US20150252517A1 - Laundry treatment apparatus - Google Patents

Laundry treatment apparatus Download PDF

Info

Publication number
US20150252517A1
US20150252517A1 US14/640,593 US201514640593A US2015252517A1 US 20150252517 A1 US20150252517 A1 US 20150252517A1 US 201514640593 A US201514640593 A US 201514640593A US 2015252517 A1 US2015252517 A1 US 2015252517A1
Authority
US
United States
Prior art keywords
heat
duct
conductor
heat exchanger
laundry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/640,593
Inventor
Taewan Kim
Youngjin DOH
Jaekeun Lee
Younghwan Kwon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Doh, Youngjin, KIM, TAEWAN, KWON, Younghwan, LEE, JAEKEUN
Publication of US20150252517A1 publication Critical patent/US20150252517A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/26Heating arrangements, e.g. gas heating equipment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/26Casings; Tubs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/04Heating arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F21/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present application relates to a laundry treatment apparatus.
  • a laundry treatment apparatus is a generic term for apparatuses having a washing function and/or a drying function of laundry (an object to be washed).
  • Examples of the laundry treatment apparatus include a washing machine, a drying machine, and a combined washing and drying machine.
  • Laundry treatment apparatuses capable of drying laundry may be classified into those having an exhaust drying system and those having a circulation (condensation) drying system according to the flow of heated air (hot air) to be supplied to laundry.
  • a circulation drying system is configured to remove moisture from air discharged from a laundry receiving unit (i.e. to dehumidify the air), to heat the dehumidified air, and to resupply the dehumidified and heated air to the laundry receiving unit.
  • An exhaust drying system is configured to supply heated air to a laundry receiving unit and to outwardly discharge the air discharged from the laundry receiving unit rather than resupplying the air to the laundry receiving unit.
  • a laundry treatment apparatus includes a laundry receiving unit configured to provide a space for receiving laundry, a duct configured to supply air to the laundry receiving unit, a first heat exchanger configured to exchange heat with air introduced into the duct, a second heat exchanger located in the duct and configured to exchange heat with air that has passed through the first heat exchanger, and a heat transfer unit.
  • the heat transfer unit includes a first conductor that makes contact with the first heat exchanger and is connected to a positive electrode of a direct current (DC) power source, a second conductor that makes contact with the first heat exchanger and is connected to a negative electrode of the DC power source, the second conductor being separated from the first conductor, a third conductor that makes contact with the second heat exchanger, a P-type semiconductor configured to interconnect the first conductor and the third conductor, and an N-type semiconductor configured to interconnect the second conductor and the third conductor.
  • DC direct current
  • the duct may include an exhaust duct configured to discharge air coming from an interior of the laundry receiving unit to an outside of the laundry receiving unit and a supply duct configured to guide air from the outside of the laundry receiving unit to the laundry receiving unit, and the first heat exchanger, the second heat exchanger, and the heat transfer unit may be located inside the supply duct.
  • the laundry receiving unit may include a tub placed inside a cabinet, an inlet port and an outlet port in communication with the outside of the laundry receiving unit, and a drum placed inside the tub and configured to provide the space for receiving laundry, and the duct may be configured to connect the outlet port and the inlet port to each other.
  • the first heat exchanger may include a heat absorption body located inside the duct, the first conductor and the second conductor being secured to the heat absorption body, and heat absorption fins protruding from the heat absorption body
  • the second heat exchanger may include a heat radiation body spaced apart from the first heat exchanger in a longitudinal direction of the duct, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body.
  • the heat absorption fins and the heat radiation fins may be arranged parallel to a movement direction of air within the duct that is moving toward the inlet port.
  • the heat absorption fins may include a plurality of conductive plates spaced apart from one another by a prescribed distance
  • the heat radiation fins may include a plurality of conductive plates spaced apart from one another by a prescribed distance, one heat radiation fin being located in a space between one heat absorption fin and another heat absorption fin and arranged parallel to the heat absorption fins.
  • the heat absorption fins may protrude from the heat absorption body toward a lower surface of a cross section of the duct, and the heat radiation fins may protrude from the heat radiation body toward the lower surface of the cross section of the duct.
  • the first heat exchanger may include a heat absorption body located inside the duct, heat absorption fins protruding from the heat absorption body to a lower surface of a cross section of the duct, and an extension body extending from the heat absorption body in a longitudinal direction of the duct, the first conductor and the second conductor being secured to the extension body, and the second heat exchanger may include a heat radiation body located below the extension body, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body toward the lower surface of the cross section of the duct.
  • the laundry treatment apparatus may further include a heater located inside the duct and configured to heat air that has passed through the second heat exchanger.
  • a laundry treatment apparatus includes a laundry receiving unit configured to provide a space for receiving laundry, a duct configured to supply air to the laundry receiving unit, a first heat exchanger configured to exchange heat with air introduced into the duct, a second heat exchanger configured to exchange heat with air that has passed through the first heat exchanger, a heater located inside the duct configured to heat air that has passed through the second heat exchanger, and a heat transfer unit.
  • the heat transfer unit includes a first conductor that makes contact with the first heat exchanger and is connected to a positive electrode of a DC power source, a second conductor that makes contact with the first heat exchanger and is connected to a negative electrode of the DC power source, the second conductor being separated from the first conductor, a third conductor that makes contact with the second heat exchanger, a P-type semiconductor configured to interconnect the first conductor and the third conductor, and an N-type semiconductor configured to interconnect the second conductor and the third conductor.
  • the duct may include an exhaust duct configured to discharge air coming from an interior of the laundry receiving unit to an outside of the laundry receiving unit and a supply duct configured to guide air from the outside of the laundry receiving unit to the laundry receiving unit, and the first heat exchanger, the second heat exchanger, and the heat transfer unit may be located inside the supply duct.
  • the laundry receiving unit may include a tub placed inside a cabinet, an inlet port and an outlet port in communication with the outside of the laundry receiving unit, and a drum placed inside the tub and configured to provide the space for receiving laundry, and the duct may be configured to connect the outlet port and the inlet port to each other.
  • the first heat exchanger may include a heat absorption body located inside the duct, the first conductor and the second conductor being secured to the heat absorption body, and heat absorption fins protruding from the heat absorption body
  • the second heat exchanger may include a heat radiation body spaced apart from the first heat exchanger in a longitudinal direction of the duct, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body.
  • the heat absorption fins and the heat radiation fins may be arranged parallel to a movement direction of air within the duct that is moving toward the inlet port.
  • the heat absorption fins may include a plurality of conductive plates spaced apart from one another by a prescribed distance
  • the heat radiation fins may include a plurality of conductive plates spaced apart from one another by a prescribed distance, one heat radiation fin being located in a space between one heat absorption fin and another heat absorption fin and arranged parallel to the heat absorption fins.
  • the heat absorption fins may protrude from the heat absorption body toward a lower surface of a cross section of the duct, and the heat radiation fins may protrude from the heat radiation body toward the lower surface of the cross section of the duct.
  • the first heat exchanger may include a heat absorption body located inside the duct, heat absorption fins protruding from the heat absorption body to a lower surface of a cross section of the duct, and an extension body extending from the heat absorption body in a longitudinal direction of the duct, the first conductor and the second conductor being secured to the extension body, and the second heat exchanger may include a heat radiation body located below the extension body, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body toward the lower surface of the cross section of the duct.
  • FIG. 1 illustrates an exemplary laundry treatment apparatus according to the present application
  • FIGS. 2A and 2B illustrate an exemplary heat exchange module included in the laundry treatment apparatus according to the present application.
  • FIGS. 3A and 3B illustrates another implementation of the heat exchange module included in the laundry treatment apparatus according to the present application.
  • a laundry treatment apparatus 100 of the present application includes a cabinet 1 defining the external appearance of the apparatus 100 , a laundry receiving unit placed inside the cabinet 1 to provide a space in which laundry (i.e. washing object or drying object) is received, and an air supply unit 6 to supply air to the laundry receiving unit so as to dry the laundry.
  • laundry i.e. washing object or drying object
  • the cabinet 1 has an opening 11 for introduction/removal of laundry and a door 13 is coupled to the cabinet 1 to open or close the opening 11 .
  • the laundry receiving unit can include a tub 2 placed inside the cabinet 1 to provide a water storage space and a drum 3 placed inside the tub 2 to provide a laundry receiving space.
  • the air supply unit 6 is configured to supply air to the tub 2 .
  • the tub 2 may take the form of a cylinder having a tub opening 21 corresponding to the opening 11 .
  • the tub 2 may be fixed inside the cabinet 1 via a tub support member 15 .
  • a gasket 23 is interposed between the tub opening 21 and the opening 11 to prevent leakage of water stored in the tub 2 and to prevent transmission of vibration from the tub 2 to the cabinet 1 .
  • the drum 3 may take the form of a cylinder having a drum opening 31 in communication with the tub opening 21 .
  • the drum is provided at the outer periphery thereof including the circumference thereof with through-holes 33 to communicate the inside of the drum 3 with the inside of the tub 2 .
  • a rotating shaft 35 may be installed to a rear surface of the drum 3 (opposite to a drum surface provided with the drum opening 31 ) so as to penetrate a rear surface of the tub 2 .
  • a drive unit 4 may be installed to a rear surface of the tub 2 to rotate the rotating shaft 35 .
  • the drive unit 4 may include a stator 41 secured to the rear surface of the tub 2 , the stator 41 creating a rotation magnetic field upon receiving current from an external power source, and a rotor 43 configured to be rotated by the rotation magnetic field created by the stator 41 , the rotating shaft 35 being coupled to the rotor 43 .
  • Water required for washing of laundry may be supplied to the tub 2 through a water supply unit configured to interconnect the tub 2 and a water source.
  • the water stored in the tub 2 may be outwardly discharged from the cabinet 1 through a drain unit 5 .
  • the tub 2 may further include an outlet port 25 and an inlet port 27 to communicate the inside of the tub 2 with the outside of the tub 2 .
  • the air supply unit 6 is configured to dehumidify and heat air discharged from the outlet port 25 and to resupply the air to the tub 2 through the inlet port 27 .
  • the air supply unit 6 can include a duct 61 connecting the outlet port 25 and the inlet port 27 to each other, a fan 63 located inside the duct 61 to circulate interior air of the tub 2 , and a heat exchange module F located inside the duct 61 between the fan 63 and the inlet port 27 to sequentially implement dehumidification and heating of air moving in the duct 61 .
  • the above-described duct 61 may be divided into an exhaust duct that is connected to the outlet port 25 and a supply duct that is connected to the inlet port 27 .
  • Such exhaust duct may be configured to communicate the inside of the tub 2 with the outside of the cabinet 1 and the supply duct may be configured to communicate the inside of the tub 2 with the inside of the cabinet 1 or the outside of the cabinet 1 .
  • the fan 63 may be located inside the exhaust duct and the heat exchange module F may be located inside the supply duct.
  • the heat exchange module F may include a first heat exchanger 67 to exchange heat with air supplied through the fan 63 , a second heat exchanger 65 to exchange heat with air having passed through the first heat exchanger 67 , and a heat transfer unit 69 located between the first heat exchanger 67 and the second heat exchanger 65 .
  • the heat transfer unit 69 may include a first conductor 691 coming into contact with the first heat exchanger 67 , a second conductor 693 coming into contact with the first heat exchanger 67 and spaced apart from the first conductor 691 by a prescribed distance, a third conductor 695 coming into contact with the second heat exchanger 65 , a P-type semiconductor 697 to interconnect the first conductor 691 and the third conductor 695 , and an N-type semiconductor 699 to interconnect the second conductor 693 and the third conductor 695 .
  • the P-type semiconductor 697 refers to a material in which the number of holes having positive charge (+charge) is greater than the number of free electrons
  • the N-type semiconductor 699 refers to a material in which the number of holes is less than the number of free electrons.
  • the first conductor 691 is connected to a positive electrode of a direct current (DC) power source S and the second conductor 693 is connected to a negative electrode of the DC power source S.
  • DC direct current
  • the first heat exchanger 67 and the second heat exchanger 65 are formed of conductive materials
  • the first heat exchanger 67 secured to the first conductor 691 and the second conductor 693 functions as a heat absorber to absorb external heat
  • the second heat exchanger 65 secured to the third conductor 695 functions as a heat radiator to outwardly radiate heat.
  • the first heat exchanger 67 and the second heat exchanger 65 may be sequentially arranged in a direction from the fan 63 to the inlet port 27 .
  • air introduced into the duct 61 through the outlet 25 may be directed to the first heat exchanger 67 by way of the fan 63 and the air having passed through the first heat exchanger 67 may sequentially pass through the second heat exchanger 65 and the inlet port 27 so as to be resupplied to the tub 2 .
  • the first heat exchanger 67 may include a heat absorption body 671 located inside the duct 61 , the first conductor 691 and the second conductor 693 being secured to the heat absorption body 671 , and heat absorption fins 673 protruding from the heat absorption body 671 .
  • the second heat exchanger 65 may include a heat radiation body 651 located between the heat absorption body 671 and the inlet port 27 , the third conductor 695 being secured to the heat radiation body 651 , and heat radiation fins 653 protruding from the heat radiation body 651 .
  • the heat absorption body 671 , heat absorption fins 673 , heat radiation body 651 , and heat radiation fins 653 may be formed of conductive materials and the heat absorption fins 673 and the heat radiation fins 653 may be arranged parallel to a movement direction X of air directed to the inlet port 27 as exemplarily illustrated in FIG. 2B .
  • the heat absorption fins 673 may be a plurality of plates (conductive plates) arranged at a lower surface of the heat absorption body 671 to extend in the longitudinal direction L of the duct 61 and spaced apart from one another by a prescribed distance in the width direction W of the duct 61 .
  • the heat radiation fins 653 may be a plurality of plates (conductive plates) arranged at a lower surface of the heat radiation body 651 to extend in the longitudinal direction L of the duct 61 and spaced apart from one another by a prescribed distance in the width direction W of the duct 61 . This arrangement can serve to minimize reduction in the flow rate of air when the air passes through the heat exchange module F.
  • each of the heat radiation fins 653 may be located in a space 674 between one heat absorption fin 673 a and another heat absorption fin 673 b , in order to enhance heat exchange efficiency.
  • the first heat exchanger 67 may further include heat absorption fins protruding from the heat absorption body 671 to extend in the width direction W of the duct 61 and the second heat exchanger 65 may further include heat radiation fins protruding from the heat radiation body 651 to extend in the width direction W of the duct 61 .
  • the heat absorption fins 673 may protrude from the heat absorption body 671 only to a lower surface B of the duct 61 (i.e. a lower surface on the basis of the cross section of the duct 61 ).
  • the heat radiation fins 653 may include fins protruding from the heat radiation body 651 to the lower surface B of the duct 61 and fins protruding from the heat radiation body 651 to extend in the width direction W of the duct 61 .
  • air introduced into the duct 61 by the fan 63 can be dehumidified while passing through the first heat exchanger 67 and heated while passing through the second heat exchanger 65 , thereafter being directed to laundry inside the drum 3 through the inlet port 27 and the through-holes 33 .
  • the heat exchange module F may further include a sump located below the first heat exchanger 67 to store the condensed water and a discharge pipe to communicate the sump with the outside of the cabinet 1 .
  • FIGS. 3A and 3B illustrate a heat exchange module F′, which is another implementation of the heat exchange module F included in the laundry treatment apparatus 100 according to the present application.
  • the heat exchange module F′ includes a first heat exchanger 67 ′, a second heat exchanger 65 ′, and a heat transfer unit 69 ′ in a similar manner as that of the implementation of FIGS. 2A and 2B , positions of the first heat exchanger 67 ′ and the second heat exchanger 65 ′ differ from those in the implementation of FIGS. 2A and 2B .
  • the second heat exchanger 65 ′ may include a heat radiation body 651 ′ secured to a third conductor 695 ′ and heat radiation fins 653 ′ protruding from a heat radiation body 651 ′ to the lower surface B of the duct 61 .
  • the first heat exchanger 67 ′ includes a heat absorption body 671 ′ located between a heat radiation body 651 ′ and the fan 63 , heat absorption fins 673 ′ protruding from the heat absorption body 671 ′ to the lower surface B of the duct 61 , and an extension body 672 ′ extending from the heat absorption body 671 ′ in the longitudinal direction L of the duct 61 so as to be located above the heat radiation body 651 ′, a first conductor 691 ′ and a second conductor 693 ′ being secured to an extension body 672 ′.
  • a theoretical amount of heat absorption is 160 assuming that the amount of heat absorption through the first heat exchanger 67 ′ is 60 and the amount of electric power supplied from the DC power source S is 100′.
  • the extension body 672 ′ of the first heat exchanger 67 ′ serves to increase the amount of heat absorption through the first heat exchanger 67 ′ and, consequently, increase heat radiation through the second heat exchanger 65 ′.
  • the above-described implementations may further include a heater 7 (see FIG. 1 ) located between the inlet port 27 and the heat exchange module F′ to heat air having passed through the second heat exchanger 65 ′ for the sake of rapid laundry drying.
  • a heater 7 located between the inlet port 27 and the heat exchange module F′ to heat air having passed through the second heat exchanger 65 ′ for the sake of rapid laundry drying.
  • the heater 7 may be configured to heat air using Joule heating generated when current is supplied to, for example, a resistive wire.
  • a laundry receiving unit includes only the drum 3 placed inside the cabinet 1 and the air supply unit 6 is configured to supply air to the drum 3 .
  • the cabinet 1 may additionally need to internally incorporate a front support portion to rotatably support the drum opening 31 and a rear support portion spaced apart from the rear surface of the drum 3 by a prescribed distance to rotatably support the rotating shaft 35 .
  • the front support portion may be provided with a support portion opening in communication with the opening 11 of the cabinet 1 , and the inlet port 27 and the outlet port 25 may be respectively formed in the front support portion and the rear support portion.
  • the present application can have the effect of providing a laundry treatment apparatus having high drying efficiency.
  • the present application can have the effect of providing a laundry treatment apparatus in which a device to remove moisture from air and a device to heat the air are integrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

A laundry treatment apparatus includes a laundry receiving unit, a duct for supplying air to the laundry receiving unit, a first heat exchanger for exchanging heat with air introduced into the duct, a second heat exchanger located in the duct for exchanging heat with air that has passed through the first heat exchanger, and a heat transfer unit. The heat transfer unit includes a first conductor making contact with the first heat exchanger and connected to a positive electrode of a direct current (DC) power source, a second conductor making contact with the first heat exchanger and connected to a negative electrode of the DC power source, the second conductor being separated from the first conductor, a third conductor making contact with the second heat exchanger, a P-type semiconductor interconnecting the first conductor and the third conductor, and an N-type semiconductor interconnecting the second conductor and the third conductor.

Description

  • Pursuant to 35 U.S.C. §119(a), this application claims the benefit of Korean Patent Application No. 10-2014-0026455, filed on Mar. 6, 2014, which is hereby incorporated by reference as if fully set forth herein.
  • TECHNICAL FIELD
  • The present application relates to a laundry treatment apparatus.
  • BACKGROUND
  • A laundry treatment apparatus is a generic term for apparatuses having a washing function and/or a drying function of laundry (an object to be washed). Examples of the laundry treatment apparatus include a washing machine, a drying machine, and a combined washing and drying machine.
  • Laundry treatment apparatuses capable of drying laundry may be classified into those having an exhaust drying system and those having a circulation (condensation) drying system according to the flow of heated air (hot air) to be supplied to laundry.
  • A circulation drying system is configured to remove moisture from air discharged from a laundry receiving unit (i.e. to dehumidify the air), to heat the dehumidified air, and to resupply the dehumidified and heated air to the laundry receiving unit. An exhaust drying system is configured to supply heated air to a laundry receiving unit and to outwardly discharge the air discharged from the laundry receiving unit rather than resupplying the air to the laundry receiving unit.
  • Most conventional circulation drying systems require a dehumidifier to cool air discharged from the laundry receiving unit so as to remove moisture from the air as well as a heater to heat the dehumidified air.
  • SUMMARY
  • According to one aspect, a laundry treatment apparatus includes a laundry receiving unit configured to provide a space for receiving laundry, a duct configured to supply air to the laundry receiving unit, a first heat exchanger configured to exchange heat with air introduced into the duct, a second heat exchanger located in the duct and configured to exchange heat with air that has passed through the first heat exchanger, and a heat transfer unit. The heat transfer unit includes a first conductor that makes contact with the first heat exchanger and is connected to a positive electrode of a direct current (DC) power source, a second conductor that makes contact with the first heat exchanger and is connected to a negative electrode of the DC power source, the second conductor being separated from the first conductor, a third conductor that makes contact with the second heat exchanger, a P-type semiconductor configured to interconnect the first conductor and the third conductor, and an N-type semiconductor configured to interconnect the second conductor and the third conductor.
  • Implementations according to this aspect may include one or more of the following features. For example, the duct may include an exhaust duct configured to discharge air coming from an interior of the laundry receiving unit to an outside of the laundry receiving unit and a supply duct configured to guide air from the outside of the laundry receiving unit to the laundry receiving unit, and the first heat exchanger, the second heat exchanger, and the heat transfer unit may be located inside the supply duct. The laundry receiving unit may include a tub placed inside a cabinet, an inlet port and an outlet port in communication with the outside of the laundry receiving unit, and a drum placed inside the tub and configured to provide the space for receiving laundry, and the duct may be configured to connect the outlet port and the inlet port to each other. The first heat exchanger may include a heat absorption body located inside the duct, the first conductor and the second conductor being secured to the heat absorption body, and heat absorption fins protruding from the heat absorption body, and the second heat exchanger may include a heat radiation body spaced apart from the first heat exchanger in a longitudinal direction of the duct, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body. The heat absorption fins and the heat radiation fins may be arranged parallel to a movement direction of air within the duct that is moving toward the inlet port. The heat absorption fins may include a plurality of conductive plates spaced apart from one another by a prescribed distance, and the heat radiation fins may include a plurality of conductive plates spaced apart from one another by a prescribed distance, one heat radiation fin being located in a space between one heat absorption fin and another heat absorption fin and arranged parallel to the heat absorption fins. The heat absorption fins may protrude from the heat absorption body toward a lower surface of a cross section of the duct, and the heat radiation fins may protrude from the heat radiation body toward the lower surface of the cross section of the duct. The first heat exchanger may include a heat absorption body located inside the duct, heat absorption fins protruding from the heat absorption body to a lower surface of a cross section of the duct, and an extension body extending from the heat absorption body in a longitudinal direction of the duct, the first conductor and the second conductor being secured to the extension body, and the second heat exchanger may include a heat radiation body located below the extension body, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body toward the lower surface of the cross section of the duct. The laundry treatment apparatus according to this aspect may further include a heater located inside the duct and configured to heat air that has passed through the second heat exchanger.
  • According to another aspect, a laundry treatment apparatus includes a laundry receiving unit configured to provide a space for receiving laundry, a duct configured to supply air to the laundry receiving unit, a first heat exchanger configured to exchange heat with air introduced into the duct, a second heat exchanger configured to exchange heat with air that has passed through the first heat exchanger, a heater located inside the duct configured to heat air that has passed through the second heat exchanger, and a heat transfer unit. The heat transfer unit includes a first conductor that makes contact with the first heat exchanger and is connected to a positive electrode of a DC power source, a second conductor that makes contact with the first heat exchanger and is connected to a negative electrode of the DC power source, the second conductor being separated from the first conductor, a third conductor that makes contact with the second heat exchanger, a P-type semiconductor configured to interconnect the first conductor and the third conductor, and an N-type semiconductor configured to interconnect the second conductor and the third conductor.
  • Implementations according to this aspect may include one or more of the following features. For example, the duct may include an exhaust duct configured to discharge air coming from an interior of the laundry receiving unit to an outside of the laundry receiving unit and a supply duct configured to guide air from the outside of the laundry receiving unit to the laundry receiving unit, and the first heat exchanger, the second heat exchanger, and the heat transfer unit may be located inside the supply duct. The laundry receiving unit may include a tub placed inside a cabinet, an inlet port and an outlet port in communication with the outside of the laundry receiving unit, and a drum placed inside the tub and configured to provide the space for receiving laundry, and the duct may be configured to connect the outlet port and the inlet port to each other. The first heat exchanger may include a heat absorption body located inside the duct, the first conductor and the second conductor being secured to the heat absorption body, and heat absorption fins protruding from the heat absorption body, and the second heat exchanger may include a heat radiation body spaced apart from the first heat exchanger in a longitudinal direction of the duct, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body. The heat absorption fins and the heat radiation fins may be arranged parallel to a movement direction of air within the duct that is moving toward the inlet port. The heat absorption fins may include a plurality of conductive plates spaced apart from one another by a prescribed distance, and the heat radiation fins may include a plurality of conductive plates spaced apart from one another by a prescribed distance, one heat radiation fin being located in a space between one heat absorption fin and another heat absorption fin and arranged parallel to the heat absorption fins. The heat absorption fins may protrude from the heat absorption body toward a lower surface of a cross section of the duct, and the heat radiation fins may protrude from the heat radiation body toward the lower surface of the cross section of the duct. The first heat exchanger may include a heat absorption body located inside the duct, heat absorption fins protruding from the heat absorption body to a lower surface of a cross section of the duct, and an extension body extending from the heat absorption body in a longitudinal direction of the duct, the first conductor and the second conductor being secured to the extension body, and the second heat exchanger may include a heat radiation body located below the extension body, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body toward the lower surface of the cross section of the duct.
  • It is to be understood that both the foregoing general description and the following detailed description of the present application are exemplary and explanatory and are intended to provide further explanation of the present application as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an exemplary laundry treatment apparatus according to the present application;
  • FIGS. 2A and 2B illustrate an exemplary heat exchange module included in the laundry treatment apparatus according to the present application; and
  • FIGS. 3A and 3B illustrates another implementation of the heat exchange module included in the laundry treatment apparatus according to the present application.
  • DETAILED DESCRIPTION
  • Hereinafter, exemplary implementations of the present application will be described in detail with reference to the accompanying drawings. A configuration or control method of an apparatus that will be described below is intended to illustrate the implementations of the present application and not intended to limit the scope of the present application.
  • A laundry treatment apparatus 100 of the present application includes a cabinet 1 defining the external appearance of the apparatus 100, a laundry receiving unit placed inside the cabinet 1 to provide a space in which laundry (i.e. washing object or drying object) is received, and an air supply unit 6 to supply air to the laundry receiving unit so as to dry the laundry.
  • The cabinet 1 has an opening 11 for introduction/removal of laundry and a door 13 is coupled to the cabinet 1 to open or close the opening 11.
  • In a case in which the laundry treatment apparatus 100 of the present application is designed to implement both washing and drying of laundry, the laundry receiving unit can include a tub 2 placed inside the cabinet 1 to provide a water storage space and a drum 3 placed inside the tub 2 to provide a laundry receiving space. In this case, the air supply unit 6 is configured to supply air to the tub 2.
  • The tub 2 may take the form of a cylinder having a tub opening 21 corresponding to the opening 11. The tub 2 may be fixed inside the cabinet 1 via a tub support member 15.
  • A gasket 23 is interposed between the tub opening 21 and the opening 11 to prevent leakage of water stored in the tub 2 and to prevent transmission of vibration from the tub 2 to the cabinet 1.
  • The drum 3 may take the form of a cylinder having a drum opening 31 in communication with the tub opening 21. The drum is provided at the outer periphery thereof including the circumference thereof with through-holes 33 to communicate the inside of the drum 3 with the inside of the tub 2.
  • In a case in which the drum 3 is rotatably installed inside the tub 2, a rotating shaft 35 may be installed to a rear surface of the drum 3 (opposite to a drum surface provided with the drum opening 31) so as to penetrate a rear surface of the tub 2.
  • A drive unit 4 may be installed to a rear surface of the tub 2 to rotate the rotating shaft 35. The drive unit 4 may include a stator 41 secured to the rear surface of the tub 2, the stator 41 creating a rotation magnetic field upon receiving current from an external power source, and a rotor 43 configured to be rotated by the rotation magnetic field created by the stator 41, the rotating shaft 35 being coupled to the rotor 43.
  • Water required for washing of laundry may be supplied to the tub 2 through a water supply unit configured to interconnect the tub 2 and a water source. The water stored in the tub 2 may be outwardly discharged from the cabinet 1 through a drain unit 5.
  • In cases in which the laundry treatment apparatus 100 of the present application includes a circulation drying system, the tub 2 may further include an outlet port 25 and an inlet port 27 to communicate the inside of the tub 2 with the outside of the tub 2. In this case, the air supply unit 6 is configured to dehumidify and heat air discharged from the outlet port 25 and to resupply the air to the tub 2 through the inlet port 27.
  • To this end, the air supply unit 6 can include a duct 61 connecting the outlet port 25 and the inlet port 27 to each other, a fan 63 located inside the duct 61 to circulate interior air of the tub 2, and a heat exchange module F located inside the duct 61 between the fan 63 and the inlet port 27 to sequentially implement dehumidification and heating of air moving in the duct 61.
  • In some cases, when the laundry treatment apparatus 100 of the present application includes an exhaust drying system, the above-described duct 61 may be divided into an exhaust duct that is connected to the outlet port 25 and a supply duct that is connected to the inlet port 27. Such exhaust duct may be configured to communicate the inside of the tub 2 with the outside of the cabinet 1 and the supply duct may be configured to communicate the inside of the tub 2 with the inside of the cabinet 1 or the outside of the cabinet 1. In this case, the fan 63 may be located inside the exhaust duct and the heat exchange module F may be located inside the supply duct.
  • Referring also to FIG. 2A, regardless of whether the laundry treatment apparatus 100 of the present application includes a circulation drying system or an exhaust drying system, the heat exchange module F may include a first heat exchanger 67 to exchange heat with air supplied through the fan 63, a second heat exchanger 65 to exchange heat with air having passed through the first heat exchanger 67, and a heat transfer unit 69 located between the first heat exchanger 67 and the second heat exchanger 65.
  • As exemplarily illustrated in FIG. 2A, the heat transfer unit 69 according to the present application may include a first conductor 691 coming into contact with the first heat exchanger 67, a second conductor 693 coming into contact with the first heat exchanger 67 and spaced apart from the first conductor 691 by a prescribed distance, a third conductor 695 coming into contact with the second heat exchanger 65, a P-type semiconductor 697 to interconnect the first conductor 691 and the third conductor 695, and an N-type semiconductor 699 to interconnect the second conductor 693 and the third conductor 695.
  • The P-type semiconductor 697 refers to a material in which the number of holes having positive charge (+charge) is greater than the number of free electrons, and the N-type semiconductor 699 refers to a material in which the number of holes is less than the number of free electrons.
  • As shown in FIG. 2A, the first conductor 691 is connected to a positive electrode of a direct current (DC) power source S and the second conductor 693 is connected to a negative electrode of the DC power source S.
  • In the heat exchange module F having the above-described configuration, when the DC power source S supplies direct current to the first conductor 691 and the second conductor 693, the first conductor 691 and the second conductor 693 are cooled and the third conductor 695 is heated.
  • In this way, when the first heat exchanger 67 and the second heat exchanger 65 are formed of conductive materials, the first heat exchanger 67 secured to the first conductor 691 and the second conductor 693 functions as a heat absorber to absorb external heat, and the second heat exchanger 65 secured to the third conductor 695 functions as a heat radiator to outwardly radiate heat.
  • To allow the first heat exchanger 67 and the second heat exchanger 65 as described above to respectively implement dehumidification and heating of air introduced into the duct 61, the first heat exchanger 67 and the second heat exchanger 65 may be sequentially arranged in a direction from the fan 63 to the inlet port 27.
  • That is, air introduced into the duct 61 through the outlet 25 may be directed to the first heat exchanger 67 by way of the fan 63 and the air having passed through the first heat exchanger 67 may sequentially pass through the second heat exchanger 65 and the inlet port 27 so as to be resupplied to the tub 2.
  • To this end, the first heat exchanger 67 may include a heat absorption body 671 located inside the duct 61, the first conductor 691 and the second conductor 693 being secured to the heat absorption body 671, and heat absorption fins 673 protruding from the heat absorption body 671.
  • In some cases, the second heat exchanger 65 may include a heat radiation body 651 located between the heat absorption body 671 and the inlet port 27, the third conductor 695 being secured to the heat radiation body 651, and heat radiation fins 653 protruding from the heat radiation body 651.
  • The heat absorption body 671, heat absorption fins 673, heat radiation body 651, and heat radiation fins 653 may be formed of conductive materials and the heat absorption fins 673 and the heat radiation fins 653 may be arranged parallel to a movement direction X of air directed to the inlet port 27 as exemplarily illustrated in FIG. 2B.
  • That is, the heat absorption fins 673 may be a plurality of plates (conductive plates) arranged at a lower surface of the heat absorption body 671 to extend in the longitudinal direction L of the duct 61 and spaced apart from one another by a prescribed distance in the width direction W of the duct 61. The heat radiation fins 653 may be a plurality of plates (conductive plates) arranged at a lower surface of the heat radiation body 651 to extend in the longitudinal direction L of the duct 61 and spaced apart from one another by a prescribed distance in the width direction W of the duct 61. This arrangement can serve to minimize reduction in the flow rate of air when the air passes through the heat exchange module F.
  • While the heat absorption fins 673 and the heat radiation fins 653 may be positioned on the same lines as exemplarily illustrated in FIG. 2B, each of the heat radiation fins 653 may be located in a space 674 between one heat absorption fin 673 a and another heat absorption fin 673 b, in order to enhance heat exchange efficiency.
  • In some cases, the first heat exchanger 67 may further include heat absorption fins protruding from the heat absorption body 671 to extend in the width direction W of the duct 61 and the second heat exchanger 65 may further include heat radiation fins protruding from the heat radiation body 651 to extend in the width direction W of the duct 61.
  • However, in consideration of the fact that moisture contained in air may be condensed at a surface of the first heat exchanger 67 while passing through the first heat exchanger 67, the heat absorption fins 673 may protrude from the heat absorption body 671 only to a lower surface B of the duct 61 (i.e. a lower surface on the basis of the cross section of the duct 61). In this case, the heat radiation fins 653 may include fins protruding from the heat radiation body 651 to the lower surface B of the duct 61 and fins protruding from the heat radiation body 651 to extend in the width direction W of the duct 61.
  • In the laundry treatment apparatus 100 having the above-described configuration, air introduced into the duct 61 by the fan 63 can be dehumidified while passing through the first heat exchanger 67 and heated while passing through the second heat exchanger 65, thereafter being directed to laundry inside the drum 3 through the inlet port 27 and the through-holes 33.
  • To discharge water that has condensed due to air coming from the duct 61 and passing through the first heat exchanger 67, according to the present application, the heat exchange module F may further include a sump located below the first heat exchanger 67 to store the condensed water and a discharge pipe to communicate the sump with the outside of the cabinet 1.
  • FIGS. 3A and 3B illustrate a heat exchange module F′, which is another implementation of the heat exchange module F included in the laundry treatment apparatus 100 according to the present application.
  • While the heat exchange module F′ according to the present implementation includes a first heat exchanger 67′, a second heat exchanger 65′, and a heat transfer unit 69′ in a similar manner as that of the implementation of FIGS. 2A and 2B, positions of the first heat exchanger 67′ and the second heat exchanger 65′ differ from those in the implementation of FIGS. 2A and 2B.
  • The second heat exchanger 65′ according to this implementation may include a heat radiation body 651′ secured to a third conductor 695′ and heat radiation fins 653′ protruding from a heat radiation body 651′ to the lower surface B of the duct 61.
  • In more detail, the first heat exchanger 67′ according to the present implementation includes a heat absorption body 671′ located between a heat radiation body 651′ and the fan 63, heat absorption fins 673′ protruding from the heat absorption body 671′ to the lower surface B of the duct 61, and an extension body 672′ extending from the heat absorption body 671′ in the longitudinal direction L of the duct 61 so as to be located above the heat radiation body 651′, a first conductor 691′ and a second conductor 693′ being secured to an extension body 672′.
  • In the heat transfer unit 69′ including a P-type semiconductor 697′ and a N-type semiconductor 699′, a theoretical amount of heat absorption is 160 assuming that the amount of heat absorption through the first heat exchanger 67′ is 60 and the amount of electric power supplied from the DC power source S is 100′.
  • Accordingly, since heat radiation through the second heat exchanger 65′ may increase when heat absorption through the first heat exchanger 67′ increases under application of a constant amount of electric power to the heat transfer unit 69′, the extension body 672′ of the first heat exchanger 67′ serves to increase the amount of heat absorption through the first heat exchanger 67′ and, consequently, increase heat radiation through the second heat exchanger 65′.
  • Characteristics of the heat absorption fins 673′ and the heat radiation fins 653′ and characteristics of the heat transfer unit 69′ are similar to those of their counterparts as in the above-described implementation of FIGS. 2A and 2B and a detailed description thereof will be omitted herein.
  • The above-described implementations may further include a heater 7 (see FIG. 1) located between the inlet port 27 and the heat exchange module F′ to heat air having passed through the second heat exchanger 65′ for the sake of rapid laundry drying.
  • The heater 7 may be configured to heat air using Joule heating generated when current is supplied to, for example, a resistive wire.
  • While the above-described implementations have been described based on a case in which the laundry treatment apparatus 100 is capable of washing and drying laundry, the above-described characteristics may be applied to a laundry treatment apparatus that performs only drying of laundry.
  • In the case of the laundry treatment apparatus that performs only drying of laundry, it is noted that a laundry receiving unit includes only the drum 3 placed inside the cabinet 1 and the air supply unit 6 is configured to supply air to the drum 3.
  • In addition, when the drum 3 needs to be rotatable inside the cabinet 1, the cabinet 1 may additionally need to internally incorporate a front support portion to rotatably support the drum opening 31 and a rear support portion spaced apart from the rear surface of the drum 3 by a prescribed distance to rotatably support the rotating shaft 35.
  • In such case, the front support portion may be provided with a support portion opening in communication with the opening 11 of the cabinet 1, and the inlet port 27 and the outlet port 25 may be respectively formed in the front support portion and the rear support portion.
  • As is apparent from the above description, the present application can have the effect of providing a laundry treatment apparatus having high drying efficiency.
  • In addition, the present application can have the effect of providing a laundry treatment apparatus in which a device to remove moisture from air and a device to heat the air are integrated.
  • Although the exemplary implementations have been illustrated and described as above, of course, it will be apparent to those skilled in the art that the implementations are provided to assist understanding of the present application and the present application is not limited to the above described particular implementations, and various modifications and variations can be made in the present application without departing from the spirit or scope of the present application, and the modifications and variations should not be understood individually from the viewpoint or scope of the present application.

Claims (17)

What is claimed is:
1. A laundry treatment apparatus comprising:
a laundry receiving unit configured to provide a space for receiving laundry;
a duct configured to supply air to the laundry receiving unit;
a first heat exchanger configured to exchange heat with air introduced into the duct;
a second heat exchanger located in the duct and configured to exchange heat with air that has passed through the first heat exchanger; and
a heat transfer unit including:
a first conductor that makes contact with the first heat exchanger and is connected to a positive electrode of a direct current (DC) power source,
a second conductor that makes contact with the first heat exchanger and is connected to a negative electrode of the DC power source, the second conductor being separated from the first conductor,
a third conductor that makes contact with the second heat exchanger,
a P-type semiconductor configured to interconnect the first conductor and the third conductor, and
an N-type semiconductor configured to interconnect the second conductor and the third conductor.
2. The laundry treatment apparatus according to claim 1, wherein:
the duct includes an exhaust duct configured to discharge air coming from an interior of the laundry receiving unit to an outside of the laundry receiving unit and a supply duct configured to guide air from the outside of the laundry receiving unit to the laundry receiving unit; and
the first heat exchanger, the second heat exchanger, and the heat transfer unit are located inside the supply duct.
3. The laundry treatment apparatus according to claim 1, wherein:
the laundry receiving unit includes a tub placed inside a cabinet, an inlet port and an outlet port in communication with the outside of the laundry receiving unit, and a drum placed inside the tub and configured to provide the space for receiving laundry; and
the duct is configured to connect the outlet port and the inlet port to each other.
4. The laundry treatment apparatus according to claim 3, wherein:
the first heat exchanger includes a heat absorption body located inside the duct, the first conductor and the second conductor being secured to the heat absorption body, and heat absorption fins protruding from the heat absorption body; and
the second heat exchanger includes a heat radiation body spaced apart from the first heat exchanger in a longitudinal direction of the duct, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body.
5. The laundry treatment apparatus according to claim 4, wherein the heat absorption fins and the heat radiation fins are arranged parallel to a movement direction of air within the duct that is moving toward the inlet port.
6. The laundry treatment apparatus according to claim 5, wherein:
the heat absorption fins include a plurality of conductive plates spaced apart from one another by a prescribed distance; and
the heat radiation fins include a plurality of conductive plates spaced apart from one another by a prescribed distance, one heat radiation fin being located in a space between one heat absorption fin and another heat absorption fin and arranged parallel to the heat absorption fins.
7. The laundry treatment apparatus according to claim 5, wherein:
the heat absorption fins protrude from the heat absorption body toward a lower surface of a cross section of the duct; and
the heat radiation fins protrude from the heat radiation body toward the lower surface of the cross section of the duct.
8. The laundry treatment apparatus according to claim 3, wherein:
the first heat exchanger includes a heat absorption body located inside the duct, heat absorption fins protruding from the heat absorption body to a lower surface of a cross section of the duct, and an extension body extending from the heat absorption body in a longitudinal direction of the duct, the first conductor and the second conductor being secured to the extension body; and
the second heat exchanger includes a heat radiation body located below the extension body, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body toward the lower surface of the cross section of the duct.
9. The laundry treatment apparatus according to any one of claim 1, further comprising a heater located inside the duct and configured to heat air that has passed through the second heat exchanger.
10. A laundry treatment apparatus comprising:
a laundry receiving unit configured to provide a space for receiving laundry;
a duct configured to supply air to the laundry receiving unit;
a first heat exchanger configured to exchange heat with air introduced into the duct;
a second heat exchanger configured to exchange heat with air that has passed through the first heat exchanger;
a heater located inside the duct configured to heat air that has passed through the second heat exchanger; and
a heat transfer unit including:
a first conductor that makes contact with the first heat exchanger and is connected to a positive electrode of a direct current (DC) power source,
a second conductor that makes contact with the first heat exchanger and is connected to a negative electrode of the DC power source, the second conductor being separated from the first conductor,
a third conductor that makes contact with the second heat exchanger,
a P-type semiconductor configured to interconnect the first conductor and the third conductor, and
an N-type semiconductor configured to interconnect the second conductor and the third conductor.
11. The laundry treatment apparatus according to claim 10, wherein:
the duct includes an exhaust duct configured to discharge air coming from an interior of the laundry receiving unit to an outside of the laundry receiving unit and a supply duct configured to guide air from the outside of the laundry receiving unit to the laundry receiving unit; and
the first heat exchanger, the second heat exchanger, and the heat transfer unit are located inside the supply duct.
12. The laundry treatment apparatus according to claim 10, wherein:
the laundry receiving unit includes a tub placed inside a cabinet, an inlet port and an outlet port in communication with the outside of the laundry receiving unit, and a drum placed inside the tub and configured to provide the space for receiving laundry; and
the duct is configured to connect the outlet port and the inlet port to each other.
13. The laundry treatment apparatus according to claim 12, wherein:
the first heat exchanger includes a heat absorption body located inside the duct, the first conductor and the second conductor being secured to the heat absorption body, and heat absorption fins protruding from the heat absorption body; and
the second heat exchanger includes a heat radiation body spaced apart from the first heat exchanger in a longitudinal direction of the duct, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body.
14. The laundry treatment apparatus according to claim 13, wherein the heat absorption fins and the heat radiation fins are arranged parallel to a movement direction of air within the duct that is moving toward the inlet port.
15. The laundry treatment apparatus according to claim 14, wherein:
the heat absorption fins include a plurality of conductive plates spaced apart from one another by a prescribed distance; and
the heat radiation fins include a plurality of conductive plates spaced apart from one another by a prescribed distance, one heat radiation fin being located in a space between one heat absorption fin and another heat absorption fin and arranged parallel to the heat absorption fins.
16. The laundry treatment apparatus according to claim 14, wherein:
the heat absorption fins protrude from the heat absorption body toward a lower surface of a cross section of the duct; and
the heat radiation fins protrude from the heat radiation body toward the lower surface of the cross section of the duct.
17. The laundry treatment apparatus according to claim 12, wherein:
the first heat exchanger includes a heat absorption body located inside the duct, heat absorption fins protruding from the heat absorption body to a lower surface of a cross section of the duct, and an extension body extending from the heat absorption body in a longitudinal direction of the duct, the first conductor and the second conductor being secured to the extension body; and
the second heat exchanger includes a heat radiation body located below the extension body, the third conductor being secured to the heat radiation body, and heat radiation fins protruding from the heat radiation body toward the lower surface of the cross section of the duct.
US14/640,593 2014-03-06 2015-03-06 Laundry treatment apparatus Abandoned US20150252517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140026455A KR102204615B1 (en) 2014-03-06 2014-03-06 Laundry Treating Apparatus
KR10-2014-0026455 2014-03-06

Publications (1)

Publication Number Publication Date
US20150252517A1 true US20150252517A1 (en) 2015-09-10

Family

ID=52598606

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/640,593 Abandoned US20150252517A1 (en) 2014-03-06 2015-03-06 Laundry treatment apparatus

Country Status (8)

Country Link
US (1) US20150252517A1 (en)
EP (1) EP2915915B1 (en)
JP (1) JP2015167865A (en)
KR (1) KR102204615B1 (en)
CN (1) CN104894801B (en)
AU (1) AU2015201054B2 (en)
BR (1) BR102015004947A2 (en)
RU (1) RU2609638C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392395A4 (en) * 2015-12-16 2019-01-09 Qingdao Haier Drum Washing Machine Co., Ltd. Clothes drying device and clothes drying method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075898B1 (en) * 2015-03-30 2018-06-20 LG Electronics Inc. Laundry treatment apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036383A (en) * 1958-08-26 1962-05-29 Philco Corp Drying apparatus
JPS6285823A (en) * 1985-10-11 1987-04-20 Nippon Atom Ind Group Co Ltd Liquid level gage
JPH05168846A (en) * 1990-10-30 1993-07-02 Nippondenso Co Ltd Dehumidifier
US20070101602A1 (en) * 2005-11-04 2007-05-10 Lg Electronics Inc. Drum washing machine and clothes dryer using thermoelectric module
US20090044576A1 (en) * 2005-12-06 2009-02-19 BSH Bosch und Siemens Hausgeräte GmbH Apparatus and Method for Loading Items to Be Washed With an Air Flow
DE202009005871U1 (en) * 2009-04-21 2010-09-16 Autokühler GmbH & Co. KG Thermoelectric heat pump and household appliance manufactured therewith for the care of laundry items
EP2578741A1 (en) * 2011-10-04 2013-04-10 DBK David + Baader GmbH Thermoelectric heat pump, heat exchanger, household appliance and method for operating a household appliance

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180197A (en) * 1982-04-15 1983-10-21 松下電器産業株式会社 Garment dryer
JPH0236008Y2 (en) * 1985-11-19 1990-10-02
JPH06276741A (en) * 1993-03-17 1994-09-30 Toshiba Corp Heat sink for semiconductor element
KR100697083B1 (en) * 2005-04-06 2007-03-20 엘지전자 주식회사 Washing machine with dryer
JP2006345918A (en) * 2005-06-13 2006-12-28 Toshiba Corp Washer drier
CN1991277A (en) * 2005-12-31 2007-07-04 曹知光 Highly effective low energy-consumption thermoelectric components
CN201340144Y (en) * 2008-09-03 2009-11-04 宁波惠康实业有限公司 Fin heat exchanger
US9157179B2 (en) * 2009-06-29 2015-10-13 Arcelik Anonim Sirketi Laundry dryer the drying effectiveness of which is increased by using different heat sources
JP2011120746A (en) * 2009-12-11 2011-06-23 Hitachi Appliances Inc Clothes dryer
EP2372012B1 (en) * 2010-03-30 2016-08-31 DBK David + Baader GmbH Condenser unit, household appliance, and method for controlling such a household appliance
JP2011250855A (en) * 2010-05-31 2011-12-15 Hitachi Appliances Inc Washer-dryer
JP2012245316A (en) * 2011-05-31 2012-12-13 Hitachi Appliances Inc Washing and drying machine and method of drying washing and drying machine
CN102560992A (en) * 2012-01-12 2012-07-11 无锡小天鹅股份有限公司 Novel clothes dryer
CN103375979B (en) * 2012-04-16 2016-01-20 泰科电子(上海)有限公司 Condensation and heat-exchange device, drying plant and clothes drying device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036383A (en) * 1958-08-26 1962-05-29 Philco Corp Drying apparatus
JPS6285823A (en) * 1985-10-11 1987-04-20 Nippon Atom Ind Group Co Ltd Liquid level gage
JPH05168846A (en) * 1990-10-30 1993-07-02 Nippondenso Co Ltd Dehumidifier
US20070101602A1 (en) * 2005-11-04 2007-05-10 Lg Electronics Inc. Drum washing machine and clothes dryer using thermoelectric module
US20090044576A1 (en) * 2005-12-06 2009-02-19 BSH Bosch und Siemens Hausgeräte GmbH Apparatus and Method for Loading Items to Be Washed With an Air Flow
DE202009005871U1 (en) * 2009-04-21 2010-09-16 Autokühler GmbH & Co. KG Thermoelectric heat pump and household appliance manufactured therewith for the care of laundry items
EP2578741A1 (en) * 2011-10-04 2013-04-10 DBK David + Baader GmbH Thermoelectric heat pump, heat exchanger, household appliance and method for operating a household appliance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392395A4 (en) * 2015-12-16 2019-01-09 Qingdao Haier Drum Washing Machine Co., Ltd. Clothes drying device and clothes drying method

Also Published As

Publication number Publication date
KR102204615B1 (en) 2021-01-19
KR20150104744A (en) 2015-09-16
CN104894801B (en) 2018-07-31
JP2015167865A (en) 2015-09-28
BR102015004947A2 (en) 2015-12-01
CN104894801A (en) 2015-09-09
RU2609638C2 (en) 2017-02-02
RU2015107385A (en) 2016-09-20
EP2915915B1 (en) 2017-08-23
AU2015201054A1 (en) 2015-09-24
EP2915915A1 (en) 2015-09-09
AU2015201054B2 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
CN107780120B (en) Clothes treating device
US7866061B2 (en) Clothes dryer
KR102100473B1 (en) Clothes treating apparatus with a waste heat recovery means
KR20180074764A (en) Clothes dryer
JP2007082834A (en) Clothing dryer
EP3294943B1 (en) Laundry treatment apparatus
EP2452009B1 (en) Clothes drying apparatus
CN105200747A (en) Clothes dryer
US20150252517A1 (en) Laundry treatment apparatus
KR20210111179A (en) Laundry treating apparatus
US10179966B2 (en) Laundry treatment apparatus
CN108691175B (en) Clothes dryer
US10494754B2 (en) Clothes dryer
KR20130060654A (en) Drying device
CN106676855B (en) Drying washing machine
CN115298386A (en) Clothes treating apparatus
JP2011161356A (en) Dehumidifier
KR20150025071A (en) Dryer combined with heat recovery device
KR101840795B1 (en) Laundry treatment apparatus
CN215976534U (en) Heat pump clothes drying device and clothes treatment equipment
CN106676853B (en) Drying washing machine
JP2008099985A (en) Washing/drying machine
KR20160116465A (en) Laundry treatment apparatus
JP2014030667A (en) Drying apparatus
WO2014024356A1 (en) Dryer

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, TAEWAN;DOH, YOUNGJIN;LEE, JAEKEUN;AND OTHERS;SIGNING DATES FROM 20150312 TO 20150323;REEL/FRAME:035589/0411

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION