US20160083318A1 - Process for the preparation of glycols - Google Patents

Process for the preparation of glycols Download PDF

Info

Publication number
US20160083318A1
US20160083318A1 US14/781,756 US201414781756A US2016083318A1 US 20160083318 A1 US20160083318 A1 US 20160083318A1 US 201414781756 A US201414781756 A US 201414781756A US 2016083318 A1 US2016083318 A1 US 2016083318A1
Authority
US
United States
Prior art keywords
reactor
starting material
saccharide
solvent
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/781,756
Other versions
US9302965B1 (en
Inventor
Evert Van Der Heide
Govinda Subbanna WAGLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Assigned to SHELL OIL COMPANY reassignment SHELL OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VAN DER HEIDE, EVERT, WAGLE, Govinda Subbanna
Publication of US20160083318A1 publication Critical patent/US20160083318A1/en
Application granted granted Critical
Publication of US9302965B1 publication Critical patent/US9302965B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of -OH groups, e.g. by dehydration

Definitions

  • the present invention relates to a process for the preparation of ethylene and propylene glycols from saccharide-containing feedstock.
  • Ethylene glycol and propylene glycol are valuable materials with a multitude of commercial applications, e.g. as heat transfer media, antifreeze, and precursors to polymers, such as PET.
  • Ethylene and propylene glycols are currently made on an industrial scale by hydrolysis of the corresponding alkylene oxides, which are the oxidation products of ethylene and propylene, produced from fossil fuels.
  • glycols from renewable feedstocks, such as sugar-based materials.
  • the conversion of sugars to glycols can be seen as an efficient use of the starting materials with the oxygen atoms remaining intact in the desired product.
  • An important aim in this area is the provision of a process that is high yielding in desirable products, such as ethylene glycol and propylene glycol, and that can be carried out on a scale that makes it industrially viable.
  • a key consideration, therefore, is the level of dilution of the catalytic process. Carrying out the process at high levels of dilution can lead to inefficiencies and will add to the difficulties in separating the desired products.
  • the present invention provides a process for the preparation of ethylene glycol and 1,2-propylene glycol from starting material comprising one or more saccharides, by contacting said starting material with hydrogen in a reactor in the presence of a solvent and a catalyst system with catalytic hydrogenation abilities, wherein the process comprises the steps of:
  • the present inventors have surprisingly found that the reduction in overall yield obtained when carrying out the catalytic conversion of saccharides to glycols with saccharide solutions, suspensions or slurries at higher concentrations can be reduced by using a procedure in which an initial portion of starting material is added to the reactor and allowed to react to near completion before any further material is added.
  • the starting material for the subject process comprises at least one saccharide selected from the group consisting of monosaccharides, disaccharides, oligosaccharides and polysaccharides.
  • polysaccharides include cellulose, hemicelluloses, starch, glycogen, chitin and mixtures thereof.
  • the starting material comprises oligosaccharides or polysaccharides, it is preferable that it is subjected to pre-treatment before being fed to the reactor in a form that can be converted in the process of the present invention.
  • Suitable pre-treatment methods are known in the art and one or more may be selected from the group including, but not limited to, sizing, drying, grinding, hot water treatment, steam treatment, hydrolysis, pyrolysis, thermal treatment, chemical treatment, biological treatment.
  • the starting material comprises one or more saccharide selected from the group consisting of glucose, sucrose and starch.
  • Said saccharide is suitably present as a solution, a suspension or a slurry in the solvent.
  • the solvent present in the reactor may be water or a C 1 to C 6 alcohol or mixtures thereof.
  • the solvent is water.
  • the starting material is provided to the reactor as a solution, suspension or slurry in a solvent, said solvent is also suitably water or a C 1 to C 6 alcohol or mixtures thereof.
  • both solvents are the same. More preferably, both solvents comprise water. Most preferably, both solvents are water.
  • the catalyst system used preferably comprises at least two active catalytic components comprising, as a first active catalyst component, one or more materials selected from transition metals from groups 8, 9 or 10 or compounds thereof, with catalytic hydrogenation capabilities; and, as a second active catalyst component, one or more materials selected from tungsten, molybdenum and compounds and complexes thereof.
  • the first active catalyst component consists of one or more of the group selected from iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium and platinum.
  • This component may be present in the elemental form or as a compound. It is also suitable that this component is present in chemical combination with one or more other ingredients in the catalyst system. It is required that the first active catalyst component has catalytic hydrogenation capabilities and it is capable of catalysing the hydrogenation of material present in the reactor.
  • the second active catalyst component comprises of one or more compound, complex or elemental material comprising tungsten, molybdenum, vanadium, niobium, chromium, titanium or zirconium. More preferably the second active catalyst component comprises one or more material selected from the list consisting of tungstic acid, molybedic acid, ammonium tungstate, ammonium metatungstate, ammonium paratungstate, tungstate compounds comprising at least one Group I or II element, metatungstate compounds comprising at least one Group I or II element, paratungstate compounds comprising at least one Group I or II element, heteropoly compounds of tungsten, heteropoly compounds of molybdenum, tungsten oxides, molybdenum oxides, vanadium oxides, metavanadates, chromium oxides, chromium sulfate, titanium ethoxide, zirconium acetate, zirconium carbonate, zirconium hydroxide, niobium oxides, n
  • the catalyst components may be heterogeneous or homogeneous with respect to the solvent or solvents present in the reactor during the process of the present invention.
  • the catalyst components may be preloaded into the reactor or, if they are in liquid form or present as a solution or slurry in a solvent, they may be fed into the reactor as required in a continuous or discontinuous manner during the process of the present invention.
  • At least one of the active catalyst components is supported on a solid support.
  • any other active catalyst component may be present in either heterogeneous or homogeneous form. Said any other active catalyst component may also be supported on a solid support.
  • the first active catalyst component is supported on one solid support and the second active catalyst component is supported on a second solid support which may comprise the same or different material.
  • both active catalyst components are supported on one solid support.
  • the solid supports may be in the form of a powder or in the form of regular or irregular shapes such as spheres, extrudates, pills, pellets, tablets, monolithic structures. Alternatively, the solid supports may be present as surface coatings, for examples on the surfaces of tubes or heat exchangers. Suitable solid support materials are those known to the skilled person and include, but are not limited to aluminas, silicas, zirconium oxide, magnesium oxide, zinc oxide, titanium oxide, carbon, activated carbon, zeolites, clays, silica alumina and mixtures thereof.
  • the weight ratio of the first active catalyst component to the second active catalyst component is in the range of from 0.02:1 to 3000:1, preferably in the range of from 0.1:1 to 100:1, on the basis of the weight of metal present in each component.
  • the weight ratio of the first active catalyst component (based on the amount of metal in said component) to sugar is suitably in the range of from 1:100 to 1:10000.
  • the weight ratio of the second active catalyst component (based on the amount of metal in said component) to sugar is suitably in the range of from 1:10 to 1:1000.
  • the temperature in the reactor is suitably at least 130° C., preferably at least 150° C., more preferably at least 170° C., most preferably at least 190° C.
  • the temperature in the reactor is suitably at most 300° C., preferably at most 280° C., more preferably at most 270° C., even more preferably at most 250° C.
  • the reactor is heated to a temperature within these limits before addition of any starting material and is maintained at such a temperature until all reaction is complete.
  • the pressure in the reactor is suitably at least 1 MPa, preferably at least 2 MPa, more preferably at least 3 MPa.
  • the pressure in the reactor is suitably at most 16 MPa, more preferably at most 12 MPa, more preferably at most 10 MPa, even more preferably at most 8 MPa, most preferably at most 6 MPa.
  • the reactor is pressurised to a pressure within these limits by addition of hydrogen before addition of any starting material and is maintained at such a pressure until all reaction is complete. This can be achieved by subsequent addition of hydrogen.
  • the process of the present invention takes place in the presence of hydrogen.
  • the process of the present reaction takes place in the absence of air or oxygen.
  • the atmosphere in the reactor be evacuated and replaced with hydrogen repeatedly, after loading of any initial reactor contents. It may also be suitable to add further hydrogen to the reactor as the reaction proceeds.
  • the reactor in the present invention may be any suitable reactor known in the art.
  • a first portion of starting material is introduced into the reactor such that the initial concentration of sugar in the solvent in the reactor is no more than 2 wt %.
  • the solvent includes any solvent already present in the reactor as well as any solvent present in the slurry, solution or suspension of the starting material.
  • the initial concentration is preferably no more than 1.8 wt %, more preferably no more than 1.5 wt %, more preferably no more than 1.3 wt %, more preferably no more than 1.0 wt %, even more preferably no more than 0.8 wt %, most preferably no more than 0.5 wt %.
  • the initial concentration of the sugar in the solvent in the reactor is suitable at least 0.1 wt %, preferably at least 0.2 wt %, more preferably at least 0.3 wt %.
  • step ii) at least 90 wt % of the saccharide in the first portion of the starting material is allowed to react.
  • at least 95 wt %, more preferably at least 98 wt %, even more preferably at least 99 wt %, most preferably substantially 100 wt % is allowed to react before further portions of starting material can be added in step iii).
  • the process may be carried out as a batch process or as a continuous flow process.
  • the process is a batch process.
  • the reactor is heated and pressurised with hydrogen and then the first portion of starting material is introduced into the reactor and allowed to react until at least 90 wt % of the saccharide has reacted.
  • Total concentration as used herein refers to the concentration calculated as a weight percentage of the total amount of saccharide added in the total amount of solvent present in the reactor.
  • the total amount of saccharide added corresponds to the sum total of the amount of saccharide added in the first portion and all further portions.
  • the total amount of solvent in the reactor includes any solvent already present in the reactor as well as any solvent present in the slurry, solution or suspension of the starting material.
  • the total concentration of sugar in the solvent in the reactor is at least 7 wt %, more preferably at least 8 wt %, even more preferably at least 10 wt %.
  • the total concentration of sugar in the solvent is no higher than 30 wt %, preferably no higher than 25 wt %.
  • adding further portions of starting material may occur in a continuous manner or the portions may be added in a discontinuous manner with time elapsing between the end of the addition of one portion and the start of the addition of the next portion.
  • the number and size of each portion will be dependent on the scale of the reactor.
  • the total number of portions including the first portion is no less than 5, more preferably no less than 8, even more preferably no less than 10.
  • the amount of time over which each portion is added and the time to be elapsed between the end of the addition of one portion and the start of the addition of the next portion will also depend on the scale of the reactor.
  • the time to be elapsed between the end of the addition of one portion and the start of the addition of the next portion will be greater than the amount of time over which each portion is added.
  • the reaction may then be allowed to proceed to completion for a further period of time.
  • the reaction product will then be removed from the reactor in step iv).
  • the reactor is heated and pressurised with hydrogen and then the first portion of starting material is introduced into the reactor and allowed to react until at least 90 wt % of the saccharide has reacted. Further portions of starting material are then provided to the reactor. Reaction product is removed from the reactor in a continuous manner.
  • the starting material is suitably a saccharide feedstock comprising at least 1 wt % saccharide as a solution, suspension or slurry in a solvent.
  • said saccharide feedstock comprises at least 2 wt %, more preferably at least 5 wt %, even more preferably at least 10 wt %, most preferably at least 20 wt % saccharide in a solvent.
  • the saccharide feedstock contains no more than 50 wt %, preferably no more than 40 wt % saccharide in a solvent.
  • portion 1 0.3 g of glucose (portion 1) was dissolved in 30 ml of deionised water and charged into a 60 ml autoclave equipped with a gas stirrer and hydrogen supply along with 0.5 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO 2 catalyst and 0.5 g of a Ru(1.0)/SiO 2 catalyst.
  • the autoclave was closed, the gas phase was replaced by nitrogen, then by hydrogen and the autoclave was pressurised to 3000 kPa (absolute).
  • the autoclave was stirred at 1450 rpm, heated to 195° C. in 12-15 minutes and kept at 195° C. and 8500 kPa (absolute) for 5 minutes.
  • the reactor was then cooled to room temperature over 15 minutes, depressurised and opened. A liquid sample of 0.3 ml was taken for analysis. 1.0 g glucose was added (portion 2), and the procedure was repeated, with a 10 minute reaction time at 195° C. Three more lots of glucose (portions 3, 4 and 5) were added following the same procedure. Finally, portion 6, comprising 1.7 g of glucose was added and the reaction was continued for 30 minutes. The total amount of glucose added to 30 ml water was 6 gram, corresponding to a total concentration of 20 wt % glucose. The total reaction time was 75 minutes at 195° C.
  • Example 1 The procedure of Example 1 was repeated, with the difference that 0.25 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO 2 catalyst and 0.25 g of a Ru(1.0)/SiO 2 catalyst were used and portions 2 to 5 each contained 0.5 g of glucose.
  • Example 5 was repeated with 0.200 g of a W (10.88)-Ni(3.63)-Pt(0.05)/ZrO 2 catalyst and 0.200 g of a Ru(1.0)/SiO 2 catalyst.
  • a 40 wt % solution of glucose (total 15.5 ml) in water was added in 28 portions, with each portion being added over one minute, and the reaction being allowed to proceed for 3 minutes between each addition. The details of each portion are shown in Table 4. The reaction was continued for a further 60 minutes after the additions were completed. The total amount of glucose added was 6 gram, corresponding to a total concentration of 20 wt % glucose. The total reaction time was 170 minutes at 195° C.
  • Example 7 was repeated using 0.0750 g of a W (10.88)-Ni(3.63)-Pt(0.05)/ZrO 2 catalyst and 0.0750 g of a Ru(1.0)/SiO 2 catalyst and with 5 minutes reaction time after the addition of each portion.
  • the details of quantity of different lots are shown in Table 5.
  • Example 7 was repeated using 0.100 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO 2 catalyst and 0.050 g of a Ru(1.0)/SiO 2 catalyst with 5 minutes reaction time after addition of each portion. The details of quantity of different lots are shown in Table 5.
  • Example 7 was repeated using 0.050 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO 2 catalyst and 0.100 g of a Ru(1.0)/SiO 2 catalyst with 5 minutes reaction time after addition of each lot. The details of quantity of different lots are shown in Table 5.
  • 0.3 g of glucose was dissolved in 30 ml of deionised water charged into a 60 ml autoclave, equipped with a gas stirrer and hydrogen supply, along with 0.025 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO 2 catalyst and 0.025 g of a Ru(1.0)/SiO 2 catalyst.
  • the autoclave was closed, the gas phase replaced by nitrogen, then by hydrogen and the autoclave was pressurised to 3000 kPa (absolute).
  • the autoclave was stirred at 1450 rpm, heated to 195° C. in 12-15 minutes and the pressure increased to 8500 kPa (absolute). The temperature and pressure were maintained for 75 minutes.
  • the reactor was then cooled to room temperature over 15 minutes, depressurized, opened and a liquid sample of 0.3 ml was taken for analysis.
  • Example 12 was repeated using 6.0 g of glucose dissolved in 30 ml of deionised water, 0.500 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO 2 catalyst and 0.500 g of a Ru(1.0)/SiO 2 catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention provides a process for the preparation of ethylene glycol and 1,2-propylene glycol from starting material comprising one or more saccharides, by contacting said starting material with hydrogen in a reactor in the presence of a solvent and a catalyst system with catalytic hydrogenation abilities, wherein the process comprises the steps of: i) introducing a first portion of the starting material into the reactor such that the initial concentration of the saccharide in the solvent in the reactor is no more than 2 wt %; ii) allowing at least 90 wt % of the saccharide in the first portion of the starting material to react; iii) subsequently adding further portions of starting material to the reactor over time; and removing reaction product from the reactor.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a process for the preparation of ethylene and propylene glycols from saccharide-containing feedstock.
  • BACKGROUND OF THE INVENTION
  • Ethylene glycol and propylene glycol are valuable materials with a multitude of commercial applications, e.g. as heat transfer media, antifreeze, and precursors to polymers, such as PET. Ethylene and propylene glycols are currently made on an industrial scale by hydrolysis of the corresponding alkylene oxides, which are the oxidation products of ethylene and propylene, produced from fossil fuels.
  • In recent years, increased efforts have focused on producing glycols from renewable feedstocks, such as sugar-based materials. The conversion of sugars to glycols can be seen as an efficient use of the starting materials with the oxygen atoms remaining intact in the desired product.
  • Current methods for the conversion of saccharides to sugars revolve around a hydrogenation/hydrogenolysis process as described in Angew. Chem. Int. Ed. 2008, 47, 8510-8513. Continuous processes for generating at least one polyol from a saccharide-containing feedstock are described in WO 2013/015955 and CN 103731258A. A process for the co-production of bio-fuels and glycols is described in WO 2012/174087.
  • An important aim in this area is the provision of a process that is high yielding in desirable products, such as ethylene glycol and propylene glycol, and that can be carried out on a scale that makes it industrially viable. A key consideration, therefore, is the level of dilution of the catalytic process. Carrying out the process at high levels of dilution can lead to inefficiencies and will add to the difficulties in separating the desired products.
  • Although acceptable conversion levels to the desired products are now possible for the catalytic conversion of saccharides to glycols, these are generally achieved at low concentrations of saccharides in the catalytic reactors. In general, the use of higher concentrations of saccharides leads to reduced overall yields.
  • It would be desirable, therefore, to provide a process for the catalytic conversion of saccharides to glycols in which higher concentrations of saccharides can be used while maintaining acceptable yields of the desirable glycols.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention provides a process for the preparation of ethylene glycol and 1,2-propylene glycol from starting material comprising one or more saccharides, by contacting said starting material with hydrogen in a reactor in the presence of a solvent and a catalyst system with catalytic hydrogenation abilities, wherein the process comprises the steps of:
    • i) introducing a first portion of the starting material into the reactor such that the initial concentration of the saccharide in the solvent in the reactor is no more than 2 wt %;
    • ii) allowing at least 90 wt % of the saccharide in the first portion of the starting material to react;
    • iii) subsequently adding further portions of starting material to the reactor over time; and
    • iv) removing reaction product from the reactor.
    DETAILED DESCRIPTION OF THE INVENTION
  • The present inventors have surprisingly found that the reduction in overall yield obtained when carrying out the catalytic conversion of saccharides to glycols with saccharide solutions, suspensions or slurries at higher concentrations can be reduced by using a procedure in which an initial portion of starting material is added to the reactor and allowed to react to near completion before any further material is added.
  • The starting material for the subject process comprises at least one saccharide selected from the group consisting of monosaccharides, disaccharides, oligosaccharides and polysaccharides. Examples of polysaccharides include cellulose, hemicelluloses, starch, glycogen, chitin and mixtures thereof. If the starting material comprises oligosaccharides or polysaccharides, it is preferable that it is subjected to pre-treatment before being fed to the reactor in a form that can be converted in the process of the present invention. Suitable pre-treatment methods are known in the art and one or more may be selected from the group including, but not limited to, sizing, drying, grinding, hot water treatment, steam treatment, hydrolysis, pyrolysis, thermal treatment, chemical treatment, biological treatment.
  • Preferably, the starting material comprises one or more saccharide selected from the group consisting of glucose, sucrose and starch. Said saccharide is suitably present as a solution, a suspension or a slurry in the solvent.
  • The solvent present in the reactor may be water or a C1 to C6 alcohol or mixtures thereof. Preferably, the solvent is water. If the starting material is provided to the reactor as a solution, suspension or slurry in a solvent, said solvent is also suitably water or a C1 to C6 alcohol or mixtures thereof. Preferably, both solvents are the same. More preferably, both solvents comprise water. Most preferably, both solvents are water.
  • The catalyst system used preferably comprises at least two active catalytic components comprising, as a first active catalyst component, one or more materials selected from transition metals from groups 8, 9 or 10 or compounds thereof, with catalytic hydrogenation capabilities; and, as a second active catalyst component, one or more materials selected from tungsten, molybdenum and compounds and complexes thereof.
  • Preferably, the first active catalyst component consists of one or more of the group selected from iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium and platinum. This component may be present in the elemental form or as a compound. It is also suitable that this component is present in chemical combination with one or more other ingredients in the catalyst system. It is required that the first active catalyst component has catalytic hydrogenation capabilities and it is capable of catalysing the hydrogenation of material present in the reactor.
  • Preferably, the second active catalyst component comprises of one or more compound, complex or elemental material comprising tungsten, molybdenum, vanadium, niobium, chromium, titanium or zirconium. More preferably the second active catalyst component comprises one or more material selected from the list consisting of tungstic acid, molybedic acid, ammonium tungstate, ammonium metatungstate, ammonium paratungstate, tungstate compounds comprising at least one Group I or II element, metatungstate compounds comprising at least one Group I or II element, paratungstate compounds comprising at least one Group I or II element, heteropoly compounds of tungsten, heteropoly compounds of molybdenum, tungsten oxides, molybdenum oxides, vanadium oxides, metavanadates, chromium oxides, chromium sulfate, titanium ethoxide, zirconium acetate, zirconium carbonate, zirconium hydroxide, niobium oxides, niobium ethoxide, and combinations thereof. The metal component is in a form other than a carbide, nitride, or phosphide. Preferably, the second active catalyst component comprises one or more compound, complex or elemental material selected from those containing tungsten or molybdenum.
  • The catalyst components may be heterogeneous or homogeneous with respect to the solvent or solvents present in the reactor during the process of the present invention. The catalyst components may be preloaded into the reactor or, if they are in liquid form or present as a solution or slurry in a solvent, they may be fed into the reactor as required in a continuous or discontinuous manner during the process of the present invention.
  • Preferably, at least one of the active catalyst components is supported on a solid support. In this embodiment, any other active catalyst component may be present in either heterogeneous or homogeneous form. Said any other active catalyst component may also be supported on a solid support. In one embodiment, the first active catalyst component is supported on one solid support and the second active catalyst component is supported on a second solid support which may comprise the same or different material. In another embodiment, both active catalyst components are supported on one solid support.
  • The solid supports may be in the form of a powder or in the form of regular or irregular shapes such as spheres, extrudates, pills, pellets, tablets, monolithic structures. Alternatively, the solid supports may be present as surface coatings, for examples on the surfaces of tubes or heat exchangers. Suitable solid support materials are those known to the skilled person and include, but are not limited to aluminas, silicas, zirconium oxide, magnesium oxide, zinc oxide, titanium oxide, carbon, activated carbon, zeolites, clays, silica alumina and mixtures thereof.
  • Suitably, the weight ratio of the first active catalyst component to the second active catalyst component is in the range of from 0.02:1 to 3000:1, preferably in the range of from 0.1:1 to 100:1, on the basis of the weight of metal present in each component.
  • The weight ratio of the first active catalyst component (based on the amount of metal in said component) to sugar is suitably in the range of from 1:100 to 1:10000. The weight ratio of the second active catalyst component (based on the amount of metal in said component) to sugar is suitably in the range of from 1:10 to 1:1000.
  • The temperature in the reactor is suitably at least 130° C., preferably at least 150° C., more preferably at least 170° C., most preferably at least 190° C. The temperature in the reactor is suitably at most 300° C., preferably at most 280° C., more preferably at most 270° C., even more preferably at most 250° C. Preferably, the reactor is heated to a temperature within these limits before addition of any starting material and is maintained at such a temperature until all reaction is complete.
  • The pressure in the reactor is suitably at least 1 MPa, preferably at least 2 MPa, more preferably at least 3 MPa. The pressure in the reactor is suitably at most 16 MPa, more preferably at most 12 MPa, more preferably at most 10 MPa, even more preferably at most 8 MPa, most preferably at most 6 MPa. Preferably, the reactor is pressurised to a pressure within these limits by addition of hydrogen before addition of any starting material and is maintained at such a pressure until all reaction is complete. This can be achieved by subsequent addition of hydrogen.
  • The process of the present invention takes place in the presence of hydrogen. Preferably, the process of the present reaction takes place in the absence of air or oxygen. In order to achieve this, it is preferable that the atmosphere in the reactor be evacuated and replaced with hydrogen repeatedly, after loading of any initial reactor contents. It may also be suitable to add further hydrogen to the reactor as the reaction proceeds.
  • The reactor in the present invention may be any suitable reactor known in the art.
  • In step i) of the process of the present invention, a first portion of starting material is introduced into the reactor such that the initial concentration of sugar in the solvent in the reactor is no more than 2 wt %. The solvent includes any solvent already present in the reactor as well as any solvent present in the slurry, solution or suspension of the starting material. The initial concentration is preferably no more than 1.8 wt %, more preferably no more than 1.5 wt %, more preferably no more than 1.3 wt %, more preferably no more than 1.0 wt %, even more preferably no more than 0.8 wt %, most preferably no more than 0.5 wt %.
  • The initial concentration of the sugar in the solvent in the reactor is suitable at least 0.1 wt %, preferably at least 0.2 wt %, more preferably at least 0.3 wt %.
  • In step ii), at least 90 wt % of the saccharide in the first portion of the starting material is allowed to react. Preferably, at least 95 wt %, more preferably at least 98 wt %, even more preferably at least 99 wt %, most preferably substantially 100 wt % is allowed to react before further portions of starting material can be added in step iii).
  • The process may be carried out as a batch process or as a continuous flow process.
  • In one embodiment of the invention, the process is a batch process. In said process, after initial loading of catalyst and, optionally, solvent, the reactor is heated and pressurised with hydrogen and then the first portion of starting material is introduced into the reactor and allowed to react until at least 90 wt % of the saccharide has reacted.
  • In this embodiment of the invention, further portions of starting material are then added to the reactor over time until the total concentration of saccharide in the solvent in the reactor is at least 5 wt %. Total concentration as used herein refers to the concentration calculated as a weight percentage of the total amount of saccharide added in the total amount of solvent present in the reactor. The total amount of saccharide added corresponds to the sum total of the amount of saccharide added in the first portion and all further portions. The total amount of solvent in the reactor includes any solvent already present in the reactor as well as any solvent present in the slurry, solution or suspension of the starting material. Preferably, further portions of starting material are added to the reactor over time until the total concentration of sugar in the solvent in the reactor is at least 7 wt %, more preferably at least 8 wt %, even more preferably at least 10 wt %. Suitably the total concentration of sugar in the solvent is no higher than 30 wt %, preferably no higher than 25 wt %.
  • In this embodiment of the invention, adding further portions of starting material may occur in a continuous manner or the portions may be added in a discontinuous manner with time elapsing between the end of the addition of one portion and the start of the addition of the next portion. In the embodiment of the invention wherein the portions are added in a discontinuous manner, the number and size of each portion will be dependent on the scale of the reactor. Preferably, the total number of portions including the first portion is no less than 5, more preferably no less than 8, even more preferably no less than 10. The amount of time over which each portion is added and the time to be elapsed between the end of the addition of one portion and the start of the addition of the next portion will also depend on the scale of the reactor. Preferably, the time to be elapsed between the end of the addition of one portion and the start of the addition of the next portion will be greater than the amount of time over which each portion is added.
  • In this embodiment of the invention, wherein the process is a batch process, after addition of all of the portions of the starting material, the reaction may then be allowed to proceed to completion for a further period of time. The reaction product will then be removed from the reactor in step iv).
  • In the embodiment of the invention wherein the process is carried out as a continuous flow process, after initial loading of catalyst and, optionally, solvent, the reactor is heated and pressurised with hydrogen and then the first portion of starting material is introduced into the reactor and allowed to react until at least 90 wt % of the saccharide has reacted. Further portions of starting material are then provided to the reactor. Reaction product is removed from the reactor in a continuous manner.
  • In this embodiment, the starting material is suitably a saccharide feedstock comprising at least 1 wt % saccharide as a solution, suspension or slurry in a solvent. Preferably, said saccharide feedstock comprises at least 2 wt %, more preferably at least 5 wt %, even more preferably at least 10 wt %, most preferably at least 20 wt % saccharide in a solvent. Suitably, the saccharide feedstock contains no more than 50 wt %, preferably no more than 40 wt % saccharide in a solvent.
  • The present invention is further illustrated in the following Examples.
  • EXAMPLES
  • In each of the following examples, yields of monoethylene glycol (MEG), monopropylene glycol (MPG) and 1,2-butanediol (1,2-BDO) were quantified by GC-FID, applying a CPSil-5 column and are shown in Tables 1 to 3.
  • Example 1
  • 0.3 g of glucose (portion 1) was dissolved in 30 ml of deionised water and charged into a 60 ml autoclave equipped with a gas stirrer and hydrogen supply along with 0.5 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.5 g of a Ru(1.0)/SiO2 catalyst. The autoclave was closed, the gas phase was replaced by nitrogen, then by hydrogen and the autoclave was pressurised to 3000 kPa (absolute). The autoclave was stirred at 1450 rpm, heated to 195° C. in 12-15 minutes and kept at 195° C. and 8500 kPa (absolute) for 5 minutes. The reactor was then cooled to room temperature over 15 minutes, depressurised and opened. A liquid sample of 0.3 ml was taken for analysis. 1.0 g glucose was added (portion 2), and the procedure was repeated, with a 10 minute reaction time at 195° C. Three more lots of glucose (portions 3, 4 and 5) were added following the same procedure. Finally, portion 6, comprising 1.7 g of glucose was added and the reaction was continued for 30 minutes. The total amount of glucose added to 30 ml water was 6 gram, corresponding to a total concentration of 20 wt % glucose. The total reaction time was 75 minutes at 195° C.
  • Example 2
  • The procedure of Example 1 was repeated, with the difference that 0.25 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.25 g of a Ru(1.0)/SiO2 catalyst were used and portions 2 to 5 each contained 0.5 g of glucose. The total amount of glucose (portions 1 to 6) added to 30 ml water was 3 g, corresponding to a total concentration of 10 wt % glucose.
  • Example 3
  • 15 ml of deionised water, 0.5 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.5 g of a Ru(1.0)/SiO2 catalyst were charged into a 60 ml autoclave, equipped with a gas stirrer and hydrogen supply. The autoclave was closed, the gas phase replaced by nitrogen, then by hydrogen and the autoclave was pressurised to 3000 kPa (absolute). The autoclave was stirred at 1450 rpm, heated to 195° C. in 12-15 minutes and the pressure increased to 8500 kPa (absolute). 1.5 ml of a 40 wt % glucose solution in water was pumped into the autoclave every nine minutes at a rate of 5 ml per minute until 10 portions had been added. After the addition of the tenth portion, the autoclave was maintained for an additional 10 minutes at 195° C. The total amount of glucose added was 6 g, corresponding to a total concentration of 20 wt % glucose. The total reaction time was 100 minutes at 195° C.
  • Example 4
  • 20 ml of deionised water, 0.250 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.250 g of a Ru(1.0)/SiO2 catalyst were charged into a 60 ml autoclave, equipped with a gas stirrer and hydrogen supply. The autoclave was closed, the gas phase replaced by nitrogen, then by hydrogen and the autoclave was pressurised to 3000 kPa (absolute). The autoclave was stirred at 1450 rpm, heated to 195° C. in 12-15 minutes and the pressure increased to 8500 kPa (absolute). 1.0 ml of a 30 wt % glucose solution in water was pumped into the autoclave every nine minutes at a rate of 5 ml per minute until 10 portions had been added. After the addition of the tenth portion, the autoclave was maintained for an additional 10 minutes at 195° C. The total amount of glucose added was 3 g, corresponding to a total concentration of 10 wt % glucose. The total reaction time was 100 minutes at 195° C.
  • Example 5 (Comparative)
  • 6.0 g of glucose were dissolved in 30 ml of deionised water and charged into a 60 ml autoclave, equipped with a gas stirrer and hydrogen supply along with 0.200 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.100 g of a Ru(1.0)/SiO2 catalyst. The autoclave was closed, the gas phase replaced by nitrogen, then by hydrogen and the autoclave was pressurised to 3000 kPa (absolute). The autoclave was stirred at 1450 rpm, heated to 195° C. in 12-15 minutes and the pressure increased to 8500 kPa (absolute). The autoclave was maintained at this temperature and pressure for 75 minutes. The reactor was then cooled to room temperature over 15 minutes, depressurized, opened, and a liquid sample of 0.3 ml was taken for analysis.
  • Example 6 (Comparative)
  • Example 5 was repeated with 0.200 g of a W (10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.200 g of a Ru(1.0)/SiO2 catalyst.
  • Example 7
  • 15 ml of deionised water, 0.500 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.500 g of a Ru(1.0)/SiO2 catalyst were charged into a 60 ml autoclave, equipped with a gas stirrer and hydrogen supply. The autoclave was closed, the gas phase replaced by nitrogen, then by hydrogen and the autoclave was pressurised to 3000 kPa (absolute). The autoclave was stirred at 1450 rpm, heated to 195° C. in 12-15 minutes and the pressure increased to 8500 kPa (absolute). A 40 wt % solution of glucose (total 15.5 ml) in water was added in 28 portions, with each portion being added over one minute, and the reaction being allowed to proceed for 3 minutes between each addition. The details of each portion are shown in Table 4. The reaction was continued for a further 60 minutes after the additions were completed. The total amount of glucose added was 6 gram, corresponding to a total concentration of 20 wt % glucose. The total reaction time was 170 minutes at 195° C.
  • Example 8
  • Example 7 was repeated using 0.0750 g of a W (10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.0750 g of a Ru(1.0)/SiO2 catalyst and with 5 minutes reaction time after the addition of each portion. The details of quantity of different lots are shown in Table 5.
  • Example 9
  • Example 7 was repeated using 0.100 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.050 g of a Ru(1.0)/SiO2 catalyst with 5 minutes reaction time after addition of each portion. The details of quantity of different lots are shown in Table 5.
  • Example 10
  • Example 7 was repeated using 0.050 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.100 g of a Ru(1.0)/SiO2 catalyst with 5 minutes reaction time after addition of each lot. The details of quantity of different lots are shown in Table 5.
  • Example 11 (Comparative)
  • 0.3 g of glucose was dissolved in 30 ml of deionised water charged into a 60 ml autoclave, equipped with a gas stirrer and hydrogen supply, along with 0.025 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.025 g of a Ru(1.0)/SiO2 catalyst. The autoclave was closed, the gas phase replaced by nitrogen, then by hydrogen and the autoclave was pressurised to 3000 kPa (absolute). The autoclave was stirred at 1450 rpm, heated to 195° C. in 12-15 minutes and the pressure increased to 8500 kPa (absolute). The temperature and pressure were maintained for 75 minutes. The reactor was then cooled to room temperature over 15 minutes, depressurized, opened and a liquid sample of 0.3 ml was taken for analysis.
  • Example 12 (Comparative)
  • 3.0 g of glucose was dissolved in 30 ml of deionised water and charged into a 60 ml autoclave, equipped with a gas stirrer and hydrogen supply, along with 0.250 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.250 g of a Ru(1.0)/SiO2 catalyst. The autoclave was closed, the gas phase replaced by nitrogen, then by hydrogen and the autoclave was pressurised to 3000 kPa (absolute). The autoclave was stirred at 1450 rpm, heated to 195° C. in 12-15 minutes and the pressure increased to 8500 kPa (absolute). The temperature and pressure were maintained for 75 minutes. The reactor was then cooled to room temperature over 15 minutes, depressurized, opened and a sample was taken for analysis.
  • Example 13 (Comparative)
  • Example 12 was repeated using 6.0 g of glucose dissolved in 30 ml of deionised water, 0.500 g of a W(10.88)-Ni(3.63)-Pt(0.05)/ZrO2 catalyst and 0.500 g of a Ru(1.0)/SiO2 catalyst.
  • TABLE 1
    glycol yields in Example 1
    cumulative
    glucose
    concentration MEG yield MPG yield 1,2-BDO yield
    (wt %) (%) (%) (%)
    1.0 7.7 6.6 0.8
    4.3 26.8 7.7 2.0
    7.7 29.3 6.7 2.3
    11.0 29.2 6.3 2.7
    14.3 27.8 6.0 2.8
    20.0 26.5 6.8 3.7
  • TABLE 2
    glycol yields in Example 2
    cumulative
    glucose
    concentration MEG yield MPG yield 1,2-BDO yield
    (wt %) (%) (%) (%)
    1.0 19.4 6.4 0.6
    2.7 30.9 7.2 1.4
    4.3 33.8 6.8 1.8
    6.0 34.9 6.6 2.1
    7.7 33.8 6.7 2.4
    10.0 32.9 7.2 2.8
  • TABLE 3
    glycol yields in Examples 3 to 13
    Yield of Yield of Yield of
    Example MEG (%) MPG (%) 1,2-BDO (%)
     3 30.0 5.5 3.0
     4 33.0 5.0 2.0
     5* 3.8 0.3 0.3
     6* 11.0 2.0 2.0
     7 30.0 8.0 2.6
     8 25.0 4.0 3.2
     9 23.0 2.7 2.0
    10 22.0 4.7 3.7
    11* 42.9 11.7 4.8
    12* 22.0 7.0 4.5
    13* 14.5 5.0 4.0
    *comparative
  • TABLE 4
    addition of portions in Example 7
    Time of
    addition in
    Portion minutes
    number start finish Vol (ml)
    1 0 1 0.3846
    2 4 5 0.3945
    3 8 9 0.4046
    4 12 13 0.4150
    5 16 17 0.4256
    6 20 21 0.4365
    7 24 25 0.4477
    8 28 29 0.4592
    9 32 33 0.4710
    10 36 37 0.4830
    11 40 41 0.4954
    12 44 45 0.5081
    13 48 49 0.5212
    14 52 53 0.5345
    15 56 57 0.5482
    16 60 61 0.5623
    17 64 65 0.5767
    18 68 69 0.5915
    19 72 73 0.6067
    20 76 77 0.6222
    21 80 81 0.6382
    22 84 85 0.6545
    23 88 89 0.6713
    24 92 93 0.6885
    25 96 97 0.7062
    26 100 101 0.7243
    27 104 105 0.7429
    28 108 109 0.7619
    Total(Vol) 15.4763
  • TABLE 5
    addition of portions in Examples 8 to 10
    Time of
    addition in
    Portion minutes
    number start finish Vol (ml)
    1 0 1 0.3846
    2 6 7 0.3945
    3 12 13 0.4046
    4 18 19 0.4150
    5 24 25 0.4256
    6 30 31 0.4365
    7 36 37 0.4477
    8 42 43 0.4592
    9 48 49 0.4710
    10 54 55 0.4830
    11 60 61 0.4954
    12 66 67 0.5081
    13 72 73 0.5212
    14 78 79 0.5345
    15 84 85 0.5482
    16 90 91 0.5623
    17 96 97 0.5767
    18 102 103 0.5915
    19 108 109 0.6067
    20 114 115 0.6222
    21 120 121 0.6382
    22 126 127 0.6545
    23 132 133 0.6713
    24 138 139 0.6885
    25 144 145 0.7062
    26 150 151 0.7243
    27 156 157 0.7429
    28 162 163 0.7614
    Total(Vol) 15.4758

Claims (6)

1. A process for the preparation of ethylene glycol and 1,2-propylene glycol from starting material comprising one or more saccharides, by contacting said starting material with hydrogen in a reactor in the presence of a solvent and a catalyst system with catalytic
hydrogenation abilities, wherein the process comprises the steps of:
i) introducing a first portion of the starting material into the reactor such that the initial concentration of the saccharide in the solvent in the reactor is no more than 2 wt %;
ii) allowing at least 90 wt % of the saccharide in the first portion of the starting material to react;
iii) subsequently adding further portions of starting material to the reactor over time; and
iv) removing reaction product from the reactor.
2. A process according to claim 1, wherein the catalyst system comprises at least two active catalytic components comprising, as a first active catalyst component, one or more materials selected from transition metals from groups 8, 9 or 10 or compounds thereof, with catalytic hydrogenation capabilities; and, as a second active catalyst component, one or more materials selected from tungsten, molybdenum and compounds and complexes thereof.
3. A process according to claim 1, wherein the process is a batch process, wherein in step iii), further portions are added until the total concentration of saccharide in the solvent in the reactor is at least 5 wt %; and wherein in step iv) the reaction product is removed from the reactor after the reaction is complete.
4. A process according to claim 1, wherein the process is a continuous flow process and the reaction product is removed from the reactor in step iv) in a continuous manner.
5. A process according to claim 1, wherein a first portion of the starting material is introduced into the reactor such that the initial concentration of the saccharide in the solvent in the reactor is no more than 1 wt %.
6. A process according to claim 1, wherein the starting material comprises one or more saccharide selected from the group consisting of glucose, sucrose and starch.
US14/781,756 2013-04-05 2014-04-01 Process for the preparation of glycols Expired - Fee Related US9302965B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP13162503 2013-04-05
EP13162503 2013-04-05
EP13162503.0 2013-04-05
PCT/EP2014/056524 WO2014161852A1 (en) 2013-04-05 2014-04-01 Process for the preparation of glycols

Publications (2)

Publication Number Publication Date
US20160083318A1 true US20160083318A1 (en) 2016-03-24
US9302965B1 US9302965B1 (en) 2016-04-05

Family

ID=48092714

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/781,756 Expired - Fee Related US9302965B1 (en) 2013-04-05 2014-04-01 Process for the preparation of glycols

Country Status (6)

Country Link
US (1) US9302965B1 (en)
EP (1) EP2981515B1 (en)
CN (1) CN105073694B (en)
BR (1) BR112015024224A2 (en)
CA (1) CA2898862A1 (en)
WO (1) WO2014161852A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233961A (en) * 2021-05-16 2021-08-10 长春黄金研究院烟台贵金属材料研究所有限公司 Method for preparing sugar alcohol by catalytic hydrogenation

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2949512C (en) 2014-05-19 2020-08-18 Iowa Corn Promotion Board Process for the continuous production of ethylene glycol from carbohydrates
MY185257A (en) 2015-01-13 2021-04-30 Avantium Knowledge Centre Bv Continuous process for preparing ethylene glycol from a carbohydrate source
CA2973437C (en) 2015-01-13 2020-04-14 Avantium Knowledge Centre B.V. Process for preparing ethylene glycol from a carbohydrate source
PL3245183T3 (en) 2015-01-13 2020-07-27 Avantium Knowledge Centre B.V. Process for preparing ethylene glycol from a carbohydrate source
EP3245182B1 (en) 2015-01-13 2019-10-23 Avantium Knowledge Centre B.v. Process for preparing ethylene glycol from a carbohydrate
CN107787312B (en) * 2015-06-30 2021-03-05 国际壳牌研究有限公司 Process for the preparation of diols
RU2738931C2 (en) 2015-10-20 2020-12-18 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method of producing glycols
US10654782B2 (en) 2015-10-20 2020-05-19 Shell Oil Company Method for the production of glycols from a carbohydrate feed
US20180326405A1 (en) * 2015-11-19 2018-11-15 Shell Oil Company Catalyst system and process for the production of glycols
CN108349857B (en) * 2015-11-19 2021-09-24 国际壳牌研究有限公司 Catalyst system and process for producing diols
CN106866372B (en) * 2015-12-12 2020-08-04 中国科学院大连化学物理研究所 Recycling method of tungsten-based catalyst in preparation of low-carbon alcohol by catalysis of carbohydrate
US20190039979A1 (en) * 2016-02-09 2019-02-07 Shell Oil Company Process for the production of alkylene glycols
US20190194100A1 (en) * 2016-08-23 2019-06-27 Shell Oil Company Method for the production of glycols from an anhydrosugar feed
EP3532453B1 (en) * 2016-10-28 2022-08-03 Shell Internationale Research Maatschappij B.V. Process for the production of glycols
CN111054330A (en) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 Catalyst for preparing ethylene glycol from biomass and preparation method thereof
CN111054335A (en) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 Catalyst for preparing biomass-based ethylene glycol
CN111054336A (en) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 Catalyst for preparing biomass-based ethylene glycol and preparation method thereof
CN114650879A (en) 2019-09-24 2022-06-21 爱荷华谷类推广协会 Continuous process for the conversion of carbohydrates to ethylene glycol
US11680031B2 (en) 2020-09-24 2023-06-20 T. EN Process Technology, Inc. Continuous processes for the selective conversion of aldohexose-yielding carbohydrate to ethylene glycol using low concentrations of retro-aldol catalyst
US11319269B2 (en) 2020-09-24 2022-05-03 Iowa Corn Promotion Board Continuous processes for the selective conversion of aldohexose-yielding carbohydrate to ethylene glycol using low concentrations of retro-aldol catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2519488B1 (en) * 2009-12-30 2015-12-16 Virent, Inc. Improved catalysts for hydrodeoxygenation of polyols
CN102190562B (en) * 2010-03-17 2014-03-05 中国科学院大连化学物理研究所 Method for preparing ethylene glycol from polyols
BR112013032228A2 (en) 2011-06-14 2016-12-20 Shell Internationale Res Maatppij B V hydrocarbon coproduction method
CN103608320A (en) 2011-07-28 2014-02-26 环球油品公司 Generation of polyols from saccharides
US8222462B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharides
CN103731258B (en) 2013-12-20 2017-07-28 三星电子(中国)研发中心 Generate the method and apparatus of key

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233961A (en) * 2021-05-16 2021-08-10 长春黄金研究院烟台贵金属材料研究所有限公司 Method for preparing sugar alcohol by catalytic hydrogenation

Also Published As

Publication number Publication date
BR112015024224A2 (en) 2017-07-18
US9302965B1 (en) 2016-04-05
EP2981515A1 (en) 2016-02-10
CA2898862A1 (en) 2014-10-09
EP2981515B1 (en) 2017-02-01
WO2014161852A1 (en) 2014-10-09
CN105073694A (en) 2015-11-18
CN105073694B (en) 2017-04-26

Similar Documents

Publication Publication Date Title
US9302965B1 (en) Process for the preparation of glycols
US9745234B2 (en) Process for the preparation of glycols
EP3245180B1 (en) Process for preparing ethylene glycol from a carbohydrate source
US20180326405A1 (en) Catalyst system and process for the production of glycols
US20180362425A1 (en) Process for the preparation of glycols
US10478809B2 (en) Catalyst system and process for the production of glycols
US10647647B2 (en) Process for the preparation of glycols
US20180272319A1 (en) Process for the preparation of a hydrogenation catalyst and its use for the preparation of glycols
EP3377219B1 (en) Catalyst system and process for the production of glycols

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHELL OIL COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN DER HEIDE, EVERT;WAGLE, GOVINDA SUBBANNA;REEL/FRAME:036705/0354

Effective date: 20150812

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20200405