US20140332122A1 - High carbon hot rolled steel sheet and method for manufacturing the same (as amended) - Google Patents

High carbon hot rolled steel sheet and method for manufacturing the same (as amended) Download PDF

Info

Publication number
US20140332122A1
US20140332122A1 US14/370,319 US201214370319A US2014332122A1 US 20140332122 A1 US20140332122 A1 US 20140332122A1 US 201214370319 A US201214370319 A US 201214370319A US 2014332122 A1 US2014332122 A1 US 2014332122A1
Authority
US
United States
Prior art keywords
less
steel sheet
high carbon
percent
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/370,319
Inventor
Nobuyuki Nakamura
Takashi Kobayashi
Yoshimasa Funakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Assigned to JFE STEEL CORPORATION reassignment JFE STEEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUNAKAWA, YOSHIMASA, NAKAMURA, NOBUYUKI, KOBAYASHI, TAKASHI
Publication of US20140332122A1 publication Critical patent/US20140332122A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a high carbon hot rolled steel sheet having excellent press formability and hardenability and a method for manufacturing the same.
  • automotive parts e.g., gears, transmissions, and seat recliners
  • hot rolled steel sheets which are carbon steels for machine structural use specified in JIS G 4051
  • cold press forming into predetermined shapes and applying a hardening treatment to ensure a predetermined hardness.
  • a steel sheet as a material is required to have excellent press formability and hardenability, and various high carbon hot rolled steel sheets have been proposed previously.
  • Patent Literature 1 discloses a hot rolled steel sheet having excellent impact properties after hardening and containing, as steel components, C: 0.10% to 0.37%, Si: 1% or less, Mn: 1.4% or less, P: 0.1% or less, S: 0.03% or less, sol.
  • Al 0.01% to 0.1%
  • N 0.0005% to 0.0050%
  • Ti 0.005% to 0.05%
  • B 0.0003% to 0.0050%
  • Patent Literature 2 discloses a method for manufacturing a tempering free Ti-B bearing high carbon steel sheet having excellent formability and toughness, the method including the steps of plastic working a hot rolled steel sheet having a sheet thickness of 6 mm or less and a steel composition containing C: 0.15% to 0.40%, Si 0.35%, Mn: 0.6% to 1.50%, P 0.03%, S 0.020%, Ti: 0.005% to 0.1%, sol.
  • Al 0.01% to 0.20%, N: 0.0020% to 0.012%, B: 0.0003% to 0.0030%, and the remainder composed of substantially Fe, on a percent by mass basis, where B ⁇ 0.0032 ⁇ 0.014 ⁇ sol.
  • Al ⁇ 0.029 ⁇ Ti is satisfied, performing heat soaking in a temperature range of Ac 3 to 950° C., and performing quenching in water or oil.
  • Patent Literature 3 discloses a high carbon hot rolled steel sheet having a composition containing C: 0.20% to 0.48%, Si: 0.1% or less, Mn: 0.20% to 0.60%, P: 0.02% or less, S: 0.01% or less, sol.
  • Al 0.1% or less, N: 0.005% or less, Ti: 0.005% to 0.05%, B: 0.0005% to 0.003%, Cr: 0.05% to 0.3%, and the remainder composed of Fe and incidental impurities, on a percent by mass basis, where Ti ⁇ (48/14)N ⁇ 0.005 (in the formula, the symbols of elements express percent by mass of the contents of the respective elements) is satisfied, and a microstructure in which a ferrite average grain size is 6 ⁇ m or less, a carbide average grain size is 0.1 ⁇ m or more and less than 1.20 ⁇ m, and a volume fraction of ferrite grains substantially not containing carbide is 5% or less.
  • Patent Literatures 1 to 3 degradation in the ductility and decrease in the hardness of a surface layer portions of the steel sheet after hardening are observed, and it is difficult to provide excellent press formability and excellent hardenability stably.
  • the present inventors performed intensive studies to achieve the above-described objects and, as a result, found the following.
  • the steel sheet becomes soft, the ductility is improved certainly, and excellent press formability is obtained stably by establishing a microstructure composed of ferrite and carbides, specifying the average grain size of the ferrite to be 10 to 20 ⁇ m, and specifying the spheroidization ratio of the carbides to be 90% or more.
  • the average amount of N in a surface layer portion of the steel sheet becomes 0.1 percent by mass or more, decrease in the hardness of the surface layer portion of the steel sheet after hardening is suppressed, and excellent hardenability can be obtained stably by specifying the amount of Al to be 0.1 percent by mass or more and performing annealing to spheroidize carbides in an atmosphere primarily containing a nitrogen gas (hereafter simply referred to as spheroidizing annealing).
  • the present invention has been made on the basis of the above-described findings, and includes providing a high carbon hot rolled steel sheet having a chemical composition containing by massa, C: 0.20% to 0.48%, Si: 0.1% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.01% or less, Al: 0.1% to 0.6%, Cr: 0.05% to 0.5%, B: 0.0005% to 0.0050%, Ca: 0.0010% to 0.0050%, and the remainder composed of Fe and incidental impurities, on a percent by mass basis, where the average amount of N in a surface layer portion from the surface to the position at a depth of 0.1 mm in thickness direction is 0.1% or more and the average amount of N in the central portion in thickness is 0.01% or less, and a microstructure composed of ferrite and carbides, wherein the average grain size of the above-described ferrite is 10 to 20 ⁇ m and the spheroidization ratio of the above-described carbides is 90% or more.
  • the high carbon hot rolled steel sheet according to the present invention further contains by mass %, 2% or less in total of at least one of Cu, Ni, and No and 0.10% or less in total of at least one of Ti and V, on a percent by mass basis, individually or together.
  • the high carbon hot rolled steel sheet according to the present invention is produced by rough rolling the steel having the above-described chemical composition, performing hot rolling at a hot rolling finishing temperature of 850° C. to 950° C., performing coiling at a coiling temperature of 500° C. or higher, performing pickling, and performing spheroidizing annealing at an annealing temperature of 680° C. or higher and the Ac 1 transformation point or lower in an atmosphere containing 50 percent by volume or more of nitrogen gas.
  • a high carbon hot rolled steel sheet can be manufactured, wherein excellent press formability and excellent hardenability, in particular, hardenability of a surface layer portion of the steel sheet, are provided stably.
  • the high carbon hot rolled steel sheet according to the present invention is suitable for automotive parts, e.g., gears, transmissions, and seat recliners.
  • % which is the unit of the content of component refers to “percent by mass” unless otherwise specified.
  • Carbon is an element important for obtaining the hardness after hardening. It is necessary that the amount of C be at least 0.20% in order to obtain hardness required of automotive parts after press forming and hardening. On the other hand, if the amount of C is more than 0.48%, increase in hardness and reduction in ductility are facilitated and the press formability is degraded. Therefore, the amount of C is specified to be 0.20% to 0.48%, and preferably 0.26% to 0.48%.
  • the amount of Si is specified to be 0.1% or less, and preferably 0.05% or less.
  • the amount of Si may be 0 (zero) with no problem.
  • the amount of Mn is specified to be 0.5% or less, and preferably 0.4% or less.
  • the amount of Mn may be 0 (zero) with no problem, although the amount of Mn is specified to be preferably 0.2% or more for the purpose of suppressing precipitation of graphite.
  • the amount of P is specified to be 0.03% or less, and preferably 0.02% or less.
  • the amount of P may be 0 (zero) with no problem, although the amount of P is specified to be preferably 0.005% or more for the purpose of suppressing an increase in the cost.
  • the amount of S is specified to be 0.01% or less, and preferably 0.005% or less.
  • the amount of S may be 0 (zero) with no problem.
  • Aluminum has a large chemical affinity for N and, therefore, N absorption is facilitated in such a way that the average amount of N in the surface layer portion of the steel sheet becomes 0.1% or more in performing spheroidizing annealing in an atmosphere primarily containing a nitrogen gas, decrease in the hardness of the surface layer of the steel sheet portion after hardening is suppressed, and the hardenability is improved.
  • the amount of Al is specified to be 0.1% or more.
  • the amount of Al is specified to be 0.1% to 0.6%.
  • Chromium not only enhances the hardenability but also suppresses generation of graphite harmful to the hardenability.
  • the amount of Cr is specified to be 0.05% or more.
  • the amount of Cr is specified to be 0.05% to 0.5%.
  • B Boron enhances the hardenability.
  • the amount of B is specified to be 0.0005% or more.
  • the amount of B is specified to be 0.0005% to 0.0050%.
  • Average amount of N in surface layer portion from the surface to the position at a depth of 0.1 mm in thickness direction 0.1% or more
  • N absorption is facilitated in such a way that the average amount of N in the surface layer portion of the steel sheet becomes 0.1% or more when the amount of Al is specified to be 0.1% or more and spheroidizing annealing is performed in an atmosphere primarily containing a nitrogen gas. Consequently, in the surface layer portion, the amount of solute N increases in the hardening treatment, not only the hardenability but also the hardness after hardening increases, so that decrease in the hardness of the surface layer portion of the steel sheet after hardening can be prevented.
  • the surface layer portion refers to the whole region from the surface to the position at a depth of 0.1 mm in the sheet thickness direction.
  • Average amount of N in the sheet thickness central portion 0.01% or less
  • the average amount of N in the central portion in thickness is specified to be 0.01% or less.
  • the average amount of N in the central portion in thickness refers to the amount of N in the steel sheet before spheroidizing annealing.
  • the central portion in thickness is specified to be a portion between the position at one-quarter of the sheet thickness and the position at three-quarters of the sheet thickness.
  • the amount of N may be 0 (zero) with no problem, although the amount of N is specified to be preferably 0.001% or more in consideration of the cost.
  • the remainder is composed of Fe and incidental impurities. It is possible to contain 2% or less in total of at least one of Cu, Ni, and Mo for the purpose of facilitating spheroidization of carbides and improving the hardenability and further or independently contain 0.10% or less in total of at least one of Ti and V for the purpose of suppressing generation of graphite and improving the hardenability.
  • a microstructure composed of the ferrite and carbides is advantageously established by performing spheroidizing annealing after the hot rolling for the purpose of improving the press formability.
  • the average grain size of the ferrite is specified to be 10 to 20 ⁇ m and the spheroidization ratio of the carbides is specified to be 90% or more to provide excellent press formability and hardenability.
  • the average grain size of the ferrite was an . arithmetic average of grain sizes of 10 places determined by polishing a cross-section in thickness along the rolling direction of the steel sheet, etching with nital, observing 10 places in the vicinity of the central portion in thickness by using a scanning electron microscope at a magnification of 1,000 times, and determining the grain size at each place by a cutting method in conformity with JIS G 0552: 1998.
  • the ratio a/b of the maximum grain size a to the minimum grain size b of carbide was calculated at each place, and the proportion (%) of the number of grains of the carbide having the a/b of 3 or less to the whole number of grains of the carbide was determined and an arithmetic average of 10 places was taken as the spheroidization ratio of the carbides.
  • Hot rolling finishing temperature 850° C. to 950° C.
  • the steel having the above-described chemical composition is made into a steel sheet having a predetermined sheet thickness by being subjected to hot rolling composed of rough rolling and finish rolling.
  • the hot rolling finishing temperature is lower than 850° C., austenite grains become fine in rolling, so that the average grain size of the ferrite after spheroidizing annealing becomes less than 10 ⁇ m.
  • the hot rolling finishing temperature is higher than 950° C., the average grain size of the ferrite becomes more than 20 ⁇ m. Therefore, the hot rolling finishing temperature is specified to be 850° C. to 950° C.
  • Coiling temperature 500° C. or higher
  • the steel sheet after hot rolling is coiled. If the coiling temperature is lower than 500° C., the average grain size of the ferrite and carbides after the spheroidizing annealing becomes fine, so that the press formability is degraded because of increase in hardness and reduction in ductility. Therefore, the coiling temperature is specified to be 500° C. or higher. In this regard, in order to avoid degradation in surface quality due to scales, the coiling temperature is specified to be preferably 750° C. or lower.
  • Spheroidizing annealing annealing temperature of 680° C. or higher and Ac 1 transformation point or lower in atmosphere containing 50 percent by volume or more of nitrogen gas
  • the steel sheet after coiling is subjected to scale removal through pickling and to spheroidizing annealing at an annealing temperature of 680° C. or higher and the Ac 1 transformation point or lower in an atmosphere containing 50 percent by volume or more of nitrogen gas in order to spheroidize carbides, ensure a predetermined average grain size of ferrite, and specify the average amount of N in the surface layer of the steel sheet portion to be 0.1% or more.
  • the amount of nitrogen gas in the atmosphere is less than 50 percent by volume, it is not possible to specify the average amount of N in a surface layer portion from the surface to the position at a depth of 0.1 mm in thickness direction to be 0.1% or more.
  • the annealing temperature is lower than 680° C., it is not possible to make the spheroidization ratio of the carbides 90% or more.
  • the annealing temperature is higher than the Ac 1 transformation point, an austenite phase is generated in the heating, pearlite is generated in the cooling, and the press formability is degraded. Therefore, it is necessary that the spheroidizing annealing be performed at an annealing temperature of 680° C. or higher and the Ac 1 transformation point or lower in an atmosphere containing 50 percent by volume or more of nitrogen gas.
  • the annealing time in which the above-described temperature is maintained is preferably 20 to 40 hours.
  • the Ac 1 transformation point can be determined from, for example, a change point of a thermal expansion curve determined on the basis of a formastor experiment at a heating rate of 100° C./hr.
  • either a convertor or an electric furnace can be used.
  • the thus melted high carbon steel is made into a slab by ingot making-blooming or continuous casting.
  • the slab is usually heated and, thereafter, is hot-rolled.
  • direct rolling may be applied, where rolling is performed on an as-is basis or while heat is retained to suppress a decrease in temperature.
  • the slab heating temperature is specified to be preferably 1,280° C. or lower to avoid degradation in the surface quality due to scales.
  • the member to be rolled may be heated by a heating device, e.g., a sheet bar heater, during the hot rolling in order to ensure the hot rolling finishing temperature.
  • Hot rolled steel sheets of Samples 1 to 14 having a sheet thickness of 3.0 mm were produced by melting steels having the chemical compositions of Steels A to M shown in Table 1, performing hot rolling under the hot rolling conditions shown in Table 2, performing pickling, and performing spheroidizing annealing at annealing temperatures shown in Table 2 in an atmosphere containing 95 percent by volume of nitrogen and 5 percent by volume of hydrogen.
  • the amounts of N in the surface layer portions of the thus produced steel sheets were analyzed and, in addition, the average grain sizes of the ferrite and the spheroidization ratios of the carbides were determined by the above-described methods. Meanwhile, a JIS No. 13B tensile test piece was taken in a direction parallel to the rolling direction, and the tensile strength TS and the total elongation El were determined. Furthermore, a test piece of width 50 mm x length 50 mm was taken. A hardening treatment was performed, where the test piece was heated at 870° C.
  • the press formability was evaluated on the basis of El and the hardenability was evaluated on the basis of HRC of the surface layer portion of the steel sheet. Both El and HRC exhibit large dependence on the amount of C and, therefore, the press formability and the hardenability were evaluated as excellent when E1 ⁇ 42% and HRC ⁇ 35 at C: 0.20%, E1 ⁇ 35% and HRC ⁇ 45 at C: 0.35%, and E1 ⁇ 30% and HRC ⁇ 45 at C: 0.48%.
  • the inventive example has a microstructure composed of ferrite and carbides, the average amount of N in the surface layer portion of the steel sheet is 0.1 percent by mass or more, the average grain size of the ferrite is 10 to 20 ⁇ m, the spheroidization ratio of the carbides is 90% or more and, therefore, excellent press formability and hardenability are exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A high carbon hot rolled steel sheet having a chemical composition containing by mass %, C: 0.20% to 0.48%, Si: 0.1% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.01% or less, Al: 0.1% to 0.6%, Cr: 0.05% to 0.5%, B: 0.0005% to 0.0050%, Ca: 0.0010% to 0.0050%, and the remainder composed of Fe and incidental impurities, on a percent by mass basis, where the average amount of N in a surface layer portion from the surface to the position at a depth of 0.1 mm in thickness direction is 0.1% or more and the average amount of N in the central portion in thickness is 0.01% or less, and a microstructure composed of ferrite and carbides, wherein the average grain size of the ferrite is 10 to 20 and the spheroidization ratio of the carbides is 90% or more.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This is the U.S. National Phase application of PCT/JP2012/008319, filed Dec. 26, 2012, which claims priority to Japanese Patent Application No. 2012-000913, filed Jan. 6, 2012, the disclosures of each of these applications being incorporated herein by reference in their entireties for all purposes.
  • FIELD OF THE INVENTION
  • The present invention relates to a high carbon hot rolled steel sheet having excellent press formability and hardenability and a method for manufacturing the same.
  • BACKGROUND OF THE INVENTION
  • At present, automotive parts, e.g., gears, transmissions, and seat recliners, have been produced by forming hot rolled steel sheets, which are carbon steels for machine structural use specified in JIS G 4051, through cold press forming into predetermined shapes and applying a hardening treatment to ensure a predetermined hardness. Consequently, a steel sheet as a material is required to have excellent press formability and hardenability, and various high carbon hot rolled steel sheets have been proposed previously.
  • For example, Patent Literature 1 discloses a hot rolled steel sheet having excellent impact properties after hardening and containing, as steel components, C: 0.10% to 0.37%, Si: 1% or less, Mn: 1.4% or less, P: 0.1% or less, S: 0.03% or less, sol. Al: 0.01% to 0.1%, N: 0.0005% to 0.0050%, Ti: 0.005% to 0.05%, B: 0.0003% to 0.0050%, and the remainder composed of Fe and incidental impurities, on a percent by mass basis, while B−(10.8/14)N*≧0.0005% and N*=N−(14/48)Ti, where N*=0 when the right side≦0, are satisfied, wherein the average grain size of TiN which is a precipitate in the steel is 0.06 to 0.30 μm and a prior austenite grain size after hardening is 2 to 25 μm.
  • Also, Patent Literature 2 discloses a method for manufacturing a tempering free Ti-B bearing high carbon steel sheet having excellent formability and toughness, the method including the steps of plastic working a hot rolled steel sheet having a sheet thickness of 6 mm or less and a steel composition containing C: 0.15% to 0.40%, Si 0.35%, Mn: 0.6% to 1.50%, P 0.03%, S 0.020%, Ti: 0.005% to 0.1%, sol. Al: 0.01% to 0.20%, N: 0.0020% to 0.012%, B: 0.0003% to 0.0030%, and the remainder composed of substantially Fe, on a percent by mass basis, where B≦0.0032−0.014×sol. Al−0.029×Ti is satisfied, performing heat soaking in a temperature range of Ac3 to 950° C., and performing quenching in water or oil.
  • Also, Patent Literature 3 discloses a high carbon hot rolled steel sheet having a composition containing C: 0.20% to 0.48%, Si: 0.1% or less, Mn: 0.20% to 0.60%, P: 0.02% or less, S: 0.01% or less, sol. Al: 0.1% or less, N: 0.005% or less, Ti: 0.005% to 0.05%, B: 0.0005% to 0.003%, Cr: 0.05% to 0.3%, and the remainder composed of Fe and incidental impurities, on a percent by mass basis, where Ti−(48/14)N≧0.005 (in the formula, the symbols of elements express percent by mass of the contents of the respective elements) is satisfied, and a microstructure in which a ferrite average grain size is 6 μm or less, a carbide average grain size is 0.1 μm or more and less than 1.20 μm, and a volume fraction of ferrite grains substantially not containing carbide is 5% or less.
  • PATENT LITERATURE
  • PTL 1: Japanese Patent No. 4265582
  • PTL 2: Japanese Unexamined Patent Application Publication No. 5-98356
  • PTL 3: Japanese Unexamined Patent Application Publication No. 2005-97740
  • SUMMARY OF THE INVENTION
  • However, as for the high carbon steel sheets described in Patent Literatures 1 to 3, degradation in the ductility and decrease in the hardness of a surface layer portions of the steel sheet after hardening are observed, and it is difficult to provide excellent press formability and excellent hardenability stably.
  • It is an object of the present invention to provide a high carbon hot rolled steel sheet having excellent press formability and excellent hardenability, in particular, hardenability of a surface layer portion of the steel sheet, stably and a method for manufacturing the same.
  • The present inventors performed intensive studies to achieve the above-described objects and, as a result, found the following.
  • i) The steel sheet becomes soft, the ductility is improved certainly, and excellent press formability is obtained stably by establishing a microstructure composed of ferrite and carbides, specifying the average grain size of the ferrite to be 10 to 20 μm, and specifying the spheroidization ratio of the carbides to be 90% or more.
  • ii) The average amount of N in a surface layer portion of the steel sheet becomes 0.1 percent by mass or more, decrease in the hardness of the surface layer portion of the steel sheet after hardening is suppressed, and excellent hardenability can be obtained stably by specifying the amount of Al to be 0.1 percent by mass or more and performing annealing to spheroidize carbides in an atmosphere primarily containing a nitrogen gas (hereafter simply referred to as spheroidizing annealing).
  • The present invention has been made on the basis of the above-described findings, and includes providing a high carbon hot rolled steel sheet having a chemical composition containing by massa, C: 0.20% to 0.48%, Si: 0.1% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.01% or less, Al: 0.1% to 0.6%, Cr: 0.05% to 0.5%, B: 0.0005% to 0.0050%, Ca: 0.0010% to 0.0050%, and the remainder composed of Fe and incidental impurities, on a percent by mass basis, where the average amount of N in a surface layer portion from the surface to the position at a depth of 0.1 mm in thickness direction is 0.1% or more and the average amount of N in the central portion in thickness is 0.01% or less, and a microstructure composed of ferrite and carbides, wherein the average grain size of the above-described ferrite is 10 to 20 μm and the spheroidization ratio of the above-described carbides is 90% or more.
  • It is also possible that the high carbon hot rolled steel sheet according to the present invention further contains by mass %, 2% or less in total of at least one of Cu, Ni, and No and 0.10% or less in total of at least one of Ti and V, on a percent by mass basis, individually or together.
  • It is possible that the high carbon hot rolled steel sheet according to the present invention is produced by rough rolling the steel having the above-described chemical composition, performing hot rolling at a hot rolling finishing temperature of 850° C. to 950° C., performing coiling at a coiling temperature of 500° C. or higher, performing pickling, and performing spheroidizing annealing at an annealing temperature of 680° C. or higher and the Ac1 transformation point or lower in an atmosphere containing 50 percent by volume or more of nitrogen gas.
  • According to the present invention, a high carbon hot rolled steel sheet can be manufactured, wherein excellent press formability and excellent hardenability, in particular, hardenability of a surface layer portion of the steel sheet, are provided stably. The high carbon hot rolled steel sheet according to the present invention is suitable for automotive parts, e.g., gears, transmissions, and seat recliners.
  • DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • A high carbon hot rolled steel sheet and a method for manufacturing the same according to embodiments of the present invention will be described below in detail. In this regard, the term “%” which is the unit of the content of component refers to “percent by mass” unless otherwise specified.
  • 1) Chemical composition
  • C: 0.20% to 0.48%
  • Carbon is an element important for obtaining the hardness after hardening. It is necessary that the amount of C be at least 0.20% in order to obtain hardness required of automotive parts after press forming and hardening. On the other hand, if the amount of C is more than 0.48%, increase in hardness and reduction in ductility are facilitated and the press formability is degraded. Therefore, the amount of C is specified to be 0.20% to 0.48%, and preferably 0.26% to 0.48%.
  • Si: 0.1% or less
  • If the amount of Si is more than 0.1%, increase in hardness and reduction in ductility are facilitated and the press formability is degraded. Therefore, the amount of Si is specified to be 0.1% or less, and preferably 0.05% or less. The amount of Si may be 0 (zero) with no problem.
  • Mn: 0.5% or less
  • If the amount of Mn is more than 0.5%, not only increase in hardness and reduction in ductility are facilitated but also a band structure resulting from segregation develops and the microstructure becomes nonuniform, so that the press formability is degraded. Therefore, the amount of Mn is specified to be 0.5% or less, and preferably 0.4% or less. The amount of Mn may be 0 (zero) with no problem, although the amount of Mn is specified to be preferably 0.2% or more for the purpose of suppressing precipitation of graphite.
  • P: 0.03% or less
  • If the amount of P is more than 0.03%, the press formability and the toughness after hardening are degraded significantly. Therefore, the amount of P is specified to be 0.03% or less, and preferably 0.02% or less. The amount of P may be 0 (zero) with no problem, although the amount of P is specified to be preferably 0.005% or more for the purpose of suppressing an increase in the cost.
  • S: 0.01% or less
  • If the amount of S is more than 0.01%, the press formability and the toughness after hardening are degraded significantly. Therefore, the amount of S is specified to be 0.01% or less, and preferably 0.005% or less. The amount of S may be 0 (zero) with no problem.
  • Al: 0.1% to 0.6%
  • Aluminum has a large chemical affinity for N and, therefore, N absorption is facilitated in such a way that the average amount of N in the surface layer portion of the steel sheet becomes 0.1% or more in performing spheroidizing annealing in an atmosphere primarily containing a nitrogen gas, decrease in the hardness of the surface layer of the steel sheet portion after hardening is suppressed, and the hardenability is improved. In order to exert the above-described effects, it is necessary that the amount of Al is specified to be 0.1% or more. On the other hand, if the amount of Al is more than 0.6%, not only the press formability is degraded as increase in hardness and decrease in ductility are facilitated because of solid solution strengthening, but also the hardenability is degraded as a hardening treatment from an austenite single phase region becomes difficult due to rise the transformation point. Consequently, the amount of Al is specified to be 0.1% to 0.6%.
  • Cr: 0.05% to 0.5%
  • Chromium not only enhances the hardenability but also suppresses generation of graphite harmful to the hardenability. In order to exert the above-described effects, it is necessary that the amount of Cr is specified to be 0.05% or more. On the other hand, if the amount of Cr is more than 0.5%, increase in hardness and reduction in ductility are facilitated and the press formability is degraded. Consequently, the amount of Cr is specified to be 0.05% to 0.5%.
  • B: 0.0005% to 0.0050%
  • Boron enhances the hardenability. For that purpose, it is necessary that the amount of B is specified to be 0.0005% or more. On the other hand, if the amount of B is more than 0.0050%, a load in hot rolling increases, the operability is degraded, and degradation in the press formability is caused. Consequently, the amount of B is specified to be 0.0005% to 0.0050%.
  • Ca: 0.0010% to 0.0050%
  • Calcium makes the flow of molten steel smooth in casting of a steel containing 0.1% or more of Al. In order to exert the above-described effect, it is necessary that the amount of Ca is specified to be 0.0010% or more. On the other hand, if the amount of Ca is more than 0.0050%, inclusions increase and the press formability is degraded. Consequently, the amount of Ca is specified to be 0.0010% to 0.0050%.
  • Average amount of N in surface layer portion from the surface to the position at a depth of 0.1 mm in thickness direction: 0.1% or more
  • As described above, N absorption is facilitated in such a way that the average amount of N in the surface layer portion of the steel sheet becomes 0.1% or more when the amount of Al is specified to be 0.1% or more and spheroidizing annealing is performed in an atmosphere primarily containing a nitrogen gas. Consequently, in the surface layer portion, the amount of solute N increases in the hardening treatment, not only the hardenability but also the hardness after hardening increases, so that decrease in the hardness of the surface layer portion of the steel sheet after hardening can be prevented. If the amount of Al is less than 0.1%, the average amount of N in the surface layer portion of the steel sheet does not become 0.1% or more, and reduction in the hardness of the surface layer portion of the steel sheet after hardening cannot be prevented sufficiently. Here, the surface layer portion refers to the whole region from the surface to the position at a depth of 0.1 mm in the sheet thickness direction.
  • Average amount of N in the sheet thickness central portion: 0.01% or less
  • If the average amount of N in the central portion in thickness is more than 0.01%, formation of BN is facilitated even at the stage of hot rolling, and solute B to improve the hardenability is not obtained sufficiently, so that generation of ferrite is facilitated in cooling of the hardening treatment and the toughness after hardening is degraded. Therefore, the average amount of N in the central portion in thickness is specified to be 0.01% or less. Here, the average amount of N in the central portion in thickness refers to the amount of N in the steel sheet before spheroidizing annealing. Meanwhile, the central portion in thickness is specified to be a portion between the position at one-quarter of the sheet thickness and the position at three-quarters of the sheet thickness. The amount of N may be 0 (zero) with no problem, although the amount of N is specified to be preferably 0.001% or more in consideration of the cost.
  • The remainder is composed of Fe and incidental impurities. It is possible to contain 2% or less in total of at least one of Cu, Ni, and Mo for the purpose of facilitating spheroidization of carbides and improving the hardenability and further or independently contain 0.10% or less in total of at least one of Ti and V for the purpose of suppressing generation of graphite and improving the hardenability.
  • 2) Microstructure
  • In the present invention, a microstructure composed of the ferrite and carbides is advantageously established by performing spheroidizing annealing after the hot rolling for the purpose of improving the press formability. In particular, it is preferred that the average grain size of the ferrite is specified to be 10 to 20 μm and the spheroidization ratio of the carbides is specified to be 90% or more to provide excellent press formability and hardenability.
  • Here, the average grain size of the ferrite was an . arithmetic average of grain sizes of 10 places determined by polishing a cross-section in thickness along the rolling direction of the steel sheet, etching with nital, observing 10 places in the vicinity of the central portion in thickness by using a scanning electron microscope at a magnification of 1,000 times, and determining the grain size at each place by a cutting method in conformity with JIS G 0552: 1998. Meanwhile, in the above-described microstructure observation, the ratio a/b of the maximum grain size a to the minimum grain size b of carbide was calculated at each place, and the proportion (%) of the number of grains of the carbide having the a/b of 3 or less to the whole number of grains of the carbide was determined and an arithmetic average of 10 places was taken as the spheroidization ratio of the carbides.
  • 3) Manufacturing Condition
  • Hot rolling finishing temperature: 850° C. to 950° C.
  • The steel having the above-described chemical composition is made into a steel sheet having a predetermined sheet thickness by being subjected to hot rolling composed of rough rolling and finish rolling. At this time, if the hot rolling finishing temperature is lower than 850° C., austenite grains become fine in rolling, so that the average grain size of the ferrite after spheroidizing annealing becomes less than 10 μm. If the hot rolling finishing temperature is higher than 950° C., the average grain size of the ferrite becomes more than 20 μm. Therefore, the hot rolling finishing temperature is specified to be 850° C. to 950° C.
  • Coiling temperature: 500° C. or higher
  • The steel sheet after hot rolling is coiled. If the coiling temperature is lower than 500° C., the average grain size of the ferrite and carbides after the spheroidizing annealing becomes fine, so that the press formability is degraded because of increase in hardness and reduction in ductility. Therefore, the coiling temperature is specified to be 500° C. or higher. In this regard, in order to avoid degradation in surface quality due to scales, the coiling temperature is specified to be preferably 750° C. or lower.
  • Spheroidizing annealing: annealing temperature of 680° C. or higher and Ac1 transformation point or lower in atmosphere containing 50 percent by volume or more of nitrogen gas
  • The steel sheet after coiling is subjected to scale removal through pickling and to spheroidizing annealing at an annealing temperature of 680° C. or higher and the Ac1 transformation point or lower in an atmosphere containing 50 percent by volume or more of nitrogen gas in order to spheroidize carbides, ensure a predetermined average grain size of ferrite, and specify the average amount of N in the surface layer of the steel sheet portion to be 0.1% or more. At this time, if the amount of nitrogen gas in the atmosphere is less than 50 percent by volume, it is not possible to specify the average amount of N in a surface layer portion from the surface to the position at a depth of 0.1 mm in thickness direction to be 0.1% or more. Also, if the annealing temperature is lower than 680° C., it is not possible to make the spheroidization ratio of the carbides 90% or more. In addition, if the annealing temperature is higher than the Ac1 transformation point, an austenite phase is generated in the heating, pearlite is generated in the cooling, and the press formability is degraded. Therefore, it is necessary that the spheroidizing annealing be performed at an annealing temperature of 680° C. or higher and the Ac1 transformation point or lower in an atmosphere containing 50 percent by volume or more of nitrogen gas. Meanwhile, the annealing time in which the above-described temperature is maintained is preferably 20 to 40 hours. In this regard, the Ac1 transformation point can be determined from, for example, a change point of a thermal expansion curve determined on the basis of a formastor experiment at a heating rate of 100° C./hr.
  • In order to melt the high carbon steel sheet having the chemical composition according to the present invention, either a convertor or an electric furnace can be used. The thus melted high carbon steel is made into a slab by ingot making-blooming or continuous casting. The slab is usually heated and, thereafter, is hot-rolled. In this regard, in the case of the slab produced by continuous casting, direct rolling may be applied, where rolling is performed on an as-is basis or while heat is retained to suppress a decrease in temperature. Also, in the case where the slab is heated and is hot-rolled, the slab heating temperature is specified to be preferably 1,280° C. or lower to avoid degradation in the surface quality due to scales. In the hot rolling, the member to be rolled may be heated by a heating device, e.g., a sheet bar heater, during the hot rolling in order to ensure the hot rolling finishing temperature.
  • EXAMPLES
  • Hot rolled steel sheets of Samples 1 to 14 having a sheet thickness of 3.0 mm were produced by melting steels having the chemical compositions of Steels A to M shown in Table 1, performing hot rolling under the hot rolling conditions shown in Table 2, performing pickling, and performing spheroidizing annealing at annealing temperatures shown in Table 2 in an atmosphere containing 95 percent by volume of nitrogen and 5 percent by volume of hydrogen.
  • The amounts of N in the surface layer portions of the thus produced steel sheets were analyzed and, in addition, the average grain sizes of the ferrite and the spheroidization ratios of the carbides were determined by the above-described methods. Meanwhile, a JIS No. 13B tensile test piece was taken in a direction parallel to the rolling direction, and the tensile strength TS and the total elongation El were determined. Furthermore, a test piece of width 50 mm x length 50 mm was taken. A hardening treatment was performed, where the test piece was heated at 870° C. for 30 seconds in an atmosphere in which a carbon potential was controlled to become equal to the amount of C in the steel by mixing an RX gas and the air and, thereafter, was put into an oil kept at 120° C., so that the Rockwell C scale hardness (HRC) of the surface layer portion of the steel sheet was determined.
  • Then, the press formability was evaluated on the basis of El and the hardenability was evaluated on the basis of HRC of the surface layer portion of the steel sheet. Both El and HRC exhibit large dependence on the amount of C and, therefore, the press formability and the hardenability were evaluated as excellent when E1≧42% and HRC≧35 at C: 0.20%, E1≧35% and HRC≧45 at C: 0.35%, and E1≧30% and HRC≧45 at C: 0.48%.
  • The results are shown in Table 2. It is clear that the inventive example has a microstructure composed of ferrite and carbides, the average amount of N in the surface layer portion of the steel sheet is 0.1 percent by mass or more, the average grain size of the ferrite is 10 to 20 μm, the spheroidization ratio of the carbides is 90% or more and, therefore, excellent press formability and hardenability are exhibited.
  • TABLE 1
    (percent by mass)
    Ac1transformation
    Steel C Si Mn P S Al Cr B Ca N Others point (° C.) Remarks
    A 0.20 0.02 0.50 0.020 0.010 0.20 0.05 0.0030 0.0020 0.0033 Ni: 0.5 711 within the invention
    B 0.35 0.02 0.19 0.014 0.002 0.13 0.10 0.0026 0.0020 0.0039 Cu: 0.5, Mo: 0.2 723 within the invention
    C 0.35 0.02 0.19 0.015 0.002 0.19 0.10 0.0029 0.0024 0.0037 723 within the invention
    D 0.35 0.02 0.18 0.012 0.002 0.52 0.10 0.0029 0.0015 0.0033 Ti: 0.02 723 within the invention
    E 0.48 0.02 0.20 0.020 0.010 0.40 0.50 0.0030 0.0011 0.0033 Ti: 0.02, V: 0.05 730 within the invention
    F 0.20 0.02 0.50 0.020 0.010 0.03 0.03 0.0003 0.0020 0.0033 719 out of the invention
    G 0.35 0.02 0.19 0.040 0.020 0.19 0.10 0.0030 0.0100 0.0033 723 out of the invention
    H 0.48 0.20 0.75 0.020 0.010 1.20 1.00 0.0030 0.0003 0.0035 738 out of the invention
    I 0.20 0.02 0.50 0.020 0.010 0.07 0.05 0.0030 0.0020 0.0033 Ni: 0.5 711 out of the invention
    J 0.35 0.02 0.18 0.012 0.002 0.07 0.10 0.0029 0.0024 0.0037 723 out of the invention
    K 0.48 0.02 0.20 0.020 0.010 0.07 0.50 0.0030 0.0011 0.0033 Ti: 0.02, V: 0.05 730 out of the invention
    L 0.48 0.02 0.75 0.020 0.010 0.20 0.10 0.0030 0.0020 0.0035 735 out of the invention
    M 0.48 0.02 0.50 0.020 0.010 1.20 0.10 0.0030 0.0020 0.0035 736 out of the invention
  • TABLE 2
    Hot rolling condition Microstructure
    Hot rolling Average amount
    finishing Coiling Annealing of N in the
    temperature temperature temperature surface layer
    Sample Steel (° C.) (° C.) (° C.) Configuration portion (percent
     1 A 890 660 680 F + C 0.12
     2 B 880 550 700 F + C 0.10
     3 B 880 650 700 F + C 0.10
     4 C 880 550 700 F + C 0.13
     5 C 880 650 700 F + C 0.13
     6 C 810 600 680 F + C 0.13
     7 C 850 440 680 F + C 0.13
     8 C 970 680 640 F + C 0.12
     9 D 880 550 700 F + C 0.30
    10 D 880 650 700 F + C 0.30
    11 E 880 650 700 F + C 0.35
    12 F 880 650 700 F + C 0.02
    13 G 880 650 700 F + C 0.13
    14 H 880 650 700 F + C 0.90
    15 I 880 650 700 F + C 0.06
    16 J 880 650 700 F + C 0.08
    17 K 880 650 700 F + C 0.07
    18 L 880 650 700 F + C 0.13
    19 M 880 650 700 F + C 0.90
    Microstructure Mechanical properties
    Average HRC of
    grain size Spheroidization surface layer
    of ferrite ratio of TS El portion after
    Sample (μm) carbides (%) (MPa) (%) hardening Remarks
     1 18 92 350 44 38 Inventive example
     2 14 95 428 39 46 Inventive example
     3 15 92 433 37 45 Inventive example
     4 14 97 415 38 48 Inventive example
     5 15 93 411 37 47 Inventive example
     6 6 94 455 34 48 Comparative example
     7 5 98 500 30 48 Comparative example
     8 24 77 480 28 46 Comparative example
     9 13 98 415 36 47 Inventive example
    10 14 94 424 38 46 Inventive example
    11 12 97 480 32 53 Inventive example
    12 19 91 320 47 25 Comparative example
    13 15 93 480 29 47 Comparative example
    14 11 90 560 24 31 Comparative example
    15 18 91 350 44 31 Comparative example
    16 15 92 430 37 41 Comparative example
    17 12 93 480 32 43 Comparative example
    18 12 93 530 28 50 Comparative example
    19 12 90 530 28 48 Comparative example
    *F ferrite, C carbide

Claims (7)

1. A high carbon hot rolled steel sheet comprising a chemical composition containing by mass %, C: 0.20% to 0.48%, Si: 0.1% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.01% or less, Al: 0.1% to 0.6%, Cr: 0.05% to 0.5%, B: 0.0005% to 0.0050%, Ca: 0.0010% to 0.0050%, and the remainder composed of Fe and incidental impurities, on a percent by mass basis, where the average amount of N in a surface layer portion from the surface to the position at a depth of 0.1 mm in thickness direction is 0.1% or more and the average amount of N in the central portion in thickness is 0.01% or less, and a microstructure composed of ferrite and carbides, wherein the average grain size of the ferrite is 10 to 20 μm and the spheroidization ratio of the carbides is 90% or more.
2. The high carbon hot rolled steel sheet according to claim 1, further containing by mass %, 2% or less in total of at least one of Cu, Ni, and Mo on a percent by mass basis.
3. The high carbon hot rolled steel sheet according to claim 1, further containing by mass %, 0.10% or less in total of at least one of Ti and V on a percent by mass basis.
4. A method for manufacturing a high carbon hot rolled steel sheet, the method comprising the steps of rough rolling the steel having the chemical composition according to claim 1, performing hot rolling at a hot rolling finishing temperature of 850° C. to 950° C., performing coiling at a coiling temperature of 500° C. or higher, performing pickling, and performing spheroidizing annealing of carbides at an annealing temperature of 680° C. or higher and the Ac1 transformation point or lower in an atmosphere containing 50 percent by volume or more of nitrogen gas.
5. The high carbon hot rolled steel sheet according to claim 2, further containing by mass %, 0.10% or less in total of at least one of Ti and Von a percent by mass basis.
6. A method for manufacturing a high carbon hot rolled steel sheet, the method comprising the steps of rough rolling the steel having the chemical composition according to claim 2, performing hot rolling at a hot rolling finishing temperature of 850° C. to 950° C., performing coiling at a coiling temperature of 500° C. or higher, performing pickling, and performing spheroidizing annealing of carbides at an annealing temperature of 680° C. or higher and the Ac1 transformation point or lower in an atmosphere containing 50 percent by volume or more of nitrogen gas.
7. A method for manufacturing a high carbon hot rolled steel sheet, the method comprising the steps of rough rolling the steel having the chemical composition according to claim 3, performing hot rolling at a hot rolling finishing temperature of 850° C. to 950° C., performing coiling at a coiling temperature of 500° C. or higher, performing pickling, and performing spheroidizing annealing of carbides at an annealing temperature of 680° C. or higher and the Ac1 transformation point or lower in an atmosphere containing 50 percent by volume or more of nitrogen gas.
US14/370,319 2012-01-06 2012-12-26 High carbon hot rolled steel sheet and method for manufacturing the same (as amended) Abandoned US20140332122A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-000913 2012-01-06
JP2012000913 2012-01-06
PCT/JP2012/008319 WO2013102987A1 (en) 2012-01-06 2012-12-26 High carbon hot-rolled steel sheet and method for producing same

Publications (1)

Publication Number Publication Date
US20140332122A1 true US20140332122A1 (en) 2014-11-13

Family

ID=48745063

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/370,319 Abandoned US20140332122A1 (en) 2012-01-06 2012-12-26 High carbon hot rolled steel sheet and method for manufacturing the same (as amended)

Country Status (8)

Country Link
US (1) US20140332122A1 (en)
EP (1) EP2801633B1 (en)
JP (1) JP5565532B2 (en)
KR (1) KR101616222B1 (en)
CN (1) CN104040003B (en)
IN (1) IN2014KN01298A (en)
TW (1) TWI510647B (en)
WO (1) WO2013102987A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411304A (en) * 2020-04-17 2020-07-14 南京钢铁股份有限公司 Q460-grade hot-rolled angle steel and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151885B2 (en) * 2019-05-16 2022-10-12 日本製鉄株式会社 steel wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280929A (en) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd Steel material to be used for application subjected to nitriding treatment and induction hardening treatment
US20110004195A1 (en) * 2003-03-14 2011-01-06 Eaton Donald J Sinus delivery of sustained release therapeutics
US7909950B2 (en) * 2005-10-05 2011-03-22 Jfe Steel Corporation Method for manufacturing an ultra soft high carbon hot-rolled steel sheet
US8048237B2 (en) * 2006-03-28 2011-11-01 Jfe Steel Corporation Ultra soft high carbon hot rolled steel sheet and method for manufacturing same
US20150090376A1 (en) * 2012-01-05 2015-04-02 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598356A (en) 1982-07-06 1984-01-17 Nec Corp Fabrication of semiconductor integrated circuit device
JPH04265582A (en) 1991-02-20 1992-09-21 Mitsubishi Electric Corp Magnetic disk device
JPH0598356A (en) 1991-10-04 1993-04-20 Sumitomo Metal Ind Ltd Production of tempering-free-type ti-b type high carbon steel sheet
JP3297788B2 (en) * 1994-10-19 2002-07-02 住友金属工業株式会社 High carbon thin steel sheet excellent in hole expandability and secondary workability and method for producing the same
JP3792341B2 (en) * 1997-04-28 2006-07-05 株式会社神戸製鋼所 Soft nitriding steel with excellent cold forgeability and pitting resistance
JP4265582B2 (en) 2001-02-07 2009-05-20 Jfeスチール株式会社 Hot-rolled steel sheet with excellent impact properties after quenching and method for producing the same
JP4123748B2 (en) * 2001-02-07 2008-07-23 Jfeスチール株式会社 Thin steel plate with excellent impact properties after quenching and method for producing the same
JP4380471B2 (en) * 2003-08-28 2009-12-09 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
KR100673422B1 (en) * 2003-08-28 2007-01-24 제이에프이 스틸 가부시키가이샤 High carbon hot rolled steel sheet, cold rolled steel sheet and method for production thereof
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
JP5102579B2 (en) 2007-10-15 2012-12-19 三建設備工業株式会社 Air conditioning system
JP5167487B2 (en) * 2008-02-19 2013-03-21 Jfeスチール株式会社 High strength steel plate with excellent ductility and method for producing the same
KR101150365B1 (en) * 2008-08-14 2012-06-08 주식회사 포스코 High carbon hot rolled steel coil and manufacturing method thereof
JP5458649B2 (en) * 2009-04-28 2014-04-02 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110004195A1 (en) * 2003-03-14 2011-01-06 Eaton Donald J Sinus delivery of sustained release therapeutics
US7909950B2 (en) * 2005-10-05 2011-03-22 Jfe Steel Corporation Method for manufacturing an ultra soft high carbon hot-rolled steel sheet
US8048237B2 (en) * 2006-03-28 2011-11-01 Jfe Steel Corporation Ultra soft high carbon hot rolled steel sheet and method for manufacturing same
JP2010280929A (en) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd Steel material to be used for application subjected to nitriding treatment and induction hardening treatment
US20150090376A1 (en) * 2012-01-05 2015-04-02 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
2010-280929 A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411304A (en) * 2020-04-17 2020-07-14 南京钢铁股份有限公司 Q460-grade hot-rolled angle steel and preparation method thereof

Also Published As

Publication number Publication date
EP2801633A4 (en) 2015-09-02
WO2013102987A1 (en) 2013-07-11
CN104040003A (en) 2014-09-10
EP2801633A1 (en) 2014-11-12
TW201333222A (en) 2013-08-16
IN2014KN01298A (en) 2015-10-16
CN104040003B (en) 2016-05-11
KR20140110995A (en) 2014-09-17
TWI510647B (en) 2015-12-01
JP5565532B2 (en) 2014-08-06
JPWO2013102987A1 (en) 2015-05-11
EP2801633B1 (en) 2017-10-25
KR101616222B1 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
CA2948297C (en) Railway vehicle wheel and method for manufacturing railway vehicle wheel
TWI412609B (en) High strength steel sheet and method for manufacturing the same
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
US10077491B2 (en) High carbon hot rolled steel sheet and method for manufacturing the same
US10400299B2 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
US9194017B2 (en) Hot-rolled steel sheet having excellent cold formability and hardenability and method for manufacturing the same
EP2711439B1 (en) High carbon thin steel sheet and method for producing same
EP2604715A1 (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
US10400298B2 (en) High-carbon hot-rolled steel sheet and method for producing the same
EP3896186B1 (en) High-strength galvanized steel sheet and method for manufacturing the same
JP6037087B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2014002288A1 (en) Steel sheet for soft nitriding and process for producing same
EP2801633B1 (en) High carbon hot-rolled steel sheet and method for producing same
WO2015194572A1 (en) Ultra-high-strength steel sheet having excellent collision characteristics
CN117751204A (en) Cold-rolled steel sheet and method for producing same

Legal Events

Date Code Title Description
AS Assignment

Owner name: JFE STEEL CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAKAMURA, NOBUYUKI;KOBAYASHI, TAKASHI;FUNAKAWA, YOSHIMASA;SIGNING DATES FROM 20140814 TO 20140820;REEL/FRAME:033970/0733

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION