US20150007573A1 - Annular-combustion-chamber bypass - Google Patents

Annular-combustion-chamber bypass Download PDF

Info

Publication number
US20150007573A1
US20150007573A1 US14/382,918 US201314382918A US2015007573A1 US 20150007573 A1 US20150007573 A1 US 20150007573A1 US 201314382918 A US201314382918 A US 201314382918A US 2015007573 A1 US2015007573 A1 US 2015007573A1
Authority
US
United States
Prior art keywords
combustion chamber
annular combustion
ducts
outer shell
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/382,918
Inventor
Francois Benkler
Thomas Brandenburg
Olga Deiss
Thomas Grieb
Marco Link
Nicolas Savilius
Daniel Vogtmann
Jan Wilkes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAVILIUS, NICOLAS, Link, Marco, WILKES, JAN, BENKLER, FRANCOIS, DEISS, OLGA, GRIEB, THOMAS, VOGTMANN, DANIEL, Brandenburg, Thomas
Publication of US20150007573A1 publication Critical patent/US20150007573A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • F23R3/08Arrangement of apertures along the flame tube between annular flame tube sections, e.g. flame tubes with telescopic sections

Definitions

  • the invention relates to an annular combustion chamber having a bypass for reducing carbon monoxide emissions in partial load operation, and to a gas turbine having such an annular combustion chamber.
  • the combustion temperature in the combustion chamber drops.
  • the primary zone temperature which is relevant for carbon monoxide emissions also falls, to below a minimum value, whereby an increased quantity of carbon monoxide is generated and/or emitted.
  • the useful partial load range of the gas turbine is limited.
  • the invention achieves this object by providing that, in such an annular combustion chamber for a gas turbine, having an outer shell which has at least one inlet opening for a burner and an outlet that opens into a turbine space, ducts are provided in the outer shell in the region of the outlet, which ducts are closable and are oriented substantially parallel to the axis of symmetry of the annular combustion chamber, and through these compressor outlet air can be guided into the annular combustion chamber.
  • the annular combustion chamber comprises a last row of heat-shield plates arranged in the circumferential direction on the outer shell in the region of the outlet in the interior of the annular combustion chamber, and a second-to-last row of heat-shield plates arranged next to the last row in the direction of the at least one inlet opening, wherein a gap is provided between the last and second-to-last rows of heat-shield plates, in the region of the ducts.
  • an adjustment device comprising ring segments which form a ring that is oriented coaxially with the annular combustion chamber and may be moved axially with respect to the annular combustion chamber, is provided on the exterior of the outer shell for closing and opening the ducts.
  • the ring segments have the advantage of simpler assembly and/or disassembly.
  • the ring of the adjustment device can be moved in a continuously variable manner in order to set, as required, a desired gap width and thus to be able to remove a determined quantity of air from the compressor outlet air prior to the combustion.
  • the ring segments have, on their side facing away from the turbine, projections for engaging in the ducts.
  • the projections are of trapezoidal design.
  • the quantity of air to be guided through the ducts can be set with particular precision.
  • the ducts may of course also be entirely closed.
  • the ring is moved only in the axial direction, by a mechanism.
  • a mechanism for controlling and moving the ring segments Specifically, this can be effected using motors, lever or hydraulic mechanisms, etc., which for example displace the ring axially on rails or other movement elements.
  • these mechanisms may also be installed inside or outside the housing.
  • the projections of the ring segments have a thermal barrier coating (TBC) on their surfaces exposed to the hot gas of the combustion.
  • TBC thermal barrier coating
  • the interior of the outer shell also has a thermal barrier coating in the region of the gap, between the last and the second-to-last rows of the heat-shield plates, that is to say between the openings of the ducts into the interior of the combustion chamber.
  • the last and the second-to-last rows of the heat-shield plates still adjoin one another and the interior of the outer shell was sufficiently protected by the heat-shield plates.
  • the gap resulting from the invention increases the exposure of the outer shell, in this region, to the hot gases of the combustion.
  • the last row of heat-shield plates which is the furthest of all the heat-shield plates from the core region of the combustion, is metallic and the second-to-last row is ceramic as, on one hand, the service temperature of ceramic materials is substantially higher than the maximum service temperature of high-temperature metal alloys and, on the other hand, high-temperature metal alloys are less brittle and have better heat- and temperature-conducting behavior.
  • the invention also indicates a novel gas turbine in which an annular combustion chamber according to the invention is integrated.
  • the consumption of cold air in baseload operation is no greater than with current designs.
  • the invention is relatively easy to convert as the ring segments, for example two half rings, are simple components which need only be displaced axially.
  • FIG. 1 shows a combustion system having an annular combustion chamber according to the invention
  • FIG. 2 shows the turbine-facing side of the annular combustion chamber with adjustment device on the outer shell and bypass ducts
  • FIG. 3 shows a half ring of the adjustment device for the bypass
  • FIG. 4 shows a metallic heat-shield plate according to the prior art
  • FIG. 5 shows a metallic heat-shield plate for the annular combustion chamber according to the invention
  • FIG. 6 shows the interior of the annular combustion chamber in the region of the outlet.
  • FIG. 1 shows, schematically and by way of example, the combustion system of an annular combustion chamber 1 according to the invention.
  • the annular combustion chamber 1 consists of a closed ring which is arranged around a rotor axis 2 .
  • Burners 3 are arranged in inlet openings 4 in the upper region of the combustion chamber 1 . This is where the fuel 5 is mixed with the compressor air 6 .
  • the actual combustion takes place in the combustion chamber 1 .
  • the hot combustion gases enter the turbine space 8 through the outlet 7 and there impinge upon the first static guide vane 9 .
  • the annular combustion chamber 1 is clad with ceramic heat-shields 10 and metallic heat-shields 11 which are attached to the outer shell 12 .
  • the combustion chamber outer shell 12 is provided with ducts 14 between the last ceramic heat-shield row 13 (i.e. the second-to-last heat-shield row) and the metallic intake shell plate (i.e. the last heat-shield row 11 ), in the region of the outlet 7 , which ducts are oriented substantially parallel to the axis 2 of the annular combustion chamber 1 .
  • an adjustment device 15 is provided on the exterior of the outer shell 12 , as shown in FIG. 2 .
  • the adjustment device 15 has ring segments 16 , for example two half rings, one of which is shown in FIG. 3 .
  • ring segments 16 for example two half rings, one of which is shown in FIG. 3 .
  • the metallic intake shell plates that is to say the plates of the last heat-shield row 11 are shorter than a heat-shield plate 18 of the last row of an annular combustion chamber according to the prior art.
  • FIG. 4 shows such a heat-shield plate 18 of the last row of an annular combustion chamber according to the prior art and the shortening undertaken at the broken line so as to obtain a metallic heat-shield plate 11 as shown in FIG. 5 and as required for the present invention.
  • FIG. 6 shows a view of the interior of the annular combustion chamber 1 with last 11 and second-to-last 13 heat-shield plate rows and the openings 20 of the ducts 14 in the outer shell 12 for the air bypass during partial load.
  • the last row 11 of the heat-shield plates is shorter than the heat-shield plates according to the prior art and is arranged on the outer shell 12 of the annular combustion chamber 1 such that it no longer directly adjoins the second-to-last row of the heat-shield plates 13 , there results a gap 19 in the circumferential direction of the annular combustion chamber 1 without the heat protection which exists hitherto.
  • the ducts 14 open into the interior of the annular combustion chamber 1 in this gap 19 .
  • the interior of the outer shell 12 is provided with a thermal barrier coating in the region of the gap 19 between the last 11 and the second-to-last row 13 of the heat-shield plates, that is to say between the openings 20 of the ducts 14 toward the combustion chamber interior.
  • the projections 17 of the ring segments 16 also have a thermal barrier coating on their surfaces exposed to the hot gas of the combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

An annular combustion chamber (1) for a gas turbine, the chamber having an outer shell (12) which has at least one inlet opening (4) for a burner (3) and an outlet (7) which opens into a turbine chamber (8), wherein ducts (14) which can be closed, which are oriented substantially parallel to the symmetry axis (2) of the annular combustion chamber (1), and through which final compressor air is guided into the annular combustion chamber (1) are provided in the outer shell (12) in the region of the outlet (7). Ring segments around the outer shell have projections selectively movable to at least partially block and open the ducts. A gas turbine is also disclosed.

Description

  • The invention relates to an annular combustion chamber having a bypass for reducing carbon monoxide emissions in partial load operation, and to a gas turbine having such an annular combustion chamber.
  • When the gas turbine is operated at partial load, the combustion temperature in the combustion chamber drops. As a consequence, the primary zone temperature which is relevant for carbon monoxide emissions also falls, to below a minimum value, whereby an increased quantity of carbon monoxide is generated and/or emitted. As this is to be avoided, the useful partial load range of the gas turbine is limited.
  • It is an object of the invention to provide an annular combustion chamber, of the type mentioned in the introduction, which permits a considerable increase in the useful partial load range.
  • The invention achieves this object by providing that, in such an annular combustion chamber for a gas turbine, having an outer shell which has at least one inlet opening for a burner and an outlet that opens into a turbine space, ducts are provided in the outer shell in the region of the outlet, which ducts are closable and are oriented substantially parallel to the axis of symmetry of the annular combustion chamber, and through these compressor outlet air can be guided into the annular combustion chamber.
  • By virtue of this measure, it is possible to introduce compressor air into a region at the end of the combustion chamber without it taking part in the combustion, that is to say it is supplied back to the air-fuel mixture only after the combustion process. The effect of this is that the richer mixture can be burnt in the combustion space at higher temperatures, and thus the carbon monoxide emissions during partial load operation can be reduced.
  • In one advantageous embodiment, the annular combustion chamber comprises a last row of heat-shield plates arranged in the circumferential direction on the outer shell in the region of the outlet in the interior of the annular combustion chamber, and a second-to-last row of heat-shield plates arranged next to the last row in the direction of the at least one inlet opening, wherein a gap is provided between the last and second-to-last rows of heat-shield plates, in the region of the ducts. By virtue of this gap, the compressor outlet air can flow unperturbed into the combustion chamber.
  • It is further advantageous if an adjustment device, comprising ring segments which form a ring that is oriented coaxially with the annular combustion chamber and may be moved axially with respect to the annular combustion chamber, is provided on the exterior of the outer shell for closing and opening the ducts. The ring segments have the advantage of simpler assembly and/or disassembly.
  • In this context, it is expedient if the ring of the adjustment device can be moved in a continuously variable manner in order to set, as required, a desired gap width and thus to be able to remove a determined quantity of air from the compressor outlet air prior to the combustion.
  • In one advantageous embodiment of the invention, the ring segments have, on their side facing away from the turbine, projections for engaging in the ducts. In this context, it is expedient if the projections are of trapezoidal design. By virtue of the projections, in particular by virtue of their trapezoidal shape, the quantity of air to be guided through the ducts can be set with particular precision. The ducts may of course also be entirely closed. In that context, the ring is moved only in the axial direction, by a mechanism. Various possibilities exist for such a mechanism for controlling and moving the ring segments. Specifically, this can be effected using motors, lever or hydraulic mechanisms, etc., which for example displace the ring axially on rails or other movement elements. Optionally, these mechanisms may also be installed inside or outside the housing.
  • With regard to the high temperatures when the annular combustion chamber is in operation, it is advantageous if the projections of the ring segments have a thermal barrier coating (TBC) on their surfaces exposed to the hot gas of the combustion. For the same reason, it is expedient if the interior of the outer shell also has a thermal barrier coating in the region of the gap, between the last and the second-to-last rows of the heat-shield plates, that is to say between the openings of the ducts into the interior of the combustion chamber. In annular combustion chambers according to the prior art, the last and the second-to-last rows of the heat-shield plates still adjoin one another and the interior of the outer shell was sufficiently protected by the heat-shield plates. The gap resulting from the invention increases the exposure of the outer shell, in this region, to the hot gases of the combustion.
  • It is furthermore expedient if the last row of heat-shield plates, which is the furthest of all the heat-shield plates from the core region of the combustion, is metallic and the second-to-last row is ceramic as, on one hand, the service temperature of ceramic materials is substantially higher than the maximum service temperature of high-temperature metal alloys and, on the other hand, high-temperature metal alloys are less brittle and have better heat- and temperature-conducting behavior.
  • Finally, the invention also indicates a novel gas turbine in which an annular combustion chamber according to the invention is integrated.
  • By virtue of the continuously variable adjusting device according to the invention for feeding compressor outlet air into a region at the end of the combustion chamber, i.e. after the combustion has taken place, it is possible to reduce carbon monoxide emissions in partial load operation since higher combustion temperatures arise on account of a richer mixture.
  • The consumption of cold air in baseload operation is no greater than with current designs.
  • Furthermore, the invention is relatively easy to convert as the ring segments, for example two half rings, are simple components which need only be displaced axially.
  • The invention will be explained in more detail and by way of example with reference to the drawings, which are diagrammatic and not to scale and in which:
  • FIG. 1 shows a combustion system having an annular combustion chamber according to the invention,
  • FIG. 2 shows the turbine-facing side of the annular combustion chamber with adjustment device on the outer shell and bypass ducts,
  • FIG. 3 shows a half ring of the adjustment device for the bypass,
  • FIG. 4 shows a metallic heat-shield plate according to the prior art,
  • FIG. 5 shows a metallic heat-shield plate for the annular combustion chamber according to the invention and
  • FIG. 6 shows the interior of the annular combustion chamber in the region of the outlet.
  • FIG. 1 shows, schematically and by way of example, the combustion system of an annular combustion chamber 1 according to the invention. The annular combustion chamber 1 consists of a closed ring which is arranged around a rotor axis 2. Burners 3 are arranged in inlet openings 4 in the upper region of the combustion chamber 1. This is where the fuel 5 is mixed with the compressor air 6. The actual combustion takes place in the combustion chamber 1. The hot combustion gases enter the turbine space 8 through the outlet 7 and there impinge upon the first static guide vane 9. In order to protect against scaling, the annular combustion chamber 1 is clad with ceramic heat-shields 10 and metallic heat-shields 11 which are attached to the outer shell 12.
  • According to the invention, the combustion chamber outer shell 12 is provided with ducts 14 between the last ceramic heat-shield row 13 (i.e. the second-to-last heat-shield row) and the metallic intake shell plate (i.e. the last heat-shield row 11), in the region of the outlet 7, which ducts are oriented substantially parallel to the axis 2 of the annular combustion chamber 1.
  • In order that these ducts 14 may be closed or opened as required, an adjustment device 15 is provided on the exterior of the outer shell 12, as shown in FIG. 2. The adjustment device 15 has ring segments 16, for example two half rings, one of which is shown in FIG. 3. By means of corresponding projections 17, it is possible to set determined gap widths in the ducts 14 or even to close the latter entirely.
  • In order to permit this inflow of air into the annular combustion chamber 1, the metallic intake shell plates, that is to say the plates of the last heat-shield row 11 are shorter than a heat-shield plate 18 of the last row of an annular combustion chamber according to the prior art. FIG. 4 shows such a heat-shield plate 18 of the last row of an annular combustion chamber according to the prior art and the shortening undertaken at the broken line so as to obtain a metallic heat-shield plate 11 as shown in FIG. 5 and as required for the present invention.
  • FIG. 6 shows a view of the interior of the annular combustion chamber 1 with last 11 and second-to-last 13 heat-shield plate rows and the openings 20 of the ducts 14 in the outer shell 12 for the air bypass during partial load.
  • Since, according to the invention, the last row 11 of the heat-shield plates is shorter than the heat-shield plates according to the prior art and is arranged on the outer shell 12 of the annular combustion chamber 1 such that it no longer directly adjoins the second-to-last row of the heat-shield plates 13, there results a gap 19 in the circumferential direction of the annular combustion chamber 1 without the heat protection which exists hitherto. The ducts 14 open into the interior of the annular combustion chamber 1 in this gap 19. When the annular combustion chamber 1 is in operation, the outer shell 12 is exposed to very high temperatures between these openings 20. In order to protect the outer shell 12 from these temperatures in spite of the gap 19, the interior of the outer shell 12 is provided with a thermal barrier coating in the region of the gap 19 between the last 11 and the second-to-last row 13 of the heat-shield plates, that is to say between the openings 20 of the ducts 14 toward the combustion chamber interior.
  • The projections 17 of the ring segments 16 also have a thermal barrier coating on their surfaces exposed to the hot gas of the combustion.

Claims (10)

1. An annular combustion chamber for a gas turbine, the combustion chamber having an outer shell and the outer shell has at least one inlet opening for a burner and has an outlet that opens into a turbine space;
ducts in the outer shell located in the region of the outlet, the ducts are closable, the ducts are oriented substantially parallel to an axis of symmetry of the annular combustion chamber, and compressor outlet air can selectively be guided through the ducts and into the annular combustion chamber;
an adjustment device, comprising a ring that is oriented coaxially with the annular combustion chamber and may be moved axially with respect to the annular combustion chamber, the ring is provided on the exterior of the outer shell and is configured and located for selectively closing and opening the ducts.
2. The annular combustion chamber as claimed in claim 1, comprising a last row of heat-shield plates arranged in the circumferential direction on the outer shell in the region of the outlet from the interior of the annular combustion chamber, and
a second-to-last row of heat-shield plates arranged next to the last row in the direction toward the at least one inlet opening
a gap between the last and second-to-last rows of heat-shield plates, in the region of the opening of the ducts into the interior of the annular combustion chamber.
3. The annular combustion chamber as claimed in claim 1, wherein the ring is movable in a continuously variable manner for the selective closing and opening of the ducts.
4. The annular combustion chamber as claimed in claim 1, wherein the ring has, on a side thereof facing away from the turbine, projections for engaging in respective the ducts.
5. The annular combustion chamber as claimed in claim 4, wherein the projections engaging in the ducts are of trapezoidal shape.
6. The annular combustion chamber as claimed in either of claim 4, wherein the projections have a thermal barrier coating on surfaces exposed to hot gas.
7. The annular combustion chamber as claimed in claim 6, wherein the interior of the outer shell has a thermal barrier coating in the region of the gap.
8. The annular combustion chamber as claimed in claim 2, wherein the last row of heat-shield plates is metallic and the second-to-last row of heat shield plates is ceramic.
9. A gas turbine having an annular combustion chamber as claimed in claim 2.
10. The annular combustion chamber as claimed in claim 1, wherein the ring is comprised of a plurality of ring segments which together define the ring.
US14/382,918 2012-03-16 2013-03-15 Annular-combustion-chamber bypass Abandoned US20150007573A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012204162A DE102012204162A1 (en) 2012-03-16 2012-03-16 Ring combustor bypass
DE102012204162.1 2012-03-16
PCT/EP2013/055344 WO2013135859A2 (en) 2012-03-16 2013-03-15 Annular-combustion-chamber bypass

Publications (1)

Publication Number Publication Date
US20150007573A1 true US20150007573A1 (en) 2015-01-08

Family

ID=47901090

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/382,918 Abandoned US20150007573A1 (en) 2012-03-16 2013-03-15 Annular-combustion-chamber bypass

Country Status (6)

Country Link
US (1) US20150007573A1 (en)
EP (1) EP2812636B1 (en)
KR (1) KR20140138710A (en)
CN (1) CN104169649B (en)
DE (1) DE102012204162A1 (en)
WO (1) WO2013135859A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016124348A1 (en) * 2015-02-06 2016-08-11 Siemens Aktiengesellschaft Annular combustion chamber with bypass segment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104566463B (en) * 2014-11-29 2016-12-07 哈尔滨广瀚燃气轮机有限公司 Gas turbine low discharging burning chamber conditioner
CN104807043A (en) * 2014-11-29 2015-07-29 哈尔滨广瀚燃气轮机有限公司 Annular combustion chamber of natural gas fuel gas turbine
DE102015205975A1 (en) * 2015-04-02 2016-10-06 Siemens Aktiengesellschaft Umführungs heat shield element
DE102015215207A1 (en) * 2015-08-10 2017-02-16 Siemens Aktiengesellschaft Combustion chamber for a gas turbine and heat shield element for lining such a combustion chamber
CN107923616B (en) * 2015-08-27 2019-12-13 西门子股份公司 Cooling air optimized metal insulation element
CN108131399B (en) * 2017-11-20 2019-06-28 北京动力机械研究所 A kind of engine bearing seat cooling structure
EP3499125A1 (en) * 2017-12-12 2019-06-19 Siemens Aktiengesellschaft Pipe combustion chamber with ceramic cladding

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958413A (en) * 1974-09-03 1976-05-25 General Motors Corporation Combustion method and apparatus
US5636510A (en) * 1994-05-25 1997-06-10 Westinghouse Electric Corporation Gas turbine topping combustor
US7096675B2 (en) * 2001-11-20 2006-08-29 Volvo Aero Corporation Device for a combustion chamber in a gas turbine for controlling the intake of gas to a combustion zone
US7631504B2 (en) * 2006-02-21 2009-12-15 General Electric Company Methods and apparatus for assembling gas turbine engines
US8726626B2 (en) * 2012-01-09 2014-05-20 Rolls-Royce Plc Combustor for a gas turbine engine
US20150027128A1 (en) * 2012-03-15 2015-01-29 Siemens Aktiengesellschaft Heat-shield element for a compressor-air bypass around the combustion chamber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660046B1 (en) * 1993-12-22 1999-12-01 Siemens Westinghouse Power Corporation Combustor bybass system for a gas turbine
JP3846169B2 (en) * 2000-09-14 2006-11-15 株式会社日立製作所 Gas turbine repair method
JP2002317650A (en) * 2001-04-24 2002-10-31 Mitsubishi Heavy Ind Ltd Gas turbine combustor
US8281601B2 (en) * 2009-03-20 2012-10-09 General Electric Company Systems and methods for reintroducing gas turbine combustion bypass flow
US20110225947A1 (en) * 2010-03-17 2011-09-22 Benjamin Paul Lacy System and methods for altering air flow in a combustor
EP2423596A1 (en) * 2010-08-27 2012-02-29 Siemens Aktiengesellschaft Heat shield element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958413A (en) * 1974-09-03 1976-05-25 General Motors Corporation Combustion method and apparatus
US5636510A (en) * 1994-05-25 1997-06-10 Westinghouse Electric Corporation Gas turbine topping combustor
US7096675B2 (en) * 2001-11-20 2006-08-29 Volvo Aero Corporation Device for a combustion chamber in a gas turbine for controlling the intake of gas to a combustion zone
US7631504B2 (en) * 2006-02-21 2009-12-15 General Electric Company Methods and apparatus for assembling gas turbine engines
US8726626B2 (en) * 2012-01-09 2014-05-20 Rolls-Royce Plc Combustor for a gas turbine engine
US20150027128A1 (en) * 2012-03-15 2015-01-29 Siemens Aktiengesellschaft Heat-shield element for a compressor-air bypass around the combustion chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016124348A1 (en) * 2015-02-06 2016-08-11 Siemens Aktiengesellschaft Annular combustion chamber with bypass segment

Also Published As

Publication number Publication date
WO2013135859A3 (en) 2013-11-14
CN104169649A (en) 2014-11-26
EP2812636A2 (en) 2014-12-17
DE102012204162A1 (en) 2013-09-19
KR20140138710A (en) 2014-12-04
CN104169649B (en) 2016-11-09
EP2812636B1 (en) 2016-06-29
WO2013135859A2 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
US20150007573A1 (en) Annular-combustion-chamber bypass
US20150027128A1 (en) Heat-shield element for a compressor-air bypass around the combustion chamber
US9376961B2 (en) System for controlling a flow rate of a compressed working fluid to a combustor fuel injector
EP2211105A2 (en) Turbulated combustor aft-end liner assembly and related cooling method
US8973367B2 (en) Fuel lance for A burner
EP2481983B1 (en) Turbulated Aft-End liner assembly and cooling method for gas turbine combustor
EP2766664B1 (en) Combustion chamber of a combustor for a gas turbine
EP2846097B1 (en) A gas turbine combustion chamber with tiles having film cooling apertures
US5012645A (en) Combustor liner construction for gas turbine engine
US20130078582A1 (en) Method of operating a combustion chamber
US10386072B2 (en) Internally cooled dilution hole bosses for gas turbine engine combustors
EP2837889B1 (en) Sequential combustion with dilution gas mixer
JP6154675B2 (en) Transition duct for gas turbine
US9151171B2 (en) Stepped inlet ring for a transition downstream from combustor basket in a combustion turbine engine
CN1829879A (en) Heat shield arrangement for a hot gas-guiding component, particularly for a combustion chamber of a gas turbine
US20150059349A1 (en) Combustor chamber cooling
EP3312508B1 (en) Gas turbine combustor
US20140123651A1 (en) System for providing fuel to a combustor assembly in a gas turbine engine
RU2686246C2 (en) Combustor of gas turbine with pressure drop optimized liner cooling
US8745986B2 (en) System and method of supplying fuel to a gas turbine
CN109028141A (en) Gas turbine including multiple tubular burners
US4090360A (en) Single chamber type combustion structure for a gas turbine engine
US9038393B2 (en) Fuel gas cooling system for combustion basket spring clip seal support
US9057524B2 (en) Shielding wall for a fuel supply duct in a turbine engine
US3682453A (en) Rotary kiln nose ring

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENKLER, FRANCOIS;DEISS, OLGA;GRIEB, THOMAS;AND OTHERS;SIGNING DATES FROM 20140805 TO 20140901;REEL/FRAME:033669/0710

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION