US20150043515A1 - Radio coexistence in wireless networks - Google Patents

Radio coexistence in wireless networks Download PDF

Info

Publication number
US20150043515A1
US20150043515A1 US14/525,927 US201414525927A US2015043515A1 US 20150043515 A1 US20150043515 A1 US 20150043515A1 US 201414525927 A US201414525927 A US 201414525927A US 2015043515 A1 US2015043515 A1 US 2015043515A1
Authority
US
United States
Prior art keywords
subframe
transceiver
drx cycle
idc interference
circuitry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/525,927
Inventor
Yujian Zhang
Mo-Han Fong
Youn Hyoung Heo
Ali T. Koc
Hong He
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/756,663 external-priority patent/US9681382B2/en
Application filed by Intel Corp filed Critical Intel Corp
Priority to US14/525,927 priority Critical patent/US20150043515A1/en
Publication of US20150043515A1 publication Critical patent/US20150043515A1/en
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HE, HONG, HEO, YOUN HYOUNG, ZHANG, YUJIAN, KOC, ALI, FONG, MO-HAN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • H04W72/082
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication
    • H04B1/56Circuits using the same frequency for two directions of communication with provision for simultaneous communication in two directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/0647Variable feedback rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/24Time-division multiplex systems in which the allocation is indicated by an address the different channels being transmitted sequentially
    • H04J3/26Time-division multiplex systems in which the allocation is indicated by an address the different channels being transmitted sequentially in which the information and the address are simultaneously transmitted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/16Communication-related supplementary services, e.g. call-transfer or call-hold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W76/048
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1803Stop-and-wait protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • a smart phone may include a 4G transceiver to connect to a cell tower, a WiFi transceiver to connect to a local internet hot spot, and a Bluetooth transceiver to connect to a nearby device such as a headset or keyboard.
  • the WiFi transceiver can receive information at substantially the same time period as when the Bluetooth transceiver transmits information.
  • the 4G transceiver can transmit information at substantially the same time period as when the Bluetooth transceiver receives information.
  • coexistence interference can result between the WiFi transceiver and the Bluetooth transceiver, or between the 4G transceiver and the Bluetooth receiver, operating in the smart phone, thereby reducing the effectiveness of communication of each of the collocated transceivers.
  • FIG. 1 illustrates a timing diagram of Bluetooth packets synchronized with subframes in several time division duplex (TDD) configurations of a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) transceiver in accordance with an example.
  • 3GPP Third Generation Partnership Project
  • LTE Long Term Evolution
  • FIG. 2 is a diagram illustrating a long discontinuous reception (DRX) cycle in accordance with an example.
  • FIGS. 3A and 3B illustrate example TDD configurations that support DRX patterns in accordance with an example.
  • FIG. 3C is a timing diagram showing a LTE transmit/receive pattern and a Bluetooth transmit/receive pattern in accordance with an example.
  • FIG. 4 illustrates an ASN code example of DRX configuration information in accordance with an example.
  • FIG. 5 illustrates a channel state information (CSI) reference resource during a long DRX cycle in accordance with an example.
  • CSI channel state information
  • FIG. 6 depicts a flow chart of a method for reducing coexistence interference in a multi-radio device in accordance with an embodiment of the present invention.
  • FIG. 7 illustrates a block diagram of a radio coexistence system in accordance with an example.
  • FIG. 8 illustrates a mobile wireless device in accordance with an example.
  • the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result.
  • an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed.
  • the exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained.
  • the use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result.
  • Bluetooth transceivers are often collocated with other types of radios and/or transceivers.
  • transceivers which communicate using Orthogonal Frequency Division Multiple Access (OFDMA), such as a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) transceiver, an Institute of Electrical and Electronics Engineers (IEEE) 802.16 transceiver, commonly referred to as WiMAX (Worldwide interoperability for Microwave Access), a wireless local area network (WLAN) transceiver (i.e., IEEE 802.11 radio, commonly referred to as WiFi), and/or a Global Navigation Satellite System (GNNS) receiver.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • 3GPP Third Generation Partnership Project
  • LTE Long Term Evolution
  • IEEE 802.16 Institute of Electrical and Electronics Engineers 802.16 transceiver
  • WiMAX Worldwide interoperability for Microwave Access
  • WLAN wireless local area network
  • WiFi Global Navigation Satellite System
  • GNNS Global Navigation Satellite System
  • Each collocated radio may be used for a specific purpose.
  • a Bluetooth transceiver can be used to communicate with a wireless personal area network (WPAN)
  • a WiFi transceiver can be used to communicate with a wireless local area network (WLAN)
  • a 3GPP LTE or WiMAX transceiver can be used to communicate with a wireless wide area network (WWAN).
  • the simultaneous operation in a wireless device e.g., a smart phone or tablet
  • a Bluetooth transceiver that is collocated with other types of transceivers which communicate using OFDMA, such as a 3GPP LTE transceiver, a WiMAX transceiver, and/or a WiFi transceiver, can create interference that reduces the data throughput of both transceivers.
  • OFDMA Orthogonal Component Interference
  • 3GPP LTE transceiver e.g., a WiMAX transceiver
  • WiFi transceiver e.g., WiFi transceiver
  • TDD refers to duplex communication links where the uplink is separated from the downlink by an allocation of different time slots in the same frequency band. Since TDD allows asymmetric flow for uplink and downlink data transmissions, users are allocated time slots for uplink and downlink transmission. TDD can be advantageous when there is asymmetry of uplink and downlink data rates.
  • Bluetooth receptions can collide with transmissions from the 3GPP LTE transceiver, especially when both transceivers are collocated on the same device, such as a smart phone, a tablet, a net book, a laptop, or another type of wireless mobile device. Bluetooth transmissions can also desensitize reception in the 3GPP LTE transceiver.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • TDM can include discontinuous reception (DRX), which will be discussed in further detail below.
  • a radio frequency solution involves the use of radio frequency filtering which can be used to reduce the amount of out-of-bounds (OOB) emissions, using a filter at a transmitter, or blocking incoming out-of-bounds signals using a filter at a receiver.
  • Power based solutions can be used to reduce transmission power, thereby potentially reducing the level of interference.
  • Hybrid solutions are also possible by combining two or more of the previously presented solutions.
  • Tx/Rx Time-domain transmission/reception
  • 3GPP LTE transceiver and a collocated Bluetooth transceiver to coordinate their transmitters and receivers.
  • the Tx/Rx pattern can be repeated at a known interval if data gets allocated with a periodicity on time. The known interval enables persistent reservations to be made in the 3GPP LTE transceiver to reduce or avoid interferences between the different transceivers.
  • the repeated Tx/Rx pattern defines a specific Bluetooth transmit time slot for each Extended Synchronous Connection Oriented (eSCO) packet transmitted by the Bluetooth transceiver to prevent the Bluetooth transmission from interfering with the 3GPP LTE reception, and to protect the 3GPP LTE transmission from interfering with Bluetooth reception.
  • eSCO Extended Synchronous Connection Oriented
  • a WiFi transceiver can be coordinated to communicate at specific time periods in the coordination formed between the 3GPP LTE and Bluetooth transceivers.
  • FIG. 1 provides a timing diagram showing the transmission and reception of eSCO formatted packets 102 for a Bluetooth radio and the Tx/Rx sub-frames 104 for all seven configurations of a 3GPP LTE radio operating in a Time Division Duplex (TDD) mode.
  • TDD Time Division Duplex
  • the figures and tables presented herein are displayed using one-slot Bluetooth eSCO packets as an example. However, this interference avoidance technique can be applied to other Bluetooth profiles and packet length (for example three or five slot packets).
  • the Bluetooth eSCO packets can include a variety of different formats having a different number of transmit and receive time slots. For single slot eSCO packets, Bluetooth specifies intervals of 6, 8, 10, 12, 14, 16 and 18. The interval illustrated in FIG.
  • Bluetooth also specifies a re-transmit window W eSCO to be 0, 2, or 4.
  • the re-transmit window specifies the number of attempts at transmitting that can occur for a Bluetooth packet within its interval (T eSCO ). While the specification currently limits the retransmission attempts to 0, 2 or 4 instances, it is possible to include additional retransmission attempts when T eSCO is equal or greater than 8. Future Bluetooth standards may include additional retransmission attempts, and the embodiments disclosed herein are not limited to the 0, 2 or 4 instances recited in the present standard.
  • the 3GPP LTE standard can include 3GPP LTE Release 8 in the fourth quarter of 2008, 3GPP LTE Advanced Release 10 in the first quarter of 2011, and Release 11 in the third quarter of 2012. However, the embodiments disclosed herein are not limited to these releases. Future standards can also apply when the same TDD configurations and sub-frame timing is used.
  • a transceiver operating in accordance with at least one of these 3GPP LTE Releases is also referred to herein as an LTE transceiver.
  • the use of the term 3GPP, 3GPP LTE, or LTE is not intended to be limiting. Any of the terms may refer to any of the 3GPP releases.
  • FIG. 1 provides an example of each LTE configuration, numbered 0-6. Each configuration is aligned at the beginning 106 of the longer continuous number of receive subframes for each configuration.
  • the Bluetooth packet is synchronized such that a first receive time slot (Slot 1) is aligned with the first receive subframe of the continuous receive subframes in each of the seven LTE configurations.
  • the Bluetooth time slots 102 have a different time period from the LTE subframe.
  • the Bluetooth time slots each have a period of 0.625 milliseconds (ms), while each LTE frame has a frame duration of 10 ms.
  • Each LTE frame consists of 10 sub-frames. Thus, each subframe has a duration of 1 ms.
  • the Bluetooth packet is synchronized such that transmit Slot 0 is aligned with a transmit subframe in each LTE TDD configuration, and receive Slot 1 is aligned with the first receive subframe in the continuous receive subframe for each configuration, the transmit and receive slots quickly become unaligned such that transmissions and receptions from the Bluetooth and 3GPP transceivers will create co-interference in each of the transceivers.
  • Co-interference can occur when one of the transceivers transmits during the other transceiver's receive interval. This is especially true when the 3GPP LTE transceiver transmits during the receive period of the Bluetooth transceiver, since the 3GPP LTE transceiver transmits at significantly higher power and can therefore overpower (or collide) most Bluetooth signals that the Bluetooth transceiver is attempting to receive during the Bluetooth receive period.
  • FIG. 2 is a diagram illustrating a long discontinuous reception (DRX) cycle in accordance with an example.
  • DRX can be used to enable a wireless device, such as a user equipment (UE) in a 3GPP LTE network, to discontinuously monitor a control channel, such as the physical downlink control channel (PDCCH) communicated from a transmission station such as an enhanced node (eNB or eNodeB).
  • a control channel such as the physical downlink control channel (PDCCH) communicated from a transmission station such as an enhanced node (eNB or eNodeB).
  • eNB enhanced node
  • the discontinuous monitoring by using DRX can provide significant power savings at the UE since the receiver at the UE can be turned off for selected periods.
  • the scheduling of a 3GPP LTE transceiver using DRX will be explained more fully below.
  • DRX in addition to saving power, DRX can also be used to provide a TDM solution for reducing coexistence interference of co-located devices.
  • coexistence interference between a collocated 3GPP LTE transceiver and a low power Bluetooth (BT) transceiver can be reduced, using DRX, by scheduling the BT transceiver to transmit when the LTE transceiver is not receiving.
  • BT Bluetooth
  • a transceiver in a multi-radio wireless device can be configured to be turned off more often by reducing the amount of time that the transceiver monitors control channels, such as the physical downlink control channel (PDCCH).
  • the transceiver can communicate with a transmission station, referred to as a network node, to negotiate time periods in which the transceiver will receive communications from the network node. During the negotiated times when information is not received, the transceiver can turn its receiver off and enter a low power state.
  • DRX is used in a number of different wireless communication standards, including but not limited to 3GPP LTE Rel. 8, 9, 10, and 11.
  • the 3GPP LTE transceiver can be operable to monitor the PDCCH discontinuously if the 3GPP LTE transceiver is configured for DRX and is in an RRC_CONNECTED mode. Otherwise, a 3GPP LTE transceiver not configured for DRX can monitor the PDCCH continuously.
  • the Radio Resource Control can be used to control the DRX operation in the 3GPP LTE transceiver by configuring the parameters onDurationTimer, drx-InactivityTimer, longDRX-Cycle, drxStartOffset and optionally drxShortCycleTimer and shortDRX-Cycle.
  • the 3GPP LTE transceiver monitors the PDCCH at the beginning (according to the length defined in onDurationTimer) of the longDRX-Cycle parameter.
  • the 3GPP LTE transceiver can stop monitoring the PDCCH after onDuration-Timer if the downlink and/or uplink transmissions can be completed.
  • the 3GPP LTE transceiver can become inactive.
  • the eNB does not schedule downlink transmissions nor will the eNB require the 3GPP LTE transceiver to transmit uplink data.
  • the short DRX cycle can be considered as a confirmation period for when a packet arrives late, prior to the 3GPP LTE transceiver entering the long DRX cycle.
  • the data is scheduled for transmission at the next wake-up time, after which the 3GPP LTE transceiver resumes continuous reception.
  • the 3GPP LTE transceiver can enter the long DRX cycle if the packet activity is finished for the time being.
  • the DRX Activity Time is the duration when the 3GPP LTE transceiver monitors the PDCCH within the DRX cycle.
  • the long DRX cycle can include an ON duration and an OFF duration.
  • the eNB can schedule transmissions with the UE.
  • the eNB does not schedule transmissions with the UE.
  • the UE can transition to the long DRX cycle from an optional short DRX cycle after the expiration of a timer.
  • FIGS. 3A and 3B illustrate example TDD configurations 310 and 320 that support DRX patterns in accordance with an example.
  • One limitation of using a DRX solution to reduce coexistence interference in a multi-radio device is that current supported longDRX-Cycle values do not include several values that can be used to significantly improve in-device coexistence scenarios.
  • long DRX cycle values that can be used to reduce in-device interference in an LTE and Bluetooth scenario e.g., an LTE transceiver transmitting/receiving information at substantially the same time as a Bluetooth transceiver transmitting/receiving information
  • These long DRX cycle values can include 2 milliseconds (ms), 5 ms, and/or 8 ms.
  • the 2 ms, 5 ms, and 8 ms long DRX cycle values can provide one or more useful Hybrid Automatic Repeat Request (HARQ) process reservation patterns.
  • HARQ Hybrid Automatic Repeat Request
  • DRX supports contiguous LTE downlink (DL) subframes within a single DRX cycle when the LTE On Duration period is not extended.
  • DL downlink
  • the DRX cycle is 10 ms.
  • a 5 ms short DRX cycle can be used within the 10 ms long DRX cycle.
  • DRX can support bitmap patterns with LTE ON downlink subframes that are contiguous in a 10 ms period or a 5 ms period.
  • FIG. 3A illustrates an example of a DRX pattern with a cycle time that can be used to reduce in-device interference in a multi-radio device.
  • the example configuration 310 is a TDD configuration 2.
  • the configuration 310 includes m number of frames, and has a cycle start offset of 2 ms.
  • the total length of the configuration 310 is 10 ms in length, and each subframe is 1 ms in length.
  • the configuration 310 can be represented by the bitmap 0111010111.
  • a “0” means that the subframe cannot be used (e.g., the subframe can be turned off), and a “1” means that the sub-frame can be used.
  • the subframes that are turned off are 0, 4, and 6, therefore resulting in the bitmap of 0111010111.
  • the subframes in the configuration 310 can either be downlink (DL) subframes or uplink (UL) subframes.
  • the DL subframes are shaded and the UL subframes are clear.
  • the TDD configuration 2 which is one of the seven TDD configurations available
  • subframes 0, 1, 3, 4, 5, 6, 8, and 9 are DL subframes and subframes 2 and 7 are uplink subframes.
  • subframes 1, 3, 5, 8, and 9 are LTE ON subframes, and are represented as textured subframes.
  • the 1 st subframe is included in the first 2-ms cycle
  • the 3 rd subframe is included in the second 2-ms cycle
  • the 5 th subframe is included in the third 2-ms cycle
  • both the 8 th and 9 th subframe are included in the fifth 2-ms cycle.
  • Neither subframes 6 or 7 are included in the fourth 2-ms cycle because subframe 6 is OFF and subframe 7 is an uplink subframe.
  • the subframe 8 is considered as onDuration because the unit of onDurationTimer is a PDCCH subframe, which is DL subframes in the case of TDD.
  • the onDurationTimer starts at subframe 7, but since subframe 7 is an UL subframe, it extends to subframe 8. Therefore, subframe 8 is considered ON. If the 2 ms long DRX cycle is not supported then another HARQ bitmap pattern will need to be used that will result in fewer subframes being used by the LTE.
  • FIG. 3B illustrates an example of an additional DRX pattern with a cycle time that can be used to reduce in-device interference in a multi-radio device.
  • the advantages of including a 5 ms long DRX cycle for the LTE and Bluetooth scenario are shown.
  • the use of the 5 ms long DRX cycle allows additional HARQ bitmap patterns to be used. Without the ability to use a 5 ms long DRX cycle, fewer LTE subframes can be used.
  • the example configuration 320 is a TDD configuration 2.
  • the configuration 320 includes m number of frames, and has a cycle start offset of 5 ms.
  • the configuration 320 can be represented by the bitmap 0111101111.
  • the subframes that are turned off are 0 and 5, therefore resulting in the bitmap of 0111010111.
  • the TDD configuration 2 which is one of the seven TDD configurations available
  • subframes 0, 1, 3, 4, 5, 6, 8, and 9 are DL subframes and subframes 2 and 7 are uplink subframes.
  • uplink subframes i.e., subframes 2 and 7
  • subframes 0 and 5 are off
  • the result is subframes 1, 3, 4, 6, 8 and 9.
  • subframes 1, 3, 4, 6, 8, and 9 are LTE ON downlink subframes that are received by the 3GPP LTE transceiver. Therefore, a 5 ms long DRX cycle value can be advantageous with configuration 320 .
  • the subframes 1, 3 and 4 are included in the first 5-ms cycle, and subframes 6, 8 and 9 are included in the second 5-ms cycle.
  • a 10 ms long DRX cycle value cannot be used with TDD configuration 2 because subframe 5 is turned off.
  • HARQ can be used to ensure that data is sent reliably from one node to another node.
  • HARQ uses a stop and wait protocol.
  • a transmitting entity e.g., a LTE transceiver transmits the data block to a receiving entity (e.g. an eNB).
  • the transmitting entity stops and waits until it receives an acknowledgement (ACK) or a negative acknowledgement (NACK) from the receiving entity. If the transmitting entity receives an ACK, then the next data block is transmitted.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the transmitting entity receives a NACK, then the same data block can be retransmitted. Whether an ACK or a NACK is received, the transmitting entity schedules and processes the next data block to be transmitted within a specific time period.
  • a N-process stop-and-wait may be used, where the transmitting entity stops and waits for one particular HARQ process. For example, the transmission may stop and wait for one particular HARQ process.
  • there are multiple HARQ processes so from the transmitter perspective, it does not stop its transmission.
  • LTE uses multiple HARQ parallel processes that are offset in time. Since each process transmits a block of data, by the time a next transmission allocation arrives, the transmitting entity would have already received the ACK or the NACK from the receiving entity, and therefore created the next data block to be transmitted or retransmitted. Thus, from the perspective of the transmitting entity, data may be constantly transmitted to the receiving entity. In TDD, a configurable number of HARQ processes are supported.
  • 2 ms and 5 ms patterns are created. These 2 ms and 5 ms patterns can be considered to be HARQ compliant patterns.
  • a pattern can be HARQ compliant if: (1) each LTE DL subframe that is enabled is associated with at least one LTE UL subframe for either a DL or UL HARQ process; and (2) each LTE UL subframe that is enabled is associated with at least one LTE DL subframe for either a DL or UL HARQ process; and (3) at least one LTE DL HARQ process and one UL HARQ process are enabled.
  • the ratio of HARQ compliant patterns that are supported when DRX is applied to the LTE and Bluetooth scenario is 27%.
  • the 2 ms and 5 ms long DRX cycle values support additional HARQ bitmap patterns. Without using the 2 ms and 5 ms long DRX cycle values, the HARQ bitmap pattern may use a fewer number of LTE subframes. In other words, the bitmap may include additional “0s” indicating that the particular subframe cannot be used.
  • each radio transceiver can include a different Radio Access Technology (RAT).
  • RATs include 3GPP LTE, WiMAX, Bluetooth, WLAN, GNSS, etc.
  • FIG. 3C is a timing diagram 330 showing an LTE transmit/receive pattern and a Bluetooth transmit/receive pattern in accordance with an example.
  • the LTE Rx pattern and the LTE Tx pattern are identical. Each ON and OFF cycle lasts for 2 ms.
  • the bitmap of the LTE Rx and the LTE Tx is 11001100.
  • Each digit (e.g., “1”) indicates whether the LTE is ON or (e.g., “0”) OFF during a one-second period. Therefore, the “11” indicates an ON period for two seconds, and the “00” indicates an OFF period for two seconds.
  • the Bluetooth is not receiving.
  • the Bluetooth is receiving (i.e., BT Rx ON)
  • the LTE is not transmitting.
  • the Bluetooth transmission does not interfere with the LTE reception because the LTE downlink frequency band does not coincide with the Bluetooth transmission frequency band.
  • the timing diagram 300 relates to LTE operating in a frequency division duplex (FDD).
  • FDD frequency division duplex
  • separate frequency bands are used at the transmitting side and the receiving side. Since FDD uses different frequency bands for sending and receiving information, the sending and the receiving data signals do not interfere with each other.
  • the timing diagram 300 is a bitmap-based TDM solution for the coexistence between LTE and Bluetooth. Having a bitmap of 8 ms (e.g., 11001100) ensures that the LTE does not transmit information at substantially the same time as the Bluetooth receiving information. Therefore, having an 8 ms long DRX cycle (which corresponds to the bitmap that is 8 ms in length) can be useful for LTE FDD. In some examples, having a 4 ms long DRX cycle can be useful for LTE FDD, but unlike the 8 ms long DRX cycle, the 4 ms long DRX cycle does not take advantage of the HARQ process reservation patterns in LTE FDD.
  • 8 ms long DRX cycle which corresponds to the bitmap that is 8 ms in length
  • a number of LTE FDD HARQ processes can be masked off to accommodate coexistence between LTE and Bluetooth.
  • FDD there are 8 uplink HARQ processes, while the downlink can have up to 8 HARQ processes.
  • the downlink HARQ processes can be transmitted in any order without a fixed timing, whereas each uplink HARQ process is assigned to a specific subframe.
  • the UE transmits within the same HARQ process every eighth subframe. Therefore, an 8 ms long DRX cycle can be useful for reducing coexistence interference between LTE and Bluetooth because the 8 ms long DRX cycle corresponds with the 8 uplink and downlink HARQ processes found in FDD.
  • FIG. 4 illustrates an ASN.1 code example of DRX configuration information in accordance with an example.
  • the Abstract Syntax Notation 1 (ASN.1) can be used to implement enhancements to existing DRX configurations.
  • the DRX-Config-r11 (i.e., DRX Configuration 11) is used to define various characteristics of the DRX cycles.
  • the existing DRX-Config-r11 includes ASN.1 code to define the onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimer, longDRX-CycleStartOffset, shortDRX-Cycle, and the drxShortCycleTimer.
  • the longDRX-CycleStartOffset includes cycle values of sf10, sf20, sf32, sf40, etc.
  • the addition of the 2 ms, 5 ms, and 8 ms long DRX cycle values can be included in the DRX-Config-r11 by adding the cycle values of sf2, sf5, and sf8 into the ASN.1 code.
  • a new DRX-Config-r11 can be configured with the 2 ms, 5 ms, and 8 ms long DRX cycle values to provide additional DRX patterns that can be used to reduce in-device interference in a multi-radio device, as discussed in the preceding paragraphs.
  • FIG. 5 illustrates a subframe used to receive a downlink reference resource 510 during a long DRX cycle in accordance with an example.
  • the downlink reference resource 510 can include a reference signal (RS) transmitted from the eNB.
  • the measured power of the reference signal at the UE is used to determine the power at which the eNB transmits the downlink data.
  • the measured power of the reference signal can be communicated via a Channel State Information (CSI) report to the eNB.
  • CSI Channel State Information
  • the CSI can refer to known channel properties of a communication link.
  • the CSI describes how a signal propagates from the transmitter to the receiver.
  • the CSI can represent the combined effect of scattering, fading, etc.
  • the CSI ensures that transmissions are adapted to current channel conditions, thereby leading to reliable communication by Bluetooth transceivers, LTE transceivers, etc.
  • the CSI is periodically transmitted from the UE to the eNB.
  • the CSI can include at least one of a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a rank indicator (RI).
  • CQI is information signaled by the UE to the eNB to indicate a suitable data rate for downlink transmission.
  • the CQI can be based on a measurement of the receiving downlink Signal to Interference plus Noise Ratio (SINR), as well as knowing various characteristics of the UE receiver.
  • SINR Signal to Interference plus Noise Ratio
  • the PMI is a signal fed back by the UE, and corresponds to an index of a precoder that maximizes the aggregate number of data bits which can be received acrossed the downlink spatial transmission layers.
  • the RI is signaled to the eNB by UEs that are configured for a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the RI corresponds to the number of useful transmission layers for spatial multiplexing (based on the UE's estimate of the downlink channel),
  • the CSI report is typically communicated at least four symbols after the downlink referenced resource 510 .
  • the reference signal In order for the measurement of the reference signal to be accurate, the reference signal should be received in a downlink subframe with minimal interference. Interference can reduce the accuracy of the reference signal measurement and impact the accuracy of the CSI report. Accordingly, it can be important to select a downlink subframe to receive the reference signal that has little interference.
  • the rules for selecting a downlink subframe for a downlink reference resource 510 do not consider the impact of in-device interference.
  • the measurement of the reference signal received in the downlink reference resource 510 symbol can be negatively impacted when there is in-device interference (e.g., a Bluetooth transceiver is transmitting information at substantially the same time as when a LTE transceiver is receiving the reference signal).
  • the long DRX cycle of an LTE (or WWAN) transceiver can be partitioned into a scheduled period and an unscheduled period.
  • the UE can be configured to send the CSI (e.g., the CQI, PMI, and RI) to the eNB.
  • the LTE transceiver in the UE can be configured to transmit the CSI to the eNB.
  • the CSI can be based on the reference signal received in the downlink reference resource 510 .
  • the downlink reference resource 510 i.e., the time domain reference
  • the CSI reporting subframe 520 occurs at least four subframes after the downlink subframe n ⁇ n CQI — ref .
  • the CSI is periodically reported at an uplink subframe to the eNB, and the uplink subframe occurs at least four subframes after receiving the downlink reference resource 510 subframe from the eNB. Therefore, the CSI reporting subframe 520 is located after a long DRX cycle of a transceiver (e.g., a WWAN transceiver) in the UE, and corresponds with the downlink reference resource 510 (i.e., the downlink subframe n ⁇ n CQI — ref ). In some examples, the CSI is reported more than four subframes (e.g., six subframes) after the downlink subframe n ⁇ n CQI — ref .
  • the CSI measurement needs special handling. Otherwise, the downlink reference resource 510 can be impacted by in-device interference between collocated transceivers in the multi-radio device, thereby causing the UE to report an inaccurate CSI.
  • An inaccurate CSI can substantially reduce the system throughput. In other words, the average rate of successful message delivery over a communication channel can reduce as a result of the inaccurate CSI. Therefore, the downlink reference resource 510 should not be impacted by in-device interference.
  • the downlink subframe n ⁇ n CQI — ref can be considered to be valid if the downlink subframe n ⁇ n CQI — ref is not interfered by in-device interference. Therefore, if the UE receives the reference signal or other type of downlink reference resource in a downlink subframe from the eNB during a time period that does not correspond with a different coexisting radio transceiver in the UE transmitting an uplink subframe, then the downlink subframe is not impacted by in-device interference. In other words, the downlink subframe n ⁇ n CQI — ref is not received at the UE, from the eNB, while in-device interference currently exists. As a result, the downlink subframe n ⁇ n CQI — ref is valid and can be used for receiving a downlink reference resource.
  • the downlink subframe n ⁇ n CQI — ref may be assigned by the eNB to be received by the UE (e.g. a LTE transceiver in the UE) in a subframe at the same time that a different transceiver in the UE (e.g., a Bluetooth transceiver) is transmitting information. If it is known that this occurs, then the downlink subframe n ⁇ n CQI — ref can be designated as invalid and cannot be used for receiving a reference symbol from the eNB. In other words, the downlink reference resource 510 can be identified to not be used if the downlink subframe associated with the downlink reference resource 510 is interfered by in-device interference.
  • the downlink subframe can be designated as invalid if the downlink subframe belongs to the unscheduled period of the long DRX cycle, as illustrated in FIG. 5 .
  • the subframes designated as invalid will not be used by the eNB to transmit data to the UE. Therefore, if a DRX solution is used for in-device coexistence, then the downlink reference resource 510 can be received in a downlink subframe that is not included in the unscheduled period of the long DRX cycle.
  • a downlink subframe included in the scheduled period of the long DRX cycle can be designated as a valid subframe for the UE to use to receive a downlink reference resource, such as an RS.
  • a subframe in the unscheduled period can be used by the UE to report the CSI to the eNB that is based on the reference resource.
  • the downlink subframe n ⁇ n CQI — ref can be considered to be valid (i.e. capable of receiving the reference signal) if: (1) the downlink subframe is configured as a downlink subframe for the UE; (2) the downlink subframe does not include a Multimedia Broadcast Single Frequency Network (MBSFN) subframe (except for transmission mode 9); (3) the downlink subframe does not contain a Downlink Pilot Time Slot (DwPTS) field in case the length of DwPTS is 7680 ⁇ T s and less; (4) the downlink subframe does not fall within a configured measurement gap for the UE; (5) the downlink subframe, for periodic CSI reporting, is an element of the CSI subframe set that is linked to the periodic CSI report when the UE is configured with CSI subframe sets; and (6) the downlink subframe is not interfered by in-device interference.
  • the downlink subframe n ⁇ n CQI — ref can be considered to be valid if the downlink subframe is configured as a
  • radio link monitoring performed by a WWAN transceiver of a UE, can use subframes with substantially no in-device interference from a plurality of coexisting radio transceivers in the UE.
  • the RLM function in the UE is to monitor the downlink radio link quality of a serving cell in an RRC_CONNECTED state.
  • the RLM is based on the cell-specific reference signals.
  • the UE in RRC_CONNECTED state can determine whether it is in-sync or out-of-sync with respect to the serving cell.
  • the UE can start a network-configured radio link failure timer ‘T310’.
  • T310 timer is stopped if a number ‘N311’ of consecutive in-sync indications are reported by the UE's physical layer.
  • Both the out-of-sync and in-sync counters (N310 and N311) are configurable by the network.
  • RLF Radio Link Failure
  • the UE turns off its transmitter to avoid interference and is then required to re-establish the RRC connection.
  • the interference can result in errors in measuring the cell-specific reference signals.
  • other RATs e.g., WLAN, Bluetooth
  • a Bluetooth transceiver in the UE can be transmitting information at substantially the same subframe as an LTE transceiver is receiving information, such as the cell-specific reference signals.
  • the UE may report a radio link failure, turn off the WWAN transmitter, and proceed to re-establish an RRC connection. This can result in a reduced throughput and unnecessary overhead for the 3GPP network.
  • a WWAN radio transceiver of a UE can be configured to receive RLM in a downlink subframe that occurs during a scheduling period of a long DRX cycle, thereby decreasing a likelihood of performing RLM using subframes that are impacted by in-device interference.
  • the UE may not use subframes that are impacted by in-device interference while the UE is performing RLM.
  • the UE may determine which subframes are not interfered by in-device interference. The UE may perform RLM using the subframes that are not interfered by in-device interference.
  • a method 600 for reducing coexistence interference in a multi-radio device includes the operation of receiving 610 a discontinuous reception (DRX) configuration at the multi-radio device from an enhanced Node B (eNodeB).
  • the multi-radio device can be a user equipment having a plurality of radio transceivers.
  • the method 600 further comprises applying 620 the discontinuous reception (DRX) configuration to at least one of the plurality of radio transceivers in the multi-radio device.
  • the DRX can include a long DRX cycle for the at least one of the plurality of radio transceivers.
  • the method 600 further comprises selecting one of a 2 milliseconds (ms), 5 ms, and 8 ms cycle start offset period for the long DRX cycle to reduce coexistence interference between the plurality of radio transceivers in the multi-radio device.
  • the plurality of radio transceivers in method 600 comprises a Third Generation Partnership Project Long Term Evolution (3GPP LTE) radio transceiver and a Bluetooth radio transceiver.
  • 3GPP LTE Third Generation Partnership Project Long Term Evolution
  • the 2 ms cycle start offset period in method 600 provides at least one HARQ reservation pattern to reduce the coexistence interference between the Bluetooth radio transceiver and a LTE radio transceiver communicating in LTE Time Division Duplex (LTE-TDD).
  • the 5 ms cycle start offset period in method 600 provides at least one HARQ reservation pattern to reduce the coexistence interference between the Bluetooth radio transceiver and a LTE radio transceiver communicating in LTE Time Division Duplex (LTE-TDD).
  • the 8 ms cycle start offset period in method 600 provides at least one HARQ reservation pattern to reduce the coexistence interference between the Bluetooth radio transceiver and a LTE radio transceiver communicating in LTE Frequency Division Duplex (LTE-FDD).
  • the method 600 can include monitoring, by the UE, the Physical Downlink Control Channel (PDCCH) during the long DRX cycle.
  • PDCH Physical Downlink Control Channel
  • the operation of selecting one of the plurality of cycle start offset periods in method 600 can include providing at least one HARQ process reservation pattern for ensuring that each radio transceiver of the UE is not transmitting/receiving information while a different radio transceiver of the UE is receiving/transmitting information, thereby reducing coexistence interference between the plurality of radio transceivers in the UE, wherein each radio transceiver includes a different Radio Access Technology (RAT).
  • RAT Radio Access Technology
  • FIG. 7 illustrates an example block diagram of the system 700 .
  • the system 700 comprises a discontinuous reception (DRX) module 710 operable to apply DRX to a wireless wide area network (WWAN) transceiver in a user equipment (UE) with a plurality of coexisting radio transceivers.
  • a channel state information (CSI) reporting module 720 is configured to periodically report the CSI, from the UE to the eNB, at a CSI reporting subframe.
  • the CSI reporting subframe can be located after a long DRX cycle of the WWAN transceiver in the UE.
  • a reference resource subframe selection module 730 is configured to select a downlink reference resource subframe relative to a position of the CSI reporting subframe to enable the downlink reference resource subframe to be received with substantially no in-device interference from the plurality of coexisting radio transceivers in the UE.
  • a radio link monitoring (RLM) module 740 is configured to perform RLM using subframes of the WWAN receiver with substantially no in-device interference from the plurality of coexisting radio transceivers in the UE. The RLM can be performed on the WWAN radio transceiver of the UE during a scheduling period of a long DRX cycle.
  • the system 700 can include a Bluetooth radio 702 , a 3GPP LTE radio 704 , and a collocated radio 706 . While the DRX module, CSI reporting module, reference resource subframe selection module, and the RLM module are illustrated as being located externally to the radios in the mobile communication device, it is also possible that the modules are integrated within one or more of the radios
  • the plurality of coexisting radio transceivers can include at least two Radio Access Technologies (RATs), the RATs comprising: a 3GPP LTE radio transceiver, a Wireless Local Access Network (WLAN) transceiver, a Bluetooth transceiver, and a Global Navigation Satellite System (GNSS) receiver.
  • RATs Radio Access Technologies
  • the RATs comprising: a 3GPP LTE radio transceiver, a Wireless Local Access Network (WLAN) transceiver, a Bluetooth transceiver, and a Global Navigation Satellite System (GNSS) receiver.
  • RATs Radio Access Technologies
  • the downlink reference resource subframe includes a CSI reference resource.
  • the CSI reported to the eNB does not substantially reduce UE throughput due to in-device interference from the plurality of coexisting radio transceivers in the UE.
  • the CSI comprises at least one of a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a rank indicator (RI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • the CSI reporting module 720 is further configured to report the CSI, from the UE to the eNB, during a transition period from an unscheduled period to a scheduling period, wherein the unscheduled period and the scheduling period occur during a long DRX cycle of the 3GPP LTE radio transceiver.
  • the CSI reporting module 720 is further configured to periodically report the CSI at an uplink subframe to the eNB, wherein the uplink subframe occurs at least four subframes after receiving the downlink reference resource subframe from the eNB.
  • the CSI reporting module 720 is further configured to receive the downlink reference resource subframe, at the UE from the eNB, during a time period that does not correspond with a different coexisting radio transceiver in the UE transmitting an uplink subframe. In some examples, the CSI reporting module 720 is further configured to receive the downlink reference resource subframe, at the UE from the eNB, during a scheduling period of the long DRX cycle.
  • the system 700 can include a radio link monitoring (RLM) module 740 configured to perform RLM using downlink subframes of the 3GPP LTE radio transceiver with substantially no in-device interference from the plurality of coexisting radio transceivers in the UE.
  • RLM module 740 is further configured to perform RLM on the 3GPP LTE radio transceiver of the UE during a scheduling period of a long DRX cycle of the DRX.
  • the RLM module may determine a subframe with substantially no in-device interference during an unscheduled period of a long DRX cycle; and perform RLM using the subframe with substantially no in-device interference during the unscheduled period of the long DRX cycle.
  • the present disclosure can include at least one computer readable medium having instructions stored thereon for reducing coexistence interference in a multi-radio device, the instructions when executed on a machine to cause the machine to: apply discontinuous reception (DRX) to a user equipment (UE) having a plurality of coexisting radio transceivers, wherein the DRX includes a long DRX cycle for the UE; select a cycle start offset period from a plurality of cycle start offset periods for the long DRX cycle to reduce coexistence interference between the plurality of coexisting radio transceivers in the UE; and report a channel state information (CSI), from the UE to the eNB, during the long DRX cycle of the UE and after a downlink reference resource subframe is received from the eNB, wherein the downlink reference resource subframe is received from the eNB during a period that is outside of the unscheduled period of the long DRX cycle.
  • CSI channel state information
  • a location of the downlink reference resource subframe is selected as a subframe with substantially no in-device interference from the plurality of coexisting radio transceivers in the UE.
  • the plurality of cycle start offset periods for the long DRX cycle include one of 2 milliseconds (ms), 5 ms, and 8 ms.
  • the cycle start offset periods are selected to provide at least one Hybrid Automatic Repeat Request (HARQ) process reservation pattern for ensuring that each radio transceiver in the UE is not transmitting/receiving information while a different radio transceiver of the UE is receiving/transmitting information, thereby reducing coexistence interference between the plurality of radio transceivers in the UE, wherein each radio transceiver includes a different Radio Access Technology (RAT).
  • HARQ Hybrid Automatic Repeat Request
  • FIG. 8 provides an example illustration of a mobile communication device, such as a user equipment (UE), a mobile station (MS), a mobile wireless device, a tablet, a handset, or another type of mobile wireless device.
  • the mobile device can include one or more antennas configured to communicate with a base station (BS), an evolved Node B (eNB), or other type of wireless wide area network (WWAN) access point. While two antennas are shown, the mobile device may have between one and four or more antennas.
  • the mobile device can be configured to communicate using at least one wireless communication standard including 3GPP LTE, Worldwide Interoperability for Microwave Access (WiMAX), High Speed Packet Access (HSPA), Bluetooth, and WiFi.
  • 3GPP LTE Worldwide Interoperability for Microwave Access
  • WiMAX Worldwide Interoperability for Microwave Access
  • HSPA High Speed Packet Access
  • Bluetooth Wireless Fidelity
  • the mobile device can communicate using separate antennas for each wireless communication standard or shared antennas for multiple wireless communication standards.
  • the mobile device can communicate in a wireless local area network (WLAN), a wireless personal area network (WPAN), and/or a wireless wide area network (WWAN).
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • WWAN wireless wide area network
  • FIG. 8 also provides an illustration of a microphone and one or more speakers that can be used for audio input and output from the mobile device.
  • the display screen may be a liquid crystal display (LCD) screen, or other type of display screen such as a organic light emitting diode (OLED) display.
  • the display screen can be configured as a touch screen.
  • the touch screen may use capacitive, resistive, or another type of touch screen technology.
  • An application processor and a graphics processor can be coupled to internal memory to provide processing and display capabilities.
  • a non-volatile memory port can also be used to provide data input/output options to a user.
  • the non-volatile memory port may also be used to expand the memory capabilities of the mobile device.
  • a keyboard may be integrated with the mobile device or wirelessly connected to the mobile device to provide additional user input.
  • a virtual keyboard may also be provided using the touch screen.
  • modules may be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in software for execution by various types of processors.
  • An identified module of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions, which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.
  • a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices, and may exist, at least partially, merely as electronic signals on a system or network.
  • the modules may be passive or active, including agents operable to perform desired functions.

Abstract

Technology for avoiding in-device coexistence (IDC) interference between multiple radio transceivers at a user equipment (UE). The UE may identify a subframe with substantially no IDC interference from one or more of the multiple radio transceivers at the UE. The UE may determine that the subframe with substantially no IDC interference occurs during an unscheduled period of a Discontinuous Reception (DRX) cycle for the UE. The UE may perform Radio Link Monitoring (RLM) during the subframe with substantially no IDC interference during the unscheduled period of the DRX cycle for the UE.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/756,663, filed Feb. 1, 2013, which claims the benefit under 35 U.S.C. §119(e) of a U.S. Provisional patent application filed May 11, 2012 in the U.S. Patent and Trademark Office and assigned Ser. No. 61/646,223, both of which are hereby incorporated by reference in their entirety
  • BACKGROUND
  • Modern wireless devices such as cell phones, tablets, and other portable computing devices often include multiple types of radios for communication purposes. For instance, a smart phone may include a 4G transceiver to connect to a cell tower, a WiFi transceiver to connect to a local internet hot spot, and a Bluetooth transceiver to connect to a nearby device such as a headset or keyboard. The WiFi transceiver can receive information at substantially the same time period as when the Bluetooth transceiver transmits information. In some examples, the 4G transceiver can transmit information at substantially the same time period as when the Bluetooth transceiver receives information. Thus, coexistence interference can result between the WiFi transceiver and the Bluetooth transceiver, or between the 4G transceiver and the Bluetooth receiver, operating in the smart phone, thereby reducing the effectiveness of communication of each of the collocated transceivers.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the invention; and, wherein:
  • FIG. 1 illustrates a timing diagram of Bluetooth packets synchronized with subframes in several time division duplex (TDD) configurations of a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) transceiver in accordance with an example.
  • FIG. 2 is a diagram illustrating a long discontinuous reception (DRX) cycle in accordance with an example.
  • FIGS. 3A and 3B illustrate example TDD configurations that support DRX patterns in accordance with an example.
  • FIG. 3C is a timing diagram showing a LTE transmit/receive pattern and a Bluetooth transmit/receive pattern in accordance with an example.
  • FIG. 4 illustrates an ASN code example of DRX configuration information in accordance with an example.
  • FIG. 5 illustrates a channel state information (CSI) reference resource during a long DRX cycle in accordance with an example.
  • FIG. 6 depicts a flow chart of a method for reducing coexistence interference in a multi-radio device in accordance with an embodiment of the present invention.
  • FIG. 7 illustrates a block diagram of a radio coexistence system in accordance with an example.
  • FIG. 8 illustrates a mobile wireless device in accordance with an example.
  • Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended.
  • DETAILED DESCRIPTION
  • Before the present invention is disclosed and described, it is to be understood that this invention is not limited to the particular structures, process steps, or materials disclosed herein, but is extended to equivalents thereof as would be recognized by those ordinarily skilled in the relevant arts. It should also be understood that terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting.
  • DEFINITIONS
  • As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result.
  • Other terms may be defined elsewhere in the body of this specification.
  • Example Embodiments
  • An initial overview of technology embodiments is provided below and then specific technology embodiments are described in further detail later. This initial summary is intended to aid readers in understanding the technology more quickly but is not intended to identify key features or essential features of the technology nor is it intended to limit the scope of the claimed subject matter.
  • Bluetooth transceivers are often collocated with other types of radios and/or transceivers. For example, transceivers which communicate using Orthogonal Frequency Division Multiple Access (OFDMA), such as a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) transceiver, an Institute of Electrical and Electronics Engineers (IEEE) 802.16 transceiver, commonly referred to as WiMAX (Worldwide interoperability for Microwave Access), a wireless local area network (WLAN) transceiver (i.e., IEEE 802.11 radio, commonly referred to as WiFi), and/or a Global Navigation Satellite System (GNNS) receiver.
  • Each collocated radio may be used for a specific purpose. For instance, a Bluetooth transceiver can be used to communicate with a wireless personal area network (WPAN), a WiFi transceiver can be used to communicate with a wireless local area network (WLAN), and a 3GPP LTE or WiMAX transceiver can be used to communicate with a wireless wide area network (WWAN).
  • The simultaneous operation in a wireless device (e.g., a smart phone or tablet) of a Bluetooth transceiver that is collocated with other types of transceivers which communicate using OFDMA, such as a 3GPP LTE transceiver, a WiMAX transceiver, and/or a WiFi transceiver, can create interference that reduces the data throughput of both transceivers. Multiple examples are given throughout this specification of a collocated Bluetooth transceiver and a 3GPP LTE transceiver. This is not intended to be limiting. The same system(s) and method(s) can apply with other types of OFDMA radios operating in a Time Domain Duplex (TDD) format that are collocated with a Bluetooth transceiver.
  • In general, TDD refers to duplex communication links where the uplink is separated from the downlink by an allocation of different time slots in the same frequency band. Since TDD allows asymmetric flow for uplink and downlink data transmissions, users are allocated time slots for uplink and downlink transmission. TDD can be advantageous when there is asymmetry of uplink and downlink data rates.
  • Bluetooth receptions can collide with transmissions from the 3GPP LTE transceiver, especially when both transceivers are collocated on the same device, such as a smart phone, a tablet, a net book, a laptop, or another type of wireless mobile device. Bluetooth transmissions can also desensitize reception in the 3GPP LTE transceiver.
  • To reduce coexistence interference, there are several types of potential solutions. One potential solution is to use frequency division multiplexing (FDM) to move the signal from one transceiver further away in frequency from the signal of another transceiver, thereby creating more frequency separation. Another potential solution is the use of time division multiplexing (TDM) in which scheduling can be used so that when one transceiver is transmitting, another co-located transceiver is not simultaneously receiving.
  • An example of TDM can include discontinuous reception (DRX), which will be discussed in further detail below. A radio frequency solution involves the use of radio frequency filtering which can be used to reduce the amount of out-of-bounds (OOB) emissions, using a filter at a transmitter, or blocking incoming out-of-bounds signals using a filter at a receiver. Power based solutions can be used to reduce transmission power, thereby potentially reducing the level of interference. Hybrid solutions are also possible by combining two or more of the previously presented solutions.
  • Repeating time-domain transmission/reception (Tx/Rx) patterns can be defined for a 3GPP LTE transceiver and a collocated Bluetooth transceiver to coordinate their transmitters and receivers. The Tx/Rx pattern can be repeated at a known interval if data gets allocated with a periodicity on time. The known interval enables persistent reservations to be made in the 3GPP LTE transceiver to reduce or avoid interferences between the different transceivers.
  • For example, the repeated Tx/Rx pattern defines a specific Bluetooth transmit time slot for each Extended Synchronous Connection Oriented (eSCO) packet transmitted by the Bluetooth transceiver to prevent the Bluetooth transmission from interfering with the 3GPP LTE reception, and to protect the 3GPP LTE transmission from interfering with Bluetooth reception.
  • The ability to coordinate the 3GPP LTE and Bluetooth transmitters and receivers using persistent reservation also enables additional types of transceivers to be collocated. For example, a WiFi transceiver can be coordinated to communicate at specific time periods in the coordination formed between the 3GPP LTE and Bluetooth transceivers.
  • FIG. 1 provides a timing diagram showing the transmission and reception of eSCO formatted packets 102 for a Bluetooth radio and the Tx/Rx sub-frames 104 for all seven configurations of a 3GPP LTE radio operating in a Time Division Duplex (TDD) mode. The figures and tables presented herein are displayed using one-slot Bluetooth eSCO packets as an example. However, this interference avoidance technique can be applied to other Bluetooth profiles and packet length (for example three or five slot packets). The Bluetooth eSCO packets can include a variety of different formats having a different number of transmit and receive time slots. For single slot eSCO packets, Bluetooth specifies intervals of 6, 8, 10, 12, 14, 16 and 18. The interval illustrated in FIG. 1 is TeSCO=8, comprising four transmit time slots and four receive time slots. Bluetooth also specifies a re-transmit window WeSCO to be 0, 2, or 4. The re-transmit window specifies the number of attempts at transmitting that can occur for a Bluetooth packet within its interval (TeSCO). While the specification currently limits the retransmission attempts to 0, 2 or 4 instances, it is possible to include additional retransmission attempts when TeSCO is equal or greater than 8. Future Bluetooth standards may include additional retransmission attempts, and the embodiments disclosed herein are not limited to the 0, 2 or 4 instances recited in the present standard.
  • The 3GPP LTE standard, as used herein, can include 3GPP LTE Release 8 in the fourth quarter of 2008, 3GPP LTE Advanced Release 10 in the first quarter of 2011, and Release 11 in the third quarter of 2012. However, the embodiments disclosed herein are not limited to these releases. Future standards can also apply when the same TDD configurations and sub-frame timing is used. A transceiver operating in accordance with at least one of these 3GPP LTE Releases is also referred to herein as an LTE transceiver. The use of the term 3GPP, 3GPP LTE, or LTE is not intended to be limiting. Any of the terms may refer to any of the 3GPP releases.
  • Currently, seven different LTE TDD configurations are defined for 3GPP LTE communication. FIG. 1 provides an example of each LTE configuration, numbered 0-6. Each configuration is aligned at the beginning 106 of the longer continuous number of receive subframes for each configuration. The Bluetooth packet is synchronized such that a first receive time slot (Slot 1) is aligned with the first receive subframe of the continuous receive subframes in each of the seven LTE configurations.
  • As illustrated in FIG. 1, the Bluetooth time slots 102 have a different time period from the LTE subframe. The Bluetooth time slots each have a period of 0.625 milliseconds (ms), while each LTE frame has a frame duration of 10 ms. Each LTE frame consists of 10 sub-frames. Thus, each subframe has a duration of 1 ms. Accordingly, even though the Bluetooth packet is synchronized such that transmit Slot 0 is aligned with a transmit subframe in each LTE TDD configuration, and receive Slot 1 is aligned with the first receive subframe in the continuous receive subframe for each configuration, the transmit and receive slots quickly become unaligned such that transmissions and receptions from the Bluetooth and 3GPP transceivers will create co-interference in each of the transceivers.
  • Co-interference can occur when one of the transceivers transmits during the other transceiver's receive interval. This is especially true when the 3GPP LTE transceiver transmits during the receive period of the Bluetooth transceiver, since the 3GPP LTE transceiver transmits at significantly higher power and can therefore overpower (or collide) most Bluetooth signals that the Bluetooth transceiver is attempting to receive during the Bluetooth receive period.
  • FIG. 2 is a diagram illustrating a long discontinuous reception (DRX) cycle in accordance with an example. The concept of DRX was introduced for saving power in 3GPP LTE Release 8. DRX can be used to enable a wireless device, such as a user equipment (UE) in a 3GPP LTE network, to discontinuously monitor a control channel, such as the physical downlink control channel (PDCCH) communicated from a transmission station such as an enhanced node (eNB or eNodeB). The discontinuous monitoring by using DRX can provide significant power savings at the UE since the receiver at the UE can be turned off for selected periods. The scheduling of a 3GPP LTE transceiver using DRX will be explained more fully below.
  • In accordance with one embodiment of the present invention, in addition to saving power, DRX can also be used to provide a TDM solution for reducing coexistence interference of co-located devices. For example, coexistence interference between a collocated 3GPP LTE transceiver and a low power Bluetooth (BT) transceiver can be reduced, using DRX, by scheduling the BT transceiver to transmit when the LTE transceiver is not receiving.
  • In one embodiment, a transceiver in a multi-radio wireless device (e.g., a LTE transceiver) can be configured to be turned off more often by reducing the amount of time that the transceiver monitors control channels, such as the physical downlink control channel (PDCCH). In other words, the transceiver can communicate with a transmission station, referred to as a network node, to negotiate time periods in which the transceiver will receive communications from the network node. During the negotiated times when information is not received, the transceiver can turn its receiver off and enter a low power state. DRX is used in a number of different wireless communication standards, including but not limited to 3GPP LTE Rel. 8, 9, 10, and 11.
  • The 3GPP LTE transceiver can be operable to monitor the PDCCH discontinuously if the 3GPP LTE transceiver is configured for DRX and is in an RRC_CONNECTED mode. Otherwise, a 3GPP LTE transceiver not configured for DRX can monitor the PDCCH continuously. The Radio Resource Control (RRC) can be used to control the DRX operation in the 3GPP LTE transceiver by configuring the parameters onDurationTimer, drx-InactivityTimer, longDRX-Cycle, drxStartOffset and optionally drxShortCycleTimer and shortDRX-Cycle. When a short DRX cycle is not configured, the 3GPP LTE transceiver monitors the PDCCH at the beginning (according to the length defined in onDurationTimer) of the longDRX-Cycle parameter. The 3GPP LTE transceiver can stop monitoring the PDCCH after onDuration-Timer if the downlink and/or uplink transmissions can be completed. In the remaining DRX cycle (e.g., a short DR cycle), the 3GPP LTE transceiver can become inactive. During this time, the eNB does not schedule downlink transmissions nor will the eNB require the 3GPP LTE transceiver to transmit uplink data. When the short DRX cycle is configured, the short DRX cycle can be considered as a confirmation period for when a packet arrives late, prior to the 3GPP LTE transceiver entering the long DRX cycle. When data arrives at the eNB while the 3GPP LTE transceiver is in the short DRX cycle, the data is scheduled for transmission at the next wake-up time, after which the 3GPP LTE transceiver resumes continuous reception. On the other hand, if no data arrives at the eNB during the short DRX cycle, then the 3GPP LTE transceiver can enter the long DRX cycle if the packet activity is finished for the time being. The DRX Activity Time is the duration when the 3GPP LTE transceiver monitors the PDCCH within the DRX cycle.
  • Returning to FIG. 2, an example long DRX cycle is shown. The long DRX cycle can include an ON duration and an OFF duration. During the ON period of the long DRX cycle (i.e., a scheduled period), the eNB can schedule transmissions with the UE. During the OFF period of the long DRX cycle (i.e., an unscheduled period), the eNB does not schedule transmissions with the UE. In general, the UE can transition to the long DRX cycle from an optional short DRX cycle after the expiration of a timer.
  • FIGS. 3A and 3B illustrate example TDD configurations 310 and 320 that support DRX patterns in accordance with an example. One limitation of using a DRX solution to reduce coexistence interference in a multi-radio device is that current supported longDRX-Cycle values do not include several values that can be used to significantly improve in-device coexistence scenarios. For example, long DRX cycle values that can be used to reduce in-device interference in an LTE and Bluetooth scenario (e.g., an LTE transceiver transmitting/receiving information at substantially the same time as a Bluetooth transceiver transmitting/receiving information) are not allowed. These long DRX cycle values can include 2 milliseconds (ms), 5 ms, and/or 8 ms. As will be discussed in greater detail below, the 2 ms, 5 ms, and 8 ms long DRX cycle values can provide one or more useful Hybrid Automatic Repeat Request (HARQ) process reservation patterns.
  • One limitation of using DRX to reduce coexistence interference in an LTE and Bluetooth scenario is that DRX supports contiguous LTE downlink (DL) subframes within a single DRX cycle when the LTE On Duration period is not extended. Using currently available DRX cycle values, when using the DRX solution for the LTE and Bluetooth scenario, the DRX cycle is 10 ms. In addition, a 5 ms short DRX cycle can be used within the 10 ms long DRX cycle. Thus, DRX can support bitmap patterns with LTE ON downlink subframes that are contiguous in a 10 ms period or a 5 ms period.
  • FIG. 3A illustrates an example of a DRX pattern with a cycle time that can be used to reduce in-device interference in a multi-radio device. In particular, the advantages of including a 2 ms long DRX cycle for the LTE and Bluetooth scenario are shown. The example configuration 310 is a TDD configuration 2. The configuration 310 includes m number of frames, and has a cycle start offset of 2 ms. The total length of the configuration 310 is 10 ms in length, and each subframe is 1 ms in length. In addition, the configuration 310 can be represented by the bitmap 0111010111. In other words, a “0” means that the subframe cannot be used (e.g., the subframe can be turned off), and a “1” means that the sub-frame can be used. Here, the subframes that are turned off are 0, 4, and 6, therefore resulting in the bitmap of 0111010111. The subframes in the configuration 310 can either be downlink (DL) subframes or uplink (UL) subframes. Here, the DL subframes are shaded and the UL subframes are clear. According to the TDD configuration 2 (which is one of the seven TDD configurations available), subframes 0, 1, 3, 4, 5, 6, 8, and 9 are DL subframes and subframes 2 and 7 are uplink subframes. In addition, for DRX patterns relating to the LTE and Bluetooth scenario, uplink subframes are generally disregarded. Therefore, subframes 0, 4, and 6 are off, and subframes 2 and 7 are uplink, resulting in subframes 1, 3, 5, 8, and 9. In other words, subframes 1, 3, 5, 8, and 9 are LTE ON subframes, and are represented as textured subframes.
  • Therefore, a 2 ms long DRX cycle value can be advantageous with configuration 310 to allow more HARQ bitmap patterns to be supported. The 1st subframe is included in the first 2-ms cycle, the 3rd subframe is included in the second 2-ms cycle, the 5th subframe is included in the third 2-ms cycle, and both the 8th and 9th subframe are included in the fifth 2-ms cycle. Neither subframes 6 or 7 are included in the fourth 2-ms cycle because subframe 6 is OFF and subframe 7 is an uplink subframe. The subframe 8 is considered as onDuration because the unit of onDurationTimer is a PDCCH subframe, which is DL subframes in the case of TDD. Therefore, the onDurationTimer starts at subframe 7, but since subframe 7 is an UL subframe, it extends to subframe 8. Therefore, subframe 8 is considered ON. If the 2 ms long DRX cycle is not supported then another HARQ bitmap pattern will need to be used that will result in fewer subframes being used by the LTE.
  • FIG. 3B illustrates an example of an additional DRX pattern with a cycle time that can be used to reduce in-device interference in a multi-radio device. In particular, the advantages of including a 5 ms long DRX cycle for the LTE and Bluetooth scenario are shown. Particularly, the use of the 5 ms long DRX cycle allows additional HARQ bitmap patterns to be used. Without the ability to use a 5 ms long DRX cycle, fewer LTE subframes can be used.
  • The example configuration 320 is a TDD configuration 2. The configuration 320 includes m number of frames, and has a cycle start offset of 5 ms. In addition, the configuration 320 can be represented by the bitmap 0111101111. Here, the subframes that are turned off are 0 and 5, therefore resulting in the bitmap of 0111010111. According to the TDD configuration 2 (which is one of the seven TDD configurations available), subframes 0, 1, 3, 4, 5, 6, 8, and 9 are DL subframes and subframes 2 and 7 are uplink subframes.
  • Since uplink subframes (i.e., subframes 2 and 7) can generally be disregarded when looking at DRX patterns relating to the LTE and Bluetooth scenario, and subframes 0 and 5 are off, the result is subframes 1, 3, 4, 6, 8 and 9. In other words, subframes 1, 3, 4, 6, 8, and 9 are LTE ON downlink subframes that are received by the 3GPP LTE transceiver. Therefore, a 5 ms long DRX cycle value can be advantageous with configuration 320. The subframes 1, 3 and 4 are included in the first 5-ms cycle, and subframes 6, 8 and 9 are included in the second 5-ms cycle. A 10 ms long DRX cycle value cannot be used with TDD configuration 2 because subframe 5 is turned off.
  • In the LTE and Bluetooth scenario, the 2 ms and 5 ms long DRX cycle values can provide useful HARQ process reservation patterns for Time Division Duplex (TDD). In general, HARQ can be used to ensure that data is sent reliably from one node to another node. HARQ uses a stop and wait protocol. A transmitting entity (e.g., a LTE transceiver) transmits the data block to a receiving entity (e.g. an eNB). The transmitting entity stops and waits until it receives an acknowledgement (ACK) or a negative acknowledgement (NACK) from the receiving entity. If the transmitting entity receives an ACK, then the next data block is transmitted. If the transmitting entity receives a NACK, then the same data block can be retransmitted. Whether an ACK or a NACK is received, the transmitting entity schedules and processes the next data block to be transmitted within a specific time period. In LTE, a N-process stop-and-wait may be used, where the transmitting entity stops and waits for one particular HARQ process. For example, the transmission may stop and wait for one particular HARQ process. However, there are multiple HARQ processes, so from the transmitter perspective, it does not stop its transmission.
  • Generally, LTE uses multiple HARQ parallel processes that are offset in time. Since each process transmits a block of data, by the time a next transmission allocation arrives, the transmitting entity would have already received the ACK or the NACK from the receiving entity, and therefore created the next data block to be transmitted or retransmitted. Thus, from the perspective of the transmitting entity, data may be constantly transmitted to the receiving entity. In TDD, a configurable number of HARQ processes are supported.
  • By applying the 2 ms and 5 ms long DRX cycle values to the LTE and Bluetooth scenario, 2 ms and 5 ms patterns are created. These 2 ms and 5 ms patterns can be considered to be HARQ compliant patterns. A pattern can be HARQ compliant if: (1) each LTE DL subframe that is enabled is associated with at least one LTE UL subframe for either a DL or UL HARQ process; and (2) each LTE UL subframe that is enabled is associated with at least one LTE DL subframe for either a DL or UL HARQ process; and (3) at least one LTE DL HARQ process and one UL HARQ process are enabled. In a TDD Configuration 2, there are 192 HARQ compliant patterns and 51 HARQ compliant patterns that are supported when DRX is applied to the LTE and Bluetooth scenario. Therefore, the ratio of HARQ compliant patterns that are supported when DRX is applied to the LTE and Bluetooth scenario is 27%. In addition, the 2 ms and 5 ms long DRX cycle values support additional HARQ bitmap patterns. Without using the 2 ms and 5 ms long DRX cycle values, the HARQ bitmap pattern may use a fewer number of LTE subframes. In other words, the bitmap may include additional “0s” indicating that the particular subframe cannot be used.
  • Providing at least one HARQ process reservation pattern ensures that each radio transceiver of the UE is not transmitting/receiving information while a different radio transceiver of the UE is receiving/transmitting information. Thus, coexistence interference is reduced between the plurality of radio transceivers in the UE. In addition, each radio transceiver can include a different Radio Access Technology (RAT). Examples of RATs include 3GPP LTE, WiMAX, Bluetooth, WLAN, GNSS, etc.
  • FIG. 3C is a timing diagram 330 showing an LTE transmit/receive pattern and a Bluetooth transmit/receive pattern in accordance with an example. The LTE Rx pattern and the LTE Tx pattern are identical. Each ON and OFF cycle lasts for 2 ms. Thus, the bitmap of the LTE Rx and the LTE Tx is 11001100. Each digit (e.g., “1”) indicates whether the LTE is ON or (e.g., “0”) OFF during a one-second period. Therefore, the “11” indicates an ON period for two seconds, and the “00” indicates an OFF period for two seconds. As indicated by the timing diagram 300, there is no interference between the LTE transmission and the Bluetooth reception. In other words, during the time when the LTE is transmitting (i.e., LTE Tx ON), the Bluetooth is not receiving. Similarly, during the time when the Bluetooth is receiving (i.e., BT Rx ON), the LTE is not transmitting. Although there is some overlap between the LTE reception and the Bluetooth transmission, generally no interference results due to the overlap. The assumption is that the Bluetooth transmission does not interfere with the LTE reception because the LTE downlink frequency band does not coincide with the Bluetooth transmission frequency band.
  • The timing diagram 300 relates to LTE operating in a frequency division duplex (FDD). In FDD, separate frequency bands are used at the transmitting side and the receiving side. Since FDD uses different frequency bands for sending and receiving information, the sending and the receiving data signals do not interfere with each other.
  • The timing diagram 300 is a bitmap-based TDM solution for the coexistence between LTE and Bluetooth. Having a bitmap of 8 ms (e.g., 11001100) ensures that the LTE does not transmit information at substantially the same time as the Bluetooth receiving information. Therefore, having an 8 ms long DRX cycle (which corresponds to the bitmap that is 8 ms in length) can be useful for LTE FDD. In some examples, having a 4 ms long DRX cycle can be useful for LTE FDD, but unlike the 8 ms long DRX cycle, the 4 ms long DRX cycle does not take advantage of the HARQ process reservation patterns in LTE FDD. In other words, a number of LTE FDD HARQ processes can be masked off to accommodate coexistence between LTE and Bluetooth. For FDD, there are 8 uplink HARQ processes, while the downlink can have up to 8 HARQ processes. The downlink HARQ processes can be transmitted in any order without a fixed timing, whereas each uplink HARQ process is assigned to a specific subframe. The UE transmits within the same HARQ process every eighth subframe. Therefore, an 8 ms long DRX cycle can be useful for reducing coexistence interference between LTE and Bluetooth because the 8 ms long DRX cycle corresponds with the 8 uplink and downlink HARQ processes found in FDD.
  • FIG. 4 illustrates an ASN.1 code example of DRX configuration information in accordance with an example. The Abstract Syntax Notation 1 (ASN.1) can be used to implement enhancements to existing DRX configurations. The DRX-Config-r11 (i.e., DRX Configuration 11) is used to define various characteristics of the DRX cycles. The existing DRX-Config-r11 includes ASN.1 code to define the onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimer, longDRX-CycleStartOffset, shortDRX-Cycle, and the drxShortCycleTimer. Currently, the longDRX-CycleStartOffset includes cycle values of sf10, sf20, sf32, sf40, etc. The addition of the 2 ms, 5 ms, and 8 ms long DRX cycle values can be included in the DRX-Config-r11 by adding the cycle values of sf2, sf5, and sf8 into the ASN.1 code. Since the existing DRX-Config-r11 does not allow extensions, a new DRX-Config-r11 can be configured with the 2 ms, 5 ms, and 8 ms long DRX cycle values to provide additional DRX patterns that can be used to reduce in-device interference in a multi-radio device, as discussed in the preceding paragraphs.
  • FIG. 5 illustrates a subframe used to receive a downlink reference resource 510 during a long DRX cycle in accordance with an example. The downlink reference resource 510 can include a reference signal (RS) transmitted from the eNB. The measured power of the reference signal at the UE is used to determine the power at which the eNB transmits the downlink data. The measured power of the reference signal can be communicated via a Channel State Information (CSI) report to the eNB.
  • In wireless communications, the CSI can refer to known channel properties of a communication link. The CSI describes how a signal propagates from the transmitter to the receiver. In addition, the CSI can represent the combined effect of scattering, fading, etc. The CSI ensures that transmissions are adapted to current channel conditions, thereby leading to reliable communication by Bluetooth transceivers, LTE transceivers, etc. The CSI is periodically transmitted from the UE to the eNB.
  • In general, the CSI can include at least one of a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a rank indicator (RI). The CQI is information signaled by the UE to the eNB to indicate a suitable data rate for downlink transmission. The CQI can be based on a measurement of the receiving downlink Signal to Interference plus Noise Ratio (SINR), as well as knowing various characteristics of the UE receiver. The PMI is a signal fed back by the UE, and corresponds to an index of a precoder that maximizes the aggregate number of data bits which can be received acrossed the downlink spatial transmission layers. The RI is signaled to the eNB by UEs that are configured for a Physical Downlink Shared Channel (PDSCH). The RI corresponds to the number of useful transmission layers for spatial multiplexing (based on the UE's estimate of the downlink channel),
  • The CSI report is typically communicated at least four symbols after the downlink referenced resource 510. In order for the measurement of the reference signal to be accurate, the reference signal should be received in a downlink subframe with minimal interference. Interference can reduce the accuracy of the reference signal measurement and impact the accuracy of the CSI report. Accordingly, it can be important to select a downlink subframe to receive the reference signal that has little interference.
  • Currently, the rules for selecting a downlink subframe for a downlink reference resource 510 do not consider the impact of in-device interference. As a result, the measurement of the reference signal received in the downlink reference resource 510 symbol can be negatively impacted when there is in-device interference (e.g., a Bluetooth transceiver is transmitting information at substantially the same time as when a LTE transceiver is receiving the reference signal).
  • As illustrated in FIG. 5, the long DRX cycle of an LTE (or WWAN) transceiver can be partitioned into a scheduled period and an unscheduled period. When transitioning from an LTE unscheduled period to an LTE scheduled period, the UE can be configured to send the CSI (e.g., the CQI, PMI, and RI) to the eNB. In other words, the LTE transceiver in the UE can be configured to transmit the CSI to the eNB. The CSI can be based on the reference signal received in the downlink reference resource 510. The downlink reference resource 510 (i.e., the time domain reference) can be defined by a downlink subframe n−nCQI ref.
  • The CSI reporting subframe 520 occurs at least four subframes after the downlink subframe n−nCQI ref. In other words, the CSI is periodically reported at an uplink subframe to the eNB, and the uplink subframe occurs at least four subframes after receiving the downlink reference resource 510 subframe from the eNB. Therefore, the CSI reporting subframe 520 is located after a long DRX cycle of a transceiver (e.g., a WWAN transceiver) in the UE, and corresponds with the downlink reference resource 510 (i.e., the downlink subframe n−nCQI ref). In some examples, the CSI is reported more than four subframes (e.g., six subframes) after the downlink subframe n−nCQI ref.
  • When DRX is used as a TDM solution, the CSI measurement needs special handling. Otherwise, the downlink reference resource 510 can be impacted by in-device interference between collocated transceivers in the multi-radio device, thereby causing the UE to report an inaccurate CSI. An inaccurate CSI can substantially reduce the system throughput. In other words, the average rate of successful message delivery over a communication channel can reduce as a result of the inaccurate CSI. Therefore, the downlink reference resource 510 should not be impacted by in-device interference.
  • The downlink subframe n−nCQI ref can be considered to be valid if the downlink subframe n−nCQI ref is not interfered by in-device interference. Therefore, if the UE receives the reference signal or other type of downlink reference resource in a downlink subframe from the eNB during a time period that does not correspond with a different coexisting radio transceiver in the UE transmitting an uplink subframe, then the downlink subframe is not impacted by in-device interference. In other words, the downlink subframe n−nCQI ref is not received at the UE, from the eNB, while in-device interference currently exists. As a result, the downlink subframe n−nCQI ref is valid and can be used for receiving a downlink reference resource.
  • In some examples, the downlink subframe n−nCQI ref may be assigned by the eNB to be received by the UE (e.g. a LTE transceiver in the UE) in a subframe at the same time that a different transceiver in the UE (e.g., a Bluetooth transceiver) is transmitting information. If it is known that this occurs, then the downlink subframe n−nCQI ref can be designated as invalid and cannot be used for receiving a reference symbol from the eNB. In other words, the downlink reference resource 510 can be identified to not be used if the downlink subframe associated with the downlink reference resource 510 is interfered by in-device interference.
  • In some examples, to reduce the chance of in-device interference in a downlink subframe, the downlink subframe can be designated as invalid if the downlink subframe belongs to the unscheduled period of the long DRX cycle, as illustrated in FIG. 5. The subframes designated as invalid will not be used by the eNB to transmit data to the UE. Therefore, if a DRX solution is used for in-device coexistence, then the downlink reference resource 510 can be received in a downlink subframe that is not included in the unscheduled period of the long DRX cycle. In one embodiment, a downlink subframe included in the scheduled period of the long DRX cycle can be designated as a valid subframe for the UE to use to receive a downlink reference resource, such as an RS. In addition, a subframe in the unscheduled period can be used by the UE to report the CSI to the eNB that is based on the reference resource.
  • In one embodiment, the downlink subframe n−nCQI ref can be considered to be valid (i.e. capable of receiving the reference signal) if: (1) the downlink subframe is configured as a downlink subframe for the UE; (2) the downlink subframe does not include a Multimedia Broadcast Single Frequency Network (MBSFN) subframe (except for transmission mode 9); (3) the downlink subframe does not contain a Downlink Pilot Time Slot (DwPTS) field in case the length of DwPTS is 7680·Ts and less; (4) the downlink subframe does not fall within a configured measurement gap for the UE; (5) the downlink subframe, for periodic CSI reporting, is an element of the CSI subframe set that is linked to the periodic CSI report when the UE is configured with CSI subframe sets; and (6) the downlink subframe is not interfered by in-device interference. In addition, the downlink subframe n−nCQI ref can be considered to be valid if the downlink subframe is not part of an unscheduled period when DRX is being used to reduce in-device coexistence.
  • In some embodiments of the present invention, radio link monitoring (RLM), performed by a WWAN transceiver of a UE, can use subframes with substantially no in-device interference from a plurality of coexisting radio transceivers in the UE. The RLM function in the UE is to monitor the downlink radio link quality of a serving cell in an RRC_CONNECTED state. The RLM is based on the cell-specific reference signals. As a result, the UE in RRC_CONNECTED state can determine whether it is in-sync or out-of-sync with respect to the serving cell. In case of a certain number of consecutive out-of-sync indications (called ‘N310’), the UE can start a network-configured radio link failure timer ‘T310’. The timer is stopped if a number ‘N311’ of consecutive in-sync indications are reported by the UE's physical layer. Both the out-of-sync and in-sync counters (N310 and N311) are configurable by the network. Upon expiry of the timer T310, Radio Link Failure (RLF) occurs. As a consequence, the UE turns off its transmitter to avoid interference and is then required to re-establish the RRC connection.
  • When subframes that are impacted by in-device interference are used for RLM, the interference can result in errors in measuring the cell-specific reference signals. For example, during an unscheduled period of the long DRX cycle, other RATs (e.g., WLAN, Bluetooth) can transmit information. Thus, a Bluetooth transceiver in the UE can be transmitting information at substantially the same subframe as an LTE transceiver is receiving information, such as the cell-specific reference signals. If multiple errors are received, the UE may report a radio link failure, turn off the WWAN transmitter, and proceed to re-establish an RRC connection. This can result in a reduced throughput and unnecessary overhead for the 3GPP network.
  • In some examples, a WWAN radio transceiver of a UE can be configured to receive RLM in a downlink subframe that occurs during a scheduling period of a long DRX cycle, thereby decreasing a likelihood of performing RLM using subframes that are impacted by in-device interference. Thus, the UE may not use subframes that are impacted by in-device interference while the UE is performing RLM. In addition, during an unscheduled period of the long DRX cycle, the UE may determine which subframes are not interfered by in-device interference. The UE may perform RLM using the subframes that are not interfered by in-device interference.
  • In another embodiment, a method 600 for reducing coexistence interference in a multi-radio device is disclosed, as depicted in the flow chart of FIG. 6. The method includes the operation of receiving 610 a discontinuous reception (DRX) configuration at the multi-radio device from an enhanced Node B (eNodeB). The multi-radio device can be a user equipment having a plurality of radio transceivers. The method 600 further comprises applying 620 the discontinuous reception (DRX) configuration to at least one of the plurality of radio transceivers in the multi-radio device. The DRX can include a long DRX cycle for the at least one of the plurality of radio transceivers. The method 600 further comprises selecting one of a 2 milliseconds (ms), 5 ms, and 8 ms cycle start offset period for the long DRX cycle to reduce coexistence interference between the plurality of radio transceivers in the multi-radio device.
  • In one embodiment, the plurality of radio transceivers in method 600 comprises a Third Generation Partnership Project Long Term Evolution (3GPP LTE) radio transceiver and a Bluetooth radio transceiver.
  • In one embodiment, the 2 ms cycle start offset period in method 600 provides at least one HARQ reservation pattern to reduce the coexistence interference between the Bluetooth radio transceiver and a LTE radio transceiver communicating in LTE Time Division Duplex (LTE-TDD). In addition, the 5 ms cycle start offset period in method 600 provides at least one HARQ reservation pattern to reduce the coexistence interference between the Bluetooth radio transceiver and a LTE radio transceiver communicating in LTE Time Division Duplex (LTE-TDD). Furthermore, the 8 ms cycle start offset period in method 600 provides at least one HARQ reservation pattern to reduce the coexistence interference between the Bluetooth radio transceiver and a LTE radio transceiver communicating in LTE Frequency Division Duplex (LTE-FDD). In addition, the method 600 can include monitoring, by the UE, the Physical Downlink Control Channel (PDCCH) during the long DRX cycle.
  • In one embodiment, the operation of selecting one of the plurality of cycle start offset periods in method 600 can include providing at least one HARQ process reservation pattern for ensuring that each radio transceiver of the UE is not transmitting/receiving information while a different radio transceiver of the UE is receiving/transmitting information, thereby reducing coexistence interference between the plurality of radio transceivers in the UE, wherein each radio transceiver includes a different Radio Access Technology (RAT).
  • In another embodiment, a radio coexistence system 700 is disclosed. FIG. 7 illustrates an example block diagram of the system 700. The system 700 comprises a discontinuous reception (DRX) module 710 operable to apply DRX to a wireless wide area network (WWAN) transceiver in a user equipment (UE) with a plurality of coexisting radio transceivers. A channel state information (CSI) reporting module 720 is configured to periodically report the CSI, from the UE to the eNB, at a CSI reporting subframe. The CSI reporting subframe can be located after a long DRX cycle of the WWAN transceiver in the UE. A reference resource subframe selection module 730 is configured to select a downlink reference resource subframe relative to a position of the CSI reporting subframe to enable the downlink reference resource subframe to be received with substantially no in-device interference from the plurality of coexisting radio transceivers in the UE. A radio link monitoring (RLM) module 740 is configured to perform RLM using subframes of the WWAN receiver with substantially no in-device interference from the plurality of coexisting radio transceivers in the UE. The RLM can be performed on the WWAN radio transceiver of the UE during a scheduling period of a long DRX cycle. The system 700 can include a Bluetooth radio 702, a 3GPP LTE radio 704, and a collocated radio 706. While the DRX module, CSI reporting module, reference resource subframe selection module, and the RLM module are illustrated as being located externally to the radios in the mobile communication device, it is also possible that the modules are integrated within one or more of the radios.
  • In one embodiment, the plurality of coexisting radio transceivers can include at least two Radio Access Technologies (RATs), the RATs comprising: a 3GPP LTE radio transceiver, a Wireless Local Access Network (WLAN) transceiver, a Bluetooth transceiver, and a Global Navigation Satellite System (GNSS) receiver.
  • In one embodiment, the downlink reference resource subframe includes a CSI reference resource.
  • In some embodiments of the present disclosure, the CSI reported to the eNB does not substantially reduce UE throughput due to in-device interference from the plurality of coexisting radio transceivers in the UE. Furthermore, the CSI comprises at least one of a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a rank indicator (RI).
  • In some embodiments, the CSI reporting module 720 is further configured to report the CSI, from the UE to the eNB, during a transition period from an unscheduled period to a scheduling period, wherein the unscheduled period and the scheduling period occur during a long DRX cycle of the 3GPP LTE radio transceiver. In addition, the CSI reporting module 720 is further configured to periodically report the CSI at an uplink subframe to the eNB, wherein the uplink subframe occurs at least four subframes after receiving the downlink reference resource subframe from the eNB. Furthermore, the CSI reporting module 720 is further configured to receive the downlink reference resource subframe, at the UE from the eNB, during a time period that does not correspond with a different coexisting radio transceiver in the UE transmitting an uplink subframe. In some examples, the CSI reporting module 720 is further configured to receive the downlink reference resource subframe, at the UE from the eNB, during a scheduling period of the long DRX cycle.
  • In some embodiments, of the present disclosure, the system 700 can include a radio link monitoring (RLM) module 740 configured to perform RLM using downlink subframes of the 3GPP LTE radio transceiver with substantially no in-device interference from the plurality of coexisting radio transceivers in the UE. In addition, the RLM module 740 is further configured to perform RLM on the 3GPP LTE radio transceiver of the UE during a scheduling period of a long DRX cycle of the DRX. The RLM module may determine a subframe with substantially no in-device interference during an unscheduled period of a long DRX cycle; and perform RLM using the subframe with substantially no in-device interference during the unscheduled period of the long DRX cycle.
  • In some embodiments, the present disclosure can include at least one computer readable medium having instructions stored thereon for reducing coexistence interference in a multi-radio device, the instructions when executed on a machine to cause the machine to: apply discontinuous reception (DRX) to a user equipment (UE) having a plurality of coexisting radio transceivers, wherein the DRX includes a long DRX cycle for the UE; select a cycle start offset period from a plurality of cycle start offset periods for the long DRX cycle to reduce coexistence interference between the plurality of coexisting radio transceivers in the UE; and report a channel state information (CSI), from the UE to the eNB, during the long DRX cycle of the UE and after a downlink reference resource subframe is received from the eNB, wherein the downlink reference resource subframe is received from the eNB during a period that is outside of the unscheduled period of the long DRX cycle.
  • In one embodiment of the computer readable medium, a location of the downlink reference resource subframe is selected as a subframe with substantially no in-device interference from the plurality of coexisting radio transceivers in the UE. Furthermore, the plurality of cycle start offset periods for the long DRX cycle include one of 2 milliseconds (ms), 5 ms, and 8 ms.
  • In one embodiment of the computer readable medium, the cycle start offset periods are selected to provide at least one Hybrid Automatic Repeat Request (HARQ) process reservation pattern for ensuring that each radio transceiver in the UE is not transmitting/receiving information while a different radio transceiver of the UE is receiving/transmitting information, thereby reducing coexistence interference between the plurality of radio transceivers in the UE, wherein each radio transceiver includes a different Radio Access Technology (RAT).
  • FIG. 8 provides an example illustration of a mobile communication device, such as a user equipment (UE), a mobile station (MS), a mobile wireless device, a tablet, a handset, or another type of mobile wireless device. The mobile device can include one or more antennas configured to communicate with a base station (BS), an evolved Node B (eNB), or other type of wireless wide area network (WWAN) access point. While two antennas are shown, the mobile device may have between one and four or more antennas. The mobile device can be configured to communicate using at least one wireless communication standard including 3GPP LTE, Worldwide Interoperability for Microwave Access (WiMAX), High Speed Packet Access (HSPA), Bluetooth, and WiFi. The mobile device can communicate using separate antennas for each wireless communication standard or shared antennas for multiple wireless communication standards. The mobile device can communicate in a wireless local area network (WLAN), a wireless personal area network (WPAN), and/or a wireless wide area network (WWAN).
  • FIG. 8 also provides an illustration of a microphone and one or more speakers that can be used for audio input and output from the mobile device.
  • The display screen may be a liquid crystal display (LCD) screen, or other type of display screen such as a organic light emitting diode (OLED) display. The display screen can be configured as a touch screen. The touch screen may use capacitive, resistive, or another type of touch screen technology. An application processor and a graphics processor can be coupled to internal memory to provide processing and display capabilities. A non-volatile memory port can also be used to provide data input/output options to a user. The non-volatile memory port may also be used to expand the memory capabilities of the mobile device. A keyboard may be integrated with the mobile device or wirelessly connected to the mobile device to provide additional user input. A virtual keyboard may also be provided using the touch screen.
  • It should be understood that many of the functional units described in this specification have been labeled as modules, in order to more particularly emphasize their implementation independence. For example, a module may be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in software for execution by various types of processors. An identified module of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions, which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.
  • Indeed, a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices, and may exist, at least partially, merely as electronic signals on a system or network. The modules may be passive or active, including agents operable to perform desired functions.
  • Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment.
  • As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary. In addition, various embodiments and example of the present invention may be referred to herein along with alternatives for the various components thereof. It is understood that such embodiments, examples, and alternatives are not to be construed as defacto equivalents of one another, but are to be considered as separate and autonomous representations of the present invention.
  • Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided, such as examples of materials, fasteners, sizes, lengths, widths, shapes, etc., to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
  • While the forgoing examples are illustrative of the principles of the present invention in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in form, usage and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts of the invention. Accordingly, it is not intended that the invention be limited, except as by the claims set forth below.

Claims (20)

What is claimed is:
1. A user equipment (UE) operable to avoid in-device coexistence (IDC) interference between multiple radio transceivers at the UE, the UE having circuitry configured to:
identify a subframe with substantially no IDC interference from one or more of the multiple radio transceivers at the UE;
determine that the subframe with substantially no IDC interference occurs during an unscheduled period of a Discontinuous Reception (DRX) cycle for the UE; and
perform Radio Link Monitoring (RLM) during the subframe with substantially no IDC interference during the unscheduled period of the DRX cycle for the UE.
2. The circuitry of claim 1, wherein RLM measurements obtained at the UE are not substantially impacted by the IDC interference.
3. The circuitry of claim 1, wherein the multiple radio transceivers at the UE comprise at least two of: a Third Generation Partnership Project Long Term Evolution (3GPP LTE) radio transceiver, a Wireless Local Access Network (WLAN) transceiver, a Bluetooth transceiver, and a Global Navigation Satellite System (GNSS) receiver.
4. The circuitry of claim 1, further configured to perform the RLM during the subframe with substantially no IDC interference during the scheduled period or the unscheduled period of the DRX cycle for the UE in order to substantially avoid radio link failure (RLF) at the UE.
5. The circuitry of claim 1, further configured to:
determine that the subframe with substantially no IDC interference occurs during a scheduled period of the DRX cycle for the UE; and
perform the RLM during the subframe with substantially no IDC interference during the scheduled period of the DRX cycle for the UE.
6. The circuitry of claim 1, wherein the UE includes an antenna, a touch sensitive display screen, a speaker, a microphone, a graphics processor, an application processor, an internal memory, or a non-volatile memory port.
7. A non-transitory computer readable medium encoded with computer executable instructions, which when accessed, cause a machine to perform operations comprising:
identifying a subframe with substantially no IDC interference between multiple radio transceivers at the UE;
determining that the subframe with substantially no IDC interference occurs during one of a scheduled period or an unscheduled period of a long Discontinuous Reception (DRX) cycle for the UE; and
performing Radio Link Monitoring (RLM), at the UE, using the subframe with substantially no IDC interference during the scheduled period or the unscheduled period of the long DRX cycle for the UE.
8. The non-transitory computer readable medium encoded with computer executable instructions of claim 7, further comprising obtaining RLM measurements, at the UE, which are not substantially impacted by the IDC interference.
9. The non-transitory computer readable medium encoded with computer executable instructions of claim 7, further comprising performing the RLM, at the UE, using the subframe with substantially no IDC interference during the scheduled period or the unscheduled period of the long DRX cycle for the UE in order to substantially avoid radio link failure (RLF) at the UE.
10. The non-transitory computer readable medium encoded with computer executable instructions of claim 7, wherein the multiple radio transceivers at the UE comprise at least two of: a Third Generation Partnership Project Long Term Evolution (3GPP LTE) radio transceiver, a Wireless Local Access Network (WLAN) transceiver, a Bluetooth transceiver, and a Global Navigation Satellite System (GNSS) receiver.
11. The non-transitory computer readable medium encoded with computer executable instructions of claim 7, further comprising performing the RLM at the UE in order to turn off uplink (UL) transmissions at the UE when downlink (DL) quality is below a defined threshold.
12. The non-transitory computer readable medium encoded with computer executable instructions of claim 7, wherein the UE includes an antenna, a touch sensitive display screen, a speaker, a microphone, a graphics processor, an application processor, an internal memory, or a non-volatile memory port.
13. A wireless device operable to avoid in-device coexistence (IDC) interference between multiple radio transceivers at the wireless device, the wireless device having circuitry configured to:
identify a subframe with substantially no IDC interference from one or more of the multiple radio transceivers at the wireless device;
determine that the subframe with substantially no IDC interference occurs during a Discontinuous Reception (DRX) cycle for the wireless device; and
perform Radio Link Monitoring (RLM) at the subframe with substantially no IDC interference during the DRX cycle for the wireless device.
14. The circuitry of claim 13, further configured to obtain RLM measurements that are not substantially impacted by the IDC interference.
15. The circuitry of claim 13, further configured to determine that the subframe with substantially no IDC interference occurs during at least one of a scheduled period or an unscheduled period of the DRX cycle for the wireless device.
16. The circuitry of claim 13, wherein the multiple radio transceivers at the wireless device comprise at least two of: a Third Generation Partnership Project Long Term Evolution (3GPP LTE) radio transceiver, a Wireless Local Access Network (WLAN) transceiver, a Bluetooth transceiver, and a Global Navigation Satellite System (GNSS) receiver.
17. The circuitry of claim 13, further configured to perform the RLM using the subframe with substantially no IDC interference during the DRX cycle for the wireless device in order to substantially avoid radio link failure (RLF) at the wireless device.
18. The circuitry of claim 13, further configured to perform the RLM at the wireless device in order to turn off uplink (UL) transmissions at the wireless device when downlink (DL) quality is below a defined threshold.
19. The circuitry of claim 13, wherein the DRX cycle for the wireless device is a long DRX cycle.
20. The circuitry of claim 13, wherein the wireless device includes an antenna, a touch sensitive display screen, a speaker, a microphone, a graphics processor, an application processor, an internal memory, or a non-volatile memory port.
US14/525,927 2012-05-11 2014-10-28 Radio coexistence in wireless networks Abandoned US20150043515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/525,927 US20150043515A1 (en) 2012-05-11 2014-10-28 Radio coexistence in wireless networks

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261646223P 2012-05-11 2012-05-11
US13/756,663 US9681382B2 (en) 2012-05-11 2013-02-01 Radio coexistence in wireless networks
US14/525,927 US20150043515A1 (en) 2012-05-11 2014-10-28 Radio coexistence in wireless networks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/756,663 Continuation US9681382B2 (en) 2012-05-11 2013-02-01 Radio coexistence in wireless networks

Publications (1)

Publication Number Publication Date
US20150043515A1 true US20150043515A1 (en) 2015-02-12

Family

ID=48875716

Family Applications (16)

Application Number Title Priority Date Filing Date
US13/681,361 Active US8874103B2 (en) 2012-05-11 2012-11-19 Determining proximity of user equipment for device-to-device communication
US13/735,952 Active US9246618B2 (en) 2012-05-11 2013-01-07 Selective joinder of machine-type communication user equipment with wireless cell
US14/124,536 Active US9444569B2 (en) 2012-05-11 2013-05-10 Method to identify and differentiate background traffic
US14/054,200 Active US9154251B2 (en) 2012-05-11 2013-10-15 Signaling for downlink coordinated multipoint in a wireless communication system
US14/525,100 Active US9270400B2 (en) 2012-05-11 2014-10-27 Determining proximity of user equipment for device-to-device communication
US14/525,927 Abandoned US20150043515A1 (en) 2012-05-11 2014-10-28 Radio coexistence in wireless networks
US14/528,747 Active US10327207B2 (en) 2012-05-11 2014-10-30 Selective joinder of machine-type communication user equipment with wireless cell
US14/800,150 Active US9496973B2 (en) 2012-05-11 2015-07-15 User equipment and methods for handover enhancement using reference signal received quality (RSRQ)
US14/834,292 Active US9356724B2 (en) 2012-05-11 2015-08-24 Signaling for downlink coordinated multipoint in a wireless communication system
US14/887,103 Active 2033-07-13 US10057855B2 (en) 2012-05-11 2015-10-19 Scheduling synchronization signals in a new carrier type
US14/993,818 Abandoned US20160127870A1 (en) 2012-05-11 2016-01-12 Determining proximity of user equipment for device-to-device communication
US15/144,117 Active US9736780B2 (en) 2012-05-11 2016-05-02 Signaling for downlink coordinated multipoint in a wireless communication system
US15/225,483 Abandoned US20170013554A1 (en) 2012-05-11 2016-08-01 User equipment power savings for machine type communications
US15/276,427 Active US10129830B2 (en) 2012-05-11 2016-09-26 Systems and methods for enhanced user equipment assistance information in wireless communication systems
US15/614,189 Active US10433254B2 (en) 2012-05-11 2017-06-05 Method, system and apparatus of time-division-duplex (TDD) uplink-downlink (UL-DL) configuration management
US15/633,511 Abandoned US20170294998A1 (en) 2012-05-11 2017-06-26 Signaling for downlink coordinated multipoint in a wireless communication system

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US13/681,361 Active US8874103B2 (en) 2012-05-11 2012-11-19 Determining proximity of user equipment for device-to-device communication
US13/735,952 Active US9246618B2 (en) 2012-05-11 2013-01-07 Selective joinder of machine-type communication user equipment with wireless cell
US14/124,536 Active US9444569B2 (en) 2012-05-11 2013-05-10 Method to identify and differentiate background traffic
US14/054,200 Active US9154251B2 (en) 2012-05-11 2013-10-15 Signaling for downlink coordinated multipoint in a wireless communication system
US14/525,100 Active US9270400B2 (en) 2012-05-11 2014-10-27 Determining proximity of user equipment for device-to-device communication

Family Applications After (10)

Application Number Title Priority Date Filing Date
US14/528,747 Active US10327207B2 (en) 2012-05-11 2014-10-30 Selective joinder of machine-type communication user equipment with wireless cell
US14/800,150 Active US9496973B2 (en) 2012-05-11 2015-07-15 User equipment and methods for handover enhancement using reference signal received quality (RSRQ)
US14/834,292 Active US9356724B2 (en) 2012-05-11 2015-08-24 Signaling for downlink coordinated multipoint in a wireless communication system
US14/887,103 Active 2033-07-13 US10057855B2 (en) 2012-05-11 2015-10-19 Scheduling synchronization signals in a new carrier type
US14/993,818 Abandoned US20160127870A1 (en) 2012-05-11 2016-01-12 Determining proximity of user equipment for device-to-device communication
US15/144,117 Active US9736780B2 (en) 2012-05-11 2016-05-02 Signaling for downlink coordinated multipoint in a wireless communication system
US15/225,483 Abandoned US20170013554A1 (en) 2012-05-11 2016-08-01 User equipment power savings for machine type communications
US15/276,427 Active US10129830B2 (en) 2012-05-11 2016-09-26 Systems and methods for enhanced user equipment assistance information in wireless communication systems
US15/614,189 Active US10433254B2 (en) 2012-05-11 2017-06-05 Method, system and apparatus of time-division-duplex (TDD) uplink-downlink (UL-DL) configuration management
US15/633,511 Abandoned US20170294998A1 (en) 2012-05-11 2017-06-26 Signaling for downlink coordinated multipoint in a wireless communication system

Country Status (14)

Country Link
US (16) US8874103B2 (en)
EP (1) EP2847950B1 (en)
JP (1) JP5905160B2 (en)
KR (1) KR101604207B1 (en)
CN (1) CN104303468B (en)
AU (1) AU2013259165B2 (en)
BE (1) BE1021379B1 (en)
BR (1) BR112014028165A2 (en)
CA (1) CA2871107C (en)
HU (1) HUE039146T2 (en)
MX (1) MX342526B (en)
MY (1) MY174530A (en)
RU (1) RU2595512C2 (en)
WO (1) WO2013170194A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150131504A1 (en) * 2013-11-14 2015-05-14 National Chiao Tung University Power-saving data scheduling system in lte and method thereof
CN107454998A (en) * 2015-04-10 2017-12-08 摩托罗拉移动有限责任公司 Coexisted in device in LTE authorizes auxiliary access operation with other technologies
WO2019099170A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Radio link monitoring based on discontinuous reception mode
WO2019204054A1 (en) * 2018-04-20 2019-10-24 Lyft, Inc. Transmission schedule segmentation and prioritization
US10993131B2 (en) * 2015-09-24 2021-04-27 Lg Electronics Inc. Method for performing logging by terminal in wireless communication system and terminal using same
US20220061124A1 (en) * 2012-07-06 2022-02-24 Samsung Electronics Co., Ltd. Method and apparatus for determining tdd ul-dl configuration applicable for radio frames

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232962B2 (en) 2004-06-21 2012-07-31 Trading Technologies International, Inc. System and method for display management based on user attention inputs
US7844726B2 (en) * 2008-07-28 2010-11-30 Trading Technologies International, Inc. System and method for dynamically managing message flow
CN102123477B (en) * 2010-01-08 2015-06-10 中兴通讯股份有限公司 Access realization method and device of M2M (Machine to Machine) core network
IN2014KN00763A (en) * 2011-10-05 2015-10-02 Samsung Electronics Co Ltd
US8874103B2 (en) 2012-05-11 2014-10-28 Intel Corporation Determining proximity of user equipment for device-to-device communication
WO2013172684A1 (en) * 2012-05-17 2013-11-21 Samsung Electronics Co., Ltd. Channel estimation method and apparatus for cooperative communication in a cellular mobile communication system
TWI505726B (en) * 2012-05-18 2015-10-21 Innovative Sonic Corp Method and apparatus for improving frequency prioritization in a wireless communication network
US9485794B2 (en) * 2012-05-23 2016-11-01 Qualcomm Incorporated Methods and apparatus for using device to device communications to support IMS based services
EP2672756B1 (en) * 2012-06-05 2020-02-19 Telefonaktiebolaget LM Ericsson (publ) Improved cell selection
US10645599B2 (en) 2012-07-02 2020-05-05 Lg Electronics Inc. Method and device for reporting channel state information in wireless communication system
GB2504701A (en) * 2012-08-06 2014-02-12 Nec Corp Determining current state of a mobile device
US9179244B2 (en) * 2012-08-31 2015-11-03 Apple Inc. Proximity and tap detection using a wireless system
US10467691B2 (en) 2012-12-31 2019-11-05 Trading Technologies International, Inc. User definable prioritization of market information
WO2014116049A1 (en) * 2013-01-25 2014-07-31 Lg Electronics Inc. Method and apparatus for performing initial access procedure in wireless communication system
FR3002066B1 (en) * 2013-02-08 2015-02-20 Thales Sa EXTENDED AND INTEGRATED SYSTEM OF SAFETY AND AERONAUTICAL MONITORING
US9615201B2 (en) * 2013-03-04 2017-04-04 T-Mobile Usa, Inc. Closed communication system
CA2903830C (en) 2013-03-05 2021-08-24 Fasetto, Llc System and method for cubic graphical user interfaces
US9306725B2 (en) * 2013-03-13 2016-04-05 Samsung Electronics Co., Ltd. Channel state information for adaptively configured TDD communication systems
US10051507B2 (en) 2013-07-03 2018-08-14 Mediatek Inc. Traffic shaping mechanism for UE power saving in idle mode
CA2918687C (en) 2013-07-18 2020-04-14 Luke Malpass System and method for multi-angle videos
US9955525B2 (en) * 2013-09-03 2018-04-24 Telefonaktiebolaget Lm Ericsson (Publ) Radio base station and method therein
JP6196103B2 (en) * 2013-09-13 2017-09-13 株式会社Nttドコモ Mobile communication system, network node, and mobile communication method
US10095873B2 (en) 2013-09-30 2018-10-09 Fasetto, Inc. Paperless application
US9667386B2 (en) * 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
US10460387B2 (en) 2013-12-18 2019-10-29 Trading Technologies International, Inc. Dynamic information configuration and display
US9584402B2 (en) 2014-01-27 2017-02-28 Fasetto, Llc Systems and methods for peer to peer communication
GB2523773A (en) * 2014-03-04 2015-09-09 Nec Corp Communication system
US10979945B2 (en) * 2014-03-25 2021-04-13 Sony Corporation Device to reduce consumption of radio resources of a macrocell
CN106134282B (en) * 2014-04-28 2020-02-07 英特尔Ip公司 Communication via dedicated network nodes
MX362894B (en) * 2014-04-30 2019-02-22 Huawei Tech Co Ltd Method for transmitting downlink data, mobility management network element, access network device, and serving gateway.
WO2015180025A1 (en) * 2014-05-26 2015-12-03 Nec Corporation Methods and devices for vertical domain channel state information transmission/reception in wireless communication networks
MX2017000339A (en) 2014-07-10 2017-08-14 Fasetto Llc Systems and methods for message editing.
US9900074B2 (en) * 2014-08-12 2018-02-20 Qualcomm Incorporated CSI request procedure in LTE/LTE-A with unlicensed spectrum
KR20170051410A (en) * 2014-09-01 2017-05-11 엘지전자 주식회사 Method for measuring and reporting channel state in wireless access system supporting unlicensed band
US10437288B2 (en) 2014-10-06 2019-10-08 Fasetto, Inc. Portable storage device with modular power and housing system
EP3205176B1 (en) 2014-10-06 2021-12-29 Fasetto, Inc. Systems and methods for portable storage devices
WO2016064048A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for monitoring downlink control channel in wireless communication system and apparatus for the same
CN104410975B (en) * 2014-11-06 2018-06-15 东莞宇龙通信科技有限公司 Resource allocation method, system, the equipment and terminal with base station functions
US9730258B2 (en) * 2014-11-18 2017-08-08 Intel Corporation Apparatus configured to report aperiodic channel state information for dual connectivity
US20160157193A1 (en) * 2014-12-01 2016-06-02 Emily Qi Exchanging ranging and location information among peer-to-peer devices
WO2016111565A1 (en) * 2015-01-07 2016-07-14 Lg Electronics Inc. Method and apparatus for optimizing load re-balancing for dedicated core network in wireless communication system
AU2015377282B2 (en) * 2015-01-13 2018-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Wireless terminals, nodes of wireless communication networks, and methods of operating the same
US10034277B2 (en) * 2015-01-16 2018-07-24 Intel Corporation User equipment and base station for dynamic CSI-RS and CSI-IM transmission in LTE systems
US9883491B2 (en) * 2015-01-29 2018-01-30 Intel Corporation Aperiodic channel state information (CSI) reporting for carrier aggregation
WO2016135791A1 (en) * 2015-02-26 2016-09-01 日本電気株式会社 Device and method for proximity-based services communication
JP6401854B2 (en) * 2015-03-03 2018-10-10 京セラ株式会社 Communication method, wireless terminal and processor
WO2016140273A1 (en) * 2015-03-03 2016-09-09 京セラ株式会社 Base station, wireless terminal, and network device
CN107852421B (en) 2015-03-11 2021-02-05 法斯埃托股份有限公司 System and method for WEB API communication
US11218261B2 (en) * 2015-06-01 2022-01-04 Qualcomm Incorporated Channel state information reference signals in contention-based spectrum
EP3308583B1 (en) * 2015-06-15 2020-08-05 Telefonaktiebolaget LM Ericsson (PUBL) Method and apparatus for half-duplex communication
EP4117359A1 (en) * 2015-07-27 2023-01-11 Huawei Technologies Co., Ltd. Information transmission method and device
US10608725B2 (en) * 2015-09-09 2020-03-31 Lg Electronics Inc. Method for reporting channel state and apparatus therefor
US20170118269A1 (en) * 2015-10-21 2017-04-27 Qualcomm Incorporated Dynamic adjustment of connection settings based on per-ue system status and usage information
US10929071B2 (en) 2015-12-03 2021-02-23 Fasetto, Inc. Systems and methods for memory card emulation
EP3420772B8 (en) * 2016-03-18 2020-09-30 Mediatek Inc. Flexible frame structure for ofdm systems
KR102355215B1 (en) * 2016-03-27 2022-01-24 오피노 엘엘씨 Transmission of channel state information in a wireless network
US11102024B2 (en) 2016-03-30 2021-08-24 Qualcomm Incorporated Standalone multicast broadcast single frequency network cell acquisition
CN109076496B (en) 2016-05-03 2021-09-03 株式会社Kt Method and apparatus for changing connection state of terminal
US11277223B2 (en) * 2016-05-20 2022-03-15 Apple Inc. Control channel design for category-A devices
US11218236B2 (en) * 2016-06-01 2022-01-04 Qualcomm Incorporated Time division multiplexing of synchronization channels
US11563505B2 (en) 2016-06-01 2023-01-24 Qualcomm Incorporated Time division multiplexing of synchronization channels
KR20190031438A (en) 2016-07-15 2019-03-26 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Wireless network-based communication method, terminal device and network device
CN110383862B (en) * 2016-10-10 2020-11-10 华为技术有限公司 Communication node and method for enabling positioning related signalling exchange
US10110284B2 (en) 2016-11-03 2018-10-23 At&T Intellectual Property I, L.P. Providing a format indicator comprising rank indication and channel state information spatial domain resolution type
US10440693B2 (en) 2016-11-04 2019-10-08 At&T Intellectual Property I, L.P. Asynchronous multi-point transmission schemes
US11696250B2 (en) * 2016-11-09 2023-07-04 Intel Corporation UE and devices for detach handling
US10938545B2 (en) * 2016-11-14 2021-03-02 Qualcomm Incorporated Synchronization signal transmission techniques for peak-to-average power ratio reduction
CA3044665A1 (en) 2016-11-23 2018-05-31 Fasetto, Inc. Systems and methods for streaming media
US10492184B2 (en) * 2016-12-09 2019-11-26 Samsung Electronics Co., Ltd. Multiplexing control information in a physical uplink data channel
US11708051B2 (en) 2017-02-03 2023-07-25 Fasetto, Inc. Systems and methods for data storage in keyed devices
US10362166B2 (en) 2017-03-01 2019-07-23 At&T Intellectual Property I, L.P. Facilitating software downloads to internet of things devices via a constrained network
WO2018195787A1 (en) * 2017-04-26 2018-11-01 Qualcomm Incorporated Enhanced machine type communications quick idle transition after connection release
WO2018201469A1 (en) * 2017-05-05 2018-11-08 北京小米移动软件有限公司 Signal transmission method, device, electronic apparatus, and computer readable storage medium
WO2018223349A1 (en) * 2017-06-08 2018-12-13 Qualcomm Incorporated Collision handling mechanisms for dynamic tdd systems
WO2018229956A1 (en) * 2017-06-15 2018-12-20 株式会社Nttドコモ User terminal and wireless communication method
US11202299B2 (en) * 2017-06-15 2021-12-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for radio resource management measurement
EP3643026A4 (en) * 2017-06-21 2021-03-17 Apple Inc. Collision handling of synchronization signal (ss) blocks
US9936453B1 (en) 2017-07-24 2018-04-03 Qualcomm Incorporated Dynamic timing update techniques for wireless devices
US10425208B2 (en) 2017-09-08 2019-09-24 At&T Intellectual Property I, L.P. Unified indexing framework for reference signals
US10856230B2 (en) * 2017-09-13 2020-12-01 Apple Inc. Low power measurements mode
WO2019079628A1 (en) 2017-10-19 2019-04-25 Fasetto, Inc. Portable electronic device connection systems
EP3711366A1 (en) * 2017-11-15 2020-09-23 Sony Corporation System information to support service based cell reselection
CN109802985B (en) * 2017-11-17 2021-01-29 北京金山云网络技术有限公司 Data transmission method, device, equipment and readable storage medium
CN110011706B (en) * 2018-01-05 2022-08-19 深圳市中兴微电子技术有限公司 Method and device for optimizing cooperative transmission
WO2019136645A1 (en) * 2018-01-10 2019-07-18 Oppo广东移动通信有限公司 Method for determining state of a terminal device, terminal device, and access network device
CN110324390A (en) * 2018-03-30 2019-10-11 京东方科技集团股份有限公司 A kind of cut-in method, platform of internet of things, application apparatus, service equipment
CN108768599B (en) * 2018-04-02 2022-08-19 中兴通讯股份有限公司 Method and device for sending and receiving uplink signal, storage medium and electronic equipment
EP3782112A4 (en) 2018-04-17 2022-01-05 Fasetto, Inc. Device presentation with real-time feedback
US10750501B2 (en) 2018-05-04 2020-08-18 At&T Intellectual Property I, L.P. Carrier aggregation and dual connectivity capability exchange
CN110881203A (en) * 2018-09-05 2020-03-13 电信科学技术研究院有限公司 Positioning resource coordination method, device, network node, terminal and base station
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
US11812478B2 (en) * 2018-09-29 2023-11-07 Beijing Xiaomi Mobile Software Co., Ltd. Network access method and apparatus
CN109496448B (en) * 2018-10-24 2022-05-10 北京小米移动软件有限公司 Network parameter configuration method, device and computer readable storage medium
US10887046B2 (en) 2018-11-02 2021-01-05 At&T Intellectual Property I, L.P. Performance based on inferred user equipment device speed for advanced networks
CN111162825B (en) * 2018-11-07 2023-12-29 华为技术有限公司 Channel state information of feedback method device and method for controlling the operation of a device
CN111106885A (en) * 2018-11-12 2020-05-05 维沃移动通信有限公司 Measurement method, indication method, device, terminal, network equipment and medium
CA3122297A1 (en) * 2019-01-08 2020-07-16 Ofinno, Llc Power saving mechanism
KR20200086149A (en) 2019-01-08 2020-07-16 삼성전자주식회사 A method and apparatus for power saving of a terminal in a wireless communication system
WO2020164697A1 (en) * 2019-02-13 2020-08-20 Huawei Technologies Co., Ltd. Devices for radio access network resource optimization
US11258656B2 (en) * 2019-02-19 2022-02-22 Cisco Technology, Inc. Optimizing management entity selection resiliency for geo-redundancy and load balancing in mobile core network
US10848284B2 (en) 2019-04-16 2020-11-24 At&T Intellectual Property I, L.P. Agile transport for background traffic in cellular networks
US11140086B2 (en) 2019-08-15 2021-10-05 At&T Intellectual Property I, L.P. Management of background data traffic for 5G or other next generations wireless network
WO2021117242A1 (en) * 2019-12-13 2021-06-17 株式会社Nttドコモ Terminal and measurement method
EP4104529A1 (en) * 2020-02-14 2022-12-21 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for reducing ue energy consumption
CN111343710B (en) 2020-02-26 2023-04-25 维沃移动通信有限公司 Power adjustment method and electronic equipment
US11963125B2 (en) * 2021-01-08 2024-04-16 Samsung Electronics Co., Ltd. Method and apparatus for measurement of TAI updates in an NTN
US11889578B2 (en) * 2021-03-26 2024-01-30 Qualcomm Incorporated UE assisted CDRX fallback
US11483721B1 (en) * 2021-05-11 2022-10-25 Nokia Technologies Oy Apparatus and method for beam management
US11716641B1 (en) 2022-01-24 2023-08-01 Rohde & Schwarz Gmbh & Co. Kg Systems and methods for generating synthetic wireless channel data

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090239466A1 (en) * 2008-03-19 2009-09-24 Fujitsu Limited Mobile communications terminal and communication control method
US20100112956A1 (en) * 2008-11-05 2010-05-06 Samsung Electronics Co., Ltd. Radio link failure detection method and apparatus for wireless communication system
US20120087341A1 (en) * 2010-10-11 2012-04-12 Samsung Electronics Co. Ltd. In-device interference avoidance method and apparatus for terminal equipped with multiple communication modules
US20120155437A1 (en) * 2010-12-16 2012-06-21 Richard Lee-Chee Kuo Method and apparatus for avoiding in-device coexistence interference in a wireless communication system
US20120195291A1 (en) * 2011-02-01 2012-08-02 Innovative Sonic Corporation Method and apparatus for advoiding in-device coexistence interference in a wireless communication system
US20120207040A1 (en) * 2010-08-13 2012-08-16 Interdigital Patent Holdings, Inc. Methods and systems for in-device interference mitigation
US20120213162A1 (en) * 2011-02-18 2012-08-23 Changhoi Koo Method and Apparatus for Avoiding In-Device Coexistence Interference with Preferred Frequency Notification
US20120257557A1 (en) * 2011-04-04 2012-10-11 Kyocera Corporation Mobile communication method and radio terminal
US20130079048A1 (en) * 2011-09-26 2013-03-28 Research In Motion Limited Method and System for Small Cell Discovery in Heterogeneous Cellular Networks
US20130083675A1 (en) * 2011-09-29 2013-04-04 Sharp Laboratories Of America, Inc. Devices for radio link monitoring
US20130122918A1 (en) * 2011-11-11 2013-05-16 Research In Motion Limited System and method of user equipment state transition
US20130208711A1 (en) * 2010-10-29 2013-08-15 Samsung Electronics Co. Ltd. Method and apparatus for handling in-device co-existence interference in a user equipment
US20130225123A1 (en) * 2012-02-29 2013-08-29 Interdigital Patent Holdings, Inc. Method and apparatus for seamless delivery of services through a virtualized network

Family Cites Families (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970000665B1 (en) 1994-09-30 1997-01-16 재단법인 한국전자통신연구소 Local radio communication system
US5697055A (en) 1994-10-16 1997-12-09 Qualcomm Incorporated Method and apparatus for handoff between different cellular communications systems
US6167445A (en) * 1998-10-26 2000-12-26 Cisco Technology, Inc. Method and apparatus for defining and implementing high-level quality of service policies in computer networks
US6820042B1 (en) 1999-07-23 2004-11-16 Opnet Technologies Mixed mode network simulator
JP3465228B2 (en) 2000-02-24 2003-11-10 日本電気エンジニアリング株式会社 Mobile communication system and direct communication method used therefor
US6973384B2 (en) 2001-12-06 2005-12-06 Bellsouth Intellectual Property Corporation Automated location-intelligent traffic notification service systems and methods
US6760388B2 (en) 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US6957067B1 (en) * 2002-09-24 2005-10-18 Aruba Networks System and method for monitoring and enforcing policy within a wireless network
KR20040061705A (en) 2002-12-31 2004-07-07 삼성전자주식회사 Method for transmitting the paging message of multimedia broadcast/multicast service in mobile communication system
ATE491318T1 (en) * 2003-09-16 2010-12-15 Research In Motion Ltd METHOD AND APPARATUS FOR SELECTING A WIRELESS NETWORK BASED ON QUALITY OF SERVICE CRITERIA ASSOCIATED WITH AN APPLICATION
US7277889B2 (en) 2003-10-07 2007-10-02 Louis Salvatore Addonisio Asset management and status system
JP2005223722A (en) 2004-02-06 2005-08-18 Matsushita Electric Ind Co Ltd Mobile terminal and on-vehicle terminal
CN101164088B (en) * 2004-03-19 2014-03-19 阿比特隆公司 System and method for gathering data concerning publication usage
US7668141B2 (en) 2004-07-06 2010-02-23 Motorola, Inc. Method and apparatus for managing packet data loss in a wireless network
US20060026679A1 (en) 2004-07-29 2006-02-02 Zakas Phillip H System and method of characterizing and managing electronic traffic
DE602004012862T2 (en) * 2004-10-01 2009-04-09 Matsushita Electric Industrial Co., Ltd., Kadoma-shi Quality of service aware flow control for uplink transmissions over dedicated channels
TWI382713B (en) * 2005-01-21 2013-01-11 Koninkl Philips Electronics Nv Measuring and monitoring qos in service differentiated wireless networks
US20060256008A1 (en) 2005-05-13 2006-11-16 Outland Research, Llc Pointing interface for person-to-person information exchange
US7583984B2 (en) 2005-08-12 2009-09-01 Lg Electronics Inc. Method of providing notification for battery power conservation in a wireless system
KR100824239B1 (en) * 2005-11-07 2008-04-24 삼성전자주식회사 Apparatus and method for processing handover of mobile relay station in a multi-hop relay broadband wireless access communication system
ATE521209T1 (en) 2005-12-22 2011-09-15 Korea Electronics Telecomm METHOD FOR DISCONTINUOUS TRANSMIT/RECEIVE OPERATION FOR REDUCING POWER CONSUMPTION IN A CELLULAR SYSTEM
US20070155390A1 (en) 2006-01-04 2007-07-05 Ipwireless, Inc. Initial connection establishment in a wireless communication system
KR101162384B1 (en) 2006-08-09 2012-07-04 엘지전자 주식회사 Apparatus for controlling a communication unit and method for controlling thereof
US7769894B2 (en) * 2006-10-13 2010-08-03 At&T Intellectual Property I, L.P. Determining and presenting communication device proximity information
KR100957348B1 (en) 2006-10-16 2010-05-12 삼성전자주식회사 Method and arrartus for handover completing during drx in mobile telecommunication system
US7957360B2 (en) 2007-01-09 2011-06-07 Motorola Mobility, Inc. Method and system for the support of a long DRX in an LTE—active state in a wireless network
ES2733007T3 (en) 2007-02-05 2019-11-27 Nec Corp Transfer method between base stations, radio communication system, DRX control method, base station and communication terminal
GB2447299A (en) 2007-03-09 2008-09-10 Nec Corp Control of discontinuous Rx/Tx in a mobile communication system
US20080232310A1 (en) 2007-03-19 2008-09-25 Shugong Xu Flexible user equipment-specified discontinuous reception
US20080225772A1 (en) 2007-03-12 2008-09-18 Shugong Xu Explicit layer two signaling for discontinuous reception
CN101272614B (en) 2007-03-20 2010-12-08 华为技术有限公司 Method, system and device for selecting network equipment
EP2137917A2 (en) 2007-03-21 2009-12-30 Interdigital Technology Corporation Mimo wireless communication method and apparatus for transmitting and decoding resource block structures based on a dedicated reference signal mode
US8799968B2 (en) * 2007-04-20 2014-08-05 Samsung Information Systems America, Inc. Method and apparatus for tracking user location within video or audio content streamed to a mobile handset
US20090067386A1 (en) 2007-06-19 2009-03-12 Qualcomm Incorporated Method and apparatus for cell reselection enhancement for e-utran
US20080318592A1 (en) 2007-06-22 2008-12-25 International Business Machines Corporation Delivering telephony communications to devices proximate to a recipient after automatically determining the recipient's location
US8588738B2 (en) 2007-10-01 2013-11-19 Qualcomm Incorporated Mobile access in a diverse access point network
EP2225662A4 (en) 2007-11-21 2011-06-22 Nortel Networks Ltd Support for continuity of tunnel communications for mobile nodes having multiple care of addressing
US8712415B2 (en) 2008-03-20 2014-04-29 Interdigital Patent Holdings, Inc. Timing and cell specific system information handling for handover in evolved UTRA
US8289891B2 (en) 2008-05-09 2012-10-16 Samsung Electronics Co., Ltd. Flexible sleep mode for advanced wireless systems
FI20085676A0 (en) 2008-06-30 2008-06-30 Nokia Corp Transmission of delay tolerant data
US20100029295A1 (en) 2008-07-31 2010-02-04 Assaf Touboul Gps synchronization method for wireless cellular networks
US9693184B2 (en) 2008-08-18 2017-06-27 Qualcomm Incorporated Control plane location solution to support wireless access
US8737989B2 (en) 2008-08-29 2014-05-27 Apple Inc. Methods and apparatus for machine-to-machine based communication service classes
KR100917832B1 (en) 2008-09-19 2009-09-18 엘지전자 주식회사 Method for transmitting and receiving signals considering the time alignment timer and user equipment for the same
US8107422B2 (en) 2008-09-25 2012-01-31 Qualcomm Incorporated Method and apparatus for uplink and downlink channel alignments for 3GPP continuous packet data connection (CPC) channels
DE102008052718A1 (en) 2008-10-22 2010-04-29 Rohde & Schwarz Gmbh & Co. Kg Self-organizing communication network and method of its scope
US8340199B2 (en) * 2008-10-27 2012-12-25 Samsung Electronics Co., Ltd. 8-transmit antenna reference signal design for downlink communications in a wireless system
CN101742618B (en) 2008-11-14 2013-04-24 华为技术有限公司 Method and base station for determining discontinuous transmission mode
WO2010072020A1 (en) 2008-12-22 2010-07-01 Huawei Technologies Co., Ltd. Method for signalling in a wireless communication system
EP2371095A4 (en) 2008-12-23 2012-06-13 Ericsson Telefon Ab L M A method and an arrangement of identifying traffic flows in a communication network
KR101708700B1 (en) 2008-12-23 2017-02-21 티씨엘 커뮤니케이션 테크놀로지 홀딩스 리미티드 Mobile communication system
EP2389732A4 (en) 2009-02-01 2012-06-06 Huawei Tech Co Ltd Method for transmitting reference signals
KR101559799B1 (en) 2009-03-04 2015-10-26 엘지전자 주식회사 The method for performing CoMP operation and transmitting feedback information in wireless communication system
US8023522B2 (en) 2009-03-30 2011-09-20 Intel Corporation Enabling long-term communication idleness for energy efficiency
WO2010126842A1 (en) * 2009-04-27 2010-11-04 Interdigital Patent Holdings, Inc. Reference signals for positioning measurements
CN101877852B (en) 2009-04-29 2013-08-07 中兴通讯股份有限公司 User access control method and system
JPWO2010143428A1 (en) * 2009-06-12 2012-11-22 パナソニック株式会社 Base station control device and portable terminal
US8150446B2 (en) * 2009-06-17 2012-04-03 Telefonaktiebolaget L M Ericsson (Publ) Thermal energy control in a mobile transceiver
JP5101568B2 (en) 2009-06-23 2012-12-19 株式会社エヌ・ティ・ティ・ドコモ Radio base station apparatus, mobile terminal apparatus, and transmission power control method
CN101938773B (en) 2009-06-30 2014-11-05 中兴通讯股份有限公司 Initial transmitting power acquisition method and base station
US8781393B2 (en) * 2009-09-30 2014-07-15 Ebay Inc. Network updates of time and location
KR101746525B1 (en) 2009-10-01 2017-06-14 한국전자통신연구원 Methods of reducing power consumption of User Terminal in mobile communication system using multiple component carrier
WO2011041751A2 (en) 2009-10-02 2011-04-07 Research In Motion Limited Measurement reporting in a wireless network
WO2011041753A2 (en) 2009-10-02 2011-04-07 Research In Motion Limited System and method for performing measurement reporting
US20110086635A1 (en) 2009-10-09 2011-04-14 Alcatel-Lucent Usa Inc. Method And Apparatus For Utilizing Mobility State Information
CN102948203B (en) 2009-11-06 2015-09-09 华为技术有限公司 Load control method and equipment and communication system
CN106028271A (en) 2009-11-25 2016-10-12 交互数字专利控股公司 A method and apparatus for machine-to-machien application
CN102804882B (en) 2009-12-22 2015-12-16 交互数字专利控股公司 Based on the machine to machine communication of group
US8908617B2 (en) 2009-12-31 2014-12-09 Samsung Electronics Co., Ltd. Uplink demodulation reference signal design for MIMO transmission
CN102123477B (en) * 2010-01-08 2015-06-10 中兴通讯股份有限公司 Access realization method and device of M2M (Machine to Machine) core network
US20110171983A1 (en) 2010-01-11 2011-07-14 Kundan Tiwari Apparatuses, systems, and methods for maintaining allowed closed subscriber group (csg) list
KR101761419B1 (en) 2010-01-13 2017-07-26 엘지전자 주식회사 Method and Apparatus for updating location information of User Equipment
JP2011151545A (en) 2010-01-20 2011-08-04 Nec Corp Communication device, receiving method, and program
US8614981B2 (en) 2010-01-29 2013-12-24 Qualcomm Incorporated Reporting of channel information to support coordinated multi-point data transmission
CN102149166B (en) 2010-02-10 2015-08-12 中兴通讯股份有限公司 The system of selection of Radio Access Network and system
US20110196925A1 (en) * 2010-02-11 2011-08-11 Martin Hans Methods and apparatus for providing presence service for contact management representation
US8305987B2 (en) 2010-02-12 2012-11-06 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
KR101714109B1 (en) * 2010-02-12 2017-03-08 인터디지탈 패튼 홀딩스, 인크 Method and apparatus for supporting machine-type communications
RU2486687C2 (en) * 2010-02-17 2013-06-27 ЗетТиИ (ЮЭсЭй) ИНК. Methods and systems for csi-rs transmission in lte-advance systems
US9001663B2 (en) 2010-02-26 2015-04-07 Microsoft Corporation Communication transport optimized for data center environment
KR101807732B1 (en) * 2010-03-09 2018-01-18 삼성전자주식회사 Multi-user wireless network for power saving, and communication method of terminal and access point in the multi-user wireless network
WO2011115421A2 (en) 2010-03-17 2011-09-22 Lg Electronics Inc. Method and apparatus for providing channel state information-reference signal (csi-rs) configuration information in a wireless communication system supporting multiple antennas
BR112012023489A2 (en) 2010-03-19 2016-05-24 Alcatel Lucent machine-type communication system and method and cell search method.
US8462722B2 (en) 2010-03-26 2013-06-11 Telefonaktiebolaget L M Ericsson (Publ) Access control for machine-type communication devices
CN102907139B (en) 2010-04-02 2016-10-12 交互数字专利控股公司 Group's process for equipment for machine type communication
US8638684B2 (en) 2010-04-05 2014-01-28 Qualcomm Aperiodic channel state information request in wireless communication
CN101969635A (en) 2010-04-30 2011-02-09 中兴通讯股份有限公司 Access control method and system for machine communication
WO2011149252A2 (en) 2010-05-26 2011-12-01 Lg Electronics Inc. Nas-based signaling protocol for overload protection of random access in massive machine type communication
JP4802289B1 (en) 2010-05-31 2011-10-26 株式会社東芝 Electronic device and communication system
US8971261B2 (en) 2010-06-02 2015-03-03 Samsung Electronics Co., Ltd. Method and system for transmitting channel state information in wireless communication systems
KR20110137652A (en) 2010-06-17 2011-12-23 삼성전자주식회사 Wireless communication system and method for establishing connection between user equipment and mobility management entity
CN102340379B (en) 2010-07-15 2015-04-22 ***通信集团公司 CSI-RS (Channel Status Information-Reference Signal) transmission method and detection method, and devices of CSI-RS transmission method and detection method
JP5668139B2 (en) 2010-07-26 2015-02-12 エルジー エレクトロニクス インコーポレイティド Aperiodic channel state information feedback method in wireless access system supporting multi-carrier aggregation
US20120033613A1 (en) 2010-08-04 2012-02-09 National Taiwan University Enhanced rach design for machine-type communications
US8725167B2 (en) * 2010-08-11 2014-05-13 Optis Cellular Technology, Llc Methods of providing cell grouping for positioning and related networks and devices
US20120040643A1 (en) 2010-08-13 2012-02-16 John Diachina Network access control based on serving node identifiers
EP2606618A4 (en) * 2010-08-16 2014-08-20 Zte Usa Inc Methods and systems for csi-rs resource allocation in lte-advance systems
US8606260B2 (en) 2010-08-18 2013-12-10 Apple Inc. Location-based profile
CN102387563B (en) 2010-08-26 2015-05-27 华为技术有限公司 Service control method of machine type communication equipment, and related device and system
US8606290B2 (en) 2010-09-02 2013-12-10 At&T Intellectual Property I, L.P. Method and apparatus for performing a demotion in a cellular communications network
CN102438277A (en) 2010-09-29 2012-05-02 中兴通讯股份有限公司 Terminal access method and system
CN102448144A (en) 2010-09-30 2012-05-09 电信科学技术研究院 Method and device for accessing MTC equipment into network
JP5005082B2 (en) 2010-10-04 2012-08-22 株式会社エヌ・ティ・ティ・ドコモ Base station apparatus, mobile terminal apparatus and communication control method
US20120083204A1 (en) 2010-10-04 2012-04-05 Nokia Corporation Method and Apparatus for Controlling Access
US9130725B2 (en) * 2010-11-02 2015-09-08 Qualcomm Incorporated Interaction of PDSCH resource mapping, CSI-RS, and muting
US9628940B2 (en) 2010-11-08 2017-04-18 Intel Corporation Class identification methods for machine-to-machine (M2M) applications, and apparatuses and systems using the same
US8654691B2 (en) 2010-11-15 2014-02-18 Blackberry Limited Managing wireless communications
KR101759350B1 (en) * 2010-11-25 2017-07-18 삼성전자주식회사 Method for estimating displacement of user terminal and apparatus for the same
US8681740B2 (en) * 2010-12-21 2014-03-25 Tektronix, Inc. LTE network call correlation during User Equipment mobility
US8934362B2 (en) * 2011-01-06 2015-01-13 Mediatek Inc. Power control method to mitigate interference for in-device coexistence
US8675558B2 (en) * 2011-01-07 2014-03-18 Intel Corporation CQI definition for transmission mode 9 in LTE-advanced
EP2475127A1 (en) * 2011-01-10 2012-07-11 Panasonic Corporation Channel state information reporting for component carriers for which no channel state information was calculated
US20120207070A1 (en) * 2011-02-10 2012-08-16 Qualcomm Incorporated Mobility enhancements for long term evolution (lte) discontinuous reception (drx) operations
US20130190006A1 (en) * 2011-02-15 2013-07-25 Telefonaktiebolaget L M Ericsson (Publ) Methods and Systems for Enabling User Activity-Aware Positioning
EP2679054B1 (en) 2011-02-21 2018-04-11 Samsung Electronics Co., Ltd. Method and apparatus for saving power of user equipment in wireless communication system
US9264198B2 (en) 2011-02-28 2016-02-16 Qualcomm Incorporated Methods and apparatus for employing different capabilities for different duplexing modes
JP5325928B2 (en) 2011-05-02 2013-10-23 株式会社エヌ・ティ・ティ・ドコモ Channel state information notification method, radio base station apparatus, user terminal, and radio communication system
US8289917B1 (en) * 2011-05-02 2012-10-16 Renesas Mobile Corporation Method and apparatus for defining resource elements for the provision of channel state information reference signals
GB2490968A (en) 2011-05-20 2012-11-21 Nec Corp Sharing radio access networks fairly between multiple operators
EP2525614A1 (en) * 2011-05-20 2012-11-21 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Selective paging of user equipments in cellular mobile networks
ES2656519T3 (en) 2011-06-10 2018-02-27 Lg Electronics Inc. Procedure and apparatus for transmitting aperiodic channel status information in wireless communication system
US8824301B2 (en) * 2011-06-15 2014-09-02 Innovative Sonic Corporation Method and apparatus to provide assistance information for reconfiguration in a wireless communication system
EP2742704A1 (en) * 2011-08-11 2014-06-18 Interdigital Patent Holdings, Inc. Machine type communications connectivity sharing
BR112014007959A2 (en) 2011-10-03 2017-06-13 Intel Corp mechanisms for device to device communication
US20130114514A1 (en) * 2011-11-04 2013-05-09 Nokia Siemens Networks Oy DMRS Arrangements For Coordinated Multi-Point Communication
US8849253B2 (en) * 2011-12-09 2014-09-30 Verizon Patent And Licensing Inc. Location-based proximity notification
GB2496212B (en) * 2011-12-20 2013-11-27 Renesas Mobile Corp Method and apparatus for traffic offloading between devices
US8874162B2 (en) * 2011-12-23 2014-10-28 Microsoft Corporation Mobile device safe driving
US9036546B2 (en) * 2012-01-04 2015-05-19 Futurewei Technologies, Inc. System and method for device discovery for device-to-device communication in a cellular network
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
ES2793492T3 (en) 2012-01-30 2020-11-16 Ericsson Telefon Ab L M Base station, user equipment and methods therein in a communication system
US9461766B2 (en) * 2012-03-09 2016-10-04 Lg Electronics Inc. Method and apparatus for setting reference signal
US9729273B2 (en) * 2012-03-30 2017-08-08 Sharp Kabushiki Kaisha Collision resolution among transmission schedules of uplink control information (UCI)
US9119209B2 (en) 2012-03-30 2015-08-25 Samsung Electronics Co., Ltd. Apparatus and method for channel-state-information pilot design for an advanced wireless network
US9078109B2 (en) * 2012-04-09 2015-07-07 Intel Corporation Frame structure design for new carrier type (NCT)
EP3897016A3 (en) * 2012-04-27 2021-11-24 Interdigital Patent Holdings, Inc. Method and apparatus for provisioning of d2d policies for a wireless transmit receive unit (wtru)
US11546787B2 (en) 2012-05-09 2023-01-03 Samsung Electronics Co., Ltd. CSI definitions and feedback modes for coordinated multi-point transmission
US8874103B2 (en) * 2012-05-11 2014-10-28 Intel Corporation Determining proximity of user equipment for device-to-device communication
TWI573484B (en) 2012-05-11 2017-03-01 英特爾股份有限公司 Selective joinder of machine-type communication user equipment with wireless cell provided by an evolved node b (enb)
US9083479B2 (en) 2012-05-11 2015-07-14 Intel Corporation Signaling for downlink coordinated multipoint in a wireless communication system
US9130688B2 (en) 2012-05-11 2015-09-08 Intel Corporation User equipment and methods for handover enhancement using reference signal received quality (RSRQ)
US8982741B2 (en) * 2012-05-11 2015-03-17 Intel Corporation Method, system and apparatus of time-division-duplex (TDD) uplink-downlink (UL-DL) configuration management
US9515757B2 (en) 2012-05-11 2016-12-06 Intel Corporation Systems and methods for enhanced user equipment assistance information in wireless communication systems
US20130301491A1 (en) 2012-05-11 2013-11-14 Shafi Bashar Scheduling synchronization signals in a new carrier type
CN103391265B (en) * 2012-05-11 2018-01-19 中兴通讯股份有限公司 The transmission method of primary and secondary synchronization signals in a kind of base station and new carrier wave
US9036578B2 (en) 2012-12-19 2015-05-19 Blackberry Limited Method and apparatus for control channel configuration in a heterogeneous network architecture
US9271324B2 (en) 2012-12-19 2016-02-23 Blackberry Limited Method and apparatus for assisted serving cell configuration in a heterogeneous network architecture
US9072021B2 (en) 2012-12-19 2015-06-30 Blackberry Limited Method and apparatus for hybrid automatic repeat request operation in a heterogeneous network architecture
US9832717B2 (en) 2012-12-19 2017-11-28 Blackberry Limited Method and apparatus for layer 3 configuration in a heterogeneous network
US9084264B2 (en) 2013-02-26 2015-07-14 Blackberry Limited Method and apparatus for small cell configuration in a heterogeneous network architecture
JP6026318B2 (en) 2013-02-27 2016-11-16 クラリオン株式会社 Program expansion system, server used therefor, program expansion method, and program management program
US9264966B2 (en) 2013-03-11 2016-02-16 Alcatel Lucent Method and apparatus for LTE handover reduction
US20140274049A1 (en) 2013-03-12 2014-09-18 Qualcomm Incorporated Method and apparatus for ue measurement assisted handover classification

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090239466A1 (en) * 2008-03-19 2009-09-24 Fujitsu Limited Mobile communications terminal and communication control method
US20100112956A1 (en) * 2008-11-05 2010-05-06 Samsung Electronics Co., Ltd. Radio link failure detection method and apparatus for wireless communication system
US20120207040A1 (en) * 2010-08-13 2012-08-16 Interdigital Patent Holdings, Inc. Methods and systems for in-device interference mitigation
US20120087341A1 (en) * 2010-10-11 2012-04-12 Samsung Electronics Co. Ltd. In-device interference avoidance method and apparatus for terminal equipped with multiple communication modules
US20130208711A1 (en) * 2010-10-29 2013-08-15 Samsung Electronics Co. Ltd. Method and apparatus for handling in-device co-existence interference in a user equipment
US20120155437A1 (en) * 2010-12-16 2012-06-21 Richard Lee-Chee Kuo Method and apparatus for avoiding in-device coexistence interference in a wireless communication system
US20120195291A1 (en) * 2011-02-01 2012-08-02 Innovative Sonic Corporation Method and apparatus for advoiding in-device coexistence interference in a wireless communication system
US20120213162A1 (en) * 2011-02-18 2012-08-23 Changhoi Koo Method and Apparatus for Avoiding In-Device Coexistence Interference with Preferred Frequency Notification
US20120257557A1 (en) * 2011-04-04 2012-10-11 Kyocera Corporation Mobile communication method and radio terminal
US20130079048A1 (en) * 2011-09-26 2013-03-28 Research In Motion Limited Method and System for Small Cell Discovery in Heterogeneous Cellular Networks
US20130083675A1 (en) * 2011-09-29 2013-04-04 Sharp Laboratories Of America, Inc. Devices for radio link monitoring
US20130122918A1 (en) * 2011-11-11 2013-05-16 Research In Motion Limited System and method of user equipment state transition
US20130225123A1 (en) * 2012-02-29 2013-08-29 Interdigital Patent Holdings, Inc. Method and apparatus for seamless delivery of services through a virtualized network

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11838980B2 (en) * 2012-07-06 2023-12-05 Samsung Electronics Co., Ltd Method and apparatus for determining TDD UL-DL configuration applicable for radio frames
US20220061124A1 (en) * 2012-07-06 2022-02-24 Samsung Electronics Co., Ltd. Method and apparatus for determining tdd ul-dl configuration applicable for radio frames
US20150131504A1 (en) * 2013-11-14 2015-05-14 National Chiao Tung University Power-saving data scheduling system in lte and method thereof
US9386523B2 (en) * 2013-11-14 2016-07-05 National Chiao Tung University Power-saving data scheduling system in LTE and method thereof
CN107454998A (en) * 2015-04-10 2017-12-08 摩托罗拉移动有限责任公司 Coexisted in device in LTE authorizes auxiliary access operation with other technologies
US10993131B2 (en) * 2015-09-24 2021-04-27 Lg Electronics Inc. Method for performing logging by terminal in wireless communication system and terminal using same
US10893571B2 (en) 2017-11-17 2021-01-12 Qualcomm Incorporated Radio link monitoring based on discontinuous reception mode
JP2021503803A (en) * 2017-11-17 2021-02-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated Wireless link monitoring based on intermittent reception mode
CN111316753A (en) * 2017-11-17 2020-06-19 高通股份有限公司 Radio link monitoring based on discontinuous reception mode
TWI774867B (en) * 2017-11-17 2022-08-21 美商高通公司 Radio link monitoring based on discontinuous reception mode
JP7189951B2 (en) 2017-11-17 2022-12-14 クゥアルコム・インコーポレイテッド Radio link monitoring based on discontinuous reception mode
WO2019099170A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Radio link monitoring based on discontinuous reception mode
US11214274B2 (en) 2018-04-20 2022-01-04 Woven Planet North America, Inc. Transmission schedule segmentation and prioritization
WO2019204054A1 (en) * 2018-04-20 2019-10-24 Lyft, Inc. Transmission schedule segmentation and prioritization

Also Published As

Publication number Publication date
US10327207B2 (en) 2019-06-18
US20150045060A1 (en) 2015-02-12
CA2871107C (en) 2017-02-28
KR101604207B1 (en) 2016-03-16
US9356724B2 (en) 2016-05-31
US9444569B2 (en) 2016-09-13
KR20150003294A (en) 2015-01-08
US20170013554A1 (en) 2017-01-12
US20180063792A1 (en) 2018-03-01
US20140044076A1 (en) 2014-02-13
US20170013557A1 (en) 2017-01-12
BR112014028165A2 (en) 2019-09-24
AU2013259165B2 (en) 2016-02-04
EP2847950A4 (en) 2016-01-20
HUE039146T2 (en) 2018-12-28
CA2871107A1 (en) 2013-11-14
US10129830B2 (en) 2018-11-13
US20160014662A1 (en) 2016-01-14
US10057855B2 (en) 2018-08-21
US20130303166A1 (en) 2013-11-14
MX2014013756A (en) 2015-08-07
US20130303160A1 (en) 2013-11-14
US9154251B2 (en) 2015-10-06
US20160261387A1 (en) 2016-09-08
AU2013259165A1 (en) 2014-11-06
RU2014141602A (en) 2016-05-10
JP2015521426A (en) 2015-07-27
CN104303468A (en) 2015-01-21
BE1021379B1 (en) 2015-11-12
JP5905160B2 (en) 2016-04-20
MX342526B (en) 2016-10-03
WO2013170194A1 (en) 2013-11-14
US20150056994A1 (en) 2015-02-26
US9270400B2 (en) 2016-02-23
RU2595512C2 (en) 2016-08-27
US8874103B2 (en) 2014-10-28
US20150036569A1 (en) 2015-02-05
US9246618B2 (en) 2016-01-26
US9736780B2 (en) 2017-08-15
MY174530A (en) 2020-04-23
EP2847950B1 (en) 2017-12-13
CN104303468B (en) 2017-06-09
US20160044615A1 (en) 2016-02-11
EP2847950A1 (en) 2015-03-18
US10433254B2 (en) 2019-10-01
US9496973B2 (en) 2016-11-15
US20170294998A1 (en) 2017-10-12
US20160127870A1 (en) 2016-05-05
US20150365937A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
NL2015015B1 (en) Radio coexistence in wireless networks.
US20150043515A1 (en) Radio coexistence in wireless networks
JP6471919B2 (en) User equipment (UE), program, computer-readable recording medium, method and apparatus
US9992742B2 (en) Discontinuous reception in a wireless device for in-device coexistence
US8923208B2 (en) Multi-radio coexistence
WO2020156378A1 (en) Method for receiving reference signal, method for transmitting reference signal, and apparatus
JP2013528973A (en) Method and apparatus for multi-radio coexistence
TW201524171A (en) Apparatus and methods of time domain multiplexing solutions for in-device coexistence
JP2016072961A (en) Concurrent use of multiple time division duplex links using single transmitter/receiver

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, YUJIAN;FONG, MO-HAN;HEO, YOUN HYOUNG;AND OTHERS;SIGNING DATES FROM 20130325 TO 20130506;REEL/FRAME:035314/0433

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION