within a core nacelle C that houses a low spool 14 and high spool 24 .
  • the low spool 14 includes a low pressure compressor 16 and low pressure turbine 18 .
  • the low spool 14 drives a fan section 20 connected to the low spool 14 either directly or through a gear train 25 .
  • the high spool 24 includes a high pressure compressor 26 and high pressure turbine 28 .
  • a combustor 30 is arranged between the high pressure compressor 26 and high pressure turbine 28 .
  • the low and high spools 14 , 24 rotate about an engine axis of rotation A.
  • the engine 10 in one non-limiting embodiment is a high-bypass geared architecture aircraft engine.
  • the engine 10 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10)
  • the gear train 25 is an epicyclic gear train such as a planetary gear system or other gear system with a gear reduction ratio of greater than about 2.3
  • the low pressure turbine 18 has a pressure ratio that is greater than about 5.
  • the engine 10 bypass ratio is greater than ten (10:1)
  • the turbofan diameter is significantly larger than that of the low pressure compressor 16
  • the low pressure turbine 18 has a pressure ratio that is greater than 5:1.
  • the gear train 25 may be an epicycle gear train such as a planetary gear system or other gear system with a gear reduction ratio of greater than or equal to about 2.5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
  • the fan section 20 communicates airflow into the core nacelle C to the low pressure compressor 16 .
  • Core airflow compressed by the low pressure compressor 16 and the high pressure compressor 26 is mixed with the fuel in the combustor 30 where is ignited, and burned.
  • the resultant high pressure combustor products are expanded through the high pressure turbine 28 and low pressure turbine 18 .
  • the turbines 28 , 18 are rotationally coupled to the compressors 26 , 16 respectively to drive the compressors 26 , 16 in response to the expansion of the combustor product.
  • the low pressure turbine 18 also drives the fan section 20 through gear train 25 .
  • a core engine exhaust E exits the core nacelle C through a core nozzle 43 defined between the core nacelle C and a tail cone 33 .
  • the low pressure turbine 18 includes a low number of stages, which, in the illustrated non-limiting embodiment, includes three turbine stages, 18 A, 18 B, 18 C.
  • the gear train 22 operationally effectuates the significantly reduced number of stages within the low pressure turbine 18 .
  • the three turbine stages, 18 A, 18 B, 18 C facilitate a lightweight and operationally efficient engine architecture. It should be appreciated that a low number of stages contemplates, for example, three to six (3-6) stages.
  • Low pressure turbine 18 pressure ratio is pressure measured prior to inlet of low pressure turbine 18 as related to the pressure at the outlet of the low pressure turbine 18 prior to exhaust nozzle.
  • Thrust is a function of density, velocity, and area. One or more of these parameters can be manipulated to vary the amount and direction of thrust provided by the bypass flow B.
  • the Variable Area Fan Nozzle (“VAFN”) 42 operates to effectively vary the area of the fan nozzle exit area 41 to selectively adjust the pressure ratio of the bypass flow B in response to a controller ( FIG. 1A ).
  • Low pressure ratio turbofans are desirable for their high propulsive efficiency. However, low pressure ratio fans may be inherently susceptible to fan stability/flutter problems at low power and low flight speeds.
  • the VAFN 42 allows the engine to change to a more favorable fan operating line at low power, avoiding the instability region, and still provide the relatively smaller nozzle area necessary to obtain a high-efficiency fan operating line at cruise.
  • the fan section 20 of the engine 10 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet.
  • TSFC Thrust Specific Fuel Consumption
  • Low fan pressure ratio is the pressure ratio across the fan blade alone, without the Fan Exit Guide Vane (“FEGV”) system 36 .
  • the low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45.
  • Low corrected fan tip speed is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tambient deg R)/518.7) ⁇ 0.5].
  • the “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second.
  • the low pressure compressor 16 includes three (3) or more stages. In one example, the low pressure compressor 16 includes three (3) stages 16 A- 16 C ( FIG. 1B ). In another example, the low pressure compressor 16 includes four (4) stages 16 A- 16 D ( FIG. 1A ). In some examples, the high pressure compressor 26 includes thirteen (13) or fewer stages, and more narrowly between eight (8) and thirteen (13) stages. In one example, the high pressure compressor 26 includes eight (8) stages 26 A- 26 H ( FIG. 1B ). In another example, the high pressure compressor 26 includes thirteen (13) stages 26 A- 26 M driven by a two (2) stage high pressure turbine 28 ( FIG. 1A ).
  • the VAFN 42 is operated to effectively vary the fan nozzle exit area 41 to adjust fan bypass air flow such that the angle of attack or incidence on the fan blades is maintained close to the design incidence for efficient engine operation at other flight conditions, such as landing and takeoff to thus provide optimized engine operation over a range of flight conditions with respect to performance and other operational parameters such as noise levels.
  • the engine static structure 44 generally has sub-structures including a case structure often referred to as the engine backbone.
  • the engine static structure 44 generally includes a fan case 46 , an intermediate case (IMC) 48 , a high pressure compressor case 50 , a combustor case 52 A, a high pressure turbine case 52 B, a thrust case 52 C, a low pressure turbine case 54 , and a turbine exhaust case 56 ( FIG. 1B ).
  • the combustor case 52 A, the high pressure turbine case 52 B and the thrust case 52 C may be combined into a single case. It should be understood that this is an exemplary configuration and any number of cases may be utilized.
  • the fan section 20 includes a fan rotor 32 with a plurality of circumferentially spaced radially outwardly extending fan blades 34 .
  • the fan blades 34 are surrounded by the fan case 46 .
  • the core engine case structure is secured to the fan case 46 at the IMC 48 which includes a multiple of circumferentially spaced radially extending struts 40 which radially span the core engine case structure and the fan case 46 .
  • the engine static structure 44 further supports a bearing system upon which the turbines 28 , 18 , compressors 26 , 16 and fan rotor 32 rotate.
  • a #1 fan dual bearing 60 which rotationally supports the fan rotor 32 is axially located generally within the fan case 46 .
  • the #1 fan dual bearing 60 is preloaded to react fan thrust forward and aft (in case of surge).
  • a #2 LPC bearing 62 which rotationally supports the low spool 14 is axially located generally within the intermediate case (IMC) 48 .
  • the #2 LPC bearing 62 reacts thrust.
  • a #3 fan dual bearing 64 which rotationally supports the high spool 24 and also reacts thrust.
  • the #3 fan bearing 64 is also axially located generally within the IMC 48 just forward of the high pressure compressor case 50 .
  • a #4 bearing 66 which rotationally supports a rear segment of the low spool 14 reacts only radial loads.
  • the #4 bearing 66 is axially located generally within the thrust case 52 C in an aft section thereof.
  • a #5 bearing 68 rotationally supports the rear segment of the low spool 14 and reacts only radial loads.
  • the #5 bearing 68 is axially located generally within the thrust case 52 C just aft of the #4 bearing 66 . It should be understood that this is an exemplary configuration and any number of bearings may be utilized.
  • the #4 bearing 66 and the #5 bearing 68 are supported within a mid-turbine frame (MTF) 70 to straddle radially extending structural struts 72 which are preloaded in tension ( FIGS. 1C-1D ).
  • the MTF 70 provides aft structural support within the thrust case 52 C for the #4 bearing 66 and the #5 bearing 68 which rotatably support the spools 14 , 24 .
  • a dual rotor engine such as that disclosed in the illustrated embodiment typically includes a forward frame and a rear frame that support the main rotor bearings.
  • the intermediate case (IMC) 48 also includes the radially extending struts 40 which are generally radially aligned with the #2 LPC bearing 62 ( FIG. 1B ). It should be understood that various engines with various case and frame structures will benefit from the present invention.
  • the turbofan gas turbine engine 10 is mounted to aircraft structure such as an aircraft wing through a mount system 80 attachable by the pylon 12 .
  • the mount system 80 includes a forward mount 82 and an aft mount 84 ( FIG. 2A ).
  • the forward mount 82 is secured to the IMC 48 and the aft mount 84 is secured to the MTF 70 at the thrust case 52 C.
  • the forward mount 82 and the aft mount 84 are arranged in a plane containing the axis A of the turbofan gas turbine 10 . This eliminates the thrust links from the intermediate case, which frees up valuable space beneath the core nacelle and minimizes IMC 48 distortion.
  • the mount system 80 reacts the engine thrust at the aft end of the engine 10 .
  • the term “reacts” as utilized in this disclosure is defined as absorbing a load and dissipating the load to another location of the gas turbine engine 10 .
  • the forward mount 82 supports vertical loads and side loads.
  • the forward mount 82 in one non-limiting embodiment includes a shackle arrangement which mounts to the IMC 48 at two points 86 A, 86 B.
  • the forward mount 82 is generally a plate-like member which is oriented transverse to the plane which contains engine axis A. Fasteners are oriented through the forward mount 82 to engage the intermediate case (IMC) 48 generally parallel to the engine axis A.
  • the forward mount 82 is secured to the IMC 40 .
  • the forward mount 82 ′ is secured to a portion of the core engine, such as the high-pressure compressor case 50 of the gas turbine engine 10 (see FIG. 3 ).
  • the forward mount 82 ′ is secured to a portion of the core engine, such as the high-pressure compressor case 50 of the gas turbine engine 10 (see FIG. 3 ).
  • the aft mount 84 generally includes a first A-arm 88 A, a second A-arm 88 B, a rear mount platform 90 , a wiffle tree assembly 92 and a drag link 94 .
  • the rear mount platform 90 is attached directly to aircraft structure such as the pylon 12 .
  • the first A-arm 88 A and the second A-arm 88 B mount between the thrust case 52 C at case bosses 96 which interact with the MTF 70 ( FIGS. 4B-4C ), the rear mount platform 90 and the wiffle tree assembly 92 .
  • the first A-arm 88 A and the second A-arm 88 B may alternatively mount to other areas of the engine 10 such as the high pressure turbine case or other cases.
  • other frame arrangements may alternatively be used with any engine case arrangement.
  • the first A-arm 88 A and the second A-arm 88 B are rigid generally triangular arrangements, each having a first link arm 89 a , a second link arm 89 b and a third link arm 89 c .
  • the first link arm 89 a is between the case boss 96 and the rear mount platform 90 .
  • the second link arm 89 b is between the case bosses 96 and the wiffle tree assembly 92 .
  • the third link arm 89 c is between the wiffle tree assembly 92 rear mount platform 90 .
  • the first A-arm 88 A and the second A-arm 88 B primarily support the vertical weight load of the engine 10 and transmit thrust loads from the engine to the rear mount platform 90 .
  • the first A-arm 88 A and the second A-arm 88 B of the aft mount 84 force the resultant thrust vector at the engine casing to be reacted along the engine axis A which minimizes tip clearance losses due to engine loading at the aft mount 84 . This minimizes blade tip clearance requirements and thereby improves engine performance.
  • the wiffle tree assembly 92 includes a wiffle link 98 which supports a central ball joint 100 , a first sliding ball joint 102 A and a second sliding ball joint 102 B ( FIG. 4E ). It should be understood that various bushings, vibration isolators and such like may additionally be utilized herewith.
  • the central ball joint 100 is attached directly to aircraft structure such as the pylon 12 .
  • the first sliding ball joint 102 A is attached to the first A-arm 88 A and the second sliding ball joint 102 B is mounted to the first A-arm 88 A.
  • the first and second sliding ball joint 102 A, 102 B permit sliding movement of the first and second A-arm 88 A, 88 B (illustrated by arrow S in FIGS.
  • the wiffle tree assembly 92 allows all engine thrust loads to be equalized transmitted to the engine pylon 12 through the rear mount platform 90 by the sliding movement and equalize the thrust load that results from the dual thrust link configuration.
  • the wiffle link 98 operates as an equalizing link for vertical loads due to the first sliding ball joint 102 A and the second sliding ball joint 102 B. As the wiffle link 98 rotates about the central ball joint 100 thrust forces are equalized in the axial direction.
  • the wiffle tree assembly 92 experiences loading only due to vertical loads, and is thus less susceptible to failure than conventional thrust-loaded designs.
  • the drag link 94 includes a ball joint 104 A mounted to the thrust case 52 C and ball joint 104 B mounted to the rear mount platform 90 ( FIGS. 4B-4C ).
  • the drag link 94 operates to react torque.
  • the aft mount 84 transmits engine loads directly to the thrust case 52 C and the MTF 70 . Thrust, vertical, side, and torque loads are transmitted directly from the MTF 70 which reduces the number of structural members as compared to current in-practice designs.
  • the mount system 80 is compact, and occupies space within the core nacelle volume as compared to turbine exhaust case-mounted configurations, which occupy space outside of the core nacelle which may require additional or relatively larger aerodynamic fairings and increase aerodynamic drag and fuel consumption.
  • the mount system 80 eliminates the heretofore required thrust links from the IMC, which frees up valuable space adjacent the IMC 48 and the high pressure compressor case 50 within the core nacelle C.
  • FIG. 6 shows an embodiment 200 , wherein there is a fan drive turbine 208 driving a shaft 206 to in turn drive a fan rotor 202 .
  • a gear reduction 204 may be positioned between the fan drive turbine 208 and the fan rotor 202 .
  • This gear reduction 204 may be structured and operate like the gear reduction disclosed above.
  • a compressor rotor 210 is driven by an intermediate pressure turbine 212
  • a second stage compressor rotor 214 is driven by a turbine rotor 216 .
  • a combustion section 218 is positioned intermediate the compressor rotor 214 and the turbine section 216 .
  • FIG. 7 shows yet another embodiment 300 wherein a fan rotor 302 and a first stage compressor 304 rotate at a common speed.
  • the gear reduction 306 (which may be structured as disclosed above) is intermediate the compressor rotor 304 and a shaft 308 which is driven by a low pressure turbine section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Retarders (AREA)

Abstract

A gas turbine engine according to an example of the present disclosure includes, among other things, a fan section, and a low spool including a low pressure compressor section and a low pressure turbine. A high spool includes a high pressure compressor section. A gear arrangement is defined along an engine axis. The low spool is operable to drive the fan section through the gear arrangement. A mount system includes an aft mount configured to react at least a portion of a thrust load at an engine case generally parallel to an engine axis.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present disclosure is a continuation of U.S. patent application Ser. No. 14/872,508, filed Oct. 1, 2015, which is a continuation of U.S. patent application Ser. No. 14/801,925, filed Jul. 17, 2015, which was a continuation-in-part of International Application No. PCT/US12/72271 filed Dec. 31, 2012, which claims priority to U.S. patent application Ser. No. 13/340,834, filed Dec. 30, 2011, which was a continuation in part of U.S. patent application Ser. No. 12/131,876, filed Jun. 2, 2008.
  • BACKGROUND
  • The present invention relates to a gas turbine engine and more particularly to an engine mounting configuration for the mounting of a turbofan gas turbine engine to an aircraft pylon.
  • A gas turbine engine may be mounted at various points on an aircraft such as a pylon integrated with an aircraft structure. An engine mounting configuration ensures the transmission of loads between the engine and the aircraft structure. The loads typically include the weight of the engine, thrust, aerodynamic side loads, and rotary torque about the engine axis. The engine mount configuration must also absorb the deformations to which the engine is subjected during different flight phases and the dimensional variations due to thermal expansion and retraction.
  • One conventional engine mounting configuration includes a pylon having a forward mount and an aft mount with relatively long thrust links which extend forward from the aft mount to the engine intermediate case structure. Although effective, one disadvantage of this conventional type mounting arrangement is the relatively large “punch loads” into the engine cases from the thrust links which react the thrust from the engine and couple the thrust to the pylon. These loads tend to distort the intermediate case and the low pressure compressor (LPC) cases. The distortion may cause the clearances between the static cases and rotating blade tips to increase which may negatively affect engine performance and increase fuel burn.
  • SUMMARY
  • A gas turbine engine according to an example of the present disclosure includes a fan section, and a low spool including a low pressure compressor section and a low pressure turbine. The low pressure compressor section includes three (3) or more stages, and the low pressure turbine including three to six (3-6) stages. A high spool includes a high pressure compressor section. The high pressure compressor section includes eight to thirteen (8-13) stages. A gear arrangement is defined along an engine axis. The low spool is operable to drive the fan section through the gear arrangement. A mount system includes an aft mount configured to react at least a portion of a thrust load at an engine case generally parallel to an engine axis. The engine case is defined about the engine axis.
  • In a further embodiment of any of the foregoing embodiments, the aft mount is attachable to a mid-turbine frame contained at least partially within the engine case.
  • In a further embodiment of any of the foregoing embodiments, the mid-turbine frame supports at least one bearing.
  • In a further embodiment of any of the foregoing embodiments, the fan section is configured to deliver a portion of air into the low pressure compressor section, and a portion of air into a bypass duct, and wherein a bypass ratio, which is defined as a volume of air passing to the bypass duct compared to a volume of air passing into the low pressure compressor section, is greater than ten (10).
  • A further embodiment of any of the foregoing embodiments includes a forward mount located forward of the aft mount relative to the engine axis, the forward mount configured to react at least a vertical load.
  • In a further embodiment of any of the foregoing embodiments, the forward mount is attachable to an engine intermediate case.
  • In a further embodiment of any of the foregoing embodiments, the forward mount is configured to react a side load.
  • In a further embodiment of any of the foregoing embodiments, the low pressure compressor includes between three and four (3-4) stages.
  • In a further embodiment of any of the foregoing embodiments, the low pressure compressor includes three (3) stages.
  • In a further embodiment of any of the foregoing embodiments, the high pressure compressor includes eight (8) stages.
  • In a further embodiment of any of the foregoing embodiments, the low pressure turbine includes three (3) stages, and the low pressure turbine defines a low pressure turbine pressure ratio that is greater than about five (5).
  • In a further embodiment of any of the foregoing embodiments, a pressure ratio across the fan section is less than about 1.45.
  • In a further embodiment of any of the foregoing embodiments, the low pressure turbine includes three (3) stages, the high spool includes a high pressure turbine with two (2) stages, the low pressure compressor includes three (3) stages, and the high pressure compressor includes eight (8) stages.
  • In a further embodiment of any of the foregoing embodiments, the low pressure turbine defines a low pressure turbine pressure ratio that is greater than five (5), and the gear arrangement defines a gear reduction ratio that is greater than about 2.3.
  • In a further embodiment of any of the foregoing embodiments, the gear arrangement defines a gear reduction ratio that is greater than or equal to about 2.5.
  • A method of designing a gas turbine engine according to an example of the present disclosure includes providing a fan section including a fan, and providing a low spool including a low pressure compressor section and a low pressure turbine, the low pressure compressor section including three (3) or more stages, and the low pressure turbine including three to six (3-6) stages, and providing a high spool including a high pressure compressor section and a high pressure turbine. The high pressure compressor section includes thirteen (13) or fewer stages. The method includes providing a gear arrangement defined along an engine axis, the low spool being operable to drive the fan section through the gear arrangement, and providing a mount system including an aft mount located aft of the high pressure turbine relative to the engine axis. The aft mount is configured to react at least a portion of a thrust load at an engine case generally parallel to the engine axis.
  • In a further embodiment of any of the foregoing embodiments, the aft mount is attachable to a mid-turbine frame contained at least partially within the engine case, the mid-turbine frame supporting at least one bearing.
  • In a further embodiment of any of the foregoing embodiments, the at least one bearing includes a first bearing and a second bearing.
  • A further embodiment of any of the foregoing embodiments includes providing a forward mount located forward of the aft mount relative to the engine axis, wherein the forward mount is configured to react at least one of a vertical load and a side load, and the forward mount is attachable to an engine intermediate case.
  • In a further embodiment of any of the foregoing embodiments, the low pressure turbine defines a low pressure turbine pressure ratio that is greater than five (5), and the gear arrangement defines a gear reduction ratio that is greater than or equal to about 2.5.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently disclosed embodiment. The drawings that accompany the detailed description can be briefly described as follows:
  • FIG. 1A is a general schematic sectional view through a gas turbine engine along the engine longitudinal axis;
  • FIG. 1B is a general sectional view through a gas turbine engine along the engine longitudinal axis illustrating an engine static structure case arrangement on the lower half thereof;
  • FIG. 1C is a side view of an mount system illustrating a rear mount attached through an engine thrust case to a mid-turbine frame between a first and second bearing supported thereby;
  • FIG. 1D is a forward perspective view of an mount system illustrating a rear mount attached through an engine thrust case to a mid-turbine frame between a first and second bearing supported thereby;
  • FIG. 2A is a top view of an engine mount system;
  • FIG. 2B is a side view of an engine mount system within a nacelle system;
  • FIG. 2C is a forward perspective view of an engine mount system within a nacelle system;
  • FIG. 3 is a side view of an engine mount system within another front mount;
  • FIG. 4A is an aft perspective view of an aft mount;
  • FIG. 4B is an aft view of an aft mount of FIG. 4A;
  • FIG. 4C is a front view of the aft mount of FIG. 4A;
  • FIG. 4D is a side view of the aft mount of FIG. 4A;
  • FIG. 4E is a top view of the aft mount of FIG. 4A;
  • FIG. 5A is a side view of the aft mount of FIG. 4A in a first slide position;
  • FIG. 5B is a side view of the aft mount of FIG. 4A in a second slide position;
  • FIG. 6 shows another embodiment; and
  • FIG. 7 shows yet another embodiment.
  • DETAILED DESCRIPTION OF THE DISCLOSED EMBODIMENT
  • FIG. 1A illustrates a general partial fragmentary schematic view of a gas turbofan engine 10 suspended from an engine pylon 12 within an engine nacelle assembly N as is typical of an aircraft designed for subsonic operation.
  • The turbofan engine 10 includes a core engine within a core nacelle C that houses a low spool 14 and high spool 24. The low spool 14 includes a low pressure compressor 16 and low pressure turbine 18. The low spool 14 drives a fan section 20 connected to the low spool 14 either directly or through a gear train 25.
  • The high spool 24 includes a high pressure compressor 26 and high pressure turbine 28. A combustor 30 is arranged between the high pressure compressor 26 and high pressure turbine 28. The low and high spools 14, 24 rotate about an engine axis of rotation A.
  • The engine 10 in one non-limiting embodiment is a high-bypass geared architecture aircraft engine. In one disclosed, non-limiting embodiment, the engine 10 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10), the gear train 25 is an epicyclic gear train such as a planetary gear system or other gear system with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 18 has a pressure ratio that is greater than about 5. In one disclosed embodiment, the engine 10 bypass ratio is greater than ten (10:1), the turbofan diameter is significantly larger than that of the low pressure compressor 16, and the low pressure turbine 18 has a pressure ratio that is greater than 5:1. The gear train 25 may be an epicycle gear train such as a planetary gear system or other gear system with a gear reduction ratio of greater than or equal to about 2.5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
  • Airflow enters the fan nacelle F which at least partially surrounds the core nacelle C. The fan section 20 communicates airflow into the core nacelle C to the low pressure compressor 16. Core airflow compressed by the low pressure compressor 16 and the high pressure compressor 26 is mixed with the fuel in the combustor 30 where is ignited, and burned. The resultant high pressure combustor products are expanded through the high pressure turbine 28 and low pressure turbine 18. The turbines 28, 18 are rotationally coupled to the compressors 26, 16 respectively to drive the compressors 26, 16 in response to the expansion of the combustor product. The low pressure turbine 18 also drives the fan section 20 through gear train 25. A core engine exhaust E exits the core nacelle C through a core nozzle 43 defined between the core nacelle C and a tail cone 33.
  • With reference to FIG. 1B, the low pressure turbine 18 includes a low number of stages, which, in the illustrated non-limiting embodiment, includes three turbine stages, 18A, 18B, 18C. The gear train 22 operationally effectuates the significantly reduced number of stages within the low pressure turbine 18. The three turbine stages, 18A, 18B, 18C facilitate a lightweight and operationally efficient engine architecture. It should be appreciated that a low number of stages contemplates, for example, three to six (3-6) stages. Low pressure turbine 18 pressure ratio is pressure measured prior to inlet of low pressure turbine 18 as related to the pressure at the outlet of the low pressure turbine 18 prior to exhaust nozzle.
  • Thrust is a function of density, velocity, and area. One or more of these parameters can be manipulated to vary the amount and direction of thrust provided by the bypass flow B. The Variable Area Fan Nozzle (“VAFN”) 42 operates to effectively vary the area of the fan nozzle exit area 41 to selectively adjust the pressure ratio of the bypass flow B in response to a controller (FIG. 1A). Low pressure ratio turbofans are desirable for their high propulsive efficiency. However, low pressure ratio fans may be inherently susceptible to fan stability/flutter problems at low power and low flight speeds. The VAFN 42 allows the engine to change to a more favorable fan operating line at low power, avoiding the instability region, and still provide the relatively smaller nozzle area necessary to obtain a high-efficiency fan operating line at cruise.
  • A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 20 of the engine 10 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. The flight condition of 0.8 Mach and 35,000 ft, with the engine at its best fuel consumption—also known as “bucket cruise Thrust Specific Fuel Consumption (‘TSFC’)”—is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. “Low fan pressure ratio” is the pressure ratio across the fan blade alone, without the Fan Exit Guide Vane (“FEGV”) system 36. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. “Low corrected fan tip speed” is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tambient deg R)/518.7)̂0.5]. The “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second.
  • In some examples, the low pressure compressor 16 includes three (3) or more stages. In one example, the low pressure compressor 16 includes three (3) stages 16A-16C (FIG. 1B). In another example, the low pressure compressor 16 includes four (4) stages 16A-16D (FIG. 1A). In some examples, the high pressure compressor 26 includes thirteen (13) or fewer stages, and more narrowly between eight (8) and thirteen (13) stages. In one example, the high pressure compressor 26 includes eight (8) stages 26A-26H (FIG. 1B). In another example, the high pressure compressor 26 includes thirteen (13) stages 26A-26M driven by a two (2) stage high pressure turbine 28 (FIG. 1A).
  • As the fan blades within the fan section 20 are efficiently designed at a particular fixed stagger angle for an efficient cruise condition, the VAFN 42 is operated to effectively vary the fan nozzle exit area 41 to adjust fan bypass air flow such that the angle of attack or incidence on the fan blades is maintained close to the design incidence for efficient engine operation at other flight conditions, such as landing and takeoff to thus provide optimized engine operation over a range of flight conditions with respect to performance and other operational parameters such as noise levels.
  • The engine static structure 44 generally has sub-structures including a case structure often referred to as the engine backbone. The engine static structure 44 generally includes a fan case 46, an intermediate case (IMC) 48, a high pressure compressor case 50, a combustor case 52A, a high pressure turbine case 52B, a thrust case 52C, a low pressure turbine case 54, and a turbine exhaust case 56 (FIG. 1B). Alternatively, the combustor case 52A, the high pressure turbine case 52B and the thrust case 52C may be combined into a single case. It should be understood that this is an exemplary configuration and any number of cases may be utilized.
  • The fan section 20 includes a fan rotor 32 with a plurality of circumferentially spaced radially outwardly extending fan blades 34. The fan blades 34 are surrounded by the fan case 46. The core engine case structure is secured to the fan case 46 at the IMC 48 which includes a multiple of circumferentially spaced radially extending struts 40 which radially span the core engine case structure and the fan case 46.
  • The engine static structure 44 further supports a bearing system upon which the turbines 28, 18, compressors 26, 16 and fan rotor 32 rotate. A #1 fan dual bearing 60 which rotationally supports the fan rotor 32 is axially located generally within the fan case 46. The #1 fan dual bearing 60 is preloaded to react fan thrust forward and aft (in case of surge). A #2 LPC bearing 62 which rotationally supports the low spool 14 is axially located generally within the intermediate case (IMC) 48. The #2 LPC bearing 62 reacts thrust. A #3 fan dual bearing 64 which rotationally supports the high spool 24 and also reacts thrust. The #3 fan bearing 64 is also axially located generally within the IMC 48 just forward of the high pressure compressor case 50. A #4 bearing 66 which rotationally supports a rear segment of the low spool 14 reacts only radial loads. The #4 bearing 66 is axially located generally within the thrust case 52C in an aft section thereof. A #5 bearing 68 rotationally supports the rear segment of the low spool 14 and reacts only radial loads. The #5 bearing 68 is axially located generally within the thrust case 52C just aft of the #4 bearing 66. It should be understood that this is an exemplary configuration and any number of bearings may be utilized.
  • The #4 bearing 66 and the #5 bearing 68 are supported within a mid-turbine frame (MTF) 70 to straddle radially extending structural struts 72 which are preloaded in tension (FIGS. 1C-1D). The MTF 70 provides aft structural support within the thrust case 52C for the #4 bearing 66 and the #5 bearing 68 which rotatably support the spools 14, 24.
  • A dual rotor engine such as that disclosed in the illustrated embodiment typically includes a forward frame and a rear frame that support the main rotor bearings. The intermediate case (IMC) 48 also includes the radially extending struts 40 which are generally radially aligned with the #2 LPC bearing 62 (FIG. 1B). It should be understood that various engines with various case and frame structures will benefit from the present invention.
  • The turbofan gas turbine engine 10 is mounted to aircraft structure such as an aircraft wing through a mount system 80 attachable by the pylon 12. The mount system 80 includes a forward mount 82 and an aft mount 84 (FIG. 2A). The forward mount 82 is secured to the IMC 48 and the aft mount 84 is secured to the MTF 70 at the thrust case 52C. The forward mount 82 and the aft mount 84 are arranged in a plane containing the axis A of the turbofan gas turbine 10. This eliminates the thrust links from the intermediate case, which frees up valuable space beneath the core nacelle and minimizes IMC 48 distortion.
  • Referring to FIGS. 2A-2C, the mount system 80 reacts the engine thrust at the aft end of the engine 10. The term “reacts” as utilized in this disclosure is defined as absorbing a load and dissipating the load to another location of the gas turbine engine 10.
  • The forward mount 82 supports vertical loads and side loads. The forward mount 82 in one non-limiting embodiment includes a shackle arrangement which mounts to the IMC 48 at two points 86A, 86B. The forward mount 82 is generally a plate-like member which is oriented transverse to the plane which contains engine axis A. Fasteners are oriented through the forward mount 82 to engage the intermediate case (IMC) 48 generally parallel to the engine axis A. In this illustrated non-limiting embodiment, the forward mount 82 is secured to the IMC 40. In another non-limiting embodiment, the forward mount 82′ is secured to a portion of the core engine, such as the high-pressure compressor case 50 of the gas turbine engine 10 (see FIG. 3). One of ordinary skill in the art having the benefit of this disclosure would be able to select an appropriate mounting location for the forward mount 82.
  • Referring to FIG. 4A, the aft mount 84 generally includes a first A-arm 88A, a second A-arm 88B, a rear mount platform 90, a wiffle tree assembly 92 and a drag link 94. The rear mount platform 90 is attached directly to aircraft structure such as the pylon 12. The first A-arm 88A and the second A-arm 88B mount between the thrust case 52C at case bosses 96 which interact with the MTF 70 (FIGS. 4B-4C), the rear mount platform 90 and the wiffle tree assembly 92. It should be understood that the first A-arm 88A and the second A-arm 88B may alternatively mount to other areas of the engine 10 such as the high pressure turbine case or other cases. It should also be understood that other frame arrangements may alternatively be used with any engine case arrangement.
  • Referring to FIG. 4D, the first A-arm 88A and the second A-arm 88B are rigid generally triangular arrangements, each having a first link arm 89 a, a second link arm 89 b and a third link arm 89 c. The first link arm 89 a is between the case boss 96 and the rear mount platform 90. The second link arm 89 b is between the case bosses 96 and the wiffle tree assembly 92. The third link arm 89 c is between the wiffle tree assembly 92 rear mount platform 90. The first A-arm 88A and the second A-arm 88B primarily support the vertical weight load of the engine 10 and transmit thrust loads from the engine to the rear mount platform 90.
  • The first A-arm 88A and the second A-arm 88B of the aft mount 84 force the resultant thrust vector at the engine casing to be reacted along the engine axis A which minimizes tip clearance losses due to engine loading at the aft mount 84. This minimizes blade tip clearance requirements and thereby improves engine performance.
  • The wiffle tree assembly 92 includes a wiffle link 98 which supports a central ball joint 100, a first sliding ball joint 102A and a second sliding ball joint 102B (FIG. 4E). It should be understood that various bushings, vibration isolators and such like may additionally be utilized herewith. The central ball joint 100 is attached directly to aircraft structure such as the pylon 12. The first sliding ball joint 102A is attached to the first A-arm 88A and the second sliding ball joint 102B is mounted to the first A-arm 88A. The first and second sliding ball joint 102A, 102B permit sliding movement of the first and second A-arm 88A, 88B (illustrated by arrow S in FIGS. 5A and 5B) to assure that only a vertical load is reacted by the wiffle tree assembly 92. That is, the wiffle tree assembly 92 allows all engine thrust loads to be equalized transmitted to the engine pylon 12 through the rear mount platform 90 by the sliding movement and equalize the thrust load that results from the dual thrust link configuration. The wiffle link 98 operates as an equalizing link for vertical loads due to the first sliding ball joint 102A and the second sliding ball joint 102B. As the wiffle link 98 rotates about the central ball joint 100 thrust forces are equalized in the axial direction. The wiffle tree assembly 92 experiences loading only due to vertical loads, and is thus less susceptible to failure than conventional thrust-loaded designs.
  • The drag link 94 includes a ball joint 104A mounted to the thrust case 52C and ball joint 104B mounted to the rear mount platform 90 (FIGS. 4B-4C). The drag link 94 operates to react torque.
  • The aft mount 84 transmits engine loads directly to the thrust case 52C and the MTF 70. Thrust, vertical, side, and torque loads are transmitted directly from the MTF 70 which reduces the number of structural members as compared to current in-practice designs.
  • The mount system 80 is compact, and occupies space within the core nacelle volume as compared to turbine exhaust case-mounted configurations, which occupy space outside of the core nacelle which may require additional or relatively larger aerodynamic fairings and increase aerodynamic drag and fuel consumption. The mount system 80 eliminates the heretofore required thrust links from the IMC, which frees up valuable space adjacent the IMC 48 and the high pressure compressor case 50 within the core nacelle C.
  • FIG. 6 shows an embodiment 200, wherein there is a fan drive turbine 208 driving a shaft 206 to in turn drive a fan rotor 202. A gear reduction 204 may be positioned between the fan drive turbine 208 and the fan rotor 202. This gear reduction 204 may be structured and operate like the gear reduction disclosed above. A compressor rotor 210 is driven by an intermediate pressure turbine 212, and a second stage compressor rotor 214 is driven by a turbine rotor 216. A combustion section 218 is positioned intermediate the compressor rotor 214 and the turbine section 216.
  • FIG. 7 shows yet another embodiment 300 wherein a fan rotor 302 and a first stage compressor 304 rotate at a common speed. The gear reduction 306 (which may be structured as disclosed above) is intermediate the compressor rotor 304 and a shaft 308 which is driven by a low pressure turbine section.
  • It should be understood that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” and the like are with reference to the normal operational attitude of the vehicle and should not be considered otherwise limiting.
  • The foregoing description is exemplary rather than defined by the limitations within. Many modifications and variations of the present invention are possible in light of the above teachings. The disclosed embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.

Claims (20)

What is claimed is:
1. A gas turbine engine comprising:
a fan section;
a low spool including a low pressure compressor section and a low pressure turbine, said low pressure compressor section including three (3) or more stages, and said low pressure turbine including three to six (3-6) stages;
a high spool including a high pressure compressor section, said high pressure compressor section including eight to thirteen (8-13) stages;
a gear arrangement defined along an engine axis, said low spool operable to drive said fan section through said gear arrangement; and
a mount system including an aft mount configured to react at least a portion of a thrust load at an engine case generally parallel to an engine axis, said engine case defined about said engine axis.
2. The engine as recited in claim 1, wherein said aft mount is attachable to a mid-turbine frame contained at least partially within said engine case.
3. The engine as recited in claim 2, wherein said mid-turbine frame supports at least one bearing.
4. The engine as recited in claim 2, wherein said fan section is configured to deliver a portion of air into said low pressure compressor section, and a portion of air into a bypass duct, and wherein a bypass ratio, which is defined as a volume of air passing to said bypass duct compared to a volume of air passing into said low pressure compressor section, is greater than ten (10).
5. The engine as recited in claim 1, comprising a forward mount located forward of said aft mount relative to said engine axis, said forward mount configured to react at least a vertical load.
6. The engine as recited in claim 5, wherein said forward mount is attachable to an engine intermediate case.
7. The engine as recited in claim 5, wherein said forward mount is configured to react a side load.
8. The engine as recited in claim 1, wherein said low pressure compressor includes between three and four (3-4) stages.
9. The engine as recited in claim 8, wherein said low pressure compressor includes three (3) stages.
10. The engine as recited in claim 8, wherein said high pressure compressor includes eight (8) stages.
11. The engine as recited in claim 10, wherein said low pressure turbine includes three (3) stages, and said low pressure turbine defines a low pressure turbine pressure ratio that is greater than about five (5).
12. The engine as recited in claim 8, wherein a pressure ratio across said fan section is less than about 1.45.
13. The engine as recited in claim 1, wherein said low pressure turbine includes three (3) stages, said high spool includes a high pressure turbine with two (2) stages, said low pressure compressor includes three (3) stages, and said high pressure compressor includes eight (8) stages.
14. The engine as recited in claim 13, wherein said low pressure turbine defines a low pressure turbine pressure ratio that is greater than five (5), and said gear arrangement defines a gear reduction ratio that is greater than about 2.3.
15. The engine as recited in claim 1, wherein said gear arrangement defines a gear reduction ratio that is greater than or equal to about 2.5.
16. A method of designing a gas turbine engine comprising:
providing a fan section including a fan;
providing a low spool including a low pressure compressor section and a low pressure turbine, said low pressure compressor section including three (3) or more stages, and said low pressure turbine including three to six (3-6) stages;
providing a high spool including a high pressure compressor section and a high pressure turbine, said high pressure compressor section including thirteen (13) or fewer stages;
providing a gear arrangement defined along an engine axis, said low spool operable to drive said fan section through said gear arrangement; and
providing a mount system including an aft mount located aft of said high pressure turbine relative to said engine axis, said aft mount configured to react at least a portion of a thrust load at an engine case generally parallel to said engine axis.
17. The method as recited in claim 16, wherein said aft mount is attachable to a mid-turbine frame contained at least partially within said engine case, said mid-turbine frame supporting at least one bearing.
18. The method as recited in claim 17, wherein said at least one bearing includes a first bearing and a second bearing.
19. The method as recited in claim 16, comprising providing a forward mount located forward of said aft mount relative to said engine axis, wherein said forward mount is configured to react at least one of a vertical load and a side load, and said forward mount is attachable to an engine intermediate case.
20. The method as recited in claim 19, wherein said low pressure turbine defines a low pressure turbine pressure ratio that is greater than five (5), and said gear arrangement defines a gear reduction ratio that is greater than or equal to about 2.5.
US14/966,538 2008-06-02 2015-12-11 Gas turbine engine with low stage count low pressure turbine Abandoned US20160097304A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/966,538 US20160097304A1 (en) 2008-06-02 2015-12-11 Gas turbine engine with low stage count low pressure turbine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US12/131,876 US8128021B2 (en) 2008-06-02 2008-06-02 Engine mount system for a turbofan gas turbine engine
US13/340,834 US8695920B2 (en) 2008-06-02 2011-12-30 Gas turbine engine with low stage count low pressure turbine
PCT/US2012/072271 WO2013102191A1 (en) 2011-12-30 2012-12-31 Gas turbine engine with low stage count low pressure turbine
US14/801,925 US20160047268A1 (en) 2008-06-02 2015-07-17 Gas turbine engine with low stage count low pressure turbine
US14/872,508 US20160024958A1 (en) 2008-06-02 2015-10-01 Gas turbine engine with low stage count low pressure turbine
US14/966,538 US20160097304A1 (en) 2008-06-02 2015-12-11 Gas turbine engine with low stage count low pressure turbine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/872,508 Continuation US20160024958A1 (en) 2008-06-02 2015-10-01 Gas turbine engine with low stage count low pressure turbine

Publications (1)

Publication Number Publication Date
US20160097304A1 true US20160097304A1 (en) 2016-04-07

Family

ID=46599717

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/485,126 Active 2028-07-09 US8511605B2 (en) 2008-06-02 2012-05-31 Gas turbine engine with low stage count low pressure turbine
US14/801,925 Abandoned US20160047268A1 (en) 2008-06-02 2015-07-17 Gas turbine engine with low stage count low pressure turbine
US14/872,405 Abandoned US20160024957A1 (en) 2008-06-02 2015-10-01 Gas turbine engine with low stage count low pressure turbine
US14/872,508 Abandoned US20160024958A1 (en) 2008-06-02 2015-10-01 Gas turbine engine with low stage count low pressure turbine
US14/966,538 Abandoned US20160097304A1 (en) 2008-06-02 2015-12-11 Gas turbine engine with low stage count low pressure turbine

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US13/485,126 Active 2028-07-09 US8511605B2 (en) 2008-06-02 2012-05-31 Gas turbine engine with low stage count low pressure turbine
US14/801,925 Abandoned US20160047268A1 (en) 2008-06-02 2015-07-17 Gas turbine engine with low stage count low pressure turbine
US14/872,405 Abandoned US20160024957A1 (en) 2008-06-02 2015-10-01 Gas turbine engine with low stage count low pressure turbine
US14/872,508 Abandoned US20160024958A1 (en) 2008-06-02 2015-10-01 Gas turbine engine with low stage count low pressure turbine

Country Status (1)

Country Link
US (5) US8511605B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10436120B2 (en) 2013-02-06 2019-10-08 United Technologies Corporation Exhaust nozzle for an elongated gear turbofan with high bypass ratio
US9726083B2 (en) * 2013-08-21 2017-08-08 United Technologies Corporation Load balanced journal bearing pin for planetary gear
US10533522B2 (en) 2013-08-21 2020-01-14 United Technologies Corporation Load balanced journal bearing pin
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
US9850819B2 (en) * 2015-04-24 2017-12-26 United Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US10830148B2 (en) 2015-04-24 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
FR3071866B1 (en) * 2017-10-03 2020-10-02 Safran Aircraft Engines TURBOMACHINE REAR SUSPENSION ASSEMBLY
CA3080178C (en) 2018-01-15 2022-09-20 Lord Corporation Engine mount system and elements for reduced force transmission and reduced static motion and associated methods
US11420755B2 (en) * 2019-08-08 2022-08-23 General Electric Company Shape memory alloy isolator for a gas turbine engine
FR3106126B1 (en) * 2020-01-10 2022-01-07 Safran Aircraft Engines ASSEMBLY BETWEEN AN AIRCRAFT PYLON AND A TURBOMACHINE
GB202017401D0 (en) * 2020-11-03 2020-12-16 Rolls Royce Plc Gas turbine engine with cabin blower system
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system
US20230121939A1 (en) * 2021-10-19 2023-04-20 Raytheon Technologies Corporation Straddle mounted low pressure compressor

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363419A (en) 1965-04-27 1968-01-16 Rolls Royce Gas turbine ducted fan engine
SE402147B (en) * 1975-12-05 1978-06-19 United Turbine Ab & Co GAS TURBINE SYSTEM WITH THREE IN THE SAME GAS PASSAGE ORGANIZED COAXIAL TURBINE ROTORS
US4966338A (en) 1987-08-05 1990-10-30 General Electric Company Aircraft pylon
GB8822798D0 (en) 1988-09-28 1988-11-02 Short Brothers Ltd Ducted fan turbine engine
GB9116986D0 (en) 1991-08-07 1991-10-09 Rolls Royce Plc Gas turbine engine nacelle assembly
US5174525A (en) 1991-09-26 1992-12-29 General Electric Company Structure for eliminating lift load bending in engine core of turbofan
GB9125011D0 (en) 1991-11-25 1992-01-22 Rolls Royce Plc A mounting arrangement for a gas turbine engine
US5275357A (en) 1992-01-16 1994-01-04 General Electric Company Aircraft engine mount
US5320307A (en) 1992-03-25 1994-06-14 General Electric Company Aircraft engine thrust mount
GB2265418B (en) 1992-03-26 1995-03-08 Rolls Royce Plc Gas turbine engine casing
GB2266080A (en) 1992-04-16 1993-10-20 Rolls Royce Plc Mounting arrangement for a gas turbine engine.
US5277382A (en) 1992-10-13 1994-01-11 General Electric Company Aircraft engine forward mount
GB2275308B (en) 1993-02-20 1997-02-26 Rolls Royce Plc A mounting for coupling a turbofan gas turbine engine to an aircraft structure
GB9313905D0 (en) * 1993-07-06 1993-08-25 Rolls Royce Plc Shaft power transfer in gas turbine engines
US5452575A (en) 1993-09-07 1995-09-26 General Electric Company Aircraft gas turbine engine thrust mount
US5443229A (en) 1993-12-13 1995-08-22 General Electric Company Aircraft gas turbine engine sideways mount
US5433674A (en) * 1994-04-12 1995-07-18 United Technologies Corporation Coupling system for a planetary gear train
GB2303884B (en) 1995-04-13 1999-07-14 Rolls Royce Plc A mounting for coupling a turbofan gas turbine engine to an aircraft structure
GB2312251B (en) 1996-04-18 1999-10-27 Rolls Royce Plc Ducted fan gas turbine engine mounting
US5810287A (en) 1996-05-24 1998-09-22 The Boeing Company Aircraft support pylon
FR2755944B1 (en) 1996-11-21 1998-12-24 Snecma REDUNDANT FRONT SUSPENSION FOR TURBOMACHINE
FR2755942B1 (en) 1996-11-21 1998-12-24 Snecma REDUNDANT FRONT SUSPENSION FOR TURBOMACHINE
FR2755943B1 (en) 1996-11-21 1998-12-24 Snecma REDUNDANT FRONT SUSPENSION FOR TURBOMACHINE
US5921500A (en) 1997-10-08 1999-07-13 General Electric Company Integrated failsafe engine mount
US5927644A (en) 1997-10-08 1999-07-27 General Electric Company Double failsafe engine mount
US6126110A (en) 1997-12-22 2000-10-03 Mcdonnell Douglas Corporation Horizontally opposed trunnion forward engine mount system supported beneath a wing pylon
US6138949A (en) 1998-10-30 2000-10-31 Sikorsky Aircraft Corporation Main rotor pylon support structure
US6189830B1 (en) 1999-02-26 2001-02-20 The Boeing Company Tuned engine mounting system for jet aircraft
GB9927425D0 (en) 1999-11-20 2000-01-19 Rolls Royce Plc A gas turbine engine mounting arrangement
GB2375513B (en) 2001-05-19 2005-03-23 Rolls Royce Plc A mounting arrangement for a gas turbine engine
US6517027B1 (en) 2001-12-03 2003-02-11 Pratt & Whitney Canada Corp. Flexible/fixed support for engine cowl
US6652222B1 (en) 2002-09-03 2003-11-25 Pratt & Whitney Canada Corp. Fan case design with metal foam between Kevlar
GB2394991B (en) 2002-11-06 2006-02-15 Rolls Royce Plc Mounting arrangement
US6899518B2 (en) 2002-12-23 2005-05-31 Pratt & Whitney Canada Corp. Turbine shroud segment apparatus for reusing cooling air
FR2856656B1 (en) 2003-06-30 2006-12-01 Snecma Moteurs AIRCRAFT ENGINE REAR SUSPENSION WITH BOOMERANG SHAFT AND BOOMERANG SHAFT
US6843449B1 (en) 2004-02-09 2005-01-18 General Electric Company Fail-safe aircraft engine mounting system
US7055330B2 (en) 2004-02-25 2006-06-06 United Technologies Corp Apparatus for driving an accessory gearbox in a gas turbine engine
FR2868041B1 (en) 2004-03-25 2006-05-26 Snecma Moteurs Sa SUSPENSION OF AN AIRCRAFT ENGINE
US7134286B2 (en) 2004-08-24 2006-11-14 Pratt & Whitney Canada Corp. Gas turbine floating collar arrangement
US7409819B2 (en) 2004-10-29 2008-08-12 General Electric Company Gas turbine engine and method of assembling same
US7309210B2 (en) * 2004-12-17 2007-12-18 United Technologies Corporation Turbine engine rotor stack
US7500365B2 (en) 2005-05-05 2009-03-10 United Technologies Corporation Accessory gearbox
US8220245B1 (en) * 2005-08-03 2012-07-17 Candent Technologies, Inc. Multi spool gas turbine system
FR2894934B1 (en) 2005-12-15 2009-11-13 Airbus France REAR AXLE ATTACHMENT OF AN AIRCRAFT ENGINE WITH MANILITY WAITING FOR AND SPRING FOR SUCH AN AXIS WAITING
WO2008045052A1 (en) 2006-10-12 2008-04-17 United Technologies Corporation Method and device to avoid turbofan instability in a gas turbine engine
US7942079B2 (en) * 2007-02-16 2011-05-17 Hamilton Sundstrand Corporation Multi-speed gearbox for low spool driven auxiliary component
FR2915176B1 (en) 2007-04-20 2009-07-10 Airbus France Sa ENGINE ATTACHING MACHINE FOR AN AIRCRAFT HAVING A REAR ENGINE ATTACHMENT HAVING A BARREL NUT
FR2917712B1 (en) 2007-06-20 2009-09-25 Airbus France Sas ENGINE ATTACHING MACHINE FOR AN AIRCRAFT HAVING A REAR ENGINE ATTACHMENT BEAM FORMING A PALONNIER.
US7882691B2 (en) * 2007-07-05 2011-02-08 Hamilton Sundstrand Corporation High to low pressure spool summing gearbox for accessory power extraction and electric start
FR2918644B1 (en) 2007-07-09 2009-10-23 Airbus France Sas ENGINE ATTACHING MACHINE FOR AN AIRCRAFT HAVING A FOUR-POINT ARTICULATED HINGE.
US8074440B2 (en) 2007-08-23 2011-12-13 United Technologies Corporation Gas turbine engine with axial movable fan variable area nozzle
FR2920138B1 (en) 2007-08-24 2010-03-12 Airbus France AIRCRAFT ENGINE HANDLING DEVICE HAVING A REDUCED GAPPING EFFORTS RECOVERY DEVICE
US8128021B2 (en) 2008-06-02 2012-03-06 United Technologies Corporation Engine mount system for a turbofan gas turbine engine

Also Published As

Publication number Publication date
US8511605B2 (en) 2013-08-20
US20160047268A1 (en) 2016-02-18
US20160024958A1 (en) 2016-01-28
US20160024957A1 (en) 2016-01-28
US20130014490A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
US11286883B2 (en) Gas turbine engine with low stage count low pressure turbine and engine mounting arrangement
US8448895B2 (en) Gas turbine engine compressor arrangement
US8695920B2 (en) Gas turbine engine with low stage count low pressure turbine
US8800914B2 (en) Gas turbine engine with low stage count low pressure turbine
US20160097304A1 (en) Gas turbine engine with low stage count low pressure turbine
US8684303B2 (en) Gas turbine engine compressor arrangement
CA2800001C (en) Gas turbine engine compressor arrangement
CA2800464C (en) Gas turbine engine with low stage count low pressure turbine

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:054062/0001

Effective date: 20200403

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:055659/0001

Effective date: 20200403

AS Assignment

Owner name: RTX CORPORATION, CONNECTICUT

Free format text: CHANGE OF NAME;ASSIGNOR:RAYTHEON TECHNOLOGIES CORPORATION;REEL/FRAME:064402/0837

Effective date: 20230714