US20150218772A1 - Ground anchor body having rotation release structure - Google Patents

Ground anchor body having rotation release structure Download PDF

Info

Publication number
US20150218772A1
US20150218772A1 US14/612,147 US201514612147A US2015218772A1 US 20150218772 A1 US20150218772 A1 US 20150218772A1 US 201514612147 A US201514612147 A US 201514612147A US 2015218772 A1 US2015218772 A1 US 2015218772A1
Authority
US
United States
Prior art keywords
waterproof cap
guide
movable body
strand
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/612,147
Other versions
US9109341B1 (en
Inventor
Hyun Taek SHIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMJIN STEEL IND CO Ltd
Original Assignee
SAMJIN STEEL IND CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMJIN STEEL IND CO Ltd filed Critical SAMJIN STEEL IND CO Ltd
Assigned to SAMJIN STEEL IND. CO., LTD. reassignment SAMJIN STEEL IND. CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHIN, HYUN TAEK
Publication of US20150218772A1 publication Critical patent/US20150218772A1/en
Application granted granted Critical
Publication of US9109341B1 publication Critical patent/US9109341B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/54Piles with prefabricated supports or anchoring parts; Anchoring piles

Definitions

  • the present invention generally relates to removable ground anchor bodies using springs. More particularly, the present invention relates to a ground anchor body having a rotation release structure configured such that a PC strand, a deformed bar or the like coupled to the anchor body can be reliably maintained in the coupled state, and when needed, the PC strand, the deformed art or the like can be easily separated and removed from the anchor body.
  • slope reinforcement structures provided with PC strands, deformed bars or the like are formed by a method including: forming a bore in the ground; inserting a tension member having a high tensile strength with an internal fixer and an anchor body into the bore; injecting grouting material such as concrete or the like to firmly fix the tension member in place; and applying a load to a free end of the tension member and fixing the free end in place using an external fixer to prove sufficient fixing force.
  • Such slope reinforcement structures structure to stably support structures such as retaining walls and are widely used in works for preventing loss of earth and sand from a section of soft ground or in sheathing works for preventing collapse of the peripheral ground during an excavation work for underground structures in construction or civil engineering works.
  • Tension members used for such slope reinforcement structures are produced by twisting several deformed bars or steel wires. Such deformed bars or tension members have high strength, but if they are left on the ground they may act as obstacles causing problems pertaining to indemnification or the like when neighboring areas are developed later.
  • This internal fixer for removable ground anchors was proposed.
  • This internal fixer is configured such that deformed bars or tension members that have been embedded in the ground can be easily removed after the construction has been completed.
  • Such a conventional anchor body includes: a cylindrical body with an inclined surface formed in the cylindrical body; a wedge that is disposed on the inclined surface of the body and divided into about three parts, with a tension member disposed in a central space among the three parts; and an elastic spring provided on a rear end of the wedge to elastically compress the wedge forward and prevent the tension member from being undesirably displaced or removed.
  • this conventional anchor body when needed, the tension member can be removed, after the tension member is compressed and the wedge disposed in the cylindrical body is moved backward while the central space among the parts of the wedge is expanded.
  • the central space of the wedge may not be reliably expanded.
  • the spring continuously compresses the rear end of the wedge, thus making it difficult to remove the tension member from the anchor body, whereby the tension member may be reliably separated from the anchor body.
  • the tension member may not be easily removed later.
  • an object of the present invention is to provide a ground anchor body having a rotation release structure that is configured to appropriately cope with movement of the ground and maximize the support force, wherein a PC strand, a deformed bar or the like coupled to the anchor body can be easily separated and removed from the anchor body when needed, and the coupling of the PC strand, the deformed bar or the like to the anchor body can be reliably maintained even when an external shock is applied thereto in a construction site or during a process of transporting the anchor body, whereby the product reliability can be enhanced.
  • the present invention provides a ground anchor body having a rotation release structure, including: a waterproof cap having a hollow structure; a head coupler coupled to a lower end of the waterproof cap, with a tapered hole longitudinally formed in the head coupler so that a PC strand is inserted into the tapered hole; a wedge disposed in the tapered hole of the head coupler, the wedge holding the PC strand; a tubular guide installed in the waterproof cap, with at least one slide slot longitudinally formed in the guide; a movable body installed in the guide and including at least one slide protrusion inserted into the slide slot, the movable body being coupled at a lower end thereof to the wedge, with a key depression formed in a central portion of a lower surface of the movable body so that an upper end of the PC strand is key-coupled to the movable body; and a compression spring elastically biasing the movable body downward.
  • FIG. 1 is a perspective view illustrating a ground anchor body having a rotation release structure according to an embodiment of the present invention.
  • FIG. 2 is a perspective sectional view illustrating the ground anchor body having a rotation release structure according to the embodiment of the present invention.
  • FIG. 3 is a sectional view illustrating the ground anchor body having a rotation release structure according to the embodiment of the present invention.
  • FIG. 4 is an exploded perspective view illustrating the ground anchor body having a rotation release structure according to the embodiment of the present invention.
  • FIG. 5 is an exploded sectional view illustrating the ground anchor body having a rotation release structure according to the embodiment of the present invention.
  • FIGS. 6A through 6E are sectional views successively showing the operation of the ground anchor body having a rotation release structure according to the embodiment of the present invention, wherein
  • FIG. 6A is a sectional view showing the coupling a PC strand to the anchor body
  • FIG. 6B is a sectional view showing the PC strand that is being pushed
  • FIG. 6C is a sectional view showing the PC strand when completely pushed
  • FIG. 6D is a sectional view showing rotation of the PC strand
  • FIG. 6E is a sectional view showing the PC strand removed from the anchor body.
  • FIG. 7 is a sectional view showing installation of the ground anchor body having a rotation release structure according to the embodiment of the present invention.
  • a ground anchor body 100 having a rotation release structure includes a waterproof cap 110 , a head coupler 120 , a wedge 130 , a guide 140 , a movable body 150 , and a compression spring 160 .
  • the waterproof cap 110 has a hollow structure.
  • the head coupler 120 is coupled to a lower end of the waterproof cap 110 .
  • a tapered hole 121 is longitudinally formed in the head coupler 120 so that a prestressed concrete (PC) strand 10 is inserted into the head coupler 120 through the tapered hole 121 .
  • the wedge 130 is disposed in the tapered hole 121 of the head coupler 120 so as to hold the PC strand 10 .
  • the guide 140 is installed in the waterproof cap 110 and has a tubular shape. At least one slide slot 141 is longitudinally formed in the guide 140 .
  • the movable body 150 is installed in the guide 140 and includes a slide protrusion 151 inserted into the slide slot 141 .
  • a lower end of the movable body 150 is coupled to the wedge 130 .
  • a key depression 152 is formed in a central portion of a lower surface of the movable body 150 so that an upper end of the PC strand 10 is key-coupled to the movable body 150 .
  • the compression spring 160 is provided to elastically compress and bias the movable body 150 downward.
  • the waterproof cap 110 includes a first waterproof cap part 111 having a tubular shape, and a second waterproof cap part 112 that is coupled to the first waterproof cap part 111 and covers an upper end of the first waterproof cap part 111 .
  • a guide depression 113 is formed in the second waterproof cap part 112 , and an upper end of the compression spring 160 is fitted into the guide depression 113 .
  • the head coupler 120 is coupled to a lower end of the first waterproof cap part 111 of the waterproof cap 110 .
  • a locking protrusion 122 is provided on an upper end of the head coupler 120 so that when the head coupler 120 is coupled to the first waterproof cap part 111 , a lower end of the guide 140 is stopped by the locking protrusion 122 of the head coupler 120 .
  • the wedge 130 is divided into three parts in the longitudinal direction.
  • a connection means 131 is formed on an upper end of the wedge 130 in a general shape having both a protrusion and a depression.
  • the slide slots 141 are respectively and longitudinally formed in left and right portions of the guide 140 .
  • the guide 140 is inserted into the first waterproof cap part 111 of the waterproof cap 110 in such a way that the guide 140 comes into contact with an inner circumferential surface of the first waterproof cap part 111 .
  • the lower end of the guide 140 is stopped by and supported on the locking protrusion 122 provided on the upper end of the head coupler 120 .
  • An operation space 142 is formed above the upper end of the guide 140 .
  • the operation space 142 is formed by making the guide 140 be shorter than the inner circumferential surface of the first waterproof cap part 111 .
  • the guide 140 may be integrally formed in the first waterproof cap part 111 with the operation space 142 and the slide slots 141 formed in the above-mentioned manner.
  • the movable body 150 has in a lower end thereof a connection means 153 that includes a protrusion and a depression that are coupled to the connection means 131 of the wedge 130 .
  • connection means 153 that includes a protrusion and a depression that are coupled to the connection means 131 of the wedge 130 .
  • two slide protrusions 151 are respectively provided on left and right portions of the movable body 150 and inserted into the respective slide slots 141 of the guide 140 .
  • the key depression 152 is formed in the lower surface of the movable body 150 , and the upper end of the PC strand or deformed bar 10 is inserted into the key depression 152 for key-coupling such that the movable body 150 can be rotated interlocking with the PC strand or deformed bar 10 .
  • a guide depression 154 is formed in an upper surface of the movable body 150 so as to guide a lower end of the compression spring 160 , whereby the movable body 150 can be effectively compressed downward by the spring 160 .
  • ground anchor body 100 The operation of the ground anchor body 100 according to the present invention will be described below.
  • the PC strand or deformed bar 10 is inserted into the tapered hole 121 of the head coupler 120 such that the front end of the PC strand or deformed bar 10 is fitted into the key depression 152 of the movable body 150 .
  • the wedge 130 is wedged into the tapered hole 121 of the head coupler 120 and maintained in the wedged state. Consequently, the PC strand or deformed bar 10 can be strongly maintained in the coupled state so that even if a shock is applied thereto while transporting or unloading, the coupled state can be reliably maintained.
  • the anchor body 100 coupled to the PC strand or deformed bar 10 in the above-mentioned manner is inserted into a bore. Thereafter, various slope reinforcement works can be conducted.
  • the PC strand or deformed bar 10 can be removed as follows.
  • the slide protrusions 151 of the movable body 150 are moved forward along the slide slots 141 of the guide 140 and enter the operation space 142 .
  • the movable body 150 is rotated interlocking with the PC strand or deformed bar 10 , and the slide protrusions 151 are locked to the upper end of the guide 140 so that the movable body 150 that has been moved forward can be maintained in place regardless of the elastic force of the compression spring 160 .
  • the wedge 130 coupled to the lower end of the movable body 150 is also moved forward out of the tapered hole 121 of the head coupler 120 , thus releasing the PC strand or deformed bar 10 . Thereafter, when the PC strand or deformed bar 10 is pulled, it can be easily removed from the bore.
  • the present invention provides a ground anchor body having a rotation release structure.
  • a wedge is biased toward the head coupler by a compression spring so that the wedge is wedged into a tapered hole of the head coupler and continuously maintained in the wedged state. Therefore, even if a shock is applied to the anchor body while transporting or unloading it, the coupled state can be reliably maintained.
  • a PC strand or deformed bar is pushed, a slide protrusion is moved forward along a slide slot of a guide and enters an operation space. In this state, when the PC strand or deformed bar is rotated to 90°, the slide protrusion is locked to an upper end of the guide.
  • the PC strand or deformed bar can be easily released from the wedge and removed from a bore.
  • the PC strand, the deformed bar or the like coupled to the anchor body can be easily separated and removed from the anchor body when needed.
  • the coupling of the PC strand, the deformed bar or the like to the anchor body can be reliably maintained even when an external shock is applied thereto in a construction site or during a process of transporting the anchor body. Consequently, the product reliability can be enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)

Abstract

Disclosed herein is a ground anchor body having a rotation release structure. The ground anchor body includes a waterproof cap, a head coupler, a wedge, a tubular guide, a movable body, and a compression spring. The head coupler is coupled to a lower end of the waterproof cap. A tapered hole is longitudinally formed in the head coupler. The wedge is disposed in a tapered hole of the head coupler to hold the PC strand. The guide is installed in the waterproof cap. A slide slot is longitudinally formed in the guide. The movable body is disposed in the guide and provided with a slide protrusion inserted into the slide slot. The wedge is coupled to the movable body, and a key depression is formed in the movable body so that an end of the PC strand is key-coupled to the movable body. The compression spring elastically compresses the movable body downward.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to removable ground anchor bodies using springs. More particularly, the present invention relates to a ground anchor body having a rotation release structure configured such that a PC strand, a deformed bar or the like coupled to the anchor body can be reliably maintained in the coupled state, and when needed, the PC strand, the deformed art or the like can be easily separated and removed from the anchor body.
  • 2. Description of the Related Art
  • Generally, slope reinforcement structures provided with PC strands, deformed bars or the like are formed by a method including: forming a bore in the ground; inserting a tension member having a high tensile strength with an internal fixer and an anchor body into the bore; injecting grouting material such as concrete or the like to firmly fix the tension member in place; and applying a load to a free end of the tension member and fixing the free end in place using an external fixer to prove sufficient fixing force. Such slope reinforcement structures structure to stably support structures such as retaining walls and are widely used in works for preventing loss of earth and sand from a section of soft ground or in sheathing works for preventing collapse of the peripheral ground during an excavation work for underground structures in construction or civil engineering works.
  • Tension members used for such slope reinforcement structures are produced by twisting several deformed bars or steel wires. Such deformed bars or tension members have high strength, but if they are left on the ground they may act as obstacles causing problems pertaining to indemnification or the like when neighboring areas are developed later.
  • To avoid the above-mentioned problems, an internal fixer for removable ground anchors was proposed. This internal fixer is configured such that deformed bars or tension members that have been embedded in the ground can be easily removed after the construction has been completed.
  • Such a conventional anchor body includes: a cylindrical body with an inclined surface formed in the cylindrical body; a wedge that is disposed on the inclined surface of the body and divided into about three parts, with a tension member disposed in a central space among the three parts; and an elastic spring provided on a rear end of the wedge to elastically compress the wedge forward and prevent the tension member from being undesirably displaced or removed.
  • In the structure of this conventional anchor body, when needed, the tension member can be removed, after the tension member is compressed and the wedge disposed in the cylindrical body is moved backward while the central space among the parts of the wedge is expanded. However, even after the wedge is moved backward, the central space of the wedge may not be reliably expanded. Although the wedge is moved backward and the central space of the wedge is expanded, the spring continuously compresses the rear end of the wedge, thus making it difficult to remove the tension member from the anchor body, whereby the tension member may be reliably separated from the anchor body.
  • Furthermore, in the case of the conventional removable internal fixer, if a shock is applied to the internal fixer for PC strands when transporting a PC strand produced from a factory to a construction site or conducting a construction work, the tension member may not be easily removed later.
  • Moreover, if the anchor body that has been in the coupled state is undesirably separated by an external shock, it is almost impossible to reassemble the anchor body in a construction site, thus disrupting the progress of the construction.
  • In an effort to overcome the above problems, another conventional technique was introduced in Korean Patent Registration No. 10-0963565, filed by the applicant of the present invention.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a ground anchor body having a rotation release structure that is configured to appropriately cope with movement of the ground and maximize the support force, wherein a PC strand, a deformed bar or the like coupled to the anchor body can be easily separated and removed from the anchor body when needed, and the coupling of the PC strand, the deformed bar or the like to the anchor body can be reliably maintained even when an external shock is applied thereto in a construction site or during a process of transporting the anchor body, whereby the product reliability can be enhanced.
  • In order to accomplish the above object, the present invention provides a ground anchor body having a rotation release structure, including: a waterproof cap having a hollow structure; a head coupler coupled to a lower end of the waterproof cap, with a tapered hole longitudinally formed in the head coupler so that a PC strand is inserted into the tapered hole; a wedge disposed in the tapered hole of the head coupler, the wedge holding the PC strand; a tubular guide installed in the waterproof cap, with at least one slide slot longitudinally formed in the guide; a movable body installed in the guide and including at least one slide protrusion inserted into the slide slot, the movable body being coupled at a lower end thereof to the wedge, with a key depression formed in a central portion of a lower surface of the movable body so that an upper end of the PC strand is key-coupled to the movable body; and a compression spring elastically biasing the movable body downward.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a perspective view illustrating a ground anchor body having a rotation release structure according to an embodiment of the present invention.
  • FIG. 2 is a perspective sectional view illustrating the ground anchor body having a rotation release structure according to the embodiment of the present invention.
  • FIG. 3 is a sectional view illustrating the ground anchor body having a rotation release structure according to the embodiment of the present invention.
  • FIG. 4 is an exploded perspective view illustrating the ground anchor body having a rotation release structure according to the embodiment of the present invention.
  • FIG. 5 is an exploded sectional view illustrating the ground anchor body having a rotation release structure according to the embodiment of the present invention.
  • FIGS. 6A through 6E are sectional views successively showing the operation of the ground anchor body having a rotation release structure according to the embodiment of the present invention, wherein
  • FIG. 6A is a sectional view showing the coupling a PC strand to the anchor body,
  • FIG. 6B is a sectional view showing the PC strand that is being pushed,
  • FIG. 6C is a sectional view showing the PC strand when completely pushed,
  • FIG. 6D is a sectional view showing rotation of the PC strand, and
  • FIG. 6E is a sectional view showing the PC strand removed from the anchor body.
  • FIG. 7 is a sectional view showing installation of the ground anchor body having a rotation release structure according to the embodiment of the present invention.
  • DESCRIPTION OF THE REFERENCE NUMERALS IN THE DRAWINGS
  •  10: PC strand or deformed bar
    100: anchor body 110: waterproof cap
    111: first waterproof cap part
    112: second waterproof cap part
    113: guide depression 120: head coupler
    121: tapered hole 122: locking protrusion
    130: wedge 131: connection means
    140: guide 141: slide slot
    142: operation space 150: movable body
    151: slide protrusion 152: key depression
    153: connection means 154: guide depression
    160: compression spring
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Hereinafter, an embodiment of the present invention will be described in detail with reference to the attached drawings.
  • As shown in FIGS. 1 through 7, a ground anchor body 100 having a rotation release structure according to the embodiment of the present invention includes a waterproof cap 110, a head coupler 120, a wedge 130, a guide 140, a movable body 150, and a compression spring 160. The waterproof cap 110 has a hollow structure. The head coupler 120 is coupled to a lower end of the waterproof cap 110. A tapered hole 121 is longitudinally formed in the head coupler 120 so that a prestressed concrete (PC) strand 10 is inserted into the head coupler 120 through the tapered hole 121. The wedge 130 is disposed in the tapered hole 121 of the head coupler 120 so as to hold the PC strand 10. The guide 140 is installed in the waterproof cap 110 and has a tubular shape. At least one slide slot 141 is longitudinally formed in the guide 140. The movable body 150 is installed in the guide 140 and includes a slide protrusion 151 inserted into the slide slot 141. A lower end of the movable body 150 is coupled to the wedge 130. A key depression 152 is formed in a central portion of a lower surface of the movable body 150 so that an upper end of the PC strand 10 is key-coupled to the movable body 150. The compression spring 160 is provided to elastically compress and bias the movable body 150 downward.
  • The waterproof cap 110 includes a first waterproof cap part 111 having a tubular shape, and a second waterproof cap part 112 that is coupled to the first waterproof cap part 111 and covers an upper end of the first waterproof cap part 111. A guide depression 113 is formed in the second waterproof cap part 112, and an upper end of the compression spring 160 is fitted into the guide depression 113.
  • The head coupler 120 is coupled to a lower end of the first waterproof cap part 111 of the waterproof cap 110. Preferably, a locking protrusion 122 is provided on an upper end of the head coupler 120 so that when the head coupler 120 is coupled to the first waterproof cap part 111, a lower end of the guide 140 is stopped by the locking protrusion 122 of the head coupler 120.
  • The wedge 130 is divided into three parts in the longitudinal direction. A connection means 131 is formed on an upper end of the wedge 130 in a general shape having both a protrusion and a depression.
  • In this embodiment, the slide slots 141 are respectively and longitudinally formed in left and right portions of the guide 140. The guide 140 is inserted into the first waterproof cap part 111 of the waterproof cap 110 in such a way that the guide 140 comes into contact with an inner circumferential surface of the first waterproof cap part 111. The lower end of the guide 140 is stopped by and supported on the locking protrusion 122 provided on the upper end of the head coupler 120. An operation space 142 is formed above the upper end of the guide 140.
  • The operation space 142 is formed by making the guide 140 be shorter than the inner circumferential surface of the first waterproof cap part 111.
  • The guide 140 may be integrally formed in the first waterproof cap part 111 with the operation space 142 and the slide slots 141 formed in the above-mentioned manner.
  • The movable body 150 has in a lower end thereof a connection means 153 that includes a protrusion and a depression that are coupled to the connection means 131 of the wedge 130. In this embodiment, two slide protrusions 151 are respectively provided on left and right portions of the movable body 150 and inserted into the respective slide slots 141 of the guide 140.
  • Furthermore, the key depression 152 is formed in the lower surface of the movable body 150, and the upper end of the PC strand or deformed bar 10 is inserted into the key depression 152 for key-coupling such that the movable body 150 can be rotated interlocking with the PC strand or deformed bar 10.
  • A guide depression 154 is formed in an upper surface of the movable body 150 so as to guide a lower end of the compression spring 160, whereby the movable body 150 can be effectively compressed downward by the spring 160.
  • The operation of the ground anchor body 100 according to the present invention will be described below.
  • First, the PC strand or deformed bar 10 is inserted into the tapered hole 121 of the head coupler 120 such that the front end of the PC strand or deformed bar 10 is fitted into the key depression 152 of the movable body 150. In this state, because the movable body 150 is continuously compressed by the compression spring 160, the wedge 130 is wedged into the tapered hole 121 of the head coupler 120 and maintained in the wedged state. Consequently, the PC strand or deformed bar 10 can be strongly maintained in the coupled state so that even if a shock is applied thereto while transporting or unloading, the coupled state can be reliably maintained.
  • Subsequently, the anchor body 100 coupled to the PC strand or deformed bar 10 in the above-mentioned manner is inserted into a bore. Thereafter, various slope reinforcement works can be conducted.
  • Particularly, in the anchor body 100 according to the present invention, after a grouting process has been conducted, the PC strand or deformed bar 10 can be removed as follows. When the PC strand or deformed bar 10 is pushed into the bore, the slide protrusions 151 of the movable body 150 are moved forward along the slide slots 141 of the guide 140 and enter the operation space 142. In this state, when the PC strand or deformed bar 10 is rotated to 90°, the movable body 150 is rotated interlocking with the PC strand or deformed bar 10, and the slide protrusions 151 are locked to the upper end of the guide 140 so that the movable body 150 that has been moved forward can be maintained in place regardless of the elastic force of the compression spring 160.
  • Furthermore, when the movable body 150 is moved forward, the wedge 130 coupled to the lower end of the movable body 150 is also moved forward out of the tapered hole 121 of the head coupler 120, thus releasing the PC strand or deformed bar 10. Thereafter, when the PC strand or deformed bar 10 is pulled, it can be easily removed from the bore.
  • As described above, the present invention provides a ground anchor body having a rotation release structure. In the ground anchor body, a wedge is biased toward the head coupler by a compression spring so that the wedge is wedged into a tapered hole of the head coupler and continuously maintained in the wedged state. Therefore, even if a shock is applied to the anchor body while transporting or unloading it, the coupled state can be reliably maintained. As needed, when a PC strand or deformed bar is pushed, a slide protrusion is moved forward along a slide slot of a guide and enters an operation space. In this state, when the PC strand or deformed bar is rotated to 90°, the slide protrusion is locked to an upper end of the guide. In this way, when needed, the PC strand or deformed bar can be easily released from the wedge and removed from a bore. As such, the PC strand, the deformed bar or the like coupled to the anchor body can be easily separated and removed from the anchor body when needed. The coupling of the PC strand, the deformed bar or the like to the anchor body can be reliably maintained even when an external shock is applied thereto in a construction site or during a process of transporting the anchor body. Consequently, the product reliability can be enhanced.
  • Although the preferred embodiment of the present invention has been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (1)

What is claimed is:
1. A ground anchor body having a rotation release structure, comprising:
a waterproof cap (110) including a first waterproof cap part (111) having a tubular shape, and a second waterproof cap part (112) coupled to the first waterproof cap part (111), the second waterproof cap part (112) covering an upper end of the first waterproof cap part (111), with a guide depression (113) formed in the second waterproof cap part (112), and a compression spring (160) inserted at an upper end thereof into the guide depression (113);
a head coupler (120) coupled to a lower end of the first waterproof cap part (111) of the waterproof cap (110), the head coupler (120) including a locking protrusion (122) on an upper end thereof, with a tapered hole (121) longitudinally formed in the head coupler (120) so that a PC (prestressed concrete) strand (10) is inserted into the tapered hole (121);
a wedge (130) disposed in the tapered hole (121) of the head coupler (120), the wedge (130) holding the PC strand (10);
a tubular guide (140) installed in the waterproof cap (110), with at least one slide slot (141) longitudinally formed in the guide (140), wherein the tubular guide (140) is inserted into the first waterproof cap part (111) of the waterproof cap (110) in such a way that the guide (140) comes into contact with an inner circumferential surface of the first waterproof cap part (111), a lower end of the guide (140) is stopped by the locking protrusion (122) provided on the upper end of the head coupler (120), and an operation space (142) is formed above the guide (140);
a movable body (150) installed in the guide (140) and including at least one slide protrusion (151) inserted into the slide slot (141), the movable body (150) being coupled at a lower end thereof to the wedge (130), with a key depression (152) formed in a central portion of a lower surface of the movable body (150) so that an upper end of the PC strand (10) is key-coupled to and interlocked with the movable body (150), and with a guide depression (154) formed in an upper surface of the movable body (150); and
a compression spring (160) installed in the second waterproof cap part (112) of the waterproof cap (110), the compression spring (160) elastically biasing the movable body (150) downward.
US14/612,147 2014-02-04 2015-02-02 Ground anchor body having rotation release structure Expired - Fee Related US9109341B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0012700 2014-02-04
KR20140012700A KR101471486B1 (en) 2014-02-04 2014-02-04 Removable ground anchor body using Rotation

Publications (2)

Publication Number Publication Date
US20150218772A1 true US20150218772A1 (en) 2015-08-06
US9109341B1 US9109341B1 (en) 2015-08-18

Family

ID=52678486

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/612,147 Expired - Fee Related US9109341B1 (en) 2014-02-04 2015-02-02 Ground anchor body having rotation release structure

Country Status (3)

Country Link
US (1) US9109341B1 (en)
KR (1) KR101471486B1 (en)
AU (1) AU2015200447B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016200615B1 (en) * 2015-12-15 2016-09-29 Hyun Taik SHIN Removable ground anchor body using spring
JP2017210809A (en) * 2016-05-26 2017-11-30 株式会社エスイー Jig and method for forced unloading from anchor
EP3276083A1 (en) * 2016-07-26 2018-01-31 Samjin Steel Ind. Co., Ltd. Removable ground anchor body using rotation
US10309675B2 (en) 2015-05-22 2019-06-04 Gd Midea Heating & Ventilating Equipment Co., Ltd. Defrosting method for air conditioner and defrosting device for air conditioner
CN110067246A (en) * 2019-05-29 2019-07-30 建研地基基础工程有限责任公司 Anchorage, anchor cable locking and the recovery method of Recyclable anchor rope

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397034A (en) * 2019-08-07 2019-11-01 四川志德岩土工程有限责任公司 Fast-assembling speed, which unloads formula, can be recycled anchorage and its method for dismounting
KR102329997B1 (en) * 2021-07-01 2021-11-23 주식회사 지인건설 Fixing head of removal anchor and construction method using the same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1907811A (en) * 1931-07-01 1933-05-09 August A Hollos Anchor post
US2343350A (en) * 1941-11-25 1944-03-07 Cooper Aircraft Mooring Co Anchor
US3371494A (en) * 1966-02-04 1968-03-05 Atlas Copco Ab Method and means of anchoring an object in the ground
US4502258A (en) * 1981-04-10 1985-03-05 Berntsen, Inc. Driven-type sectionalized survey monument resistant to removal
US4592178A (en) * 1985-04-09 1986-06-03 Lu Hsi H Ground anchor
US4697394A (en) * 1986-08-04 1987-10-06 Lu Hsi H Ground anchor with recoverable steel rods
US5067854A (en) * 1991-02-04 1991-11-26 Aardvark Corporation Apparatus and technique for installing an elongated rod in an earth formation
US5572949A (en) * 1995-02-24 1996-11-12 Bryant, Jr.; Walter L. Emergency feeder for herbivorous wildlife
US5899640A (en) * 1997-10-27 1999-05-04 Yeh; Yung-Tien Anchoring device
US20050141969A1 (en) * 2003-02-20 2005-06-30 Gregory Enterprises, Inc. Preconstruction anchoring system and method for buildings
US20100266345A1 (en) * 2009-03-26 2010-10-21 Fci Holdings Delaware, Inc. Engagement head for tensioning assembly
US20120014756A1 (en) * 2009-01-07 2012-01-19 Ming Cai Yieldable cone bolt and method of manufacturing same
US20120192508A1 (en) * 2011-02-01 2012-08-02 Robert Van Burdine Penetrator
US20130149041A1 (en) * 2011-12-09 2013-06-13 Johann Steyn Rock bolt and rock bolt component
US20140154017A1 (en) * 2011-08-23 2014-06-05 Fci Holdings Delaware, Inc. Self-drilling friction bolt

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678573B1 (en) * 2005-09-28 2007-02-02 김용만 Ground anchor system
KR101280601B1 (en) * 2011-03-07 2013-07-04 박병구 A straight type removable anchor head capable of being reassembled

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1907811A (en) * 1931-07-01 1933-05-09 August A Hollos Anchor post
US2343350A (en) * 1941-11-25 1944-03-07 Cooper Aircraft Mooring Co Anchor
US3371494A (en) * 1966-02-04 1968-03-05 Atlas Copco Ab Method and means of anchoring an object in the ground
US4502258A (en) * 1981-04-10 1985-03-05 Berntsen, Inc. Driven-type sectionalized survey monument resistant to removal
US4592178A (en) * 1985-04-09 1986-06-03 Lu Hsi H Ground anchor
US4697394A (en) * 1986-08-04 1987-10-06 Lu Hsi H Ground anchor with recoverable steel rods
US5067854A (en) * 1991-02-04 1991-11-26 Aardvark Corporation Apparatus and technique for installing an elongated rod in an earth formation
US5572949A (en) * 1995-02-24 1996-11-12 Bryant, Jr.; Walter L. Emergency feeder for herbivorous wildlife
US5899640A (en) * 1997-10-27 1999-05-04 Yeh; Yung-Tien Anchoring device
US20050141969A1 (en) * 2003-02-20 2005-06-30 Gregory Enterprises, Inc. Preconstruction anchoring system and method for buildings
US20120014756A1 (en) * 2009-01-07 2012-01-19 Ming Cai Yieldable cone bolt and method of manufacturing same
US20100266345A1 (en) * 2009-03-26 2010-10-21 Fci Holdings Delaware, Inc. Engagement head for tensioning assembly
US20120192508A1 (en) * 2011-02-01 2012-08-02 Robert Van Burdine Penetrator
US20140154017A1 (en) * 2011-08-23 2014-06-05 Fci Holdings Delaware, Inc. Self-drilling friction bolt
US20130149041A1 (en) * 2011-12-09 2013-06-13 Johann Steyn Rock bolt and rock bolt component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10309675B2 (en) 2015-05-22 2019-06-04 Gd Midea Heating & Ventilating Equipment Co., Ltd. Defrosting method for air conditioner and defrosting device for air conditioner
AU2016200615B1 (en) * 2015-12-15 2016-09-29 Hyun Taik SHIN Removable ground anchor body using spring
US9657453B1 (en) * 2015-12-15 2017-05-23 Samjin Steel Ind. Co., Ltd. Removable ground anchor body using spring
CN106884430A (en) * 2015-12-15 2017-06-23 三进钢铁产业株式会社 Using the removal formula earth anchor body of spring
JP2017210809A (en) * 2016-05-26 2017-11-30 株式会社エスイー Jig and method for forced unloading from anchor
EP3276083A1 (en) * 2016-07-26 2018-01-31 Samjin Steel Ind. Co., Ltd. Removable ground anchor body using rotation
AU2016238847B2 (en) * 2016-07-26 2021-07-22 Samjin Steel ind. Co., Ltd Removable ground anchor body using rotation
CN110067246A (en) * 2019-05-29 2019-07-30 建研地基基础工程有限责任公司 Anchorage, anchor cable locking and the recovery method of Recyclable anchor rope

Also Published As

Publication number Publication date
KR101471486B1 (en) 2014-12-10
AU2015200447A1 (en) 2015-08-20
AU2015200447B2 (en) 2015-11-26
US9109341B1 (en) 2015-08-18

Similar Documents

Publication Publication Date Title
US9109341B1 (en) Ground anchor body having rotation release structure
US9657453B1 (en) Removable ground anchor body using spring
KR100963565B1 (en) Removable ground anchor body using spring
US20080302035A1 (en) Internal Fixer For Anchor Having Releasable Tensioning Steel Wire
KR101985956B1 (en) Ground pressure type anchor with wedge having maximum expansion property for cross slope
US9777454B1 (en) Removable ground anchor body using rotation
KR20080112559A (en) Earth-anchor apparatus and earth-anchor-construction process thereof
KR100963682B1 (en) Anchor assembly, method for reinforcing slope using anchor assembly
JP3894936B2 (en) Tensile member dismantling apparatus and method for anchor method
KR101471487B1 (en) multipurpose load dispersion style ground anchor assembly
KR101079075B1 (en) Reinforce Unit For Grouting And Grouting Reinforce Method Using The Same
KR20100060511A (en) Wall structure for earthquake-proof
KR101628079B1 (en) Retaining panel assembly for reinforcing slope and construction method thereof
KR101809443B1 (en) A strike remove type ground anchor assembly and a strand seperating and recovery method using the same
KR102225888B1 (en) Ground pressure type anchor with wedge having maximum expansion property for cross slope
KR101547320B1 (en) Structure of Permanent Anchor
KR101003981B1 (en) Removable Ground Anchor Body
KR100913320B1 (en) Multifunctional complex type anchor body
KR102220033B1 (en) Extended control type reinforcement structure and its construction method
KR101726497B1 (en) Removable Type Wire Fixing Device
KR20190108963A (en) Apparatus for fixing reinforced retainaing wall block
KR200494427Y1 (en) Joint of steel materials for nailing method
KR100960561B1 (en) Method for reinforcing superstructure of tunnel using anchor assembly
KR200362571Y1 (en) Removal Soil Nailed Wall for wire fixation anchor which it will sting
KR101645561B1 (en) The grouting building method of anchor for strengthening the ground

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMJIN STEEL IND. CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHIN, HYUN TAEK;REEL/FRAME:034869/0230

Effective date: 20150130

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230818