US20160089059A1 - Systems and methods for posture and vital sign monitoring - Google Patents

Systems and methods for posture and vital sign monitoring Download PDF

Info

Publication number
US20160089059A1
US20160089059A1 US14/738,918 US201514738918A US2016089059A1 US 20160089059 A1 US20160089059 A1 US 20160089059A1 US 201514738918 A US201514738918 A US 201514738918A US 2016089059 A1 US2016089059 A1 US 2016089059A1
Authority
US
United States
Prior art keywords
user
posture
computing device
cushion
vital sign
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/738,918
Inventor
Junhao Hu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Darma Inc
Shenzhen Dama Technology Co Ltd
Original Assignee
Darma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Darma Inc filed Critical Darma Inc
Priority to US14/738,918 priority Critical patent/US20160089059A1/en
Publication of US20160089059A1 publication Critical patent/US20160089059A1/en
Assigned to Darma Inc. reassignment Darma Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HU, Junhao
Assigned to SHENZHEN DARMA TECHNOLOGY CO. LTD., Darma Inc. reassignment SHENZHEN DARMA TECHNOLOGY CO. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Darma Inc.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1102Ballistocardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6891Furniture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/243Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using means for applying force perpendicular to the fibre axis
    • G01L1/245Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using means for applying force perpendicular to the fibre axis using microbending
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • This invention relates generally to the fields of health and wellness, and more specifically to new and useful systems and methods for posture and vital sign monitoring.
  • back pain can be debilitating for an individual and exacts a substantial economic cost on society—back pain is the most common cause of job-related disability and a leading contributor to missed work days.
  • back pain may be avoided or reduced by maintaining good posture, particularly during prolonged periods of sitting. While many people know the importance of good posture, it can be very difficult to remain mindful of resisting the pull of gravity on the spine when sitting for any extended period of time.
  • the system for posture and vital sign monitoring includes a cushion.
  • the cushion is portable.
  • the cushion forms a portion of a chair, seat, sleeping pod, or couch.
  • the cushion further includes a memory foam layer.
  • the cushion includes: a first optical fiber sensor configured to produce a first signal indicative of a movement of a user, a second sensor configured to produce a second signal indicative of a direction of the movement of the user, and a first computing device including a first processor and memory having a first set of instructions stored thereon.
  • the first optical fiber sensor includes a one-layer deformer structure.
  • the second sensor is a second optical fiber sensor.
  • the second sensor is a pressure sensor.
  • the first optical fiber sensor or the second sensor is further configured to produce an additional signal indicative of a vital sign of the user.
  • the vital sign is a respiratory waveform and/or a cardiac waveform.
  • a system for posture and vital sign monitoring includes a second computing device.
  • the second computing device includes a smartphone, wearable computing device, tablet, laptop, other portable computing device, or a remote server.
  • the second computing device is communicatively coupled to the first computing device.
  • the first computing device and the second computing device communicate wirelessly.
  • the second computing device includes a second processor and memory having a second set of instructions stored thereon.
  • execution of the first and second set of instructions causes a method to be performed including: transmitting data from the first computing device to the second computing device; combining the first signal indicative of the movement of the user with the second signal indicative of the direction of the movement of the user to determine a posture of the user; determining if a change to the posture of the user is recommended; and if change to the posture of the user is recommended, recommending an action to the user via the second computing device.
  • an action recommended to a user includes standing, walking, correcting posture, and/or stretching.
  • the computerized method for posture and vital sign monitoring includes: receiving a first signal indicative of a movement of a user; receiving a second signal indicative of a direction of the movement of the user; combining the first signal indicative of the movement of the user with the second signal indicative of the direction of the movement of the user to determine a posture of the user; determining if a change to the posture of the user is recommended; and if change to the posture of the user is recommended, recommending an action to the user to change the posture.
  • the first signal is produced by a first optical fiber sensor in a cushion.
  • the second signal is produced by a second sensor in the cushion.
  • the second sensor may be another optical fiber sensor, a pressure sensor, or other suitable sensor.
  • the action recommended to the user includes standing, walking, stretching, and/or correcting posture.
  • a computerized method for posture and vital sign monitoring includes identifying if the user is sitting upright with a neutral spine position or if the user is leaning forward, leaning backward, leaning left, leaning right, slouching, and/or otherwise sitting in a position other than the neutral spine position.
  • a computerized method for posture and vital sign monitoring includes generating an alert on the first or second computing device if change to the posture of the user is recommended.
  • a computerized method for posture and vital sign monitoring includes receiving an additional signal indicative of a vital sign of the user.
  • the additional signal is produced by the first optical fiber sensor or the second sensor.
  • the vital sign is a respiratory waveform and/or a cardiac waveform of the user.
  • a computerized method for posture and vital sign monitoring includes determining a stress level of the user based, at least in part, on a change in a variability of the cardiac waveform.
  • a computerized method for posture and vital sign monitoring includes determining if a change to the vital sign is recommended; and if change to the vital sign of the user is recommended, recommending an action to the user to change the vital sign.
  • the action recommended to the user includes standing, walking, stretching, and/or controlled/deliberate breathing.
  • a computerized method for posture and vital sign monitoring includes generating an alert on the first or second computing device if change to the vital sign is recommended.
  • a computerized method for posture and vital sign monitoring includes monitoring a sleep cycle of the user based on the first signal, the second signal, and/or the additional signal.
  • a computerized method for posture and vital sign monitoring includes generating a stimulation signal to stimulate a vibrator within the cushion.
  • the stimulation signal is generated during an appropriate sleep cycle stage of the user and is generated, for example, to awaken the user.
  • FIG. 1 illustrates a schematic diagram of one embodiment of a system for posture and vital sign monitoring
  • FIG. 2 illustrates a perspective view of one embodiment of a cushion for posture and vital sign monitoring positioned on an office chair
  • FIG. 3A illustrates a top perspective view of an exterior surface of one embodiment of a cushion for posture and vital sign monitoring
  • FIG. 3B illustrates a left side view of an exterior surface of the cushion embodiment of FIG. 3A ;
  • FIG. 3C illustrates a schematic right side view of an interior of the cushion embodiment of FIG. 3A ;
  • FIGS. 3D and 3E illustrate a schematic top and bottom view, respectively, of an interior of the cushion embodiment of FIG. 3A ;
  • FIG. 3F illustrates an exploded view of the internal layers of the cushion of FIG. 3A ;
  • FIG. 4 illustrates a partial cross-sectional view of one embodiment of a cushion for posture and vital sign monitoring
  • FIG. 5 illustrates a block diagram of one embodiment of a first or cushion computing device for posture and vital sign monitoring
  • FIG. 6 illustrates a block diagram of one embodiment of a second or portable computing device for posture and vital sign monitoring
  • FIGS. 7A and 7B illustrate various example views of one embodiment of a graphical user interface for monitoring and correcting posture
  • FIGS. 8A-8J illustrate various example views of one embodiment of a graphical user interface for physical activity and vital sign monitoring
  • FIG. 9 illustrates one embodiment of a graphical user interface for stress level monitoring and coaching
  • FIG. 10 illustrates a flow chart of one embodiment of a method for posture monitoring and vital sign monitoring
  • FIG. 11 illustrates a flow chart of one embodiment of a computer-implemented method for determining a posture of a user.
  • FIG. 12 illustrates a flow chart of one embodiment of a method for influencing a user's nap based on one or more monitored vital signs.
  • a system for posture and vital sign monitoring is used by a person (i.e., a user) at home, in an office (e.g., while working, waiting for or during an appointment, etc.), in a motorized vehicle, at a sporting event (e.g., an arena, field, coliseum, park, gym, range, rink, stadium, velodrome, etc.) or in any other location.
  • a person i.e., a user
  • an office e.g., while working, waiting for or during an appointment, etc.
  • a motorized vehicle e.g., at a sporting event (e.g., an arena, field, coliseum, park, gym, range, rink, stadium, velodrome, etc.) or in any other location.
  • a sporting event e.g., an arena, field, coliseum, park, gym, range, rink, stadium, velodrome, etc.
  • a vital sign includes one or more of a heart rate, respiration rate, temperature, and blood pressure of a user.
  • the vital sign includes a cardiac waveform and/or respiration waveform.
  • posture includes one or more of a position, a movement, and a direction of movement of a user.
  • a posture of a user may include a hunchback (i.e. kyphosis), a scoliotic spine, rounded shoulders, flatback, swayback (i.e. lordosis), leaning forward, leaning backward, leaning left, leaning right, sitting upright, twisting, slouching, or any other deviation from a healthy, neutral spine position.
  • the neutral spine position is characterized in a healthy spine as an optimal position of three natural curves of the spine: a cervical (i.e., neck) region involving cervical vertebrae C1-C7, a thoracic (i.e., mid-back) region involving thoracic vertebrae T1-T12, and a lumbar (i.e., lower back) region involving lumber vertebrae L1-L5.
  • a cervical i.e., neck
  • a thoracic i.e., mid-back region involving thoracic vertebrae T1-T12
  • a lumbar i.e., lower back
  • a system for posture and vital sign monitoring includes monitoring a physical attribute of the user, for example, a total weight, weight distribution, or body mass index (BMI) of the user.
  • a system for posture and vital sign monitoring includes determining and monitoring a stress level, heart rate variability, and/or respiration rate variability of the user.
  • an average, minimum, maximum, healthy, and/or unhealthy vital sign and/or posture is determined by the system monitoring the user over time.
  • the system may calibrate to the user by monitoring the user for a time period (e.g., hour, day, week, etc.) to determine the normal variability in the user's cardiac and respiration waveforms and posture and to detect deviations from the normal variability.
  • the system may compare a user's posture and cardiac and respiration waveforms to individuals in the user's same age group, sex group, ethnic group, social class, work environment, location, and/or any other comparable group to identify deviations from normal or healthy values.
  • FIG. 1 illustrates one embodiment of a system 2 for posture and vital sign monitoring.
  • the system 2 includes a cushion 4 including a first optical fiber sensor and a second sensor, a first computing device in the cushion 4 , and a second computing device 6 communicatively coupled (e.g., via Bluetooth, low-energy Bluetooth, other radiofrequency, etc.) to the first computing device.
  • a system 2 for posture and vital sign monitoring further includes a remote computing device 7 (e.g., server).
  • the first and/or second computing device has two-way communication capability (e.g., via Wi-Fi, CDMA, other cellular protocol, other radiofrequency, other wireless protocol) with the remote server.
  • the remote server may receive, store, and/or analyze one or more signals acquired by the first and/or second computing device from the optical fiber sensor and/or the second sensor.
  • a system 2 for posture and vital sign monitoring includes a cushion 4 .
  • the cushion 4 functions to house: two or more sensors for measuring posture and/or one or more vital signs of the user, and a first computing device.
  • the cushion forms a portion of a chair, seat, sleeping pod, mattress, and/or couch.
  • the cushion is a portable seat cushion configured for placement on chairs (e.g., in an office, at home, etc.), bleachers, car seats, airplane seats, and/or other existing seat structures.
  • the cushion is integrated into an office chair, armchair, sofa, car seat, airplane seat, sleeping pod, mattress, or other structure.
  • the system includes multiple cushions, for example, two or more of: a backrest, two armrests, a seat, and a leg rest (e.g., ottoman, recliner, etc.).
  • the cushion includes one or more user input elements 31 , for example, on an exterior surface of the cushion.
  • the cushion may include one or more buttons, sliders, or toggle switches to turn on/off power to the computing device within the cushion or to adjust the settings to a wireless communication module 30 , a vibration module, and/or any other feature or module of the system.
  • a user input element may include a button, slider, or toggle switch for resetting the system, for example to manufacturing settings or to a previous user setting.
  • the cushion 4 is shaped, contoured, or grooved for increasing comfort of a user sitting on or using the cushion.
  • the cushion may include a posterior thickness T 1 and an anterior thickness T 2 .
  • T 1 is greater than T 2 .
  • T 2 is greater than T 1 .
  • T 1 equals T 2 .
  • the posterior portion 8 a of the cushion 4 includes substantially squared edges, while the anterior portion 8 b of the cushion 4 includes substantially rounded edges.
  • both the posterior 8 a and anterior 8 b portions of the cushion 4 may include substantially squared edges; both the posterior 8 a and anterior 8 b portions of the cushion 4 may include substantially rounded edges; or the posterior portion 8 a may be rounded while the anterior portion 8 b is squared.
  • an anterior portion 8 b of the cushion 4 includes one or more dimpled regions 5 .
  • an anterior portion 8 b of the cushion 4 includes two dimpled regions 5 .
  • a center region 9 between two or more dimpled regions is raised, so that an upper leg region or a buttock cheek of a user is positioned or situated in each dimpled region 5 of the cushion 4 , for example, to improve comfort and/or proper positioning of the user while the user is seated on the cushion 4 .
  • the cushion 4 includes material on an exterior surface of the cushion.
  • the material may include cotton, linen, polyester, rayon, denim, velvet, corduroy, silk, wool, leather, polyvinyl chloride (i.e., vinyl), artificial leather (e.g., poromeric imitation leather, Corfam, Koskin, leatherette, etc.), suede or microsuede, or any other material.
  • the material is washable, stain-resistant, fire-resistant (i.e. flame retardant), weather-resistant (e.g., sun-resistant), wrinkle-resistant, and/or water-resistant.
  • the material is breathable to permit airflow into the cushion such that one or more sensors, electronics, and/or computing devices disposed in the cushion do not overheat.
  • the cushion includes multiple internal layers, for example, as visible in FIGS. 3C-3F .
  • the top and/or bottoms layers 11 of the cushion include memory foam (i.e. visco-elastic polyurethane foam), natural latex foam, wool, cotton, or any other material that provides a deformable, squishy, spongy, soft, and/or supportive structure to the cushion, for example for comfort and support of the user.
  • the one or more comfort and/or supportive layers are configured to propagate forces exerted on the cushion to enable the measuring of pressure applied to the cushion surface using one or more sensors disposed in the cushion.
  • a second layer 13 includes one or more sensors, for example pressure sensors 12
  • a third layer 15 includes one or more sensors, for example optical fiber sensors 10
  • the second layer 13 includes one or more optical fiber sensors 10
  • the third layer 15 includes one or more pressure sensors 12
  • two or more layers of optical fiber sensors are provided.
  • one or more pressure sensors and one or more optical fiber sensors are disposed together on or in a single layer.
  • the cushion 4 includes multiple sensors (e.g., two, three, four, five, six, seven, eight, nine, ten, etc.) for measuring one or more vital signs and a posture of the user.
  • the cushion includes two sensors.
  • the one or more sensors are electromagnetic sensors, piezoelectric sensors, gyroscopic sensors, linear encoders, photoelectric sensors, pressure sensors, optical fiber sensors, any other type of sensor, or any combination of the aforementioned sensors.
  • one or more first sensors 10 are optical fiber sensors and one or more second sensors 12 are pressure sensors.
  • the first and second sensors are both optical fiber sensors.
  • the first optical fiber sensor is configured to produce a first signal indicative of a change in force (i.e., movement) of a user and the second sensor (e.g., pressure sensor, optical fiber sensor, etc.) is configured to produce a second signal indicative of a direction of the movement of the user, such that the first and second signals, when combined, indicate a posture of the user.
  • Posture is determined, in part, by pelvic tilt.
  • Tilt or rotation in an individual's pelvis may cause changes to the curvatures of the lumbar, thoracic, and/or cervical regions of the spine.
  • changes to the curvature of the lumbar, thoracic, and/or cervical regions may lead to rotation of the pelvis.
  • rotating a pelvis in a forward tilting position i.e., an anteverted position
  • Anterior rotation of the pelvis can result in a swayback posture (i.e., lordosis). Slouching leads the pelvis to rotate towards a backward tilting position (i.e., a retroverted position).
  • posture is determined by using a combination of fiber optics sensors and/or pressure sensors to detect applied pressures, forces, and/or changes in applied pressures or forces on the cushion.
  • the first optical fiber sensor is sufficiently sensitive to detect both macro- and micro-movements of the user (i.e., relatively large and small changes in force) such that the signal generated by the first optical fiber sensor may additionally be indicative of breathing, a beating heart, and/or one or more other vital functions of the user.
  • the optical fiber sensor 10 is formed of an optical fiber.
  • the optical fiber has a first end coupled to a light source (e.g., LED, OLED, incandescent, etc.) and a second end coupled to an optical signal receiver.
  • the light source and optical signal receiver are coupled to or integrated with the printed circuit board and/or cushion computing device 14 , as shown in FIG. 3F .
  • the light source is configured to emit a light wave into the optical fiber.
  • the optical fiber sensor 10 is positioned such that an application of force on a surface of the cushion causes the optical fiber to deform or microbend, which in turn influences propagation of the light wave through the optical fiber.
  • the optical signal receiver is configured to detect changes in light wave propagation.
  • the changes in light wave propagation are processed and analyzed by the first and/or second computing device to determine a position and/or vital sign of the user. For example, in the presence of an external force generated by body weight, heartbeat, respiration, and/or body movement, the force is distributed on the optical fiber and deformer. These forces will microbend the optical fiber causing significant light loss with some residual light propagating through the optical fiber due to the microbending effect.
  • the optical signal receiver receives the residual light.
  • the residual light is processed to identify a change in force and thereby determine a body weight, heartbeat/respiration, and/or body movement/position of the user.
  • the optical fiber sensor includes a single or double deformer structure.
  • An embodiment of a cushion having an optical fiber sensor with a single layer deformer structure is shown in FIG. 4 .
  • a single layer deformer 18 may be configured to achieve the highest vital sign and posture detection sensitivity under absolute light loss caused by body weight, while a double deformer may be configured to achieve the highest light loss for a given applied force.
  • the single deformer layer 18 balances the absolute force caused, for example, by body weight with the relatively small force changes caused, for example, by heart beats, respiration, and small shifts in posture.
  • Use of a single deformer 18 enables extraction of faint ballistography signals and respiration waveforms from the high noise background caused by body movements.
  • the deformer 18 may be formed of mesh (e.g., interwoven monofilaments, wires, threads, ribbons, or the like).
  • the single layer deformer 18 functions to achieve micro bending of the optical fiber 20 and increased sensitivity of detection of cardiac and respiration waveforms and body movement.
  • an outside force indicated by the arrows 22 (e.g., body weight, heart rate, respiration rate, movement, etc.)
  • the cushion and the cushion's internal optical fiber 20 the force 22 is distributed throughout the upper cover 24 and the optical fiber 20 and is not concentrated on the center of the fiber.
  • a polymeric open mesh fabric is used as the single layer deformer and a plain fabric is applied on top of a multimode optical fiber to uniformly distribute any force applied on the sensor.
  • the optical fiber sensor does not include a deformer 18 .
  • a system for posture and/or vital sign monitoring includes one or more second sensors 12 , for example, one or more pressure sensors.
  • the second sensor functions, in combination with the optical fiber sensor 10 , to determine a posture of the user.
  • a plurality of second sensors for example, six pressure sensors, are provided.
  • less than six pressure sensors e.g., five, four, three, two, one
  • more than six pressure sensors e.g., seven, eight, nine, ten, eleven, twelve, etc.
  • the pressure sensor 12 is an absolute pressure sensor, a gauge pressure sensor, a vacuum pressure sensor, a differential pressure sensor, or a sealed pressure sensor.
  • the pressure sensor includes a force-sensing resistor.
  • the pressure sensor is responsive in the 20 Kg to 150 Kg range or any subrange therebetween.
  • the pressure sensor is responsive between 20-30 Kg, 30-40 Kg, 40-50 Kg, 50-60 Kg, 60-70 Kg, 70-80 Kg, 80-90 Kg, 90-100 Kg, 100-110 Kg, 110-120 Kg, 120-130 Kg, 130-140 Kg, or 140-150 Kg.
  • the pressure sensor is responsive between 40 Kg and 100 Kg.
  • one or more pressure sensors are arranged in a pattern on an interior layer of the cushion 4 .
  • the pattern includes a substantially hexagonal pattern, for example, as shown in FIGS. 3D-3F .
  • the pattern includes a square or rectangular pattern.
  • a first set of three pressure sensors are substantially parallel to a second set of three pressure sensors, which are substantially parallel to a third set of three pressure sensors.
  • one or more pressure sensors may be positioned on a perimeter of an interior layer of the cushion in a square or rectangular pattern.
  • the pattern includes a substantially circular pattern, for example defining a circumference of a circle.
  • a system 2 for posture and/or vital sign monitoring includes, at least, first and second computing devices.
  • the first computing device is disposed within the cushion 4 and is referred to herein as the cushion computing device.
  • the second computing device 6 may include a smartphone, wearable computing device (e.g., watch, bracelet, headband, necklace, etc.), tablet, laptop, or other portable computing device.
  • the second computing device 6 may be a remote server.
  • the system also includes a third computing device 7 .
  • the third computing device referred to herein as a remote computing device, may be a web server, an application server, a database server, and/or any other suitable computing device.
  • Two or more computing devices of the system may communicate wirelessly using Bluetooth, Wi-Fi, CDMA, other cellular protocol, other radiofrequency, or another wireless protocol.
  • the cushion computing device in the cushion 4
  • portable computing device 6 and remote computing device 7 each include a processor, for example a microcontroller, and memory having instructions stored thereon.
  • the processor functions to execute the operating instructions of the system.
  • the operating instructions of the system may include instructions for receiving one or more signals from one or more sensors, processing the signals, and determining a posture and/or vital sign of the user from the processed signals.
  • a cushion computing device and a portable computing device each include a processor, which is embedded on a printed circuit board (PCB) and communicatively coupled (e.g., via a hardwired connection) to one or more system components (e.g., power module, user input elements, light module, vibration module, optical fiber sensor, second sensor, etc.).
  • the processor is a low-energy microcontroller.
  • FIG. 5 provides one example of a cushion computing device 28 that may be found within the cushion 4 of FIG. 1 .
  • FIG. 6 provides one example of a portable computing device 29 .
  • the illustrated components are functional components, and the various functional components may be embodied within one or more structural elements.
  • the functional components of the cushion computing device 28 are embodied within the PCB/computing device unit 14 , the power module 21 , and the vibration module 19 within the cushion 4 of FIGS. 3D-3F .
  • the cushion computing device 28 and the portable computing device 29 each include or are coupled to a power module.
  • the power module functions to provide electricity to one or more system components to enable operation of the one or more system components.
  • the power module includes an internal power source, for example, a battery (e.g., non-rechargeable, rechargeable, etc.), an inductive power source, a kinetic charger, and/or one or more solar panels.
  • the cushion computing device 28 may be powered by an external power source or the internal power source may be recharged, for example, by ultraviolet light, movement of a user, or an electromagnetic field.
  • the cushion 28 and/or portable 29 computing device may be recharged by coupling the power module to an external power source, for example, using a power cord (e.g., IEEE 1394, universal serial bus (USB), Thunderbolt, Lightning, Ethernet, etc.) removably insertable into a port on the power module.
  • a power cord e.g., IEEE 1394, universal serial bus (USB), Thunderbolt, Lightning, Ethernet, etc.
  • the cushion computing device 28 and the portable computing device 29 each include an antenna for transmitting and receiving data wirelessly.
  • the antenna may include, for example, an antenna configured to transmit data to, and receive data from, another computer via Wi-Fi, CDMA, other cellular protocol, other radiofrequency, other wireless protocol).
  • the antennas enable communication between the cushion computing device 28 , the portable computing device 29 , and optionally, a remote computing device.
  • the cushion computing device 28 includes one or more user input elements.
  • the one or more user input elements are accessible on an exterior surface of the cushion or, alternatively, disposed in the cushion and only accessible after accessing the interior of the cushion or dismantling the cushion.
  • the cushion computing device may include one or more buttons, sliders, or toggle switches to turn on/off power to one or more system components, wireless communication 30 (e.g., data transmission via Bluetooth, low-energy Bluetooth, other radiofrequency technology, etc.) to one or more system components, a vibration module (e.g., to wake a user from a nap), and/or any other feature or module of the system.
  • a user input element may include a button, slider, or toggle switch for resetting the system, for example to manufacturing settings or to a previous user setting.
  • the portable computing device 29 includes one or more user input elements.
  • the portable computing device may include one or more manual and/or virtual buttons, sliders, or toggle switches on an exterior surface or on a graphical user interface (GUI) of the portable computing device.
  • the one or more user input elements may turn on/off: power to one or more system components, wireless communication (e.g., data transmission via Bluetooth, low-energy Bluetooth, other radiofrequency technology, etc.) to one or more system components, a vibration module (e.g., to wake a user from a nap) of the cushion computing device, and/or any other feature or module of the system.
  • wireless communication e.g., data transmission via Bluetooth, low-energy Bluetooth, other radiofrequency technology, etc.
  • a vibration module e.g., to wake a user from a nap
  • a user input element may include a button, slider, or toggle switch for resetting the system, for example to manufacturing settings or to a previous user setting.
  • a user input element is used to toggle between different GUIs or to access different features of the software on the portable computing device.
  • the cushion computing device 28 includes a light module including one or more lights (e.g., LED, OLED, incandescent, etc.) visible from an exterior of the cushion, for example, to indicate a connectivity and/or power status of the cushion computing device and/or other electronics in the cushion.
  • a red, orange, or yellow light indicates varying degrees of low battery/power;
  • a green light indicates good battery power and/or fully charged, and
  • a blue light indicates a wireless (e.g., Bluetooth, low-energy Bluetooth, other radiofrequency, etc.) connection to one or more other system components.
  • the user input element 31 includes, is adjacent to, or is surrounded by, the light module; in some such embodiments, a light indicator may be illuminated in an “on” state, emitting, for example, emitting a green glow. In some embodiments, in an “off” state, the light indicator may not be illuminated or may emit a different color, for example, red.
  • the cushion computing device 28 includes a vibration module.
  • the vibration module may be remote from, but electrically coupled to the remainder of the cushion computing device, for example, as is the case for the vibration module 19 shown in FIGS. 3D and 3F .
  • the vibration module may function to wake a user from a nap, for example, during an appropriate phase of the sleep cycle (e.g., REM, non-REM).
  • the vibration module may function to massage a user, for example, to relax a user when a user's heart rate, respiration rate, or stress level reach a pre-determined or pre-defined threshold.
  • the vibration module functions as a tactile alert to remind a user, for example, to stand up or sit up straight when slouching, prolonged durations of sitting, or changes in vital signs indicative of stress are detected.
  • the vibration module includes an eccentric rotating mass (ERM) actuator.
  • EPM eccentric rotating mass
  • a direct current (DC) motor drives a gear including a weight positioned off-center on the gear. Driving rotation of the gear including the weight using the DC motor results in vibration.
  • the vibration module includes a linear resonant actuator (LRA).
  • LRA linear resonant actuator
  • a magnetic field is generated by a voice coil which interacts with a magnet and a weight suspended on a spring. As the magnetic field varies with the applied drive signal, the magnet and weight are accelerated up and down as they interact with the spring resulting in vibration.
  • the cushion computing device 28 and/or portable computing device 29 includes a program port.
  • the program port functions to receive one or more programs for operating the system, for example through a port (e.g., IEEE 1394, universal serial bus (USB), Thunderbolt, Lightning, Mini Display, DVI, HDMI, Serial, Parallel, Ethernet, Coaxial, VGA, or PS/2).
  • a port e.g., IEEE 1394, universal serial bus (USB), Thunderbolt, Lightning, Mini Display, DVI, HDMI, Serial, Parallel, Ethernet, Coaxial, VGA, or PS/2).
  • a program includes instructions: for determining a vital sign and/or posture based on one or more sensor signals; for creating an alert, including instructions specifying alert frequency, types, and/or triggers (e.g., to correct a vital sign and/or posture of the user); for creating a recommendation, including instructions specifying recommendation frequency, types, and/or triggers (e.g., to correct a vital sign and/or posture of the user); or related to a power level of the system, a vibration module status, a light module status, or any other operational feature of the system.
  • the cushion computing device 28 and/or portable computing device 29 further includes a low-dropout (LDO) regulator.
  • LDO regulator is a direct current (DC) linear voltage regulator, which functions to regulate the output voltage even when the supply voltage is very close to the output voltage.
  • the system includes a different type of DC-to-DC regulator or an alternating current (AC)-to-DC regulator.
  • the cushion computing device 28 includes one or more analog to digital converters (ADC) to convert one or more analog signals acquired for example from a sensor, to one or more digital signals to be processed and analyzed by the cushion and/or portable computing device.
  • ADC analog to digital converters
  • the portable computing device 29 further includes an accelerometer.
  • the accelerometer in the portable computing device functions to determine if a user is standing, walking, and/or moving.
  • two or more accelerometers may be used in the portable computing device to determine a step frequency or rate of the user, for example while the user is walking.
  • a mechanical or electrical pedometer may be used to determine step frequency or rate of the user.
  • a gyroscope may be provided in the portable computing device and function to detect user motion.
  • the portable computing device includes one or more graphical user interfaces (GUIs).
  • GUIs graphical user interfaces
  • a GUI on the portable computing device functions to track one or more vital signs and/or postures of a user at a defined time and/or over a period of time (e.g., hour, day, week, month, year, etc.), to provide a recommendation to the user (e.g., suggestion for correcting posture or vital sign, etc.), and/or alert a user to an unhealthy posture and/or vital sign (e.g., an increased heart rate, an increased respiration rate, a changed variability in heart rate, or a position in which the user is leaning forward, leaning backward, leaning left, leaning right, slouching, etc.).
  • an unhealthy posture and/or vital sign e.g., an increased heart rate, an increased respiration rate, a changed variability in heart rate, or a position in which the user is leaning forward, leaning backward, leaning left, lean
  • one or more GUIs may include a menu bar, for example for switching between one or more GUI screens or pages, adjusting one or more user settings, altering one or more program settings, adjusting types or timings of notifications delivered by the system, and/or changing any other parameter of the system.
  • a GUI of the cushion and/or portable computing device includes a cartoon, icon, or avatar 32 indicating a position, movement, and/or posture of the user and a cartoon or icon of one or more sensors 34 positioned on a cushion 33 , the cartoon or icon is configured to indicate and display a corresponding location of pressure on the physical cushion 4 .
  • the information displayed in the GUI is in real-time or substantially real-time, such that the GUI provides a digital representation of a user's current seated position, as detected by the one or more sensors of the cushion 33 .
  • the GUI may encourage the user to apply pressure evenly to all sensors 34 in the cushion 33 , for example, by displaying a notification when pressure is not applied evenly and/or indicating which sensors are not receiving detectable pressure and which sensors are receiving detectable pressure.
  • the GUI is configured to display an indictor of a relative amount of force being exerted on each sensor.
  • the sensors on the GUI include a dark color or hue when indicating significant pressure and a lighter color or hue when indicating less pressure.
  • the sensors on the GUI blink or flash when receiving too much or too little pressure.
  • the GUI may be yellow, orange, or red when the user has an incorrect or unhealthy posture (e.g., is leaning forward, leaning backward, leaning left, leaning right, twisting, slouching, etc.) and green when the user has a good or adequate posture (e.g., is sitting upright in a neutral position).
  • an incorrect or unhealthy posture e.g., is leaning forward, leaning backward, leaning left, leaning right, twisting, slouching, etc.
  • green when the user has a good or adequate posture (e.g., is sitting upright in a neutral position).
  • one or more GUIs include an indication 36 of a heart rate, respiration rate, stress level, and/or activity level of a user.
  • the GUI includes a heart rate, stress level, and respiration rate for a user while sitting ( FIG. 8A ), standing ( FIG. 8B ), and/or walking ( FIG. 8C ).
  • the GUI may include a cartoon, icon, or avatar 38 indicating the activity being performed by the user (e.g., sitting, standing, walking, etc.) and a progress indicator 40 (e.g., bar, circle, etc.) indicating a progression of time and/or a length of time (e.g., seconds, minutes, hours, etc.) elapsed while the user has been in a particular position or activity.
  • the progress indicator 40 provides a countdown of time remaining in an activity before the user is recommended or permitted to switch activities.
  • one or more GUIs further includes alert element 39 .
  • Alert element 39 indicates to the user a remaining amount of time before the portable computing device suggests or recommends an activity change (e.g., sitting to standing, standing to walking, walking to sitting, etc.). For example, the portable computing device may elicit an audible, tactile, or visual alert to the user indicating that a change in activity is recommended.
  • the application on the portable computing device is configured to push alerts and other notifications to a user even when the user does not have the GUI open on the portable computing device.
  • one or more GUIs may display a total or an average duration 42 (e.g., seconds, minutes, hours, etc.) of each activity (e.g., sitting ( FIG. 8D ), standing ( FIG. 8E ), moving, walking ( FIG. 8F ), etc.) the user performed in a defined time period (e.g., hour, day, week, etc.).
  • an average duration of an activity may be depicted on the GUI using shapes, such that the size, color, configuration (e.g., circle, square, triangle, rectangle, diamond, etc.), or any of other parameter of the shape indicates the relative duration of an activity, as compared to the duration of other activities.
  • a relatively large shape may indicate a substantial length of time and a smaller shape may indicate a shorter length of time.
  • each kind of tracked activity is depicted with a different color of shape, for example, a red shape may indicate sitting, orange may indicate moving, green may indicate standing, and blue may indicate walking.
  • the GUI includes a graphical representation 44 (e.g., line graph, pie chart, histogram, table, pictograph, bar graph, etc.) of a user's activity.
  • the x-axis may indicate a time of day (e.g., 9:00 AM, 12:00 PM, 3:00 PM, 5:00 PM, etc.) and the y-axis may indicate a duration of an activity.
  • the x-axis may indicate a type of activity and the y-axis may indicate a duration of the activity.
  • different activities are plotted on the same graphical representation using different colors, shapes, line textures (e.g., dotted, segmented, solid, etc.), or any other distinguishing feature.
  • one or more GUIs display one or more cardiac and/or respiration waveforms 46 of a user over a period of time (e.g., minutes, hours, days, weeks, etc.).
  • a period of time e.g., minutes, hours, days, weeks, etc.
  • an average heartbeat or respiration rate 48 e.g., hourly, daily, weekly, etc. average
  • FIG. 8G , 81 , and 8 J display one or more cardiac and/or respiration waveforms 46 of a user over a period of time (e.g., minutes, hours, days, weeks, etc.).
  • an average heartbeat or respiration rate 48 e.g., hourly, daily, weekly, etc. average
  • one or more GUIs includes a graphical representation 50 (e.g., line graph, pie chart, histogram, table, pictograph, bar graph, etc.) of an average heartbeat and/or respiration rate or a heartbeat and/or respiration rate over time of a user derived from the cardiac and/or respiration waveform, for example, to indicate fluctuations (e.g., maximum, minimum, variation over time, etc.) in the heart and/or respiration rate of the user over a period of time or an average heart and/or respiration rate of the user during a period of time.
  • a graphical representation 50 e.g., line graph, pie chart, histogram, table, pictograph, bar graph, etc.
  • fluctuations e.g., maximum, minimum, variation over time, etc.
  • one or more GUIs include a goal view indicating a target or goal of a user.
  • the GUI may indicate a desired amount 52 (e.g., time, frequency, number) of exercise of a user and the actual amount 54 the user exercised.
  • the GUI represents the information in a pie chart 56 or a timeline 58 indicating missed exercise times and/or total missed time periods of exercise.
  • a GUI indicates a stress level of a user and coaches the user towards a reduced stress level.
  • the stress level is determined by the heart rate and/or respiration rate of the user relative to a user's minimum, average, and maximum observed/measured heart rate and/or respiration rate.
  • a stress level of a user is detected by an increase in variability in a user's heart rate and/or respiration rate.
  • a recommendation to the user may be displayed on the GUI to encourage the user to breathe slowly, take bigger/deeper breaths, meditate, contact a massage service, attend a yoga or meditation class, or any other recommendation to reduce the user's stress.
  • the GUI indicates the progress of the user towards reducing his/her stress, for example, using a progress indicator 60 and/or percent stress relative to the initially observed/measured stress level.
  • a user may share his/her vital sign(s), activity level, and/or posture information with one or more social networks (e.g., Facebook®, Twitter®, LinkedIn®, Instagram®, etc.) or through email or messaging using the cushion and/or portable computing device.
  • a user may transmit his/her average heart rate, respiration rate, posture, and/or stress level; activity level or goal activity level for a period of time; cardiac and/or respiration waveforms; one or more services the user is using as recommended by the system (e.g., to decrease stress, improve posture, etc.); or any other information the user wishes to share.
  • a computerized method for posture and vital sign monitoring of one embodiment includes receiving a first signal indicative of a movement of a user S 100 , receiving a second signal indicative of a direction of the movement of the user S 110 , combining the first signal indicative of the movement of the user with the second signal indicative of the direction of the movement of the user to determine a posture of the user S 120 , determining if a change to the posture of the user is recommended S 130 , and if a change to the posture of the user is recommended, recommending an action to the user to change the posture S 140 .
  • the method functions to measure a posture of the user and enable a user to change his/her posture based on a recommendation from the system.
  • one embodiment of a computerized method for posture and vital sign monitoring includes S 100 , which recites receiving a first signal indicative of a movement of a user.
  • S 100 functions to collect movement data about a user, for example using an optical fiber sensor.
  • the optical fiber sensor is disposed in a cushion, such as, for example, any cushion embodiment described elsewhere herein. Deformation or bending of the optical fiber in the cushion results in differential light wave propagation through the optical fiber.
  • the optical signal receiver coupled to the optical fiber is configured to detect changes in the light wave propagation.
  • the optical signal receiver of various embodiments is electrically coupled to, or forms a portion of, a cushion computing device.
  • the cushion computing device processor receives signals indicative of changes in light wave propagation (e.g., signals indicative of a movement of a user) from the optical signal receiver.
  • one embodiment of a computerized method for posture and vital sign monitoring includes S 110 , which recites receiving a second signal indicative of a direction of the movement of the user.
  • S 110 functions to collect data about a direction of movement of a user, for example using a pressure sensor.
  • One or more pressure sensors are disposed in a cushion, and each measures pressure exerted on an exterior surface of the cushion by the user.
  • the degree of deformation of a force collector e.g., diaphragm, piston, bourdon tube, bellows, etc.
  • each pressure sensor is electrically coupled to the cushion computing device, and the detected pressure signals are received by the cushion computing device.
  • one embodiment of a computerized method for posture and vital sign monitoring includes S 120 , which recites combining the first signal indicative of the movement of the user with the second signal indicative of the direction of the movement of the user to determine a posture of the user.
  • S 120 functions to determine a posture of the user by combining signals indicative of movement (i.e., movement data) and signals indicative of direction (i.e., direction of movement data) to determine if there has been a change to a user's weight distribution or pelvic tilt, and thus, to determine if a user is in a neutral posture or is leaning forward, leaning backward, leaning left, leaning right, slouching, or otherwise deviating from the neutral posture.
  • the user's pelvis will be rotated towards a backward tilting position (i.e., a retroverted position) and an increase in pressure will be detected by the posterior sensors 12 c , 12 f .
  • pressure will be substantially evenly distributed between all six sensors 12 a , 12 b , 12 c , 12 d , 12 e , 12 f , 12 g or distributed between all six sensors in accordance with an acceptable ratio of pressure distributions.
  • S 120 is performed on and by the cushion computing device; in other embodiments, it is performed on and by the portable computing device or by a combination of the cushion and portable computing device.
  • S 120 is performed by the cushion computing device.
  • the raw optical sensor signal and the raw pressure sensor signal are received, processed, and combined by the cushion computing device.
  • S 120 is performed by the portable computing device.
  • the signals are at least minimally processed by the cushion computing device, for example, to convert from analog to digital signals. Additional processing, such as filtering the signals to remove noise and artifacts, may be performed by the cushion computing device or the portable computing device.
  • the partially or fully processed signals are transmitted to the portable computing device for performance of S 120 .
  • the partially or fully processed signals may be transmitted via a wired connection (e.g., a cable) or a wireless connection (e.g., Bluetooth, low-energy Bluetooth, or other radiofrequency protocol).
  • S 120 is performed by a remote computing device.
  • the partially or fully processed signals may be received by the portable computing device, optionally processed further, and transmitted from the portable computing device to the remote computing device for performance of S 120 .
  • the signals may be transmitted to the remote computing device via a Wi-Fi, CDMA, other cellular, other radiofrequency, or other wireless connection.
  • one embodiment of a computerized method for posture and vital sign monitoring includes S 130 , which recites determining if a change to the posture of the user is recommended. In some embodiments, determining if a change in posture is recommended includes assessing whether the user is deviating from a neutral spine position. As described above, the first and second signals are received, processed, and analyzed by the cushion, portable, and/or remote computing devices to determine a posture of the user. In some embodiments, data indicative of the posture of the user is compared to a database of acceptable and/or unacceptable posture data to determine if the analyzed user data is within an acceptable range and whether that posture needs correction and/or improvement. In some embodiments, the database is stored within the remote computing device.
  • the database is stored directly on the portable computing device.
  • the database of acceptable and/or unacceptable posture data includes data collected from the user's past use history.
  • the database of acceptable and/or unacceptable posture data includes data collected from a plurality of other users.
  • the database includes medically recommended values or ranges of values.
  • a computerized method for posture and vital sign monitoring includes S 140 , which recites if change to the posture of the user is recommended, recommending an action to the user to change the posture.
  • S 140 functions to provide recommendations, action items, and/or resources to the user so that the user can correct and/or improve his/her posture.
  • a recommendation or action item includes suggesting that the user stand, walk, stretch, move, correct posture (e.g., with coaching from system), or any other activity.
  • the system recommends or suggests a resource, for example, one or more media (e.g., book, website, podcast, etc.) links for education on posture, healthy activities, and/or outcomes of healthy or unhealthy posture.
  • the system recommends or suggests a service to the user, for example, a massage, chiropractor, exercise coach, yoga class, gym, spa, or any other service.
  • recommendations are pulled from a database, for example, a database stored within the remote computing device or the portable computing device.
  • each recommendation is linked within the database to a particular detected posture or a necessary change in posture.
  • the recommendations are additionally or alternatively linked to a user's profile and/or demographic data. For example, certain recommendations may be coupled to slouching, such that when the system detects a slouching user, one or more relevant recommendations are presented to the user. In some embodiments, if the system detects that a user was responsive to a particular recommendation, that particular recommendation may be saved and recommended to the user in the future when slouching is again detected.
  • a computerized method for posture and vital sign monitoring includes S 150 , which recites receiving a signal indicative of a vital sign of the user.
  • the vital sign signal may be produced by the first optical fiber sensor or a second sensor.
  • one or more of the sensors, such as the optical fiber sensor are sensitive enough to detect micro-movements indicative of breathing, a beating heart, or other vital function.
  • the vital sign includes a respiratory waveform and/or a cardiac waveform of the user. From these waveforms, a breathing rate and/or heart rate, respectively, can be detected and tracked.
  • a stress level of the user is determined based, at least in part, on a change in a variability of the cardiac waveform and/or respiration waveform.
  • the system may calibrate to the user by monitoring the user for a time period (e.g., hour, day, week, etc.) to determine the variability in the user's cardiac and/or respiration waveforms.
  • the system may compare a user's cardiac and/or respiration waveforms to individuals in the user's same age group, sex group, ethnic group, social class, work environment, location, or any other comparable group. Based on this calibration and/or comparison, the system may determine a stress level of the user.
  • the system after determining a vital sign and/or stress level of the user, the system performs S 160 , which recites determining if a change to the vital sign is recommended, and if change to the vital sign of the user is recommended, the system recommends an action to the user to change the vital sign, as shown at S 170 .
  • the recommendation functions to provide suggestions, action items, and/or resources to the user so that the user can correct and/or improve his/her stress level and/or vital signs.
  • a recommendation or action item includes suggesting that the user nap, wake-up, stand, walk, stretch, move, breathe slowly and/or deeply (e.g., with coaching from system), meditate, or any other activity.
  • the system recommends or suggests a resource, for example, one or more media (e.g., book, website, podcast, etc.) links for education on stress, healthy activities, and/or outcomes of healthy or unhealthy stress levels and/or vital signs.
  • a service for example, a massage, chiropractor, exercise coach, yoga class, gym, spa, meditation class, therapist, or any other service.
  • a computerized method for posture and vital sign monitoring includes generating an alert on the cushion or portable computing device if change to the posture, stress level, and/or vital sign of the user is recommended.
  • An alert may be generated to indicate to the user that he/she is experiencing unhealthy posture, stress levels, and/or vital signs that require adjustment, correction, and/or improvement.
  • the system may alert the user on the cushion and/or the portable computing device using auditory, haptic/tactile, visual, and/or olfactory alerts.
  • an auditory alert may include a voice command or alert or a tonal alert (e.g., beep, ding, etc.) generated at the cushion or portable computing device.
  • a tactile or haptic alert may include: vibration of the cushion computing device, portable computing device, and/or cushion; and/or a warming sensation in the cushion (e.g., by one or more heat emitters or heating elements in the cushion).
  • a visual alert may include a message (e.g., SMS, push notification, badge notification, etc.) on a display screen of the cushion and/or portable computing device; and/or a light indicator (e.g., red, yellow, orange, green, etc.) generated by an LED or other light emitter on or coupled to the cushion computing device and/or portable computing device.
  • An olfactory alert may include emission of one or more aromatic compounds from the cushion.
  • the cushion may include a compartment including an aromatic perfume or compound such that the compound is released (e.g. sprayed into the air) during set times, for example when a user's stress level reaches an unhealthy level.
  • the cushion may release lavender, jasmine, chamomile, sandalwood, or mint scents.
  • the cushion may release citrus or rosemary scents.
  • a computer-implemented method for determining a posture of a user includes one or more functions performed by the system to determine and, if necessary, correct a posture of the user.
  • an optical fiber sensor and second sensor are embedded into a cushion and configured to acquire the vibration and movement signals generated from a user's body.
  • a posture recognition algorithm may be applied to the collected signals from the optical fiber sensor and second sensor to classify the current posture. Such an algorithm identifies data indicative of the current posture and compares the data to pre-defined posture data sets stored within the first, second, and/or third computing device.
  • the posture recognition algorithm matches scores between the current posture data and the pre-defined posture data sets, identifying the pre-defined data set that most closely matches the current posture data.
  • each pre-defined posture data set correlates to a different form of posture.
  • feedback is generated based on the recognized and analyzed posture status of the user.
  • a computer-implemented method for determining a posture of a user includes analyzing and/or estimating a user's weight based on a first signal collected with a first optical fiber sensor S 200 , updating a set of posture recognition parameters based on the first signal S 210 , detecting a posture change event based on an analysis of a user's body movement using the first optical fiber sensor S 220 , collecting a second signal using a second sensor and categorizing the second signal based on the set of posture recognition parameters to determine a new posture of the user S 230 , and determining if the new posture warrants feedback to the user to change the new posture S 240 .
  • the signal collected by one or more optic fiber sensors is indicative of an amount of deformation on the optic fiber, which is itself indicative of an amount of force applied to the cushion; thus, the signal can be analyzed to determine an estimation of the user's weight.
  • the estimate of the user's weight informs a set of posture recognition parameters.
  • Tge set of posture recognition parameters may include, for example, posture classifier coefficients, threshold values for each posture category/classification, etc.
  • the system may use the user's weight and one or more posture recognition parameters and/or equations to calculate an amount of pressure or force that would be exerted on one or more second sensors if a user were seated in a healthy, neutral posture.
  • the system executes a posture recognition algorithm in which the actual pressure or force detected at one or more second sensors is compared to the expected neutral pressure or force to determine if a user is currently seated in a healthy, neutral posture.
  • the optic fiber signal is additionally used in various embodiments to detect a posture change event.
  • a posture change event may be detected when there is a change in the optic fiber signal resulting from a change in the deformation of the optic fiber.
  • a change in the deformation of the optic fiber may result any time there is a shift in a user's weight distribution.
  • a detected posture change event will trigger the new posture recognition algorithm.
  • the new posture recognition algorithm includes categorizing a second signal collected by one or more second sensors. For example, the second signal may be categorized by a pre-trained posture model and a posture recognition algorithm controlled by the set of posture recognition parameters.
  • the posture model is pre-trained by learning from a large set of training samples collected by the cushion computing device.
  • the training samples are collected from multiple users sitting in defined posture positions or categories during the data collection.
  • the collected training samples are then analyzed and a set of normalized features is extracted from each training sample.
  • the posture model is refined by applying multiple machine learning algorithms and/or techniques.
  • the second signal is pre-processed and analyzed, at least in part, using a posture recognition algorithm.
  • a set of normalized features is extracted from the second signal using the same method as that during the training phase.
  • the extracted feature set is then input into the pre-trained model to determine the posture category of the second signal.
  • Posture recognition parameters include model parameters, such as the weights of each feature, the classifier coefficients, and the thresholds of each posture category, which are set during a user weight estimation phase using the optical fiber data.
  • a posture recommendation algorithm generates feedback to the user when it is determined that the user is not sitting in a neutral posture. The feedback may be generated when a reminder and/or guidance is determined by the system to be necessary to change the new posture of the user.
  • a set of continuous (or frequently acquired) posture statuses are stored in a data structure (e.g., circular buffer, cyclic buffer, or ring buffer) on the third computing device, the second computing device, and/or the first computing device. Such posture statuses may be analyzed to determine if a reminder and/or guidance should be triggered and sent to the user on the second computing device to change the posture of the user.
  • a computerized method for posture and vital sign monitoring includes monitoring a sleep cycle of the user based on one or more of the first signal, second signal, and third signal. Such a method may function to determine: a posture and/or vital sign of the user, when it is appropriate to wake a user from a nap, and/or one or more health conditions of the user. For example, the system may distinguish between REM and non-REM sleep cycles of the user based on a respiration rate and/or heart rate of the user. Such a system may be able to alert a user if frequent disruptions are occurring in the user's sleep cycle. In some embodiments, the system generates a signal to stimulate a vibrator within the cushion or to release an aromatic compound from the cushion, for example to wake the user during an appropriate sleep cycle stage of the user.
  • FIG. 11 illustrates a flow chart of one embodiment of a method for monitoring one or more vital signs of a user during a nap while the user is seated on the cushion.
  • the method includes receiving one or more inputs from the user that the user intends to nap S 300 a .
  • the user may select a range for the nap length (e.g., 15-20 minutes, 20-30 minutes, 30-60 minutes, etc.) and input the range for the nap length into the portable computing device.
  • the cushion and/or portable computing device may recommend a nap to the user S 300 b .
  • the cushion and/or portable computing device may detect a heightened stress level of the user or a slower heart and/or respiration rate of the user indicating that the user may benefit from a nap and alert, notify, or otherwise recommend a nap to the user.
  • the alert or notification may include a push notification, SMS, other visual notification, audible alarm, tactile indication, or other notification to the user that the user should nap.
  • the system may facilitate the user falling asleep, for example by playing soothing music, releasing calming scents, gently massaging the user using the cushion, or any other type of facilitation.
  • the method includes determining a sleep stage of the user S 310 .
  • the cushion and/or portable computing device may distinguish between REM and non-REM sleep cycles and/or when the user is experiencing lighter and deeper sleeping periods.
  • the method includes determining if the sleep stage of the user is an appropriate sleep stage in which to wake the user S 320 . For example, the system may determine that the user is experiencing lighter sleep and/or a non-REM sleep cycle and wake the user during this lighter sleep period and/or non-REM sleep cycle.
  • the system wakes the user within the user's chosen range of nap lengths when the user is experiencing lighter sleep and/or a non-REM sleep cycle, for example, to minimize a user feeling groggy, disoriented, or not well-rested from the nap.
  • the method includes waking the user from the nap if the sleep stage is appropriate S 330 .
  • the system may determine that the user is within the appropriate nap length range and experiencing lighter sleep and/or a non-REM sleep cycle, and that the user could be woken with minimal side effects (e.g., grogginess, sleepiness, etc.).
  • the system wakes the user using the vibration module, other tactile signal, an auditory signal (e.g., alarm, music from the cushion and/or portable computing device, etc.), an olfactory signal, or another signal, as described above.
  • the auditory signal starts at a low decibel level and escalates to a higher decibel level to gently and gradually wake the user from the nap.
  • the systems and methods of the preferred embodiment and variations thereof can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions.
  • the instructions are preferably executed by computer-executable components preferably integrated with the system and one or more portions of the processor on the cushion and/or portable computing device.
  • the computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (e.g., CD or DVD), hard drives, floppy drives, or any suitable device.
  • the computer-executable component is preferably a general or application-specific processor, but any suitable dedicated hardware or hardware/firmware combination can alternatively or additionally execute the instructions.
  • a sensor may include, and is contemplated to include, a plurality of sensors.
  • the claims and disclosure may include terms such as “a plurality,” “one or more,” or “at least one;” however, the absence of such terms is not intended to mean, and should not be interpreted to mean, that a plurality is not conceived.
  • the term “comprising” or “comprises” is intended to mean that the devices, systems, and methods include the recited elements, and may additionally include any other elements. “Consisting essentially of” shall mean that the devices, systems, and methods include the recited elements and exclude other elements of essential significance to the combination for the stated purpose. Thus, a system or method consisting essentially of the elements as defined herein would not exclude other materials, features, or steps that do not materially affect the basic and novel characteristic(s) of the claimed invention. “Consisting of” shall mean that the devices, systems, and methods include the recited elements and exclude anything more than a trivial or inconsequential element or step. Embodiments defined by each of these transitional terms are within the scope of this disclosure.

Abstract

Systems and methods of monitoring posture and vital signs are disclosed. In some embodiments, the system includes a cushion on which a user can sit. The cushion includes a first optical fiber sensor, a second sensor, and a first computing device. The system may further include a second computing device communicatively coupled to the first computing device and configured to receive sensor data from the first computing device. One or both of the first and second computing devices may operate to combine a signal indicative of the movement of the user with a signal indicative of the direction of movement of the user to determine a posture of the user. The system may provide feedback based on the user's posture and recommend actions to improve posture. The system may further monitor the user's heart rate, respiration rate, or other vital signs.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Appl. No. 62/057,237 entitled “Vital Signs Fiber Optic Sensor”, filed Sep. 30, 2014, the contents of which is herein incorporated by reference in its entirety.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety, as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference in its entirety.
  • TECHNICAL FIELD
  • This invention relates generally to the fields of health and wellness, and more specifically to new and useful systems and methods for posture and vital sign monitoring.
  • BACKGROUND
  • The average American sits eleven hours per day. Further, roughly 23.5% of adults in the United States do not engage in physical activity. Physical inactivity accounts for approximately $24 billion in direct medical spending. Increases in sedentary lifestyles are at least partially due to increased availability of desk jobs, videogame and television entertainment, and modern conveniences (e.g., elevators, motorized transportation, home or internet-based shopping, etc.). Leading a sedentary lifestyle is linked to increased morbidity as well as poor posture and increased stress, neck strain, heart disease, colon cancer, joint pain, and varicose veins, among other health issues.
  • Furthermore, inactivity and poor posture can lead to lower back pain and other back problems. Back pain can be debilitating for an individual and exacts a substantial economic cost on society—back pain is the most common cause of job-related disability and a leading contributor to missed work days. For many, back pain may be avoided or reduced by maintaining good posture, particularly during prolonged periods of sitting. While many people know the importance of good posture, it can be very difficult to remain mindful of resisting the pull of gravity on the spine when sitting for any extended period of time.
  • Currently, some portable devices, such as wireless heart rate monitors and other wearable devices, measure one or more vital signs. Other portable devices count steps or otherwise monitor an indicator of activity level. However, with existing consumer devices, it is difficult to monitor posture, to accurately measure vital signs, to remember to perform one or more physical activities, to know when it is appropriate or necessary to perform these activities, and to gauge individual progress. Thus, there is a need for new and useful systems and methods for posture and vital sign monitoring. This invention provides such new and useful systems and methods.
  • SUMMARY
  • Described herein are systems and methods for posture and vital sign monitoring. One aspect of the disclosure is directed to a system for posture monitoring, and optionally, vital sign monitoring. In general, the system for posture and vital sign monitoring includes a cushion. In some embodiments, the cushion is portable. In some embodiments, the cushion forms a portion of a chair, seat, sleeping pod, or couch. In some embodiments, the cushion further includes a memory foam layer.
  • In various embodiments, the cushion includes: a first optical fiber sensor configured to produce a first signal indicative of a movement of a user, a second sensor configured to produce a second signal indicative of a direction of the movement of the user, and a first computing device including a first processor and memory having a first set of instructions stored thereon.
  • In some embodiments, the first optical fiber sensor includes a one-layer deformer structure. In some embodiments, the second sensor is a second optical fiber sensor. In some embodiments, the second sensor is a pressure sensor. In some embodiments, the first optical fiber sensor or the second sensor is further configured to produce an additional signal indicative of a vital sign of the user. In some embodiments, the vital sign is a respiratory waveform and/or a cardiac waveform.
  • Optionally, in some embodiments, a system for posture and vital sign monitoring includes a second computing device. In some embodiments, the second computing device includes a smartphone, wearable computing device, tablet, laptop, other portable computing device, or a remote server.
  • In some embodiments, the second computing device is communicatively coupled to the first computing device. In some embodiments, the first computing device and the second computing device communicate wirelessly. In some embodiments, the second computing device includes a second processor and memory having a second set of instructions stored thereon. In some embodiments, execution of the first and second set of instructions causes a method to be performed including: transmitting data from the first computing device to the second computing device; combining the first signal indicative of the movement of the user with the second signal indicative of the direction of the movement of the user to determine a posture of the user; determining if a change to the posture of the user is recommended; and if change to the posture of the user is recommended, recommending an action to the user via the second computing device. In some embodiments, an action recommended to a user includes standing, walking, correcting posture, and/or stretching.
  • Another aspect of the disclosure is directed to a method for posture monitoring, and optionally, vital sign monitoring. In various embodiments, the computerized method for posture and vital sign monitoring includes: receiving a first signal indicative of a movement of a user; receiving a second signal indicative of a direction of the movement of the user; combining the first signal indicative of the movement of the user with the second signal indicative of the direction of the movement of the user to determine a posture of the user; determining if a change to the posture of the user is recommended; and if change to the posture of the user is recommended, recommending an action to the user to change the posture.
  • In some embodiments, the first signal is produced by a first optical fiber sensor in a cushion. In some embodiments, the second signal is produced by a second sensor in the cushion. The second sensor may be another optical fiber sensor, a pressure sensor, or other suitable sensor. In some embodiments, the action recommended to the user includes standing, walking, stretching, and/or correcting posture.
  • In some embodiments, a computerized method for posture and vital sign monitoring includes identifying if the user is sitting upright with a neutral spine position or if the user is leaning forward, leaning backward, leaning left, leaning right, slouching, and/or otherwise sitting in a position other than the neutral spine position.
  • In some embodiments, a computerized method for posture and vital sign monitoring includes generating an alert on the first or second computing device if change to the posture of the user is recommended.
  • In some embodiments, a computerized method for posture and vital sign monitoring includes receiving an additional signal indicative of a vital sign of the user. In some embodiments, the additional signal is produced by the first optical fiber sensor or the second sensor. In some embodiments, the vital sign is a respiratory waveform and/or a cardiac waveform of the user. In some embodiments, a computerized method for posture and vital sign monitoring includes determining a stress level of the user based, at least in part, on a change in a variability of the cardiac waveform. In some embodiments, a computerized method for posture and vital sign monitoring includes determining if a change to the vital sign is recommended; and if change to the vital sign of the user is recommended, recommending an action to the user to change the vital sign. In some embodiments, the action recommended to the user includes standing, walking, stretching, and/or controlled/deliberate breathing. In some embodiments, a computerized method for posture and vital sign monitoring includes generating an alert on the first or second computing device if change to the vital sign is recommended.
  • In some embodiments, a computerized method for posture and vital sign monitoring includes monitoring a sleep cycle of the user based on the first signal, the second signal, and/or the additional signal. In some embodiments, a computerized method for posture and vital sign monitoring includes generating a stimulation signal to stimulate a vibrator within the cushion. In some embodiments, the stimulation signal is generated during an appropriate sleep cycle stage of the user and is generated, for example, to awaken the user.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a schematic diagram of one embodiment of a system for posture and vital sign monitoring;
  • FIG. 2 illustrates a perspective view of one embodiment of a cushion for posture and vital sign monitoring positioned on an office chair;
  • FIG. 3A illustrates a top perspective view of an exterior surface of one embodiment of a cushion for posture and vital sign monitoring;
  • FIG. 3B illustrates a left side view of an exterior surface of the cushion embodiment of FIG. 3A;
  • FIG. 3C illustrates a schematic right side view of an interior of the cushion embodiment of FIG. 3A;
  • FIGS. 3D and 3E illustrate a schematic top and bottom view, respectively, of an interior of the cushion embodiment of FIG. 3A;
  • FIG. 3F illustrates an exploded view of the internal layers of the cushion of FIG. 3A;
  • FIG. 4 illustrates a partial cross-sectional view of one embodiment of a cushion for posture and vital sign monitoring;
  • FIG. 5 illustrates a block diagram of one embodiment of a first or cushion computing device for posture and vital sign monitoring;
  • FIG. 6 illustrates a block diagram of one embodiment of a second or portable computing device for posture and vital sign monitoring;
  • FIGS. 7A and 7B illustrate various example views of one embodiment of a graphical user interface for monitoring and correcting posture;
  • FIGS. 8A-8J illustrate various example views of one embodiment of a graphical user interface for physical activity and vital sign monitoring;
  • FIG. 9 illustrates one embodiment of a graphical user interface for stress level monitoring and coaching;
  • FIG. 10 illustrates a flow chart of one embodiment of a method for posture monitoring and vital sign monitoring;
  • FIG. 11 illustrates a flow chart of one embodiment of a computer-implemented method for determining a posture of a user; and
  • FIG. 12 illustrates a flow chart of one embodiment of a method for influencing a user's nap based on one or more monitored vital signs.
  • DETAILED DESCRIPTION
  • The following description of certain embodiments of the invention is not intended to limit the invention to these embodiments, but rather to enable any person skilled in the art to make and use this invention. Disclosed herein are systems and methods for posture and vital sign monitoring.
  • In general, a system for posture and vital sign monitoring is used by a person (i.e., a user) at home, in an office (e.g., while working, waiting for or during an appointment, etc.), in a motorized vehicle, at a sporting event (e.g., an arena, field, coliseum, park, gym, range, rink, stadium, velodrome, etc.) or in any other location.
  • In some embodiments, a vital sign includes one or more of a heart rate, respiration rate, temperature, and blood pressure of a user. In some embodiments, the vital sign includes a cardiac waveform and/or respiration waveform.
  • In some embodiments, posture includes one or more of a position, a movement, and a direction of movement of a user. For example, a posture of a user may include a hunchback (i.e. kyphosis), a scoliotic spine, rounded shoulders, flatback, swayback (i.e. lordosis), leaning forward, leaning backward, leaning left, leaning right, sitting upright, twisting, slouching, or any other deviation from a healthy, neutral spine position. The neutral spine position is characterized in a healthy spine as an optimal position of three natural curves of the spine: a cervical (i.e., neck) region involving cervical vertebrae C1-C7, a thoracic (i.e., mid-back) region involving thoracic vertebrae T1-T12, and a lumbar (i.e., lower back) region involving lumber vertebrae L1-L5. In a healthy back, the ideal position of: the cervical region is anteriorly convex, the thoracic region is posteriorly convex, and the lumbar region is anteriorly convex.
  • In some embodiments, a system for posture and vital sign monitoring includes monitoring a physical attribute of the user, for example, a total weight, weight distribution, or body mass index (BMI) of the user. In some embodiments, a system for posture and vital sign monitoring includes determining and monitoring a stress level, heart rate variability, and/or respiration rate variability of the user.
  • In some embodiments, an average, minimum, maximum, healthy, and/or unhealthy vital sign and/or posture is determined by the system monitoring the user over time. For example, the system may calibrate to the user by monitoring the user for a time period (e.g., hour, day, week, etc.) to determine the normal variability in the user's cardiac and respiration waveforms and posture and to detect deviations from the normal variability. Alternatively or additionally, the system may compare a user's posture and cardiac and respiration waveforms to individuals in the user's same age group, sex group, ethnic group, social class, work environment, location, and/or any other comparable group to identify deviations from normal or healthy values.
  • Systems and Devices
  • FIG. 1 illustrates one embodiment of a system 2 for posture and vital sign monitoring. The system 2 includes a cushion 4 including a first optical fiber sensor and a second sensor, a first computing device in the cushion 4, and a second computing device 6 communicatively coupled (e.g., via Bluetooth, low-energy Bluetooth, other radiofrequency, etc.) to the first computing device. In some embodiments, there is two-way communication between the first computing device in the cushion and the second computing device. The system 2 functions to measure a posture and/or vital sign of the user and helps or enables the user to adjust the posture and/or vital sign. In some embodiments, a system 2 for posture and vital sign monitoring further includes a remote computing device 7 (e.g., server). The first and/or second computing device has two-way communication capability (e.g., via Wi-Fi, CDMA, other cellular protocol, other radiofrequency, other wireless protocol) with the remote server. The remote server may receive, store, and/or analyze one or more signals acquired by the first and/or second computing device from the optical fiber sensor and/or the second sensor.
  • Various embodiments of a system 2 for posture and vital sign monitoring includes a cushion 4. The cushion 4 functions to house: two or more sensors for measuring posture and/or one or more vital signs of the user, and a first computing device. In some embodiments, the cushion forms a portion of a chair, seat, sleeping pod, mattress, and/or couch. In some embodiments, such as the embodiment of a cushion shown in FIG. 2, the cushion is a portable seat cushion configured for placement on chairs (e.g., in an office, at home, etc.), bleachers, car seats, airplane seats, and/or other existing seat structures. In other embodiments, the cushion is integrated into an office chair, armchair, sofa, car seat, airplane seat, sleeping pod, mattress, or other structure. In some embodiments, the system includes multiple cushions, for example, two or more of: a backrest, two armrests, a seat, and a leg rest (e.g., ottoman, recliner, etc.).
  • In some embodiments, as shown, for example, in FIGS. 1 and 2, the cushion includes one or more user input elements 31, for example, on an exterior surface of the cushion. For example, the cushion may include one or more buttons, sliders, or toggle switches to turn on/off power to the computing device within the cushion or to adjust the settings to a wireless communication module 30, a vibration module, and/or any other feature or module of the system. In some embodiments, a user input element may include a button, slider, or toggle switch for resetting the system, for example to manufacturing settings or to a previous user setting.
  • In some embodiments, for example, the cushion embodiments of FIG. 2 and FIGS. 3A-3F, the cushion 4 is shaped, contoured, or grooved for increasing comfort of a user sitting on or using the cushion. For example, the cushion may include a posterior thickness T1 and an anterior thickness T2. In one embodiment, T1 is greater than T2. In another embodiment, T2 is greater than T1. In still another embodiment, T1 equals T2. In some embodiments, as shown, for example, in FIG. 3A, the posterior portion 8 a of the cushion 4 includes substantially squared edges, while the anterior portion 8 b of the cushion 4 includes substantially rounded edges. Alternatively, in some embodiments, both the posterior 8 a and anterior 8 b portions of the cushion 4 may include substantially squared edges; both the posterior 8 a and anterior 8 b portions of the cushion 4 may include substantially rounded edges; or the posterior portion 8 a may be rounded while the anterior portion 8 b is squared.
  • In some embodiments, as shown in FIG. 3A, an anterior portion 8 b of the cushion 4 includes one or more dimpled regions 5. In one embodiment, an anterior portion 8 b of the cushion 4 includes two dimpled regions 5. In some embodiments, a center region 9 between two or more dimpled regions is raised, so that an upper leg region or a buttock cheek of a user is positioned or situated in each dimpled region 5 of the cushion 4, for example, to improve comfort and/or proper positioning of the user while the user is seated on the cushion 4.
  • In some embodiments, the cushion 4 includes material on an exterior surface of the cushion. The material may include cotton, linen, polyester, rayon, denim, velvet, corduroy, silk, wool, leather, polyvinyl chloride (i.e., vinyl), artificial leather (e.g., poromeric imitation leather, Corfam, Koskin, Leatherette, etc.), suede or microsuede, or any other material. In some embodiments, the material is washable, stain-resistant, fire-resistant (i.e. flame retardant), weather-resistant (e.g., sun-resistant), wrinkle-resistant, and/or water-resistant. In some embodiments, the material is breathable to permit airflow into the cushion such that one or more sensors, electronics, and/or computing devices disposed in the cushion do not overheat.
  • In some embodiments, the cushion includes multiple internal layers, for example, as visible in FIGS. 3C-3F. In some such embodiments, the top and/or bottoms layers 11 of the cushion include memory foam (i.e. visco-elastic polyurethane foam), natural latex foam, wool, cotton, or any other material that provides a deformable, squishy, spongy, soft, and/or supportive structure to the cushion, for example for comfort and support of the user. In some embodiments, the one or more comfort and/or supportive layers are configured to propagate forces exerted on the cushion to enable the measuring of pressure applied to the cushion surface using one or more sensors disposed in the cushion. Further, in some such embodiments, a second layer 13 includes one or more sensors, for example pressure sensors 12, and a third layer 15 includes one or more sensors, for example optical fiber sensors 10. In some embodiments, the second layer 13 includes one or more optical fiber sensors 10 and the third layer 15 includes one or more pressure sensors 12. In other embodiments, two or more layers of optical fiber sensors are provided. In other embodiments, one or more pressure sensors and one or more optical fiber sensors are disposed together on or in a single layer.
  • In some embodiments, as shown in FIGS. 3D-3F, the cushion 4 includes multiple sensors (e.g., two, three, four, five, six, seven, eight, nine, ten, etc.) for measuring one or more vital signs and a posture of the user. In one embodiment, the cushion includes two sensors. In some embodiments, the one or more sensors are electromagnetic sensors, piezoelectric sensors, gyroscopic sensors, linear encoders, photoelectric sensors, pressure sensors, optical fiber sensors, any other type of sensor, or any combination of the aforementioned sensors.
  • In some embodiments, one or more first sensors 10 are optical fiber sensors and one or more second sensors 12 are pressure sensors. Alternatively, in one such embodiment, the first and second sensors are both optical fiber sensors. In some embodiments, the first optical fiber sensor is configured to produce a first signal indicative of a change in force (i.e., movement) of a user and the second sensor (e.g., pressure sensor, optical fiber sensor, etc.) is configured to produce a second signal indicative of a direction of the movement of the user, such that the first and second signals, when combined, indicate a posture of the user.
  • Posture is determined, in part, by pelvic tilt. Tilt or rotation in an individual's pelvis may cause changes to the curvatures of the lumbar, thoracic, and/or cervical regions of the spine. Similarly, changes to the curvature of the lumbar, thoracic, and/or cervical regions may lead to rotation of the pelvis. For example, rotating a pelvis in a forward tilting position (i.e., an anteverted position) causes an increase in the lumbar curvature. Anterior rotation of the pelvis can result in a swayback posture (i.e., lordosis). Slouching leads the pelvis to rotate towards a backward tilting position (i.e., a retroverted position). When an individual is sitting on a surface, changes in rotation or tilt of the pelvis result in changes in pressure and force distribution on the surface. Thus, in some embodiments, posture is determined by using a combination of fiber optics sensors and/or pressure sensors to detect applied pressures, forces, and/or changes in applied pressures or forces on the cushion.
  • Additionally or alternatively, in some embodiments, the first optical fiber sensor is sufficiently sensitive to detect both macro- and micro-movements of the user (i.e., relatively large and small changes in force) such that the signal generated by the first optical fiber sensor may additionally be indicative of breathing, a beating heart, and/or one or more other vital functions of the user.
  • In some embodiments that include at least one optical fiber sensor 10, for example, as shown in FIG. 3F, the optical fiber sensor 10 is formed of an optical fiber. The optical fiber has a first end coupled to a light source (e.g., LED, OLED, incandescent, etc.) and a second end coupled to an optical signal receiver. In some embodiments, the light source and optical signal receiver are coupled to or integrated with the printed circuit board and/or cushion computing device 14, as shown in FIG. 3F. The light source is configured to emit a light wave into the optical fiber. The optical fiber sensor 10 is positioned such that an application of force on a surface of the cushion causes the optical fiber to deform or microbend, which in turn influences propagation of the light wave through the optical fiber. The optical signal receiver is configured to detect changes in light wave propagation. The changes in light wave propagation are processed and analyzed by the first and/or second computing device to determine a position and/or vital sign of the user. For example, in the presence of an external force generated by body weight, heartbeat, respiration, and/or body movement, the force is distributed on the optical fiber and deformer. These forces will microbend the optical fiber causing significant light loss with some residual light propagating through the optical fiber due to the microbending effect. The optical signal receiver receives the residual light. The residual light is processed to identify a change in force and thereby determine a body weight, heartbeat/respiration, and/or body movement/position of the user.
  • In some embodiments, the optical fiber sensor includes a single or double deformer structure. An embodiment of a cushion having an optical fiber sensor with a single layer deformer structure is shown in FIG. 4. A single layer deformer 18 may be configured to achieve the highest vital sign and posture detection sensitivity under absolute light loss caused by body weight, while a double deformer may be configured to achieve the highest light loss for a given applied force. The single deformer layer 18 balances the absolute force caused, for example, by body weight with the relatively small force changes caused, for example, by heart beats, respiration, and small shifts in posture. Use of a single deformer 18 enables extraction of faint ballistography signals and respiration waveforms from the high noise background caused by body movements. The deformer 18 may be formed of mesh (e.g., interwoven monofilaments, wires, threads, ribbons, or the like). The single layer deformer 18 functions to achieve micro bending of the optical fiber 20 and increased sensitivity of detection of cardiac and respiration waveforms and body movement. As shown in FIG. 4, when an outside force, indicated by the arrows 22 (e.g., body weight, heart rate, respiration rate, movement, etc.), is applied to the cushion and the cushion's internal optical fiber 20, the force 22 is distributed throughout the upper cover 24 and the optical fiber 20 and is not concentrated on the center of the fiber. In one embodiment, a polymeric open mesh fabric is used as the single layer deformer and a plain fabric is applied on top of a multimode optical fiber to uniformly distribute any force applied on the sensor. Alternatively, in some embodiments, the optical fiber sensor does not include a deformer 18.
  • In some embodiments, a system for posture and/or vital sign monitoring includes one or more second sensors 12, for example, one or more pressure sensors. The second sensor functions, in combination with the optical fiber sensor 10, to determine a posture of the user. As shown in FIGS. 3D-3F, a plurality of second sensors, for example, six pressure sensors, are provided. In some embodiments, less than six pressure sensors (e.g., five, four, three, two, one) or more than six pressure sensors (e.g., seven, eight, nine, ten, eleven, twelve, etc.) are provided for measuring a direction of movement of the user. In some embodiments, the pressure sensor 12 is an absolute pressure sensor, a gauge pressure sensor, a vacuum pressure sensor, a differential pressure sensor, or a sealed pressure sensor. In some embodiments, the pressure sensor includes a force-sensing resistor. In some embodiments, the pressure sensor is responsive in the 20 Kg to 150 Kg range or any subrange therebetween. For example, in some embodiments, the pressure sensor is responsive between 20-30 Kg, 30-40 Kg, 40-50 Kg, 50-60 Kg, 60-70 Kg, 70-80 Kg, 80-90 Kg, 90-100 Kg, 100-110 Kg, 110-120 Kg, 120-130 Kg, 130-140 Kg, or 140-150 Kg. In one embodiment, the pressure sensor is responsive between 40 Kg and 100 Kg.
  • In some embodiments, one or more pressure sensors are arranged in a pattern on an interior layer of the cushion 4. In one embodiment, the pattern includes a substantially hexagonal pattern, for example, as shown in FIGS. 3D-3F. In another embodiment, the pattern includes a square or rectangular pattern. For example, in one such embodiment, a first set of three pressure sensors are substantially parallel to a second set of three pressure sensors, which are substantially parallel to a third set of three pressure sensors. Alternatively, one or more pressure sensors may be positioned on a perimeter of an interior layer of the cushion in a square or rectangular pattern. In another embodiment, the pattern includes a substantially circular pattern, for example defining a circumference of a circle.
  • In some embodiments, as shown in FIG. 1, a system 2 for posture and/or vital sign monitoring includes, at least, first and second computing devices. The first computing device is disposed within the cushion 4 and is referred to herein as the cushion computing device. (See, for example, the cushion computing device 14 visible in FIGS. 3D-3F.) The second computing device 6, referred to herein as the portable computing device, may include a smartphone, wearable computing device (e.g., watch, bracelet, headband, necklace, etc.), tablet, laptop, or other portable computing device. In some embodiments, although referred to as a portable computing device, the second computing device 6 may be a remote server. In other embodiments, the system also includes a third computing device 7. In such embodiments, the third computing device, referred to herein as a remote computing device, may be a web server, an application server, a database server, and/or any other suitable computing device.
  • In various embodiments, there is one-way or two-way communication between the cushion computing device and the portable computing device, the cushion computing device and the remote computing device, and/or the portable computing device and the remote computing device. Two or more computing devices of the system may communicate wirelessly using Bluetooth, Wi-Fi, CDMA, other cellular protocol, other radiofrequency, or another wireless protocol.
  • In some embodiments, the cushion computing device (in the cushion 4), portable computing device 6, and remote computing device 7 each include a processor, for example a microcontroller, and memory having instructions stored thereon. The processor functions to execute the operating instructions of the system. The operating instructions of the system may include instructions for receiving one or more signals from one or more sensors, processing the signals, and determining a posture and/or vital sign of the user from the processed signals.
  • In some embodiments, a cushion computing device and a portable computing device each include a processor, which is embedded on a printed circuit board (PCB) and communicatively coupled (e.g., via a hardwired connection) to one or more system components (e.g., power module, user input elements, light module, vibration module, optical fiber sensor, second sensor, etc.). In some embodiments, the processor is a low-energy microcontroller.
  • FIG. 5 provides one example of a cushion computing device 28 that may be found within the cushion 4 of FIG. 1. FIG. 6 provides one example of a portable computing device 29. One skilled in the art will appreciate that the illustrated components are functional components, and the various functional components may be embodied within one or more structural elements. For example, the functional components of the cushion computing device 28 are embodied within the PCB/computing device unit 14, the power module 21, and the vibration module 19 within the cushion 4 of FIGS. 3D-3F.
  • In some embodiments, as shown in FIGS. 5 and 6, the cushion computing device 28 and the portable computing device 29 each include or are coupled to a power module. The power module functions to provide electricity to one or more system components to enable operation of the one or more system components. In some embodiments, the power module includes an internal power source, for example, a battery (e.g., non-rechargeable, rechargeable, etc.), an inductive power source, a kinetic charger, and/or one or more solar panels. In some such embodiments, the cushion computing device 28 may be powered by an external power source or the internal power source may be recharged, for example, by ultraviolet light, movement of a user, or an electromagnetic field. In some embodiments, the cushion 28 and/or portable 29 computing device may be recharged by coupling the power module to an external power source, for example, using a power cord (e.g., IEEE 1394, universal serial bus (USB), Thunderbolt, Lightning, Ethernet, etc.) removably insertable into a port on the power module. In some embodiments, as shown in FIGS. 3A and 3B, the cushion computing device 28 and the portable computing device 29 each include an antenna for transmitting and receiving data wirelessly. The antenna, may include, for example, an antenna configured to transmit data to, and receive data from, another computer via Wi-Fi, CDMA, other cellular protocol, other radiofrequency, other wireless protocol). In various embodiments, the antennas enable communication between the cushion computing device 28, the portable computing device 29, and optionally, a remote computing device.
  • In some embodiments, as shown in FIG. 5, the cushion computing device 28 includes one or more user input elements. In some embodiments, the one or more user input elements are accessible on an exterior surface of the cushion or, alternatively, disposed in the cushion and only accessible after accessing the interior of the cushion or dismantling the cushion. For example, the cushion computing device may include one or more buttons, sliders, or toggle switches to turn on/off power to one or more system components, wireless communication 30 (e.g., data transmission via Bluetooth, low-energy Bluetooth, other radiofrequency technology, etc.) to one or more system components, a vibration module (e.g., to wake a user from a nap), and/or any other feature or module of the system. In some embodiments, a user input element may include a button, slider, or toggle switch for resetting the system, for example to manufacturing settings or to a previous user setting.
  • In some embodiments, as shown in FIG. 6, the portable computing device 29 includes one or more user input elements. For example, the portable computing device may include one or more manual and/or virtual buttons, sliders, or toggle switches on an exterior surface or on a graphical user interface (GUI) of the portable computing device. The one or more user input elements may turn on/off: power to one or more system components, wireless communication (e.g., data transmission via Bluetooth, low-energy Bluetooth, other radiofrequency technology, etc.) to one or more system components, a vibration module (e.g., to wake a user from a nap) of the cushion computing device, and/or any other feature or module of the system. In some embodiments, a user input element may include a button, slider, or toggle switch for resetting the system, for example to manufacturing settings or to a previous user setting. In some embodiments, a user input element is used to toggle between different GUIs or to access different features of the software on the portable computing device.
  • In some embodiments, as shown in FIG. 5, the cushion computing device 28 includes a light module including one or more lights (e.g., LED, OLED, incandescent, etc.) visible from an exterior of the cushion, for example, to indicate a connectivity and/or power status of the cushion computing device and/or other electronics in the cushion. In some embodiments, a red, orange, or yellow light indicates varying degrees of low battery/power; a green light indicates good battery power and/or fully charged, and a blue light indicates a wireless (e.g., Bluetooth, low-energy Bluetooth, other radiofrequency, etc.) connection to one or more other system components. In some embodiments, the user input element 31 includes, is adjacent to, or is surrounded by, the light module; in some such embodiments, a light indicator may be illuminated in an “on” state, emitting, for example, emitting a green glow. In some embodiments, in an “off” state, the light indicator may not be illuminated or may emit a different color, for example, red.
  • In some embodiments, as shown in FIG. 3A, the cushion computing device 28 includes a vibration module. (The vibration module may be remote from, but electrically coupled to the remainder of the cushion computing device, for example, as is the case for the vibration module 19 shown in FIGS. 3D and 3F.) The vibration module may function to wake a user from a nap, for example, during an appropriate phase of the sleep cycle (e.g., REM, non-REM). Alternatively or additionally, the vibration module may function to massage a user, for example, to relax a user when a user's heart rate, respiration rate, or stress level reach a pre-determined or pre-defined threshold. Further, in some embodiments, the vibration module functions as a tactile alert to remind a user, for example, to stand up or sit up straight when slouching, prolonged durations of sitting, or changes in vital signs indicative of stress are detected. In some embodiments, the vibration module includes an eccentric rotating mass (ERM) actuator. For example, a direct current (DC) motor drives a gear including a weight positioned off-center on the gear. Driving rotation of the gear including the weight using the DC motor results in vibration. In some embodiments, the vibration module includes a linear resonant actuator (LRA). For example, a magnetic field is generated by a voice coil which interacts with a magnet and a weight suspended on a spring. As the magnetic field varies with the applied drive signal, the magnet and weight are accelerated up and down as they interact with the spring resulting in vibration.
  • In some embodiments, as shown in FIGS. 5 and 6, the cushion computing device 28 and/or portable computing device 29 includes a program port. The program port functions to receive one or more programs for operating the system, for example through a port (e.g., IEEE 1394, universal serial bus (USB), Thunderbolt, Lightning, Mini Display, DVI, HDMI, Serial, Parallel, Ethernet, Coaxial, VGA, or PS/2). In some embodiments, a program includes instructions: for determining a vital sign and/or posture based on one or more sensor signals; for creating an alert, including instructions specifying alert frequency, types, and/or triggers (e.g., to correct a vital sign and/or posture of the user); for creating a recommendation, including instructions specifying recommendation frequency, types, and/or triggers (e.g., to correct a vital sign and/or posture of the user); or related to a power level of the system, a vibration module status, a light module status, or any other operational feature of the system.
  • In some embodiments, as shown in FIGS. 5 and 6, the cushion computing device 28 and/or portable computing device 29 further includes a low-dropout (LDO) regulator. An LDO regulator is a direct current (DC) linear voltage regulator, which functions to regulate the output voltage even when the supply voltage is very close to the output voltage. Further, in some embodiments, the system includes a different type of DC-to-DC regulator or an alternating current (AC)-to-DC regulator.
  • In some embodiments, as shown in FIG. 5, the cushion computing device 28 includes one or more analog to digital converters (ADC) to convert one or more analog signals acquired for example from a sensor, to one or more digital signals to be processed and analyzed by the cushion and/or portable computing device.
  • In some embodiments, as shown in FIG. 6, the portable computing device 29 further includes an accelerometer. The accelerometer in the portable computing device functions to determine if a user is standing, walking, and/or moving. In some embodiments, two or more accelerometers may be used in the portable computing device to determine a step frequency or rate of the user, for example while the user is walking. Alternatively, a mechanical or electrical pedometer may be used to determine step frequency or rate of the user. Alternatively, a gyroscope may be provided in the portable computing device and function to detect user motion.
  • In some embodiments, as shown in FIGS. 7A-9, the portable computing device includes one or more graphical user interfaces (GUIs). A GUI on the portable computing device functions to track one or more vital signs and/or postures of a user at a defined time and/or over a period of time (e.g., hour, day, week, month, year, etc.), to provide a recommendation to the user (e.g., suggestion for correcting posture or vital sign, etc.), and/or alert a user to an unhealthy posture and/or vital sign (e.g., an increased heart rate, an increased respiration rate, a changed variability in heart rate, or a position in which the user is leaning forward, leaning backward, leaning left, leaning right, slouching, etc.). In some embodiments, one or more GUIs may include a menu bar, for example for switching between one or more GUI screens or pages, adjusting one or more user settings, altering one or more program settings, adjusting types or timings of notifications delivered by the system, and/or changing any other parameter of the system.
  • In one embodiment, as shown in FIGS. 7A-7B, a GUI of the cushion and/or portable computing device includes a cartoon, icon, or avatar 32 indicating a position, movement, and/or posture of the user and a cartoon or icon of one or more sensors 34 positioned on a cushion 33, the cartoon or icon is configured to indicate and display a corresponding location of pressure on the physical cushion 4. In various embodiments, the information displayed in the GUI is in real-time or substantially real-time, such that the GUI provides a digital representation of a user's current seated position, as detected by the one or more sensors of the cushion 33. In some embodiments, the GUI may encourage the user to apply pressure evenly to all sensors 34 in the cushion 33, for example, by displaying a notification when pressure is not applied evenly and/or indicating which sensors are not receiving detectable pressure and which sensors are receiving detectable pressure. In some such embodiments, the GUI is configured to display an indictor of a relative amount of force being exerted on each sensor. For example, in some embodiments, the sensors on the GUI include a dark color or hue when indicating significant pressure and a lighter color or hue when indicating less pressure. In some embodiments, the sensors on the GUI blink or flash when receiving too much or too little pressure. In some embodiments, the GUI may be yellow, orange, or red when the user has an incorrect or unhealthy posture (e.g., is leaning forward, leaning backward, leaning left, leaning right, twisting, slouching, etc.) and green when the user has a good or adequate posture (e.g., is sitting upright in a neutral position).
  • In some embodiments, as shown in FIGS. 8A-8J, one or more GUIs include an indication 36 of a heart rate, respiration rate, stress level, and/or activity level of a user. As shown in FIG. 8A-8C, the GUI includes a heart rate, stress level, and respiration rate for a user while sitting (FIG. 8A), standing (FIG. 8B), and/or walking (FIG. 8C). Further, the GUI may include a cartoon, icon, or avatar 38 indicating the activity being performed by the user (e.g., sitting, standing, walking, etc.) and a progress indicator 40 (e.g., bar, circle, etc.) indicating a progression of time and/or a length of time (e.g., seconds, minutes, hours, etc.) elapsed while the user has been in a particular position or activity. In some embodiments, the progress indicator 40 provides a countdown of time remaining in an activity before the user is recommended or permitted to switch activities. In some embodiments, one or more GUIs further includes alert element 39. Alert element 39 indicates to the user a remaining amount of time before the portable computing device suggests or recommends an activity change (e.g., sitting to standing, standing to walking, walking to sitting, etc.). For example, the portable computing device may elicit an audible, tactile, or visual alert to the user indicating that a change in activity is recommended. In some embodiments, the application on the portable computing device is configured to push alerts and other notifications to a user even when the user does not have the GUI open on the portable computing device.
  • In some embodiments, as shown in FIGS. 8D-8F, one or more GUIs may display a total or an average duration 42 (e.g., seconds, minutes, hours, etc.) of each activity (e.g., sitting (FIG. 8D), standing (FIG. 8E), moving, walking (FIG. 8F), etc.) the user performed in a defined time period (e.g., hour, day, week, etc.). For example, an average duration of an activity may be depicted on the GUI using shapes, such that the size, color, configuration (e.g., circle, square, triangle, rectangle, diamond, etc.), or any of other parameter of the shape indicates the relative duration of an activity, as compared to the duration of other activities. For example, a relatively large shape may indicate a substantial length of time and a smaller shape may indicate a shorter length of time. In some embodiments, each kind of tracked activity is depicted with a different color of shape, for example, a red shape may indicate sitting, orange may indicate moving, green may indicate standing, and blue may indicate walking. In some embodiments, as shown in FIGS. 8D-8F, the GUI includes a graphical representation 44 (e.g., line graph, pie chart, histogram, table, pictograph, bar graph, etc.) of a user's activity. For example, the x-axis may indicate a time of day (e.g., 9:00 AM, 12:00 PM, 3:00 PM, 5:00 PM, etc.) and the y-axis may indicate a duration of an activity. Alternatively, the x-axis may indicate a type of activity and the y-axis may indicate a duration of the activity. Further, in some embodiments, different activities are plotted on the same graphical representation using different colors, shapes, line textures (e.g., dotted, segmented, solid, etc.), or any other distinguishing feature.
  • In some embodiments, as shown in FIGS. 8G, 81, and 8J, one or more GUIs display one or more cardiac and/or respiration waveforms 46 of a user over a period of time (e.g., minutes, hours, days, weeks, etc.). For example, as shown in FIGS. 5G, 6A, and 6B, an average heartbeat or respiration rate 48 (e.g., hourly, daily, weekly, etc. average) is determined and depicted based on the cardiac or respiration waveform, respectively, for a defined time period. In some embodiments, as shown in FIG. 8G, one or more GUIs includes a graphical representation 50 (e.g., line graph, pie chart, histogram, table, pictograph, bar graph, etc.) of an average heartbeat and/or respiration rate or a heartbeat and/or respiration rate over time of a user derived from the cardiac and/or respiration waveform, for example, to indicate fluctuations (e.g., maximum, minimum, variation over time, etc.) in the heart and/or respiration rate of the user over a period of time or an average heart and/or respiration rate of the user during a period of time.
  • Further, in some embodiments, as shown in FIG. 8H, one or more GUIs include a goal view indicating a target or goal of a user. For example, the GUI may indicate a desired amount 52 (e.g., time, frequency, number) of exercise of a user and the actual amount 54 the user exercised. In some embodiments, the GUI represents the information in a pie chart 56 or a timeline 58 indicating missed exercise times and/or total missed time periods of exercise.
  • In one embodiment, as shown in FIG. 9, a GUI indicates a stress level of a user and coaches the user towards a reduced stress level. In some embodiments, the stress level is determined by the heart rate and/or respiration rate of the user relative to a user's minimum, average, and maximum observed/measured heart rate and/or respiration rate. Alternatively, in some embodiments, a stress level of a user is detected by an increase in variability in a user's heart rate and/or respiration rate. A recommendation to the user may be displayed on the GUI to encourage the user to breathe slowly, take bigger/deeper breaths, meditate, contact a massage service, attend a yoga or meditation class, or any other recommendation to reduce the user's stress. In some embodiments, the GUI indicates the progress of the user towards reducing his/her stress, for example, using a progress indicator 60 and/or percent stress relative to the initially observed/measured stress level.
  • In some embodiments, a user may share his/her vital sign(s), activity level, and/or posture information with one or more social networks (e.g., Facebook®, Twitter®, LinkedIn®, Instagram®, etc.) or through email or messaging using the cushion and/or portable computing device. A user may transmit his/her average heart rate, respiration rate, posture, and/or stress level; activity level or goal activity level for a period of time; cardiac and/or respiration waveforms; one or more services the user is using as recommended by the system (e.g., to decrease stress, improve posture, etc.); or any other information the user wishes to share.
  • Methods
  • As shown in FIG. 10, a computerized method for posture and vital sign monitoring of one embodiment includes receiving a first signal indicative of a movement of a user S100, receiving a second signal indicative of a direction of the movement of the user S110, combining the first signal indicative of the movement of the user with the second signal indicative of the direction of the movement of the user to determine a posture of the user S120, determining if a change to the posture of the user is recommended S130, and if a change to the posture of the user is recommended, recommending an action to the user to change the posture S140. The method functions to measure a posture of the user and enable a user to change his/her posture based on a recommendation from the system.
  • As shown in FIG. 10, one embodiment of a computerized method for posture and vital sign monitoring includes S100, which recites receiving a first signal indicative of a movement of a user. S100 functions to collect movement data about a user, for example using an optical fiber sensor. The optical fiber sensor is disposed in a cushion, such as, for example, any cushion embodiment described elsewhere herein. Deformation or bending of the optical fiber in the cushion results in differential light wave propagation through the optical fiber. The optical signal receiver coupled to the optical fiber is configured to detect changes in the light wave propagation. The optical signal receiver of various embodiments is electrically coupled to, or forms a portion of, a cushion computing device. In various embodiments, the cushion computing device processor receives signals indicative of changes in light wave propagation (e.g., signals indicative of a movement of a user) from the optical signal receiver.
  • As shown in FIG. 10, one embodiment of a computerized method for posture and vital sign monitoring includes S110, which recites receiving a second signal indicative of a direction of the movement of the user. S110 functions to collect data about a direction of movement of a user, for example using a pressure sensor. One or more pressure sensors are disposed in a cushion, and each measures pressure exerted on an exterior surface of the cushion by the user. The degree of deformation of a force collector (e.g., diaphragm, piston, bourdon tube, bellows, etc.) in the pressure sensor induced by the user is detected (e.g., optically, piezoelectrically, electromagnetically, etc.). In various embodiments, each pressure sensor is electrically coupled to the cushion computing device, and the detected pressure signals are received by the cushion computing device.
  • As shown in FIG. 10, one embodiment of a computerized method for posture and vital sign monitoring includes S120, which recites combining the first signal indicative of the movement of the user with the second signal indicative of the direction of the movement of the user to determine a posture of the user. S120 functions to determine a posture of the user by combining signals indicative of movement (i.e., movement data) and signals indicative of direction (i.e., direction of movement data) to determine if there has been a change to a user's weight distribution or pelvic tilt, and thus, to determine if a user is in a neutral posture or is leaning forward, leaning backward, leaning left, leaning right, slouching, or otherwise deviating from the neutral posture.
  • For example, with reference to the sensor configuration shown in FIG. 3E, if the user is leaning forward, more pressure will be detected by the two anterior sensors 12 a, 12 d than by the other sensors. Further, in one embodiment, if the user is leaning backward, more pressure will be detected by the two posterior sensors 12 c, 12 f than by the other sensors. In one embodiment, if the user is leaning to the left, more pressure will be detected by the three sensors 12 a, 12 b, 12 c on the left than by the other sensors. In one embodiment, if the user is leaning to the right, more pressure will be detected by the three sensors 12 d, 12 e, 12 f on the right than by the other sensors. In one embodiment, if the user is slouching, the user's pelvis will be rotated towards a backward tilting position (i.e., a retroverted position) and an increase in pressure will be detected by the posterior sensors 12 c, 12 f. In one embodiment, if the user is sitting upright, pressure will be substantially evenly distributed between all six sensors 12 a, 12 b, 12 c, 12 d, 12 e, 12 f, 12 g or distributed between all six sensors in accordance with an acceptable ratio of pressure distributions. In some embodiments, S120 is performed on and by the cushion computing device; in other embodiments, it is performed on and by the portable computing device or by a combination of the cushion and portable computing device.
  • In some embodiments, S120 is performed by the cushion computing device. In such embodiments, the raw optical sensor signal and the raw pressure sensor signal are received, processed, and combined by the cushion computing device. In other embodiments, S120 is performed by the portable computing device. In such embodiments, following receipt of the raw signals by the cushion computing device, the signals are at least minimally processed by the cushion computing device, for example, to convert from analog to digital signals. Additional processing, such as filtering the signals to remove noise and artifacts, may be performed by the cushion computing device or the portable computing device. In such embodiments, the partially or fully processed signals are transmitted to the portable computing device for performance of S120. The partially or fully processed signals may be transmitted via a wired connection (e.g., a cable) or a wireless connection (e.g., Bluetooth, low-energy Bluetooth, or other radiofrequency protocol). In still other embodiments, S120 is performed by a remote computing device. In such embodiments, the partially or fully processed signals may be received by the portable computing device, optionally processed further, and transmitted from the portable computing device to the remote computing device for performance of S120. The signals may be transmitted to the remote computing device via a Wi-Fi, CDMA, other cellular, other radiofrequency, or other wireless connection.
  • As shown in FIG. 10, one embodiment of a computerized method for posture and vital sign monitoring includes S130, which recites determining if a change to the posture of the user is recommended. In some embodiments, determining if a change in posture is recommended includes assessing whether the user is deviating from a neutral spine position. As described above, the first and second signals are received, processed, and analyzed by the cushion, portable, and/or remote computing devices to determine a posture of the user. In some embodiments, data indicative of the posture of the user is compared to a database of acceptable and/or unacceptable posture data to determine if the analyzed user data is within an acceptable range and whether that posture needs correction and/or improvement. In some embodiments, the database is stored within the remote computing device. In other embodiments, the database is stored directly on the portable computing device. In some embodiments, the database of acceptable and/or unacceptable posture data includes data collected from the user's past use history. In other embodiments, the database of acceptable and/or unacceptable posture data includes data collected from a plurality of other users. In other embodiments, the database includes medically recommended values or ranges of values.
  • As shown in FIG. 10, one embodiment of a computerized method for posture and vital sign monitoring includes S140, which recites if change to the posture of the user is recommended, recommending an action to the user to change the posture. S140 functions to provide recommendations, action items, and/or resources to the user so that the user can correct and/or improve his/her posture. In some embodiments, a recommendation or action item includes suggesting that the user stand, walk, stretch, move, correct posture (e.g., with coaching from system), or any other activity. In some embodiments, the system recommends or suggests a resource, for example, one or more media (e.g., book, website, podcast, etc.) links for education on posture, healthy activities, and/or outcomes of healthy or unhealthy posture. In some embodiments, the system recommends or suggests a service to the user, for example, a massage, chiropractor, exercise coach, yoga class, gym, spa, or any other service. In various embodiments, recommendations are pulled from a database, for example, a database stored within the remote computing device or the portable computing device. In some embodiments, each recommendation is linked within the database to a particular detected posture or a necessary change in posture. In some embodiments, the recommendations are additionally or alternatively linked to a user's profile and/or demographic data. For example, certain recommendations may be coupled to slouching, such that when the system detects a slouching user, one or more relevant recommendations are presented to the user. In some embodiments, if the system detects that a user was responsive to a particular recommendation, that particular recommendation may be saved and recommended to the user in the future when slouching is again detected.
  • In some embodiments, a computerized method for posture and vital sign monitoring includes S150, which recites receiving a signal indicative of a vital sign of the user. For example, the vital sign signal may be produced by the first optical fiber sensor or a second sensor. In some embodiments, one or more of the sensors, such as the optical fiber sensor, are sensitive enough to detect micro-movements indicative of breathing, a beating heart, or other vital function. In some embodiments, the vital sign includes a respiratory waveform and/or a cardiac waveform of the user. From these waveforms, a breathing rate and/or heart rate, respectively, can be detected and tracked. Further, in some embodiments, a stress level of the user is determined based, at least in part, on a change in a variability of the cardiac waveform and/or respiration waveform. For example, the system may calibrate to the user by monitoring the user for a time period (e.g., hour, day, week, etc.) to determine the variability in the user's cardiac and/or respiration waveforms. Alternatively or additionally, the system may compare a user's cardiac and/or respiration waveforms to individuals in the user's same age group, sex group, ethnic group, social class, work environment, location, or any other comparable group. Based on this calibration and/or comparison, the system may determine a stress level of the user. In some embodiments, after determining a vital sign and/or stress level of the user, the system performs S160, which recites determining if a change to the vital sign is recommended, and if change to the vital sign of the user is recommended, the system recommends an action to the user to change the vital sign, as shown at S170. The recommendation functions to provide suggestions, action items, and/or resources to the user so that the user can correct and/or improve his/her stress level and/or vital signs. In some embodiments, a recommendation or action item includes suggesting that the user nap, wake-up, stand, walk, stretch, move, breathe slowly and/or deeply (e.g., with coaching from system), meditate, or any other activity. In some embodiments, the system recommends or suggests a resource, for example, one or more media (e.g., book, website, podcast, etc.) links for education on stress, healthy activities, and/or outcomes of healthy or unhealthy stress levels and/or vital signs. In some embodiments, the system recommends or suggests a service to the user, for example, a massage, chiropractor, exercise coach, yoga class, gym, spa, meditation class, therapist, or any other service.
  • In some embodiments, a computerized method for posture and vital sign monitoring includes generating an alert on the cushion or portable computing device if change to the posture, stress level, and/or vital sign of the user is recommended. An alert may be generated to indicate to the user that he/she is experiencing unhealthy posture, stress levels, and/or vital signs that require adjustment, correction, and/or improvement. The system may alert the user on the cushion and/or the portable computing device using auditory, haptic/tactile, visual, and/or olfactory alerts. For example, an auditory alert may include a voice command or alert or a tonal alert (e.g., beep, ding, etc.) generated at the cushion or portable computing device. A tactile or haptic alert may include: vibration of the cushion computing device, portable computing device, and/or cushion; and/or a warming sensation in the cushion (e.g., by one or more heat emitters or heating elements in the cushion). A visual alert may include a message (e.g., SMS, push notification, badge notification, etc.) on a display screen of the cushion and/or portable computing device; and/or a light indicator (e.g., red, yellow, orange, green, etc.) generated by an LED or other light emitter on or coupled to the cushion computing device and/or portable computing device. An olfactory alert may include emission of one or more aromatic compounds from the cushion. Release of the aromatic compound may be induced by passing electricity, and thereby heat, through conductive traces or heating a set of electric coils, for example similar to a heating blanket, in the cushion such that the heat causes the aromatic compound to transition from a liquid state to a vapor/gaseous state that can be perceived by the olfactory system of the user. Alternatively or additionally, the cushion may include a compartment including an aromatic perfume or compound such that the compound is released (e.g. sprayed into the air) during set times, for example when a user's stress level reaches an unhealthy level. In some embodiments, to reduce stress levels and/or vital signs of the user, the cushion may release lavender, jasmine, chamomile, sandalwood, or mint scents. In some embodiments, to energize or encourage a user, for example to wake-up, stand-up, walk, and/or move, the cushion may release citrus or rosemary scents.
  • In some embodiments, as shown in FIG. 11, a computer-implemented method for determining a posture of a user includes one or more functions performed by the system to determine and, if necessary, correct a posture of the user. In some embodiments, an optical fiber sensor and second sensor are embedded into a cushion and configured to acquire the vibration and movement signals generated from a user's body. For example, a posture recognition algorithm may be applied to the collected signals from the optical fiber sensor and second sensor to classify the current posture. Such an algorithm identifies data indicative of the current posture and compares the data to pre-defined posture data sets stored within the first, second, and/or third computing device. In some embodiments, the posture recognition algorithm matches scores between the current posture data and the pre-defined posture data sets, identifying the pre-defined data set that most closely matches the current posture data. In various embodiments, each pre-defined posture data set correlates to a different form of posture. In some embodiments, feedback is generated based on the recognized and analyzed posture status of the user.
  • In one such embodiment, as shown in FIG. 9, a computer-implemented method for determining a posture of a user includes analyzing and/or estimating a user's weight based on a first signal collected with a first optical fiber sensor S200, updating a set of posture recognition parameters based on the first signal S210, detecting a posture change event based on an analysis of a user's body movement using the first optical fiber sensor S220, collecting a second signal using a second sensor and categorizing the second signal based on the set of posture recognition parameters to determine a new posture of the user S230, and determining if the new posture warrants feedback to the user to change the new posture S240.
  • For example, the signal collected by one or more optic fiber sensors is indicative of an amount of deformation on the optic fiber, which is itself indicative of an amount of force applied to the cushion; thus, the signal can be analyzed to determine an estimation of the user's weight. The estimate of the user's weight informs a set of posture recognition parameters. Tge set of posture recognition parameters may include, for example, posture classifier coefficients, threshold values for each posture category/classification, etc. As an example, once an estimate of a user's weight is determined, the system may use the user's weight and one or more posture recognition parameters and/or equations to calculate an amount of pressure or force that would be exerted on one or more second sensors if a user were seated in a healthy, neutral posture. This calculated pressure or force is referred to herein as the expected neutral pressure or force. In some embodiments, the system executes a posture recognition algorithm in which the actual pressure or force detected at one or more second sensors is compared to the expected neutral pressure or force to determine if a user is currently seated in a healthy, neutral posture.
  • The optic fiber signal is additionally used in various embodiments to detect a posture change event. A posture change event may be detected when there is a change in the optic fiber signal resulting from a change in the deformation of the optic fiber. A change in the deformation of the optic fiber may result any time there is a shift in a user's weight distribution. A detected posture change event will trigger the new posture recognition algorithm. In some embodiments, the new posture recognition algorithm includes categorizing a second signal collected by one or more second sensors. For example, the second signal may be categorized by a pre-trained posture model and a posture recognition algorithm controlled by the set of posture recognition parameters.
  • In some embodiments, the posture model is pre-trained by learning from a large set of training samples collected by the cushion computing device. During the training phase, the training samples are collected from multiple users sitting in defined posture positions or categories during the data collection. The collected training samples are then analyzed and a set of normalized features is extracted from each training sample. With the extracted feature set and the corresponding collected posture category set, the posture model is refined by applying multiple machine learning algorithms and/or techniques. In some embodiments, the second signal is pre-processed and analyzed, at least in part, using a posture recognition algorithm. A set of normalized features is extracted from the second signal using the same method as that during the training phase. The extracted feature set is then input into the pre-trained model to determine the posture category of the second signal. Posture recognition parameters include model parameters, such as the weights of each feature, the classifier coefficients, and the thresholds of each posture category, which are set during a user weight estimation phase using the optical fiber data. In some embodiments, a posture recommendation algorithm generates feedback to the user when it is determined that the user is not sitting in a neutral posture. The feedback may be generated when a reminder and/or guidance is determined by the system to be necessary to change the new posture of the user. In one such embodiment, a set of continuous (or frequently acquired) posture statuses are stored in a data structure (e.g., circular buffer, cyclic buffer, or ring buffer) on the third computing device, the second computing device, and/or the first computing device. Such posture statuses may be analyzed to determine if a reminder and/or guidance should be triggered and sent to the user on the second computing device to change the posture of the user.
  • In some embodiments, a computerized method for posture and vital sign monitoring includes monitoring a sleep cycle of the user based on one or more of the first signal, second signal, and third signal. Such a method may function to determine: a posture and/or vital sign of the user, when it is appropriate to wake a user from a nap, and/or one or more health conditions of the user. For example, the system may distinguish between REM and non-REM sleep cycles of the user based on a respiration rate and/or heart rate of the user. Such a system may be able to alert a user if frequent disruptions are occurring in the user's sleep cycle. In some embodiments, the system generates a signal to stimulate a vibrator within the cushion or to release an aromatic compound from the cushion, for example to wake the user during an appropriate sleep cycle stage of the user.
  • FIG. 11 illustrates a flow chart of one embodiment of a method for monitoring one or more vital signs of a user during a nap while the user is seated on the cushion. In some embodiments, the method includes receiving one or more inputs from the user that the user intends to nap S300 a. For example, the user may select a range for the nap length (e.g., 15-20 minutes, 20-30 minutes, 30-60 minutes, etc.) and input the range for the nap length into the portable computing device. Alternatively, in some embodiments, the cushion and/or portable computing device may recommend a nap to the user S300 b. For example, the cushion and/or portable computing device may detect a heightened stress level of the user or a slower heart and/or respiration rate of the user indicating that the user may benefit from a nap and alert, notify, or otherwise recommend a nap to the user. The alert or notification may include a push notification, SMS, other visual notification, audible alarm, tactile indication, or other notification to the user that the user should nap. In some embodiments, the system may facilitate the user falling asleep, for example by playing soothing music, releasing calming scents, gently massaging the user using the cushion, or any other type of facilitation. In some embodiments, the method includes determining a sleep stage of the user S310. Using one or more vital signs detected by the optical fiber sensor and/or second sensor, the cushion and/or portable computing device may distinguish between REM and non-REM sleep cycles and/or when the user is experiencing lighter and deeper sleeping periods. In some embodiments, the method includes determining if the sleep stage of the user is an appropriate sleep stage in which to wake the user S320. For example, the system may determine that the user is experiencing lighter sleep and/or a non-REM sleep cycle and wake the user during this lighter sleep period and/or non-REM sleep cycle. In some embodiments, the system wakes the user within the user's chosen range of nap lengths when the user is experiencing lighter sleep and/or a non-REM sleep cycle, for example, to minimize a user feeling groggy, disoriented, or not well-rested from the nap. In some embodiments, the method includes waking the user from the nap if the sleep stage is appropriate S330. For example, the system may determine that the user is within the appropriate nap length range and experiencing lighter sleep and/or a non-REM sleep cycle, and that the user could be woken with minimal side effects (e.g., grogginess, sleepiness, etc.). In some embodiments, the system wakes the user using the vibration module, other tactile signal, an auditory signal (e.g., alarm, music from the cushion and/or portable computing device, etc.), an olfactory signal, or another signal, as described above. In some embodiments, the auditory signal starts at a low decibel level and escalates to a higher decibel level to gently and gradually wake the user from the nap.
  • The systems and methods of the preferred embodiment and variations thereof can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with the system and one or more portions of the processor on the cushion and/or portable computing device. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (e.g., CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application-specific processor, but any suitable dedicated hardware or hardware/firmware combination can alternatively or additionally execute the instructions.
  • As used in the description and claims, the singular form “a”, “an” and “the” include both singular and plural references unless the context clearly dictates otherwise. For example, the term “a sensor” may include, and is contemplated to include, a plurality of sensors. At times, the claims and disclosure may include terms such as “a plurality,” “one or more,” or “at least one;” however, the absence of such terms is not intended to mean, and should not be interpreted to mean, that a plurality is not conceived.
  • The term “about” or “approximately,” when used before a numerical designation or range (e.g., to define a length or pressure), indicates approximations which may vary by (+) or (−) 5%, 1% or 0.1%. All numerical ranges provided herein are inclusive of the stated start and end numbers. The term “substantially” indicates mostly (i.e., greater than 50%) or essentially all of a device, substance, or composition.
  • As used herein, the term “comprising” or “comprises” is intended to mean that the devices, systems, and methods include the recited elements, and may additionally include any other elements. “Consisting essentially of” shall mean that the devices, systems, and methods include the recited elements and exclude other elements of essential significance to the combination for the stated purpose. Thus, a system or method consisting essentially of the elements as defined herein would not exclude other materials, features, or steps that do not materially affect the basic and novel characteristic(s) of the claimed invention. “Consisting of” shall mean that the devices, systems, and methods include the recited elements and exclude anything more than a trivial or inconsequential element or step. Embodiments defined by each of these transitional terms are within the scope of this disclosure.
  • The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims (24)

What is claimed is:
1. A system for posture monitoring, comprising:
a cushion comprising:
a first optical fiber sensor configured to produce a first signal indicative of a movement of a user,
a second sensor configured to produce a second signal indicative of a direction of the movement of the user, and
a first computing device comprising a first processor and memory having a first set of instructions stored thereon; and
a second computing device, wherein the second computing device is communicatively coupled to the first computing device, and wherein the second computing device comprises a second processor and memory having a second set of instructions stored thereon, wherein execution of the first and second set of instructions causes a method to be performed comprising:
transmitting data from the first computing device to the second computing device,
combining the first signal indicative of the movement of the user with the second signal indicative of the direction of the movement of the user to determine a posture of the user,
determining if a change to the posture of the user is recommended, and
if change to the posture of the user is recommended, recommending an action to the user via the second computing device.
2. The system of claim 1, wherein the second sensor is a second optical fiber sensor.
3. The system of claim 1, wherein the second sensor is a pressure sensor.
4. The system of claim 1, wherein the first optical fiber sensor or the second sensor is further configured to produce a third signal indicative of a vital sign of the user.
5. The system of claim 4, wherein the vital sign is one or more of a respiratory waveform and a cardiac waveform.
6. The system of claim 1, wherein the action comprises one or more of standing, walking, correcting posture, and stretching.
7. The system of claim 1, wherein the cushion is portable.
8. The system of claim 1, wherein the cushion forms a portion of a chair, seat, sleeping pod, or couch.
9. The system of claim 1, wherein the first computing device and the second computing device communicate wirelessly.
10. The system of claim 1, wherein the second computing device comprises a smartphone, wearable computing device, tablet, laptop, other portable computing device, or a remote server.
11. The system of claim 1, wherein the first optical fiber sensor comprises a one-layer deformer structure.
12. The system of claim 1, wherein the cushion further comprises a memory foam layer.
13. A computerized method for posture monitoring, comprising:
receiving a first signal indicative of a movement of a user, wherein the first signal is produced by a first optical fiber sensor in a cushion;
receiving a second signal indicative of a direction of the movement of the user, wherein the second signal is produced by a second sensor in the cushion;
combining the first signal indicative of the movement of the user with the second signal indicative of the direction of the movement of the user to determine a posture of the user;
determining if a change to the posture of the user is recommended; and
if change to the posture of the user is recommended, recommending an action to the user to change the posture.
14. The computerized method of claim 13, wherein the action includes one or more of standing, walking, stretching, and correcting posture.
15. The computerized method of claim 13, further comprising identifying if the user is leaning forward, leaning backward, leaning left, leaning right, sitting upright, or slouching.
16. The computerized method of claim 15, further comprising generating an alert on the first or second computing device if change to the posture of the user is recommended.
17. The computerized method of claim 13, further comprising receiving a third signal indicative of a vital sign of the user, wherein the third signal is produced by the first optical fiber sensor or the second sensor.
18. The computerized method of claim 17, wherein the vital sign is one or more of a respiratory waveform and a cardiac waveform of the user.
19. The computerized method of claim 18, further comprising determining a stress level of the user based, at least in part, on a change in a variability of the cardiac waveform.
20. The computerized method of claim 17, further comprising monitoring a sleep cycle of the user based on one or more of the first signal, second signal, and third signal.
21. The computerized method of claim 20, further comprising generating a signal to stimulate a vibrator within the cushion, wherein the signal is generated during an appropriate sleep cycle stage of the user.
22. The computerized method of claim 17, further comprising:
determining if a change to the vital sign is recommended; and
if change to the vital sign of the user is recommended, recommending a second action to the user to change the vital sign.
23. The computerized method of claim 18, wherein the second action includes one or more of standing, walking, stretching, and breathing coaching.
24. The computerized method of claim 18, further comprising generating an alert on the first or second computing device if change to the vital sign is recommended.
US14/738,918 2014-09-30 2015-06-14 Systems and methods for posture and vital sign monitoring Abandoned US20160089059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/738,918 US20160089059A1 (en) 2014-09-30 2015-06-14 Systems and methods for posture and vital sign monitoring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462057237P 2014-09-30 2014-09-30
US14/738,918 US20160089059A1 (en) 2014-09-30 2015-06-14 Systems and methods for posture and vital sign monitoring

Publications (1)

Publication Number Publication Date
US20160089059A1 true US20160089059A1 (en) 2016-03-31

Family

ID=55583230

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/738,918 Abandoned US20160089059A1 (en) 2014-09-30 2015-06-14 Systems and methods for posture and vital sign monitoring
US14/872,040 Active US9655526B2 (en) 2014-09-30 2015-09-30 Vital signs fiber optic sensor systems and methods
US15/486,295 Abandoned US20170215736A1 (en) 2014-09-30 2017-04-12 Vital signs fiber optic sensor systems and methods
US15/486,283 Abandoned US20170215735A1 (en) 2014-09-30 2017-04-12 Vital signs fiber optic sensor systems and methods

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/872,040 Active US9655526B2 (en) 2014-09-30 2015-09-30 Vital signs fiber optic sensor systems and methods
US15/486,295 Abandoned US20170215736A1 (en) 2014-09-30 2017-04-12 Vital signs fiber optic sensor systems and methods
US15/486,283 Abandoned US20170215735A1 (en) 2014-09-30 2017-04-12 Vital signs fiber optic sensor systems and methods

Country Status (4)

Country Link
US (4) US20160089059A1 (en)
JP (2) JP2017535316A (en)
CN (2) CN106793878B (en)
WO (2) WO2016053398A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106580295A (en) * 2017-01-03 2017-04-26 泉州师范学院 Space-division multiplexing vital sign parameter detector with multimode fibers
US20180043794A1 (en) * 2016-08-12 2018-02-15 Herman Miller, Inc. Seating structure including a presence sensor
CN107692973A (en) * 2017-10-19 2018-02-16 北京浩雨固定式护颈托枕科技有限公司 A kind of life sign monitor system based on Fibre Optical Sensor
KR101863005B1 (en) * 2017-11-01 2018-05-31 김승환 Multi-function cushion for medical use
WO2018132482A1 (en) * 2017-01-10 2018-07-19 Cornell University Sensors with elastomeric foams and uses thereof
WO2018145250A1 (en) * 2017-02-07 2018-08-16 Microsoft Technology Licensing, Llc. Ergonomic feedback
US20180304774A1 (en) * 2015-10-22 2018-10-25 Ts Tech Co., Ltd. Condition correction unit
US20180361896A1 (en) * 2017-06-15 2018-12-20 GM Global Technology Operations LLC Seat support assembly formed by additive manufacturing
CN109141701A (en) * 2018-09-29 2019-01-04 余海波 sensor and wearable device
CN109475323A (en) * 2016-05-17 2019-03-15 美蓓亚三美株式会社 Respiratory waveform trace system and respiratory waveform plotting method
US20190212967A1 (en) * 2018-01-10 2019-07-11 Mod Worldwide, Llc Messaging system
US20190337412A1 (en) * 2018-05-04 2019-11-07 Lear Corporation Adjustable seat assembly and input from a health care provider
US10709251B1 (en) * 2019-03-13 2020-07-14 Janet Lynn Rothman Portable seat cushion with self-contained heat source
US20200237294A1 (en) * 2017-09-29 2020-07-30 Kyocera Corporation Sleep assessment system, massage system, control method, and electronic device
US10743797B2 (en) 2015-08-27 2020-08-18 Shenzhen Darma Technology Co. Ltd. Fiber-optic sensors and methods for monitoring micro-movements
US10792461B2 (en) 2014-06-05 2020-10-06 Eight Sleep, Inc. Methods and systems for gathering and analyzing human biological signals
USD900126S1 (en) * 2018-08-28 2020-10-27 Nitto Denko Corporation Display screen or portion thereof with graphical user interface
US20210007676A1 (en) * 2015-08-28 2021-01-14 George Chronis Systems and methods for detecting attempted bed exit
US20210205151A1 (en) * 2019-09-30 2021-07-08 Hill-Rom Services, Inc. Incontinence detection system
WO2021152847A1 (en) * 2020-01-31 2021-08-05 Karlos Ishac Posture detection system and posture detection method
US20210244349A1 (en) * 2018-06-11 2021-08-12 Momo Medical Holding B.V. Assembly, Configured to Detect a Body on a Support
US20210260431A1 (en) * 2020-02-25 2021-08-26 Ellen Sakany Chair Exerciser
US20210330264A1 (en) * 2018-08-24 2021-10-28 Ts Tech Co., Ltd. Sensor-equipped seat
CN113607045A (en) * 2021-08-03 2021-11-05 中国计量大学 Rough touch reproduction device and method and online shopping method based on rough touch reproduction
US20220048629A1 (en) * 2018-09-21 2022-02-17 Aircraft Cabin Modification Gmbh Seating System for a Passenger Aircraft, Method and Computer-Implementable Program Product
US20220175276A1 (en) * 2020-12-03 2022-06-09 Key Point Technologies Inc. Health and fitness recommendation systems
US11370328B2 (en) * 2016-03-24 2022-06-28 Xsensor Technology Corporation Intelligent seat systems
WO2022177978A1 (en) * 2021-02-16 2022-08-25 Mddriven Llc Physiological sensing and monitoring systems
US20220299381A1 (en) * 2021-03-18 2022-09-22 Shun-Tien HUNG Stress analysis system
US11596342B2 (en) 2019-09-19 2023-03-07 Medtronic, Inc. Automatic detection of body planes of rotation
US11666284B2 (en) 2018-01-09 2023-06-06 Eight Sleep Inc. Systems and methods for detecting a biological signal of a user of an article of furniture
US11771863B1 (en) * 2019-12-11 2023-10-03 Amazon Technologies, Inc. Interface for guided meditation based on user interactions
US11819344B2 (en) 2015-08-28 2023-11-21 Foresite Healthcare, Llc Systems for automatic assessment of fall risk
US11904103B2 (en) 2018-01-19 2024-02-20 Eight Sleep Inc. Sleep pod
US20240087432A1 (en) * 2022-09-11 2024-03-14 John Pellegrini Device for facilitating correcting of a posture of a user

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9668688B2 (en) * 2015-04-17 2017-06-06 Mossbridge Institute, Llc Methods and systems for content response analysis
CN106037646A (en) * 2016-05-23 2016-10-26 深圳和而泰智能控制股份有限公司 Physiological signal acquisition device and mattress
CN107174053A (en) * 2017-06-21 2017-09-19 珠海元动力智能健康家居有限公司 A kind of hip pad depressurizes aqueous vapor cushion
CN107132615B (en) * 2017-07-03 2020-01-10 长飞光纤光缆股份有限公司 Multimode optical fiber, application thereof and temperature measurement system
CN107595278A (en) * 2017-09-19 2018-01-19 深圳市大耳马科技有限公司 A kind of method, apparatus and system for generating medical imaging device gate-control signal
EP3684463A4 (en) 2017-09-19 2021-06-23 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
WO2019074787A1 (en) * 2017-10-09 2019-04-18 The Joan and Irwin Jacobs Technion-Cornell Institute Systems, apparatus, and methods for detection and monitoring of chronic sleep disorders
CN108057176A (en) * 2017-11-08 2018-05-22 深圳市大耳马科技有限公司 A kind of method, apparatus and system for generating medicine radiotherapy apparatus control signal
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
JP7066389B2 (en) * 2017-12-07 2022-05-13 パラマウントベッド株式会社 Posture judgment device
CN107945467A (en) * 2017-12-20 2018-04-20 中国科学院合肥物质科学研究院 A kind of Portable sitting monitoring and system for prompting based on buttocks Pressure Distribution
WO2019133664A1 (en) * 2017-12-28 2019-07-04 Sleep Number Corporation Bed having sleep stage detecting feature
US11318277B2 (en) 2017-12-31 2022-05-03 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US20210055171A1 (en) * 2018-01-29 2021-02-25 University Of Louisville Research Foundation, Inc. Stretchable optical fibers for strain-sensitive textiles
JP7020154B2 (en) 2018-02-02 2022-02-16 富士フイルムビジネスイノベーション株式会社 Information processing system
JP2019133572A (en) 2018-02-02 2019-08-08 富士ゼロックス株式会社 Information processing system
JP7003702B2 (en) 2018-02-02 2022-01-21 富士フイルムビジネスイノベーション株式会社 Information processing system
CN108304822A (en) * 2018-02-23 2018-07-20 余海波 Signal processing apparatus and method
CN108652635A (en) * 2018-03-27 2018-10-16 余海波 medical monitoring device, method and system
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
JP7138363B2 (en) * 2018-04-28 2022-09-16 深▲せん▼市大耳馬科技有限公司 Pulse wave conduction parameter measuring system, measuring method and measuring device
CN110403579B (en) * 2018-04-28 2022-08-19 深圳市大耳马科技有限公司 Pulse wave conduction parameter measuring system and method
CN110403580B (en) * 2018-04-28 2023-01-17 深圳市大耳马科技有限公司 Pulse wave conduction parameter measuring method and pulse wave conduction parameter processing equipment
CN108703749A (en) * 2018-05-03 2018-10-26 上海掌门科技有限公司 A kind of Intelligent luminous system with human body interaction
CN110638435B (en) * 2018-06-27 2023-02-07 深圳市大耳马科技有限公司 Heart physiological parameter measuring method, device, terminal and computer storage medium
CN109147285A (en) * 2018-07-10 2019-01-04 江苏柔世电子科技有限公司 Wearable Intelligent sitting posture monitors system
CN110833402A (en) * 2018-08-17 2020-02-25 深圳市大耳马科技有限公司 Physiological parameter measuring system and method
CN110881956B (en) * 2018-09-10 2022-06-14 深圳市大耳马科技有限公司 Heart physiological parameter measuring method, device, terminal and computer storage medium
CN110881964B (en) * 2018-09-11 2022-07-29 深圳市大耳马科技有限公司 Method for evaluating capacity reactivity and processing equipment for evaluating capacity reactivity
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
CN109512411B (en) * 2018-10-24 2021-04-20 滨州医学院附属医院 Hypertension analyzer based on complex network
LU100993B1 (en) * 2018-11-09 2020-05-11 Visseiro Gmbh SENSOR SURFACE
CN112996437A (en) * 2018-11-20 2021-06-18 深圳市大耳马科技有限公司 Self-adaptive adjustment and regulation method, device and system for optical fiber sensor
CN111281389B (en) * 2018-12-10 2022-11-08 深圳麦格米特电气股份有限公司 Monitoring mattress is breathed to intelligence
CN109411053B (en) * 2018-12-12 2021-01-15 深圳大学 Old people action rehabilitation training management data model construction method
KR102148261B1 (en) * 2018-12-13 2020-08-26 주식회사 듀오백 Seat structure for smart chair
US10833774B2 (en) * 2019-01-02 2020-11-10 The Boeing Company Embedded fiber optic sensor system
CN109602400A (en) * 2019-01-25 2019-04-12 泉州师范学院 Vital sign parameter monitoring device and method based on four cone fibre optic interferometers
TWI681740B (en) 2019-03-06 2020-01-11 華碩電腦股份有限公司 Seat cushion
CN109870256B (en) * 2019-03-08 2021-08-06 东莞理工学院 Self-monitoring DOFS (degree of freedom) -FRP (fiber reinforced plastic) cloth and monitoring method thereof
CN109820484A (en) * 2019-03-14 2019-05-31 深圳市弘楚源科技发展有限公司 A kind of mattress with sensing device monitoring sleep respiratory disorder
CN110017938A (en) * 2019-03-20 2019-07-16 常州天利智能控制股份有限公司 A kind of bellows type pressure sensor and the automatic controller with it
CN110013244A (en) * 2019-04-18 2019-07-16 江西益康医疗器械集团有限公司 Medical cardiac bioelectricity monitoring device and its monitoring method
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
CN110367929B (en) * 2019-05-27 2022-02-11 安徽康岁健康科技有限公司 Sleep monitoring system and monitoring method thereof
US11150082B2 (en) * 2019-06-18 2021-10-19 Sharp Kabushiki Kaisha Optical shape sensor for determining shape of a flexible substrate
CN110236500A (en) * 2019-06-19 2019-09-17 深圳市矽赫科技有限公司 Detection device for vital signs
CN110403577B (en) * 2019-08-05 2022-04-01 上海应用技术大学 Sleep quality monitoring device and method based on optical fiber microbend pressure induction
CN110367955A (en) * 2019-08-19 2019-10-25 深圳市矽赫科技有限公司 Fibre optical sensor and detection device for vital signs
CN110448282B (en) * 2019-08-21 2021-11-09 武汉理工大学 Optical fiber sensing assembly and vital sign monitoring device
CN110558956B (en) * 2019-08-21 2022-03-08 武汉凯锐普信息技术有限公司 Vital sign monitoring device
CN110755086A (en) * 2019-10-29 2020-02-07 北京大众益康科技有限公司 Physiological characteristic data analysis method and device in sitting posture state
US20220409141A1 (en) * 2019-11-29 2022-12-29 Lg Electronics Inc. Human body sensing mat
KR102275527B1 (en) * 2019-12-03 2021-07-09 주식회사 듀오백 Control box structure for portable smart cushion
CN111759295A (en) * 2020-07-29 2020-10-13 泉州师范学院 Non-contact intelligent monitor and detection method thereof
CN112512412A (en) * 2020-10-29 2021-03-16 香港应用科技研究院有限公司 Microbend optical fiber sensor for vital sign monitoring and respiratory and heart rate co-extraction
US11896351B2 (en) * 2020-10-29 2024-02-13 Hong Kong Applied Science and Technology Research Institute Company Limited Microbending fiber-optic sensor for vital sign monitoring and co-extraction of respiration and heartrate
CN112386260A (en) * 2020-11-18 2021-02-23 深圳市格兰莫尔科技有限公司 Electrocardiogram monitoring device integrating BCG (BCG-Grating) signals
CN112842663A (en) * 2020-12-28 2021-05-28 航天科工深圳(集团)有限公司 Intelligent sleep pillow
CN116669625A (en) * 2020-12-29 2023-08-29 深圳迈瑞生物医疗电子股份有限公司 Physiological signal processing method, device, monitor and computer readable storage medium
CN113261951B (en) * 2021-04-29 2022-03-29 北京邮电大学 Sleeping posture identification method and device based on piezoelectric ceramic sensor
CN113317757A (en) * 2021-04-30 2021-08-31 深圳麦格米特电气股份有限公司 Method for acquiring vital sign data, optical fiber sensor and equipment
CN113499059B (en) * 2021-06-01 2022-07-05 武汉理工大学 BCG signal processing system and method based on optical fiber sensing non-contact
ES2929927A1 (en) 2021-06-02 2022-12-02 Univ Del Pais Vasco / Euskal Herriko Unibertsitatea Sensor device for postural monitoring of sitting position of a user (Machine-translation by Google Translate, not legally binding)
CN113551831B (en) * 2021-07-05 2022-07-01 浙江大学 Pressure detection device and method based on polymer optical fiber knot-shaped sensor
CN113940520B (en) * 2021-10-14 2023-01-10 清华大学 Stand and control method of intelligent heating seat structure thereof
CN114159077B (en) * 2022-02-09 2022-05-31 浙江强脑科技有限公司 Meditation scoring method, device, terminal and storage medium based on electroencephalogram signals
CN114305346B (en) * 2022-03-03 2022-05-24 深圳市心流科技有限公司 Sleep monitoring method and device, intelligent eyeshade and storage medium
CN114566036B (en) * 2022-03-08 2023-11-24 福建省盈宇科技有限公司 Photoelectric conversion device and method for vital sign signals
CN115381247B (en) * 2022-07-29 2024-01-26 北京师范大学珠海校区 Sleep monitoring mattress and sleep monitoring equipment
CN116380139A (en) * 2023-04-10 2023-07-04 嘉兴太和信息技术有限公司 Optical fiber sensor, optical fiber sensor system and intelligent protection pad

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058661A1 (en) * 2007-05-18 2009-03-05 Gleckler Anthony D Providing information related to the posture mode of a user applying pressure to a seat component
US20110046498A1 (en) * 2007-05-02 2011-02-24 Earlysense Ltd Monitoring, predicting and treating clinical episodes
US20130090571A1 (en) * 2011-10-06 2013-04-11 The Board Of Regents Of The University Of Texas System Methods and systems for monitoring and preventing pressure ulcers

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0082820A3 (en) * 1981-12-21 1984-03-21 Battelle Memorial Institute Optical fibre pressure detector
FR2578645B1 (en) * 1985-03-07 1987-03-20 Sopha Praxis OPTICAL STRAIN DETECTION DEVICE, STRAIN MEASUREMENT METHOD USING THE SAME AND THEIR APPLICATION TO A SCALE
US4770492A (en) * 1986-10-28 1988-09-13 Spectran Corporation Pressure or strain sensitive optical fiber
GB2197953B (en) 1986-11-27 1990-06-06 Plessey Co Plc Acoustic sensor
US4822135A (en) 1987-08-07 1989-04-18 George Seaver Optical wave guide band edge sensor and method
US4863270A (en) 1988-08-31 1989-09-05 Simmonds Precision Products, Inc. Multi-mode optical fiber sensor and method
CH681570A5 (en) * 1989-09-15 1993-04-15 Suisse Electronique Microtech
CA2009033C (en) 1990-01-31 1994-11-01 Earl L. Bryenton Optical sensor displacement monitor
US5132529A (en) * 1990-08-23 1992-07-21 The United States Of America As Represented By The United States Department Of Energy Fiber-optic strain gauge with attached ends and unattached microbend section
CA2073162C (en) 1991-07-31 1999-06-29 Lee A. Danisch Fiber optic bending and positioning sensor
US5193129A (en) * 1991-09-27 1993-03-09 Rockwell International Corporation Pressure sensor utilizing microbending of a fiber optic cable woven through a ladder shaped structure
IL99773A (en) * 1991-10-17 1995-11-27 Israel State Pressure sensor
US5291013A (en) 1991-12-06 1994-03-01 Alamed Corporation Fiber optical monitor for detecting normal breathing and heartbeat motion based on changes in speckle patterns
US5212379A (en) 1991-12-06 1993-05-18 Alamed Corporation Fiber optical monitor for detecting motion based on changes in speckle patterns
US5241300B1 (en) 1992-04-24 1995-10-31 Johannes Buschmann Sids detection apparatus and methods
US5348019A (en) * 1992-09-18 1994-09-20 The Board Of Regents Of The University Of Oklahoma Optical fiber pressure sensing catheter
GB9223296D0 (en) * 1992-11-06 1992-12-23 Univ Loughborough Ergonomic chair
NO303470B1 (en) * 1994-12-16 1998-07-13 Safety One As Method and system for continuous and global monitoring of dynamic loads
FR2733591B1 (en) * 1995-04-26 1997-06-13 Honeywell PRESSURE SENSITIVE OPTICAL DEVICE AND PRESENCE DETECTION FLOOR
US5678266A (en) * 1995-09-08 1997-10-21 P & K Products, Incorporated Method and apparatus for supporting various parts of a person's body
DE19534260C2 (en) * 1995-09-15 2002-07-04 Friedrich Motzko Rope-shaped fiber optic load sensor
US5818982A (en) 1996-04-01 1998-10-06 Voss; Karl Friedrich Fiber optic sensor based upon buckling of a freely suspended length of fiber
US5953468A (en) 1996-11-01 1999-09-14 Mendez R&D Associates Scalable, quantized, delay-line array based on nested, generalized spirals
US6009163A (en) * 1997-07-03 1999-12-28 U S West, Inc. Method and system for regulating incoming calls from multiple points of origination
US5913245A (en) * 1997-07-07 1999-06-15 Grossman; Barry G. Flexible optical fiber sensor tapes, systems and methods
DE19738651A1 (en) 1997-09-04 1999-03-11 Alsthom Cge Alcatel Device for determining the temperature of an object and method for producing such a device
US6687523B1 (en) 1997-09-22 2004-02-03 Georgia Tech Research Corp. Fabric or garment with integrated flexible information infrastructure for monitoring vital signs of infants
US6381482B1 (en) 1998-05-13 2002-04-30 Georgia Tech Research Corp. Fabric or garment with integrated flexible information infrastructure
CA2335469C (en) 1998-06-26 2009-06-09 Cidra Corporation Non-intrusive fiber optic pressure sensor for measuring unsteady pressures within a pipe
US6243517B1 (en) 1999-11-04 2001-06-05 Sparkolor Corporation Channel-switched cross-connect
US6351587B1 (en) 1999-11-12 2002-02-26 Lucent Technologies Inc. Multi-fiber digital delay line
US6498652B1 (en) 2000-02-08 2002-12-24 Deepak Varshneya Fiber optic monitor using interferometry for detecting vital signs of a patient
US6816266B2 (en) 2000-02-08 2004-11-09 Deepak Varshneya Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
US6838660B2 (en) * 2000-06-02 2005-01-04 Airak, Inc. Fiber optic sensor system and method for measuring the pressure of media
NL1015970C2 (en) * 2000-08-21 2002-02-25 Kamp H W Van Der Method, device and pressure sensor cushion for detecting an incorrect sitting position.
US6852086B2 (en) * 2001-06-18 2005-02-08 Dan Atlas Detection of signs of attempted deception and other emotional stresses by detecting changes in weight distribution of a standing or sitting person
JP3725805B2 (en) 2001-07-04 2005-12-14 三菱電線工業株式会社 Fiber wiring sheet and manufacturing method thereof
US6711330B1 (en) 2001-12-07 2004-03-23 Corning Incorporated Optical transmission link with low bending loss
JP2005043087A (en) 2003-07-23 2005-02-17 Fujikura Ltd Optical fiber ring interference type sensor
US7396331B2 (en) * 2003-10-27 2008-07-08 Home Guardian, Llc System and process for non-invasive collection and analysis of physiological signals
GB0402316D0 (en) * 2004-02-03 2004-03-10 Eleksen Ltd Position and pressure detector
US8403865B2 (en) 2004-02-05 2013-03-26 Earlysense Ltd. Prediction and monitoring of clinical episodes
US20070118054A1 (en) * 2005-11-01 2007-05-24 Earlysense Ltd. Methods and systems for monitoring patients for clinical episodes
JP4809779B2 (en) 2004-02-05 2011-11-09 アーリーセンス・リミテッド Prediction and monitoring technology for clinical onset in respiration
US8491492B2 (en) 2004-02-05 2013-07-23 Earlysense Ltd. Monitoring a condition of a subject
CA2464029A1 (en) * 2004-04-08 2005-10-08 Valery Telfort Non-invasive ventilation monitor
US7605923B2 (en) 2004-10-15 2009-10-20 Morgan Research Corporation Embeddable polarimetric fiber optic sensor and method for monitoring of structures
US7196317B1 (en) 2005-03-25 2007-03-27 Virginia Tech Intellectual Properties, Inc. System, device, and method for detecting perturbations
US7473906B2 (en) * 2005-04-28 2009-01-06 Claudio Oliveira Egalon Reversible, low cost, distributed optical fiber sensor with high spatial resolution
US7552625B2 (en) * 2005-06-17 2009-06-30 Georgia Tech Research Corporation Force sensing integrated readout and active tip based probe microscope systems
JP4554476B2 (en) 2005-08-30 2010-09-29 財団法人電力中央研究所 Life activity monitoring method and optical fiber plate sensor used therefor
WO2008011058A2 (en) 2006-07-19 2008-01-24 Fiber Sensys Llc. Fiber-optic mat sensor
JP2010508056A (en) 2006-10-30 2010-03-18 エルフィ−テック リミテッド System and method for in vivo measurement of biological parameters
CN102519500B (en) 2007-01-31 2015-08-12 泰瑞连激光技术有限公司 optical power modulation
US7884727B2 (en) 2007-05-24 2011-02-08 Bao Tran Wireless occupancy and day-light sensing
EP2247235B1 (en) * 2008-02-22 2016-04-13 Koninklijke Philips N.V. A system and kit for stress and relaxation management
US8882684B2 (en) 2008-05-12 2014-11-11 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US7768706B1 (en) * 2009-01-13 2010-08-03 Applied Micro Circuits Corporation Optical fiber micro array lens
US7957623B2 (en) 2008-09-19 2011-06-07 Pyrophotonics Lasers Inc. Deformable thermal pads for optical fibers
US8502679B2 (en) 2008-10-08 2013-08-06 The Board Of Regents Of The University Of Texas System Noninvasive motion and respiration monitoring system
WO2010146792A1 (en) * 2009-06-17 2010-12-23 株式会社フジクラ Multiclad optical fiber, optical fiber module, fiber laser, and fiber amplifier
WO2011013048A1 (en) * 2009-07-31 2011-02-03 Koninklijke Philips Electronics N.V. Method and apparatus for the analysis of a ballistocardiogram signal
SG10201404690RA (en) * 2009-08-06 2014-10-30 Agency Science Tech & Res A vital signs detecting device and a method for detecting vital signs
US8488234B2 (en) 2009-08-24 2013-07-16 Kongsberg Seatex As Adiabatic bend transitions for multimode fibers
US9196175B2 (en) * 2010-03-30 2015-11-24 Michael C. Walsh Ergonomic sensor pad with feedback to user and method of use
JP2014523039A (en) * 2011-07-05 2014-09-08 サウジ アラビアン オイル カンパニー System, computer medium and computer-implemented method for monitoring and improving biomechanical health of employees
CN102966918A (en) * 2011-08-30 2013-03-13 欧司朗股份有限公司 LED (light emitting diode) illuminating equipment based on color mixing and remote fluophor layout
CN102429650B (en) * 2011-11-10 2013-09-25 华中科技大学 Laser speckle blood flow imaging contrast analytical method
WO2013109188A1 (en) * 2012-01-16 2013-07-25 Agency For Science, Technology And Research Method and system for optical blood pressure monitoring
US8861984B2 (en) 2012-01-19 2014-10-14 Teraxion Inc. Compact polarization-insensitive optical receiver
CN103300819B (en) * 2012-03-15 2016-12-28 西门子公司 Study patient monitoring and interfering system
US8897863B2 (en) * 2012-05-03 2014-11-25 University Of Washington Through Its Center For Commercialization Arrhythmia detection using hidden regularity to improve specificity
JP6122950B2 (en) * 2012-05-22 2017-04-26 ヒル−ロム サービシズ,インコーポレイテッド Adverse event mitigation system, method and apparatus
WO2013179189A1 (en) * 2012-05-31 2013-12-05 Koninklijke Philips N.V. Separating cardiac signal and respiratory signal from vital signs
US9204504B2 (en) * 2012-09-17 2015-12-01 Energy Focus, Inc. LED lamp system
US9307908B2 (en) * 2012-10-30 2016-04-12 Vital Connect, Inc. Measuring psychological stress from cardiovascular and activity signals
DE112013005660T5 (en) * 2012-11-27 2015-08-20 Faurecia Automotive Seating, Llc Vehicle seat with integrated sensors
US10376214B2 (en) * 2013-03-15 2019-08-13 Stryker Corporation Patient support apparatus with patient information sensors
CN106197496A (en) 2013-11-21 2016-12-07 充梦霞 A kind of laser sensor frequency division multiplexing device using photodetector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110046498A1 (en) * 2007-05-02 2011-02-24 Earlysense Ltd Monitoring, predicting and treating clinical episodes
US20090058661A1 (en) * 2007-05-18 2009-03-05 Gleckler Anthony D Providing information related to the posture mode of a user applying pressure to a seat component
US20130090571A1 (en) * 2011-10-06 2013-04-11 The Board Of Regents Of The University Of Texas System Methods and systems for monitoring and preventing pressure ulcers

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10792461B2 (en) 2014-06-05 2020-10-06 Eight Sleep, Inc. Methods and systems for gathering and analyzing human biological signals
US10743797B2 (en) 2015-08-27 2020-08-18 Shenzhen Darma Technology Co. Ltd. Fiber-optic sensors and methods for monitoring micro-movements
US20210007676A1 (en) * 2015-08-28 2021-01-14 George Chronis Systems and methods for detecting attempted bed exit
US11864926B2 (en) * 2015-08-28 2024-01-09 Foresite Healthcare, Llc Systems and methods for detecting attempted bed exit
US11819344B2 (en) 2015-08-28 2023-11-21 Foresite Healthcare, Llc Systems for automatic assessment of fall risk
US20180304774A1 (en) * 2015-10-22 2018-10-25 Ts Tech Co., Ltd. Condition correction unit
US10967758B2 (en) * 2015-10-22 2021-04-06 Ts Tech Co., Ltd. Condition correction unit
US11787312B2 (en) 2016-03-24 2023-10-17 Xsensor Technology Corporation Intelligent seat systems
US11370328B2 (en) * 2016-03-24 2022-06-28 Xsensor Technology Corporation Intelligent seat systems
CN109475323A (en) * 2016-05-17 2019-03-15 美蓓亚三美株式会社 Respiratory waveform trace system and respiratory waveform plotting method
US20180043794A1 (en) * 2016-08-12 2018-02-15 Herman Miller, Inc. Seating structure including a presence sensor
US9987949B2 (en) * 2016-08-12 2018-06-05 Herman Miller, Inc. Seating structure including a presence sensor
CN106580295A (en) * 2017-01-03 2017-04-26 泉州师范学院 Space-division multiplexing vital sign parameter detector with multimode fibers
US10976207B2 (en) 2017-01-10 2021-04-13 Cornell University Sensors with elastomeric foams and uses thereof
WO2018132482A1 (en) * 2017-01-10 2018-07-19 Cornell University Sensors with elastomeric foams and uses thereof
WO2018145250A1 (en) * 2017-02-07 2018-08-16 Microsoft Technology Licensing, Llc. Ergonomic feedback
CN109130986A (en) * 2017-06-15 2019-01-04 通用汽车环球科技运作有限责任公司 The Seat support component formed by increasing material manufacturing
US20180361896A1 (en) * 2017-06-15 2018-12-20 GM Global Technology Operations LLC Seat support assembly formed by additive manufacturing
US11529096B2 (en) * 2017-09-29 2022-12-20 Kyocera Corporation Sleep assessment system, massage system, control method, and electronic device
US20200237294A1 (en) * 2017-09-29 2020-07-30 Kyocera Corporation Sleep assessment system, massage system, control method, and electronic device
CN107692973A (en) * 2017-10-19 2018-02-16 北京浩雨固定式护颈托枕科技有限公司 A kind of life sign monitor system based on Fibre Optical Sensor
KR101863005B1 (en) * 2017-11-01 2018-05-31 김승환 Multi-function cushion for medical use
US11666284B2 (en) 2018-01-09 2023-06-06 Eight Sleep Inc. Systems and methods for detecting a biological signal of a user of an article of furniture
US20190212967A1 (en) * 2018-01-10 2019-07-11 Mod Worldwide, Llc Messaging system
US11884205B2 (en) * 2018-01-10 2024-01-30 Mod Worldwide, Llc Messaging system
US11904103B2 (en) 2018-01-19 2024-02-20 Eight Sleep Inc. Sleep pod
US20190337412A1 (en) * 2018-05-04 2019-11-07 Lear Corporation Adjustable seat assembly and input from a health care provider
US20210244349A1 (en) * 2018-06-11 2021-08-12 Momo Medical Holding B.V. Assembly, Configured to Detect a Body on a Support
US11896396B2 (en) * 2018-08-24 2024-02-13 Ts Tech Co., Ltd. Sensor-equipped seat
US20210330264A1 (en) * 2018-08-24 2021-10-28 Ts Tech Co., Ltd. Sensor-equipped seat
USD900126S1 (en) * 2018-08-28 2020-10-27 Nitto Denko Corporation Display screen or portion thereof with graphical user interface
US20220048629A1 (en) * 2018-09-21 2022-02-17 Aircraft Cabin Modification Gmbh Seating System for a Passenger Aircraft, Method and Computer-Implementable Program Product
CN109141701A (en) * 2018-09-29 2019-01-04 余海波 sensor and wearable device
US10709251B1 (en) * 2019-03-13 2020-07-14 Janet Lynn Rothman Portable seat cushion with self-contained heat source
US11596342B2 (en) 2019-09-19 2023-03-07 Medtronic, Inc. Automatic detection of body planes of rotation
US20210205151A1 (en) * 2019-09-30 2021-07-08 Hill-Rom Services, Inc. Incontinence detection system
US11771863B1 (en) * 2019-12-11 2023-10-03 Amazon Technologies, Inc. Interface for guided meditation based on user interactions
WO2021152847A1 (en) * 2020-01-31 2021-08-05 Karlos Ishac Posture detection system and posture detection method
US20230056977A1 (en) * 2020-01-31 2023-02-23 Karlos Ishac Posture detection system and posture detection method
US20210260431A1 (en) * 2020-02-25 2021-08-26 Ellen Sakany Chair Exerciser
US20220175276A1 (en) * 2020-12-03 2022-06-09 Key Point Technologies Inc. Health and fitness recommendation systems
WO2022177978A1 (en) * 2021-02-16 2022-08-25 Mddriven Llc Physiological sensing and monitoring systems
US20220299381A1 (en) * 2021-03-18 2022-09-22 Shun-Tien HUNG Stress analysis system
CN113607045A (en) * 2021-08-03 2021-11-05 中国计量大学 Rough touch reproduction device and method and online shopping method based on rough touch reproduction
US20240087432A1 (en) * 2022-09-11 2024-03-14 John Pellegrini Device for facilitating correcting of a posture of a user

Also Published As

Publication number Publication date
WO2016054294A1 (en) 2016-04-07
WO2016053398A1 (en) 2016-04-07
CN107072565B (en) 2020-07-14
JP2017534353A (en) 2017-11-24
JP2017535316A (en) 2017-11-30
US20170215735A1 (en) 2017-08-03
CN106793878B (en) 2018-07-06
CN107072565A (en) 2017-08-18
US9655526B2 (en) 2017-05-23
CN106793878A (en) 2017-05-31
US20170215736A1 (en) 2017-08-03
US20160089031A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
US20160089059A1 (en) Systems and methods for posture and vital sign monitoring
US10433646B1 (en) Microclimate control systems and methods
US20190223799A1 (en) Wearable force sensor for monitoring respiration
US10638842B2 (en) Smart seat and control method for the same
US10004454B2 (en) Breath pacing device and method for packing the respiratory activity of a subject
US10614694B1 (en) Powered furniture assembly
KR101502117B1 (en) User customized healing music massage chair for relieving stress
KR101383199B1 (en) Well-being pillow system
CN110049714A (en) System and method for promoting awakening
US20160331305A1 (en) Breath pacing system and method for pacing the respiratory activity of a subject
WO2019176186A1 (en) Control device and motor-driven furniture
JP7124710B2 (en) Display control device, display control method and computer program
CN112367910A (en) Method for sensing and transmitting biometric data and for bidirectional communication with a textile-based sensor platform
JP2023119595A (en) sleep device and sleep system
KR102250606B1 (en) Smart Matteress
JP2016158700A (en) Biological stimulation device, biological stimulation system, and stimulator
US20200077800A1 (en) Microclimate control systems and methods
KR20120045661A (en) Arraratus and method determining quality of sleep
AU2017101323A4 (en) LifeChair, A system which tracks a user’s sitting posture and provides haptic feedback through a pressure sensory chair or chair cushion to encourage upright posture.
US20220395181A1 (en) System and methods for sensor-based detection of sleep characteristics and generating animation depiction of the same
Vlaović et al. Smart office chairs with sensors for detecting sitting positions and sitting habits: A review
WO2023189853A1 (en) Health state determination method and health state determination system
JP7361327B2 (en) Environmental control system and method
CN108937329A (en) Mattress management system and its method
イシャックカルロス Embodied Interfaces for Sensing and Augmenting Human Posture Coordination

Legal Events

Date Code Title Description
AS Assignment

Owner name: DARMA INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HU, JUNHAO;REEL/FRAME:038924/0820

Effective date: 20160517

AS Assignment

Owner name: SHENZHEN DARMA TECHNOLOGY CO. LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DARMA INC.;REEL/FRAME:039034/0824

Effective date: 20160517

Owner name: DARMA INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DARMA INC.;REEL/FRAME:039034/0824

Effective date: 20160517

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION