US20150017855A1 - Novel wicking fabric and clothing - Google Patents

Novel wicking fabric and clothing Download PDF

Info

Publication number
US20150017855A1
US20150017855A1 US14/331,368 US201414331368A US2015017855A1 US 20150017855 A1 US20150017855 A1 US 20150017855A1 US 201414331368 A US201414331368 A US 201414331368A US 2015017855 A1 US2015017855 A1 US 2015017855A1
Authority
US
United States
Prior art keywords
fabric
sugar alcohol
wicking
clothing
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/331,368
Inventor
Francisco Guerra
Lesley Hatfield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/331,368 priority Critical patent/US20150017855A1/en
Publication of US20150017855A1 publication Critical patent/US20150017855A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • D06M13/148Polyalcohols, e.g. glycerol or glucose
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/12Hygroscopic; Water retaining
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2484Coating or impregnation is water absorbency-increasing or hydrophilicity-increasing or hydrophilicity-imparting

Definitions

  • Wicking fabrics are used to provide clothing articles that are typically subject to wetting.
  • One such area in which wicking clothing is utilized is in athletic clothing and sleep garments for people who suffer from night sweats.
  • the subject invention has discovered a novel composition and method for improved wicking fabrics.
  • the present invention is a fabric for use in wicking clothing comprising:
  • Sugar alcohol also known as polyhydric alcohol, polyalcohol, or glycitol have the general formula H(HCHO) n+1 H.
  • a mixture of two or more sugar alcohols is used.
  • the sugar alcohol is sorbitol.
  • the fabric of the present invention is unique in exhibiting an increase of 10-80% of measured overall liquid moisture management capability versus fabric not having said disposed sugar alcohol.
  • the preferred sugar alcohol is sorbitol.
  • the method solvent is aqueous, organic, or an aqueous-organic co-solvent.
  • Disposition occurs according to known and commercially acceptable methods.
  • the fabric of the invention provided reduction in microbial growth compared to untreated cotton fabric.
  • the solvent is aqueous, organic, or an aqueous organic co-solvent.
  • the fabric and method of the present invention results in the fabric retaining 70-125% wicking property after 15 washings/launderings compared to an unlaundered fabric.
  • FIG. 1 is graph of wicking height versus time across machine direction.
  • FIG. 2 is graph of wicking height versus time with machine direction.
  • FIG. 3 is a graph of mass change over time in an evaporation study on unlaundered samples.
  • FIG. 4 is a graph of mass change over time in an evaporation study on laundered samples after 3 washes.
  • FIG. 5 is a graph of mass change over time in an evaporation study on laundered samples after 6 washes.
  • FIG. 6 is a graph of mass change over time in an evaporation study on laundered samples after 9 washes.
  • FIG. 7 is a graph of mass change over time in an evaporation study on laundered samples after 12 washes.
  • FIG. 8 is a graph of mass change over time in an evaporation study on laundered samples after 15 washes.
  • wicking refers to the fabric's ability to absorb liquid from the surface and into the material. Unlike conventional fabrics, which retain moisture, these fabrics use capillary action to wick sweat away much like a paper towel. Moisture wicking clothes are formed of fabric embedded with microscopic pores on the inner surface of the fabric. The fabric pulls perspiration away from the skin and spreads it across the surface and then evaporates into the air.
  • reagents are disposed on fabric and for fabric fibers.
  • a solution is prepared in which particles are impregnated into the fabric to which between about 0.1 to 10 grams/liter of Sorbitol (sugar alcohol extract) is added to the solution.
  • Sorbitol is a derivative from apple, pear or prune extracts, is safe, environmentally friendly and is not found in hydrophilic compounds used in processing synthetic fibers.
  • Sorbitol allows the properties of the fabric to remain present and active and the garment will suffer no loss of performance during the lifetime of the garment. Sorbitol aids in the integrity of the wicking process in multiple machine washings, enhancing and preserving the overall hydrophilicity of the garment.
  • test methods for the measurement, evaluation and classification of liquid moisture management properties of textile fabrics.
  • the test method produces objective measurements of liquid moisture management properties of knitted, woven and nonwoven textile fabrics.
  • the results obtained with this test method are based on water resistance, water repellency and water absorption characteristics of the fabric structure, including the fabric's geometric and internal structure and the wicking characteristics of its fibers and yarns (AATCC Test Method 195-2012).
  • a Moisture Management Tester measures, evaluates and classifies liquid management properties of fabrics per AATCC Test Method 195.
  • the MMT evaluates absorption properties by measuring changes in electrical conductivity.
  • a specimen is horizontally placed between an upper and lower sensor having concentric pins.
  • a predetermined amount of a prepared test solution is dropped on the center of the upper facing surface (skin side) of the test specimen.
  • Resistance output is then used to calculate moisture content. Results are used to grade the fabric using predetermined indices.
  • fabrics prepared according to the present invention exhibit increased and desirable characteristics when compared to other wicking fabrics.
  • the evaluated parameters include, but are not limited to:
  • the grading classifies material moving moisture from the back to the face with higher values.
  • fabric of the present invention exhibits an increase in OMCC of 10-80% versus untreated fabric of the same composition.
  • the fabric will be cut to 1 inch by 1 inch squares. Weigh each fabric square using a Mettler Toledo XS205 balance, which is to be kept open for the duration of the experiment. After weighing each sample, tare the balance and use a pipette to put one drop of water on the balance.
  • the fabric was cut into one inch squares, and the mass of the fabric was recorded over time as it allowed a certain amount of water to evaporate. The mass was recorded at 10 minute intervals on a Mettler Toledo XS205 balance. Two drops of distilled water from a Pasteur pipette were used for each test to give an appreciable amount of water to absorb and evaporate.
  • the fabric was tested in the unlaundered condition, and after 3, 6, 9, 12, and 15 launderings. Note: The unlaundered fabric was tested in triplicate and laundered samples in duplicate. The individual test data were plotted as mass versus time, as shown in FIGS. 3-8 .
  • the vertical wicking performance of the fabric was tested in accordance with the provided textile test protocol.
  • the fabric was cut into 10 inch by 1.5 inch strips both in-the-machine direction and across-the-machine direction ( FIGS. 1-2 ).
  • Each fabric strip was clipped to a vertical holder and the opposite end was submerged in a beaker of 90° F. distilled water. The height of the water wicking up the fabric was measured at one minute intervals. The fabric was tested in the unlaundered condition, and after 3, 6, 9, 12, and 15 launderings. Testing was terminated when three height readings were the same. The unlaundered sample was tested in triplicate and the laundered samples in duplicate. The averaged data were plotted as height versus time, as shown in FIGS. 1 and 2 .
  • FIGS. 3-8 are plots of the evaporation data, showing the change in mass over time for each run.
  • the numerical data for these plots is provided in Tables 1-3.
  • the unlaundered fabric allowed the water to evaporate within 30 minutes.
  • the evaporation rate remained steady at an average of 50 minutes.
  • the results of the evaporation testing show the fabric absorbs moisture and removes it via evaporation to the atmosphere. The fabric will perform in the range of data averages as shown by this testing.
  • the general study parameters were as follows: 1. A representative 1 inch square (approx) of each material to be tested was placed into a 24-hour broth of the challenge organism and shaken for 2 minutes. 2. A 1 inch square (approx) of each material was placed into sterile water and taken through the entire process to serve as controls. 3. After the 2 minute shaking period, specimens were removed from the broth/sterile water and shaken dry to remove all free liquid. 4. The “shake dried” specimens were placed into dry, sterile petri dishes and incubated for 48 hours. 5. After initial incubation, specimens were placed onto the appropriate growth media and incubated for 48 hours. 6. After final incubation, the materials were visually examined for comparison. Growth colonies were also counted to provide a numerical comparison. Digital photographs of the inoculated specimens were taken and are provided for review.

Abstract

A fabric and method of making is provided whereby a sugar alcohol is disposed on wicking fabric to increase moisture wicking characteristics.

Description

    INDEX TO RELATED APPLICATIONS
  • This application is a non-provisional of, and claims benefit to U.S. Provisional patent application Ser. No. 61/846,168 filed Jul. 15, 2013 the disclosure of which is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • Wicking fabrics are used to provide clothing articles that are typically subject to wetting. One such area in which wicking clothing is utilized is in athletic clothing and sleep garments for people who suffer from night sweats.
  • The subject invention has discovered a novel composition and method for improved wicking fabrics.
  • SUMMARY OF THE INVENTION
  • In one embodiment, the present invention is a fabric for use in wicking clothing comprising:
      • fabric strands having micropores formed thereon; and
      • a sugar alcohol disposed on said fabric strands.
  • Sugar alcohol (also known as polyhydric alcohol, polyalcohol, or glycitol have the general formula H(HCHO)n+1H.
  • Sugar alcohols include
  • Methanol (1-carbon)
    Glycol (2-carbon)
    Glycerol (3-carbon)
    Erythritol (4-carbon)
    Threitol (4-carbon)
    Arabitol (5-carbon)
    Xylitol (5-carbon)
    Ribitol (5-carbon)
    Mannitol (6-carbon)
    Sorbitol (6-carbon)
    Galactitol (6-carbon)
    Fucitol (6-carbon)
    Iditol (6-carbon)
    Inositol (6-carbon; a cyclic sugar alcohol)
    Volemitol (7-carbon)
    Isomalt (12-carbon)
    Maltitol (12-carbon)
    Lactitol (12-carbon)
    Maltotriitol (18-carbon)
    Maltotetraitol (24-carbon)
  • Polyglycitol
  • In one embodiment, a mixture of two or more sugar alcohols is used.
  • In a one embodiment, the sugar alcohol is sorbitol.
  • The fabric of the present invention is unique in exhibiting an increase of 10-80% of measured overall liquid moisture management capability versus fabric not having said disposed sugar alcohol.
  • Also contemplated is a method of producing wicking clothing, said method comprising the steps of:
  • providing a fabric wherein said fabric has strands with micropores formed thereon;
    preparing a solution in a solvent containing between 0.1 to 10 g/liter of a sugar alcohol;
    disposing said sugar alcohol onto said fabric, whereby said disposing includes evaporation of said solvent.
  • In one embodiment, the preferred sugar alcohol is sorbitol.
  • The method solvent is aqueous, organic, or an aqueous-organic co-solvent.
  • Disposition occurs according to known and commercially acceptable methods.
  • The fabric of the invention provided reduction in microbial growth compared to untreated cotton fabric.
  • In the method the solvent is aqueous, organic, or an aqueous organic co-solvent.
  • The fabric and method of the present invention results in the fabric retaining 70-125% wicking property after 15 washings/launderings compared to an unlaundered fabric.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 is graph of wicking height versus time across machine direction.
  • FIG. 2 is graph of wicking height versus time with machine direction.
  • FIG. 3 is a graph of mass change over time in an evaporation study on unlaundered samples.
  • FIG. 4 is a graph of mass change over time in an evaporation study on laundered samples after 3 washes.
  • FIG. 5 is a graph of mass change over time in an evaporation study on laundered samples after 6 washes.
  • FIG. 6 is a graph of mass change over time in an evaporation study on laundered samples after 9 washes.
  • FIG. 7 is a graph of mass change over time in an evaporation study on laundered samples after 12 washes.
  • FIG. 8 is a graph of mass change over time in an evaporation study on laundered samples after 15 washes.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The term wicking refers to the fabric's ability to absorb liquid from the surface and into the material. Unlike conventional fabrics, which retain moisture, these fabrics use capillary action to wick sweat away much like a paper towel. Moisture wicking clothes are formed of fabric embedded with microscopic pores on the inner surface of the fabric. The fabric pulls perspiration away from the skin and spreads it across the surface and then evaporates into the air.
  • In the manufacturing of the fabrics of the present invention, reagents are disposed on fabric and for fabric fibers.
  • In one embodiment, a solution is prepared in which particles are impregnated into the fabric to which between about 0.1 to 10 grams/liter of Sorbitol (sugar alcohol extract) is added to the solution. This additive assists in the durability, endurance and overall performance of the properties of the fabric. Sorbitol is a derivative from apple, pear or prune extracts, is safe, environmentally friendly and is not found in hydrophilic compounds used in processing synthetic fibers. The addition of Sorbitol allows the properties of the fabric to remain present and active and the garment will suffer no loss of performance during the lifetime of the garment. Sorbitol aids in the integrity of the wicking process in multiple machine washings, enhancing and preserving the overall hydrophilicity of the garment.
  • The American Association of Textile Chemists and Colorists have developed test methods for the measurement, evaluation and classification of liquid moisture management properties of textile fabrics. The test method produces objective measurements of liquid moisture management properties of knitted, woven and nonwoven textile fabrics. The results obtained with this test method are based on water resistance, water repellency and water absorption characteristics of the fabric structure, including the fabric's geometric and internal structure and the wicking characteristics of its fibers and yarns (AATCC Test Method 195-2012).
  • A Moisture Management Tester (MMT) measures, evaluates and classifies liquid management properties of fabrics per AATCC Test Method 195. The MMT evaluates absorption properties by measuring changes in electrical conductivity. A specimen is horizontally placed between an upper and lower sensor having concentric pins. A predetermined amount of a prepared test solution is dropped on the center of the upper facing surface (skin side) of the test specimen. As the solution is transported throughout the specimen, changes in electrical resistance are measured and recorded. Resistance output is then used to calculate moisture content. Results are used to grade the fabric using predetermined indices.
  • It is contemplated that fabrics prepared according to the present invention exhibit increased and desirable characteristics when compared to other wicking fabrics.
  • The evaluated parameters include, but are not limited to:
  • Wetting Time—WTT (top surface);
    Wetting Time—WTB (bottom surface),
    Absorption Rate—ART (top surface);
    Absorption Rate—ARB (bottom surface),
  • Maximum Wetted Radius—MWRT
  • (top surface) and MWRB (bottom surface),
    Spreading Speed—SST (top surface)
    and SSB (bottom surface),
  • Accumulative One-way Transport Capability —(R), and
  • Overall (liquid) Moisture Management
  • Capability (OMMC).
  • Grading—The grading classifies material moving moisture from the back to the face with higher values.
  • In one embodiment, fabric of the present invention exhibits an increase in OMCC of 10-80% versus untreated fabric of the same composition.
  • Evaluation and Testing
  • Samples prepared utilizing sorbitol at 10 g/liter were tested for evaporation and vertical wicking performance testing. This validation testing will be used to standardize the wicking and evaporation performance of the inventive fabric in its unlaundered condition and after numerous laundering cycles.
  • Experimental Summary Evaporation Testing
  • The evaporation performance of the fabric was tested as follows:
  • Moisture Evaporation Rate
  • The fabric will be cut to 1 inch by 1 inch squares. Weigh each fabric square using a Mettler Toledo XS205 balance, which is to be kept open for the duration of the experiment. After weighing each sample, tare the balance and use a pipette to put one drop of water on the balance.
  • Record the mass of the water. Place the fabric square on top of the water in the balance and record the total combined mass of water and fabric. Record the mass reading every 10 minutes until there is no change, meaning the water is completely evaporated. Plot the recorded masses as a function of time to produce an evaporation curve for the fabric. This test can be repeated after the fabric undergoes a standardized laundering and drying procedure to simulate a life cycle analysis of the fabric's evaporation properties. All testing will be performed in triplicates.
  • Vertical Moisture Wicking Rate
  • Cut 10 inch by 1.5 inch samples from both the length and width of the fabric.
  • Mark the fabric at nine, 1 inch intervals beginning at 0.25 inch from the end of the sample. Use only a small mark on the edge of the sample—do not mark across the full width as the ink's properties could interfere with the wicking. Fill a 1000 mL beaker with water and heat it on a hot plate to approximately 90° F. to simulate human sweat. Clamp the fabric to a ring stand overhanging the beaker and hotplate so that the 0.25 inch end of the sample is completely submerged in the warm water. Record the height of the water rising up the fabric at 1 minute intervals, using the 1 inch markings on the fabric as a guide. Plot the recorded heights as a function of time to create a wicking curve for the fabric. This test can be repeated after the fabric undergoes a standardized laundering and drying procedure to simulate a life cycle analysis of the fabric's vertical wicking properties. All testing will be performed in triplicates.
  • The fabric was cut into one inch squares, and the mass of the fabric was recorded over time as it allowed a certain amount of water to evaporate. The mass was recorded at 10 minute intervals on a Mettler Toledo XS205 balance. Two drops of distilled water from a Pasteur pipette were used for each test to give an appreciable amount of water to absorb and evaporate.
  • The fabric was tested in the unlaundered condition, and after 3, 6, 9, 12, and 15 launderings. Note: The unlaundered fabric was tested in triplicate and laundered samples in duplicate. The individual test data were plotted as mass versus time, as shown in FIGS. 3-8.
  • Vertical Wicking
  • The vertical wicking performance of the fabric was tested in accordance with the provided textile test protocol. The fabric was cut into 10 inch by 1.5 inch strips both in-the-machine direction and across-the-machine direction (FIGS. 1-2).
  • Each fabric strip was clipped to a vertical holder and the opposite end was submerged in a beaker of 90° F. distilled water. The height of the water wicking up the fabric was measured at one minute intervals. The fabric was tested in the unlaundered condition, and after 3, 6, 9, 12, and 15 launderings. Testing was terminated when three height readings were the same. The unlaundered sample was tested in triplicate and the laundered samples in duplicate. The averaged data were plotted as height versus time, as shown in FIGS. 1 and 2.
  • IV. Test Results
  • FIGS. 3-8 are plots of the evaporation data, showing the change in mass over time for each run. The numerical data for these plots is provided in Tables 1-3. The unlaundered fabric allowed the water to evaporate within 30 minutes. For 3-15 launderings, the evaporation rate remained steady at an average of 50 minutes. The results of the evaporation testing show the fabric absorbs moisture and removes it via evaporation to the atmosphere. The fabric will perform in the range of data averages as shown by this testing.
  • The plots of the wicking data, both across-the-machine direction (FIG. 1) and in-the-machine direction (FIG. 2) demonstrate the fabric's wicking performance. The numerical data for these tests is provided in Appendix B. All of the samples initially wick faster, with a gradual slowing until completely stopping at the end of the test. There was more slightly more variation in the wicking rate in the samples cut in-the-machine direction compared to those cut in the across-the-machine direction. The test results show the fabric wicks or removes moisture per the standard.
  • TABLE 1
    Evaporation Data
    Unlaundered
    3 Washings 6 Washings
    Time Run
    1 Run 2 Run 3 Run 1 Run2 Run 1 Run 2
    (min) Mass (g) Mass (g) Mass (g)
    0 0.1951 0.2043 0.1895 0.2087 0.198 0.1951 0.2021
    10 0.1727 0.1791 0.1656 0.1976 0.1834 0.1787 0.1814
    20 0.1518 0.1565 0.1448 0.1877 0.1665 0.1607 0.1635
    30 0.1446 0.1461 0.1371 0.1783 0.1522 0.1424 0.1482
    40 0.1654 0.1387 0.1348 0.1428
    50 0.16 0.135 0.1347
    60 0.1346
    9 Washings 12 Washings 15 Washings
    Run
    1 Run 2 Run 1 Run 2 Run 1 Run 2
    Time (min) Mass (g) Mass (g) Mass (g)
    0 0.1948 0.2029 0.2058 0.2205 0.2098 0.2103
    10 0.1796 0.1857 0.1908 0.2053 0.195 0.1964
    20 0.1651 0.1707 0.1805 0.1941 0.178 0.1821
    30 0.1526 0.1542 0.1677 0.1786 0.1664 0.1671
    40 0.1388 0.1377 0.1554 0.1643 0.1534 0.1539
    50 0.1354 0.1348 0.1513 0.1605 0.1465 0.1413
    60
  • TABLE 2
    Wicking Data-
    Across Machine Direction
    Time
    (minutes)
    Across
    Machine Unlaundered 3 Washings 6 Washings 9 Washings 12 Washings 15 Washings
    Directions Average Height (Inches)
    1 1.85 1.45 1.25 1.5 1.5 1.55
    2 2.3 1.9 1.95 1.93 2 2.05
    3 2.68 2.18 2.25 2.25 2.38 2.5
    4 2.97 2.45 2.5 2.58 2.63 2.75
    5 3.2 2.68 2.68 2.8 2.88 3
    6 3.42 2.9 2.83 3 3.13 3.18
    7 3.67 3 2.95 3.2 3.25 3.38
    8 3.75 3.1 3.05 3.3 3.38 3.5
    9 3.88 3.23 3.18 3.43 3.55 3.68
    10 4 3.3 3.33 3.58 3.68 3.75
    11 4.07 3.45 3.33 3.63 3.83 3.9
    12 4.2 3.6 3.38 3.75 3.95 3.95
    13 4.22 3.73 3.45 3.88 4 4
    14 4.35 3.8 3.55 3.93 4.13 4.1
    15 4.43 3.9 3.63 4.08 4.18 4.1
    16 4.43 3.93 3.68 4.2 4.33 4.25
    17 4.4 3.98 3.75 4.25 4.38 4.25
    18 4 3.75 4.25 4.38 4.33
    19 4 3.75 4.1 4.4
    20 4 4.5
    21 4.5
    22 4.5
  • TABLE 3
    Wicking Data- IN Machine Direction
    Time
    (minutes)
    In
    Machine Unlaundered 3 Washings 6 Washings 9 Washings 12 Washings 15 Washings
    Direction Average Height (Inches)
    1 1.78 1.5 1.1 1.5 0.63 1.38
    2 2.25 1.9 1.55 1.93 0.93 1.9
    3 2.67 2.2 1.83 2.25 1.25 2.3
    4 2.92 2.5 2.05 2.58 1.5 2.58
    5 3.07 2.75 2.18 2.8 1.75 2.75
    6 3.25 2.9 2.38 3 1.93 2.93
    7 3.5 3 2.63 3.2 2.13 3
    8 3.62 3.1 2.65 3.3 2.25 3.2
    9 3.8 3.2 2.75 3.43 2.38 3.25
    10 3.8 3.33 2.88 3.58 2.58 3.3
    11 3.93 3.45 2.93 3.63 2.7 3.43
    12 4.03 3.55 3.08 3.75 2.8 3.43
    13 4.07 3.68 3.13 3.88 2.88 3.5
    14 4.18 3.8 3.2 3.93 2.93 3.5
    15 4.25 3.88 3.3 4.08 3.08 3.65
    16 4.25 3.9 3.38 4.2 3.13 3.75
    17 4.25 3.95 3.38 4.25 3.13 3.75
    18 4 4.1 4.1
    19 4.1 4.25
    20 4.1 4.25
    21 4.2 4.25
    22
  • Growth Promotion Study Description:
  • A study was performed utilizing the prepared sample with 10 g sorbitol/liter to compare promotion of growth of Candida albicans. Sample material of the present invention was compared to generic cotton material for the study.
  • The general study parameters were as follows:
    1. A representative 1 inch square (approx) of each material to be tested was placed into a 24-hour broth of the challenge organism and shaken for 2 minutes.
    2. A 1 inch square (approx) of each material was placed into sterile water and taken through the entire process to serve as controls.
    3. After the 2 minute shaking period, specimens were removed from the broth/sterile water and shaken dry to remove all free liquid.
    4. The “shake dried” specimens were placed into dry, sterile petri dishes and incubated for 48 hours.
    5. After initial incubation, specimens were placed onto the appropriate growth media and incubated for 48 hours.
    6. After final incubation, the materials were visually examined for comparison. Growth colonies were also counted to provide a numerical comparison. Digital photographs of the inoculated specimens were taken and are provided for review.
  • No growth was observed on the control specimens and values are presented.
  • Observations/colony counts did indicate that the inventive material tested was less promotive of Candida albicans growth than was the generic cotton material.
  • Test according to EPA SM 9215 B and results in Table 4.
  • TABLE 4
    Sample Results (CFU/g)
    BLANK 1 None Detected
    BLANK 2 None Detected
    Experimental Sample 1  8.0
    Experimental Sample 2 None Detected
    Cotton Fabric 1 54.0
    Cotton Fabric 2 14.0
  • While the invention has been described in its preferred form or embodiment with some degree of particularity, it is understood that this description has been given only by way of example and that numerous changes in the details of construction, fabrication, and use, including the combination and arrangement of parts, may be made without departing from the spirit and scope of the invention.

Claims (7)

What is claimed is:
1. A fabric for use in wicking clothing comprising:
fabric strands having micropores formed thereon; and
a sugar alcohol disposed on said fabric strands.
2. The fabric of claim 1 wherein said sugar alcohol is sorbitol.
3. The fabric of claim 2 exhibiting an increase of 10-80% of measured overall liquid moisture management capability versus fabric not having said disposed sugar alcohol.
4. A method of producing wicking clothing, said method comprising the steps of:
providing a fabric of claim 1 wherein said fabric has strands with micropores formed thereon;
preparing a solution in a solvent containing between 0.1 to 10 g/liter of a sugar alcohol;
disposing said sugar alcohol onto said fabric, whereby said disposing includes evaporation of said solvent;
incorporating said fabric with sugar alcohol into an article of clothing;
said fabric providing a reduction in microbial growth compared to untreated cotton fabric.
5. The method of claim 4 wherein said sugar alcohol is sorbitol.
6. The method of claim 4 wherein said solvent is aqueous, organic, or an aqueous organic co-solvent.
7. The method of claim 4 wherein the fabric retains 70-125% wicking property after 15 washings compared to an unlaundered fabric.
US14/331,368 2013-07-15 2014-07-15 Novel wicking fabric and clothing Abandoned US20150017855A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/331,368 US20150017855A1 (en) 2013-07-15 2014-07-15 Novel wicking fabric and clothing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361846168P 2013-07-15 2013-07-15
US14/331,368 US20150017855A1 (en) 2013-07-15 2014-07-15 Novel wicking fabric and clothing

Publications (1)

Publication Number Publication Date
US20150017855A1 true US20150017855A1 (en) 2015-01-15

Family

ID=52277434

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/331,368 Abandoned US20150017855A1 (en) 2013-07-15 2014-07-15 Novel wicking fabric and clothing

Country Status (1)

Country Link
US (1) US20150017855A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350710B1 (en) * 1996-07-06 2002-02-26 Stockhausen Gmbh & Co. Kg Absorbent inserts, method of producing them and their use
US20030032349A1 (en) * 2001-05-14 2003-02-13 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Damp cleansing wipe
US20050112374A1 (en) * 2003-11-20 2005-05-26 Alan Michael Jaffee Method of making fibrous mats and fibrous mats
US20090098359A1 (en) * 2007-10-11 2009-04-16 Waller Jr Clinton P Hydrophilic porous substrates
US20100210160A1 (en) * 2009-02-18 2010-08-19 3M Innovative Properties Company Hydrophilic porous substrates
US20110034887A1 (en) * 2009-08-10 2011-02-10 Arctic Ease, LLC Cooling products and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350710B1 (en) * 1996-07-06 2002-02-26 Stockhausen Gmbh & Co. Kg Absorbent inserts, method of producing them and their use
US20030032349A1 (en) * 2001-05-14 2003-02-13 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Damp cleansing wipe
US20050112374A1 (en) * 2003-11-20 2005-05-26 Alan Michael Jaffee Method of making fibrous mats and fibrous mats
US20090098359A1 (en) * 2007-10-11 2009-04-16 Waller Jr Clinton P Hydrophilic porous substrates
US20100210160A1 (en) * 2009-02-18 2010-08-19 3M Innovative Properties Company Hydrophilic porous substrates
US20110034887A1 (en) * 2009-08-10 2011-02-10 Arctic Ease, LLC Cooling products and methods

Similar Documents

Publication Publication Date Title
Supuren et al. Moisture management and thermal absorptivity properties of double-face knitted fabrics
Troynikov et al. Moisture management properties of wool/polyester and wool/bamboo knitted fabrics for the sportswear base layer
Crow et al. The interaction of water with fabrics
CN105970488B (en) A kind of functionality loop bonding non-woven fabrics and preparation method thereof
CN104897513B (en) textile evaporation detection method
CN103061204B (en) A kind of soft paper through surface dressing
CN102505467A (en) Finishing liquor for realizing antibiosis of fabrics and preparation method of finishing liquor
Babu et al. Effect of yarn linear density on moisture management characteristics of cotton/polypropylene double layer knitted fabrics/Efectul densitatii liniare asupra caracteristicilor de control al umiditatii tricoturilor din bumbac/polipropilena dublu stratificate
Laing et al. Determining the drying time of apparel fabrics
Matusiak et al. Comfort-related properties of seersucker fabrics in dry and wet state
Mallikarjunan et al. Comfort and thermo physiological characteristics of multilayered fabrics for medical textiles
Choudhary et al. The influence of yarn and knit structure on moisture management properties of sportswear fabric
US20150017855A1 (en) Novel wicking fabric and clothing
CN109100496A (en) A kind of evaluation method of fabric to the wet sensitivity effects of skin
CN108842292A (en) A kind of multiple fibrous mixing insulation flocculus and the preparation method and application thereof
CN109431837A (en) A kind of moisturizing beauty paper handkerchief and preparation method thereof
Fangueiro et al. Moisture management performance of functional yarns based on wool fibres
Wang et al. Study on the electrical resistance of textiles under wet conditions
Kar et al. Comparison of different test methods for the measurement of fabric or garment moisture transfer properties
Soundri et al. Dimensional, moisture, and thermal properties of bi-layered knitted fabric for sportswear application
KR20110088281A (en) Moisture control fiber and fabric
Palaniappan et al. Studies on thermal and moisture properties of novel Eri silk knitted structures
Hussainn et al. Liquid moisture transportation properties of functional underwears: Part 1
Karthik et al. Analysis of moisture management properties of cotton/milkweed blended rotor yarn fabrics
US20230414417A1 (en) Method and apparatus for estimating menstrual fluid quantity

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION