US20140276669A1 - Short pulse laser with adjustable pulse length - Google Patents

Short pulse laser with adjustable pulse length Download PDF

Info

Publication number
US20140276669A1
US20140276669A1 US14/198,409 US201414198409A US2014276669A1 US 20140276669 A1 US20140276669 A1 US 20140276669A1 US 201414198409 A US201414198409 A US 201414198409A US 2014276669 A1 US2014276669 A1 US 2014276669A1
Authority
US
United States
Prior art keywords
laser
pulse
compressor
computing device
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/198,409
Inventor
Gennady Imeshev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMO Development LLC
Original Assignee
AMO Development LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMO Development LLC filed Critical AMO Development LLC
Priority to US14/198,409 priority Critical patent/US20140276669A1/en
Assigned to AMO DEVELOPMENT, LLC. reassignment AMO DEVELOPMENT, LLC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IMESHEV, GENNADY
Publication of US20140276669A1 publication Critical patent/US20140276669A1/en
Priority to US15/348,858 priority patent/US10390995B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00804Refractive treatments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/0084Laser features or special beam parameters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/0087Lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00887Cataract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00887Cataract
    • A61F2009/00889Capsulotomy

Definitions

  • Embodiments of this present invention generally relate to laser systems, and more specifically, to the application of laser pulses during surgical procedures such as laser-assisted ophthalmic surgery.
  • Laser eye surgery typically uses different types of laser beams, such as ultraviolet lasers, infrared lasers, and near-infrared, ultra-short pulsed lasers, for various procedures and indications.
  • a surgical laser beam is preferred over manual tools like microkeratomes as it can be focused accurately on extremely small amounts of ocular tissue, thereby enhancing precision and reliability.
  • LASIK Laser Assisted In Situ Keratomileusis
  • an ultra-short pulsed laser is used to cut a corneal flap to expose the corneal stroma for photoablation with an excimer laser.
  • Ultra-short pulsed lasers emit radiation with pulse durations as short as 10 femtoseconds and as long as 3 nanoseconds, and a wavelength between 300 nm and 3000 nm.
  • ultra-short pulsed lasers are used to perform cataract-related surgical procedures, including capsulorhexis, capsulotomy, as well as softening and/or breaking of the cataractous lens.
  • the laser engine is configured to deliver a laser beam with ultra-short pulse durations (which may be as long as a few nanoseconds or as short as a few femtoseconds) to a patient's eye.
  • ultra-short pulse durations which may be as long as a few nanoseconds or as short as a few femtoseconds
  • Temporal pulse profile and the pulse width are generally static in that they do not change during a procedure or during different phases of a procedure. Nor do they change when different procedures are performed separately, such as, for example, a capsulorhexis, a capsulotomy, lens fragmentation, corneal incisions, and the like.
  • ophthalmic incisions may require one type of laser profile, while another type of incision may benefit from a profile having a different pulse length.
  • Conventional laser systems have a limited or non-existent ability to change the laser pulse profile. Where the ability is limited, the laser pulse may be changed to a desired profile, but only after one phase of a surgical procedure is completed with the initial profile. To change the laser's pulse profile, an operator must manually adjust the positions of certain system components, or make time consuming changes to the components themselves. Once this process is completed, the device may be powered on to commence another phase of the procedure. As may be appreciated, time delay is highly undesirable.
  • Embodiments of this invention include a surgical laser system and method for performing ophthalmic surgery.
  • the laser system includes a laser engine configured to deliver a pulsed beam to a patient's eye, wherein the engine includes a compressor configured to compress laser light energy received, the compressor comprising a dispersion or spectrum altering component provided on a computer controlled stage connected to a computing device.
  • a user provides an input to a computing device regarding a desired pulse width causes the computing device to reposition the stage and the component provided thereon, which results in a different pulse length to be transmitted by the laser engine.
  • FIG. 1 illustrates a general overview of a non-UV, ultra-short pulse laser arrangement configured to employ the present design.
  • FIG. 2 is a general diagram of the components of a non-UV, ultra-short pulse bulk laser engine in an ophthalmic surgical laser system.
  • FIG. 3 illustrates a bulk oscillator that may be employed with the present design.
  • FIG. 4 is a pulse stretcher/compressor that may be employed with the present design.
  • FIG. 5 shows an amplifier that may be employed with the present design.
  • FIG. 6 is a conceptual illustration of a stage having a component positioned thereon usable with the present design.
  • FIG. 1 illustrates a general overview of a laser arrangement configured to employ the present design.
  • laser engine 100 includes laser source 101 and provides laser light to variable attenuator 102 configured to attenuate the beam, then to energy monitors 103 to monitor beam energy level, and first safety shutter 104 serving as a shutoff device if the beam is unacceptable.
  • Beam steering mirror 105 redirects the resultant laser beam to the beam delivery device 110 , through articulated arm 106 to range finding camera 111 .
  • the range finding camera 111 determines the range needed for the desired focus at the eye 120 .
  • Beam delivery device 110 includes second safety shutter 112 and beam monitor 113 , beam pre-expander 114 , X-Y (position) scanner 115 , and zoom beam expander 116 .
  • Zoom beam expander 116 expands the beam toward IR mirror 117 which reflects and transmits the received beam.
  • Mirror 118 reflects the received beam to video camera 119 , which records the surgical procedure on the eye 120 .
  • IR mirror 117 also reflects the laser light energy to objective lens 121 , which focuses laser light energy to eye 120 .
  • non-ultraviolet (UV) ultra-short pulsed laser technology can produce pulsed laser beams having pulse durations measured in the femtoseconds and picoseconds range.
  • An exemplary ultra-short pulsed laser system shown in FIG. 1 can provide an intrastromal photodisruption technique for reshaping the cornea using a non-UV, ultra-short (e.g., femtosecond pulse duration), pulsed laser beam produced by laser source 101 that propagates through corneal tissue and is focused at a point below the surface of the cornea to photodisrupt stromal tissue at the focal point.
  • a non-UV, ultra-short e.g., femtosecond pulse duration
  • the system may be used to photoalter a variety of materials (e.g., organic, inorganic, or a combination thereof), the system is suitable for ophthalmic applications in one embodiment.
  • the focusing optics such as beam pre-expander 114 , zoom beam expander 116 , IR mirror 117 and objective lens 121 , direct the pulsed laser beam toward an eye 120 (e.g., onto or into a cornea) for plasma mediated (e.g., non-UV) photoablation of superficial tissue, or into the stroma of the cornea for intrastromal photodisruption of tissue.
  • the system may also include a lens to change the shape (e.g., flatten or curve) of the cornea prior to scanning the pulsed laser beam toward the eye.
  • the system is capable of generating the pulsed laser beam with physical characteristics similar to those of the laser beams generated by a laser system disclosed in U.S. Pat. Nos. 4,764,930 and 5,993,438, which are incorporated herein.
  • the ophthalmic laser system can produce an ultra-short pulsed laser beam for use as an incising laser beam.
  • This pulsed laser beam preferably has laser pulses with durations as long as a few nanoseconds or as short as a few femtoseconds.
  • the pulsed laser beam has a wavelength that permits the pulsed laser beam to pass through the cornea without absorption by the corneal tissue.
  • the wavelength of the pulsed laser beam is generally in the range of about 300 nm to about 3000 nm, and the irradiance of the pulsed laser beam for accomplishing photodisruption of stromal tissues at the focal point is typically greater than the threshold for optical breakdown of the tissue.
  • the pulsed laser beam may have other pulse durations and different wavelengths in other embodiments.
  • Further examples of devices employed in performing ophthalmic laser surgery are disclosed in, for example, U.S. Pat. Nos. 5,549,632, 5,984,916, and 6,325,792, which are incorporated here by reference.
  • FIG. 2 illustrates general diagram of the components of a non-UV, ultra-short pulse laser engine in an ocular laser surgical system including laser engine 101 .
  • an oscillator 201 there is provided an oscillator 201 , a beam stretcher/pulse compressor 202 , and an amplifier 203 .
  • Controller 204 may be provided in the embodiments discussed herein.
  • Lasers producing pulses in the femtosecond/picosecond duration range operate and generate pulses at high peak power levels, and if left unaltered can damage the gain medium.
  • chirped pulse amplification is employed wherein the length of pulses are extended or stretched to the picosecond range, resulting in a significant reduction in pulse peak power.
  • CPA chirped pulse amplification
  • the oscillator 201 generates and outputs a beam of femtosecond laser pulses.
  • the pulse stretcher/compressor 202 extends the duration of the received pulses.
  • Amplifier 203 increases amplitude of the pulses. The pulse stretcher/compressor then recompressed pulses to the femtosecond range prior to delivery.
  • FIG. 3 illustrates an oscillator 301 used in a femtosecond bulk laser surgical device.
  • Oscillator 301 includes laser pump 302 which directs laser light energy to focusing lens 303 A and a dichroic mirror 303 B, which both transmits the pump beam but reflects the cavity beam. In one path the cavity beam passes to mirror 309 , aperture 310 , mirror 307 , and SESAM “HR” mirror 308 .
  • mirror or “mirrors” is intended broadly to mean any type of reflective surface or surfaces.
  • the other path from the dichroic mirror 303 B is directed to oscillator glass assembly 304 , horizontally polarized at Brewster's angle, to mirror 305 , mirror 306 , output coupler 311 , and light energy ultimately passes out of oscillator 301 to mirror 312 , beamsplitter 313 , and pulse stretcher/compressor 202 , not shown in this view.
  • FIG. 4 illustrates the components of pulse stretcher/compressor 401 , which receives the beam under half mirror 402 , with light passing to half wave plate 403 , and one of a number of mirrors 404 , over half mirror 405 , to grating 406 , stretcher lens 407 , folding mirror 408 , an stretcher mirror 409 .
  • the beam then travels through elements 408 , 407 and 406 to half mirror 405 that reflects the beam back to another double-pass through the grating 406 and other elements.
  • the beam then goes over half mirror 405 to elements 404 and 403 .
  • the beam is then gets reflected by half mirror 402 to reflective surface 410 , which provides light energy to Faraday (three port) isolator 411 , configured to receive and provide light energy to and from mirrors 412 and 420 .
  • mirror 412 provides light energy to half wave plate 413 and to an amplifier (not shown in this view).
  • Light from half mirror 420 passes to mirror 419 , grating 406 , and to compressor retro-reflection assembly 415 , including mirrors 416 and 417 , back through grating 406 and to mirror 418 .
  • Light beam then passes through the grating 406 , retro-reflection assembly 415 , grating 406 , to mirror 419 .
  • the light beam travels over half mirror 420 to mirror 421 , to folding mirror 422 , and to energy wheel 423 , to beam splitters 424 and 425 , fast shutter 426 , and folding mirror to articulating arm 427 .
  • Light from beam splitters 424 and 425 are directed to the other components of the surgical system.
  • FIG. 5 illustrates one embodiment of an amplifier 501 in accordance with the design of FIG. 2A , again including a number of mirrors as well as amp out photodiode 503 , polarizer assembly 504 , mirror 505 , Pockels cell 506 , mirror 507 , and Q-switch photo diode 508 . Also shown is a folding mirror 510 , mirror 511 , mirror 512 on a translation device, amplifier glass assembly 513 , focusing lenses 514 , and pump diode 515 .
  • Lasers may be employed in the ocular surgical environment to perform a variety of different cuts, such as corneal cuts, capsulotomy cuts, and lens fragmentation cuts. Each of these cuts is optimally performed using a different length pulse.
  • a corneal cut may use pulses in the 400-800 femtoseconds range
  • lens fragmentation cuts may use pulses in the 1-5 picoseconds range. It would be advantageous to offer a surgeon an ability to achieve different pulse lengths when the surgeon switches from one desired pulse length to another desired pulse length with little effort required, unlike previous devices wherein extensive and/or manual component repositioning was required to alter pulse length.
  • the present design employs computer controlled adjustment of pulse length by changing the dispersion of the pulse compressor, pulse stretcher, or other components or assemblies in the beam path. Detuning the compressor from its optimal operating point tends to lengthen output pulses.
  • One change of the design is to change the effective grating separation. This can be achieved by moving the stage 415 with mounted roof mirror 416 - 417 along the beam path indicated.
  • grating 406 may be repositioned, rotated, or otherwise altered to provide pulses of different lengths.
  • Multiple components illustrated in FIG. 4 may be placed on stages and moved in a relatively short amount of time. As an example, the device may offer two different pulse lengths, and may offer two different positions for the various components.
  • Components including but not limited to each of the reflective surfaces as well as one or more of grating 406 , stretcher lens 407 , folding mirror 408 , and stretcher mirror 409 , Faraday (three port) isolator 411 , half wave plate 413 , compressor retro-reflection assembly 415 , folding mirror 422 , energy wheel 423 , fast shutter 426 , and/or folding mirror to articulating arm 427 may be positioned on a stage or stages and may be translated and/or rotated to a desired second position to effectuate the second pulse length setting. Alternately, an alternate component may be switched in or out for an existing component to effectuate the second mode of operation. More positions and more pulse length options may be achieved by offering variable positioning of components. Alternatively, a pulse spectral shape or width may be altered (for example, by filtering spectral components within the stretcher or compressor) to adjust temporal pulse length.
  • Translation and/or rotation or substitution of components may be achieved using computer controlled motorized stages.
  • pulse length can be determined for more than one position or orientation of a given stage and the setting of both the stage and the resultant pulse length stored in computer memory.
  • the user may select a particular pulse length to achieve a particular cut, and the computer 204 may command the stage to translate or rotate or otherwise be repositioned to an available position to achieve desired pulse length.
  • a further alternative in FIG. 4 is to lengthen the distance between grating 406 and compressor retro-reflection assembly 415 , which would lengthen the resultant pulses.
  • a computer controlled stage may be employed to effectuate the desired position of the components.
  • a further alternative would be to substitute a second grating for grating 406 , such that a computer controlled stage may substitute in and/or reposition a second grating (not shown) in place of and/or in a position differing from grating 406 .
  • Other components may be reoriented to effectuate a desired change in position.
  • a bulk-grating compressor While illustrated with respect to a bulk-grating compressor, the present design may be employed in other types of compressors, including prism based compressors wherein components such as mirror(s), prism(s), and so forth may be provided on stages and adjusted, moved, rotated, translated, or substituted to alter pulse length.
  • a grism generally a combination between a grating and a prism, may be employed in the compressor, and grism components and components associated with the grism may be provided on stages and adjusted, moved, rotated, translated, or substituted using computer control to alter pulse length.
  • a further implementation may include a separate dispersion adjustment element added to a compressor, stretcher, or elsewhere in the beam path such as assembly 401 in FIG. 4 , that adjusts dispersion either continuously or in steps.
  • a dispersion element can change the pulse width when employed with a compressor.
  • the dispersion adjustment element can provide a fixed level of dispersion when positioned in the beam path or no dispersion when removed from the beam path.
  • FIG. 6 is a general representative drawing of a motorized stage that may be used with the design illustrated in FIG. 4 and includes components illustrated in FIG. 4 .
  • Mirrors 416 and 417 are root reflectors positioned on a motorized stage 415 configured to move toward and away from grating 406 . Such movement tends to stretch or compress the pulses received.
  • light passes to grating 406 , mirror 416 , mirror 417 , back to grating 406 , and to mirror 418 , where it is reflected as a retro beam.
  • Computer 601 controls the motorized stage to move in the direction shown.
  • the present design comprises offering a set of components in a laser engine compressor configured to be mechanically repositioned or replaced in order to alter pulse length of the resultant laser output.
  • at least one component is placed on a mechanical stage connected to a controller such that when a different pulse length is selected, the computer provides a command to move the stage and the component located thereon. Such movement alters the pulse width of the resultant pulse delivered to the patient in a surgical procedure such as a femtosecond laser ocular surgical procedure.
  • multiple components may be repositioned, and in another embodiment, certain components may be replaced with other components or removed form or inserted into the beam path using computer control.
  • Mechanical stages may be employed with any components in a pulse stretcher/pulse compressor or elsewhere in the beam path including but not limited to gratings, prisms, grisms, reflective surfaces or mirrors, half wave plates, lens assemblies or focusing lenses, retro-reflect assemblies, Faraday isolators, folding mirrors, half mirrors, energy wheels, and/or dispersion elements.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Molecular Biology (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Medical Informatics (AREA)
  • Lasers (AREA)
  • Laser Surgery Devices (AREA)

Abstract

Embodiments of this invention relate to a system and method for performing laser ophthalmic surgery. The surgical laser system configured to deliver a laser pulse to a patient's eye comprises a laser engine that includes a compressor configured to compress laser light energy received, the compressor comprising a dispersion or spectrum altering component provided on a computer controlled stage connected to a computing device. A user providing an indication of a desired pulse width received by the computing device causes the computing device to reposition the stage and the component provided thereon, resulting in a different pulse length being transmitted by the laser engine.

Description

    RELATED APPLICATION
  • This application claims the benefit of priority to U.S. Provisional Patent Application No. 61/794,651, filed on Mar. 15, 2013, the entire disclosure of which is incorporated herein by reference.
  • BACKGROUND
  • 1. Field
  • Embodiments of this present invention generally relate to laser systems, and more specifically, to the application of laser pulses during surgical procedures such as laser-assisted ophthalmic surgery.
  • 2. Background
  • Eye surgery is now commonplace with some patients pursuing it as an elective procedure to avoid using contact lenses or glasses and others pursuing it to correct adverse conditions such as cataracts. Moreover, with recent developments in laser technology, laser surgery has become the technique of choice for ophthalmic procedures. Laser eye surgery typically uses different types of laser beams, such as ultraviolet lasers, infrared lasers, and near-infrared, ultra-short pulsed lasers, for various procedures and indications.
  • A surgical laser beam is preferred over manual tools like microkeratomes as it can be focused accurately on extremely small amounts of ocular tissue, thereby enhancing precision and reliability. For example, in the commonly-known LASIK (Laser Assisted In Situ Keratomileusis) procedure, an ultra-short pulsed laser is used to cut a corneal flap to expose the corneal stroma for photoablation with an excimer laser. Ultra-short pulsed lasers emit radiation with pulse durations as short as 10 femtoseconds and as long as 3 nanoseconds, and a wavelength between 300 nm and 3000 nm. Besides cutting corneal flaps, ultra-short pulsed lasers are used to perform cataract-related surgical procedures, including capsulorhexis, capsulotomy, as well as softening and/or breaking of the cataractous lens.
  • In laser surgery performed with an ultra-short pulsed laser, the laser engine is configured to deliver a laser beam with ultra-short pulse durations (which may be as long as a few nanoseconds or as short as a few femtoseconds) to a patient's eye. Temporal pulse profile and the pulse width are generally static in that they do not change during a procedure or during different phases of a procedure. Nor do they change when different procedures are performed separately, such as, for example, a capsulorhexis, a capsulotomy, lens fragmentation, corneal incisions, and the like.
  • Nevertheless, some issues may arise during different surgical procedures. As a specific example, certain types of ophthalmic incisions may require one type of laser profile, while another type of incision may benefit from a profile having a different pulse length. Conventional laser systems have a limited or non-existent ability to change the laser pulse profile. Where the ability is limited, the laser pulse may be changed to a desired profile, but only after one phase of a surgical procedure is completed with the initial profile. To change the laser's pulse profile, an operator must manually adjust the positions of certain system components, or make time consuming changes to the components themselves. Once this process is completed, the device may be powered on to commence another phase of the procedure. As may be appreciated, time delay is highly undesirable.
  • As such, there is a need for an ultra-short pulsed surgical laser system that overcomes the limited pulse profile capabilities available in conventional systems. In particular, it would be beneficial to offer a more robust ability to alter laser pulse profiles during laser-assisted refractive and cataract surgeries.
  • SUMMARY
  • Embodiments of this invention include a surgical laser system and method for performing ophthalmic surgery. The laser system includes a laser engine configured to deliver a pulsed beam to a patient's eye, wherein the engine includes a compressor configured to compress laser light energy received, the compressor comprising a dispersion or spectrum altering component provided on a computer controlled stage connected to a computing device. A user provides an input to a computing device regarding a desired pulse width causes the computing device to reposition the stage and the component provided thereon, which results in a different pulse length to be transmitted by the laser engine.
  • This summary and the following detailed description are merely exemplary, illustrative, and explanatory, and are not intended to limit, but to provide further explanation of the invention as claimed. Additional features and advantages of the invention will be set forth in the descriptions that follow, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description, claims and the appended drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a general overview of a non-UV, ultra-short pulse laser arrangement configured to employ the present design.
  • FIG. 2 is a general diagram of the components of a non-UV, ultra-short pulse bulk laser engine in an ophthalmic surgical laser system.
  • FIG. 3 illustrates a bulk oscillator that may be employed with the present design.
  • FIG. 4 is a pulse stretcher/compressor that may be employed with the present design.
  • FIG. 5 shows an amplifier that may be employed with the present design.
  • FIG. 6 is a conceptual illustration of a stage having a component positioned thereon usable with the present design.
  • DETAILED DESCRIPTION
  • The drawings and related descriptions of the embodiments have been simplified to illustrate elements that are relevant for a clear understanding of these embodiments, while eliminating various other elements found in conventional collagen shields, ophthalmic patient interfaces, and in laser eye surgical systems. Those of ordinary skill in the art may thus recognize that other elements and/or steps are desirable and/or required in implementing the embodiments that are claimed and described. But, because those other elements and steps are well known in the art, and because they do not necessarily facilitate a better understanding of the embodiments, they are not discussed. This disclosure is directed to all applicable variations, modifications, changes, and implementations known to those skilled in the art. As such, the following detailed descriptions are merely illustrative and exemplary in nature and are not intended to limit the embodiments of the subject matter or the uses of such embodiments. As used in this application, the terms “exemplary” and “illustrative” mean “serving as an example, instance, or illustration.” Any implementation described as exemplary or illustrative is not meant to be construed as preferred or advantageous over other implementations. Further, there is no intention to be bound by any expressed or implied theory presented in the preceding background of the invention, brief summary, or the following detailed description.
  • FIG. 1 illustrates a general overview of a laser arrangement configured to employ the present design. From FIG. 1, laser engine 100 includes laser source 101 and provides laser light to variable attenuator 102 configured to attenuate the beam, then to energy monitors 103 to monitor beam energy level, and first safety shutter 104 serving as a shutoff device if the beam is unacceptable. Beam steering mirror 105 redirects the resultant laser beam to the beam delivery device 110, through articulated arm 106 to range finding camera 111. The range finding camera 111 determines the range needed for the desired focus at the eye 120. Beam delivery device 110 includes second safety shutter 112 and beam monitor 113, beam pre-expander 114, X-Y (position) scanner 115, and zoom beam expander 116. Zoom beam expander 116 expands the beam toward IR mirror 117 which reflects and transmits the received beam. Mirror 118 reflects the received beam to video camera 119, which records the surgical procedure on the eye 120. IR mirror 117 also reflects the laser light energy to objective lens 121, which focuses laser light energy to eye 120.
  • In ophthalmic surgery using a pulsed laser beam, non-ultraviolet (UV), ultra-short pulsed laser technology can produce pulsed laser beams having pulse durations measured in the femtoseconds and picoseconds range. An exemplary ultra-short pulsed laser system shown in FIG. 1 can provide an intrastromal photodisruption technique for reshaping the cornea using a non-UV, ultra-short (e.g., femtosecond pulse duration), pulsed laser beam produced by laser source 101 that propagates through corneal tissue and is focused at a point below the surface of the cornea to photodisrupt stromal tissue at the focal point.
  • Although the system may be used to photoalter a variety of materials (e.g., organic, inorganic, or a combination thereof), the system is suitable for ophthalmic applications in one embodiment. The focusing optics, such as beam pre-expander 114, zoom beam expander 116, IR mirror 117 and objective lens 121, direct the pulsed laser beam toward an eye 120 (e.g., onto or into a cornea) for plasma mediated (e.g., non-UV) photoablation of superficial tissue, or into the stroma of the cornea for intrastromal photodisruption of tissue. In this embodiment, the system may also include a lens to change the shape (e.g., flatten or curve) of the cornea prior to scanning the pulsed laser beam toward the eye. The system is capable of generating the pulsed laser beam with physical characteristics similar to those of the laser beams generated by a laser system disclosed in U.S. Pat. Nos. 4,764,930 and 5,993,438, which are incorporated herein.
  • The ophthalmic laser system can produce an ultra-short pulsed laser beam for use as an incising laser beam. This pulsed laser beam preferably has laser pulses with durations as long as a few nanoseconds or as short as a few femtoseconds. For intrastromal photodisruption of the tissue, the pulsed laser beam has a wavelength that permits the pulsed laser beam to pass through the cornea without absorption by the corneal tissue. The wavelength of the pulsed laser beam is generally in the range of about 300 nm to about 3000 nm, and the irradiance of the pulsed laser beam for accomplishing photodisruption of stromal tissues at the focal point is typically greater than the threshold for optical breakdown of the tissue. Although a non-UV, ultra-short pulsed laser beam is described in this embodiment, the pulsed laser beam may have other pulse durations and different wavelengths in other embodiments. Further examples of devices employed in performing ophthalmic laser surgery are disclosed in, for example, U.S. Pat. Nos. 5,549,632, 5,984,916, and 6,325,792, which are incorporated here by reference.
  • FIG. 2 illustrates general diagram of the components of a non-UV, ultra-short pulse laser engine in an ocular laser surgical system including laser engine 101. From FIG. 2, there is provided an oscillator 201, a beam stretcher/pulse compressor 202, and an amplifier 203. Controller 204 may be provided in the embodiments discussed herein. Lasers producing pulses in the femtosecond/picosecond duration range operate and generate pulses at high peak power levels, and if left unaltered can damage the gain medium. To address this issue, chirped pulse amplification (CPA) is employed wherein the length of pulses are extended or stretched to the picosecond range, resulting in a significant reduction in pulse peak power. From FIG. 2, the oscillator 201 generates and outputs a beam of femtosecond laser pulses. The pulse stretcher/compressor 202 extends the duration of the received pulses. Amplifier 203 increases amplitude of the pulses. The pulse stretcher/compressor then recompressed pulses to the femtosecond range prior to delivery.
  • FIG. 3 illustrates an oscillator 301 used in a femtosecond bulk laser surgical device. Oscillator 301 includes laser pump 302 which directs laser light energy to focusing lens 303A and a dichroic mirror 303B, which both transmits the pump beam but reflects the cavity beam. In one path the cavity beam passes to mirror 309, aperture 310, mirror 307, and SESAM “HR” mirror 308. As used herein, the term “mirror” or “mirrors” is intended broadly to mean any type of reflective surface or surfaces. The other path from the dichroic mirror 303B is directed to oscillator glass assembly 304, horizontally polarized at Brewster's angle, to mirror 305, mirror 306, output coupler 311, and light energy ultimately passes out of oscillator 301 to mirror 312, beamsplitter 313, and pulse stretcher/compressor 202, not shown in this view.
  • FIG. 4 illustrates the components of pulse stretcher/compressor 401, which receives the beam under half mirror 402, with light passing to half wave plate 403, and one of a number of mirrors 404, over half mirror 405, to grating 406, stretcher lens 407, folding mirror 408, an stretcher mirror 409. The beam then travels through elements 408, 407 and 406 to half mirror 405 that reflects the beam back to another double-pass through the grating 406 and other elements. The beam then goes over half mirror 405 to elements 404 and 403. The beam is then gets reflected by half mirror 402 to reflective surface 410, which provides light energy to Faraday (three port) isolator 411, configured to receive and provide light energy to and from mirrors 412 and 420. As shown, mirror 412 provides light energy to half wave plate 413 and to an amplifier (not shown in this view). Light from half mirror 420 passes to mirror 419, grating 406, and to compressor retro-reflection assembly 415, including mirrors 416 and 417, back through grating 406 and to mirror 418. Light beam then passes through the grating 406, retro-reflection assembly 415, grating 406, to mirror 419. The light beam travels over half mirror 420 to mirror 421, to folding mirror 422, and to energy wheel 423, to beam splitters 424 and 425, fast shutter 426, and folding mirror to articulating arm 427. Light from beam splitters 424 and 425 are directed to the other components of the surgical system.
  • FIG. 5 illustrates one embodiment of an amplifier 501 in accordance with the design of FIG. 2A, again including a number of mirrors as well as amp out photodiode 503, polarizer assembly 504, mirror 505, Pockels cell 506, mirror 507, and Q-switch photo diode 508. Also shown is a folding mirror 510, mirror 511, mirror 512 on a translation device, amplifier glass assembly 513, focusing lenses 514, and pump diode 515.
  • One embodiment of the present design employs the arrangement of FIGS. 3-5. Lasers may be employed in the ocular surgical environment to perform a variety of different cuts, such as corneal cuts, capsulotomy cuts, and lens fragmentation cuts. Each of these cuts is optimally performed using a different length pulse. For example, a corneal cut may use pulses in the 400-800 femtoseconds range, while lens fragmentation cuts may use pulses in the 1-5 picoseconds range. It would be advantageous to offer a surgeon an ability to achieve different pulse lengths when the surgeon switches from one desired pulse length to another desired pulse length with little effort required, unlike previous devices wherein extensive and/or manual component repositioning was required to alter pulse length.
  • The present design employs computer controlled adjustment of pulse length by changing the dispersion of the pulse compressor, pulse stretcher, or other components or assemblies in the beam path. Detuning the compressor from its optimal operating point tends to lengthen output pulses. One change of the design is to change the effective grating separation. This can be achieved by moving the stage 415 with mounted roof mirror 416-417 along the beam path indicated. In one embodiment, grating 406 may be repositioned, rotated, or otherwise altered to provide pulses of different lengths. Multiple components illustrated in FIG. 4 may be placed on stages and moved in a relatively short amount of time. As an example, the device may offer two different pulse lengths, and may offer two different positions for the various components. Components including but not limited to each of the reflective surfaces as well as one or more of grating 406, stretcher lens 407, folding mirror 408, and stretcher mirror 409, Faraday (three port) isolator 411, half wave plate 413, compressor retro-reflection assembly 415, folding mirror 422, energy wheel 423, fast shutter 426, and/or folding mirror to articulating arm 427 may be positioned on a stage or stages and may be translated and/or rotated to a desired second position to effectuate the second pulse length setting. Alternately, an alternate component may be switched in or out for an existing component to effectuate the second mode of operation. More positions and more pulse length options may be achieved by offering variable positioning of components. Alternatively, a pulse spectral shape or width may be altered (for example, by filtering spectral components within the stretcher or compressor) to adjust temporal pulse length.
  • Translation and/or rotation or substitution of components may be achieved using computer controlled motorized stages. During manufacturing or service, pulse length can be determined for more than one position or orientation of a given stage and the setting of both the stage and the resultant pulse length stored in computer memory. During surgery, the user may select a particular pulse length to achieve a particular cut, and the computer 204 may command the stage to translate or rotate or otherwise be repositioned to an available position to achieve desired pulse length.
  • A further alternative in FIG. 4 is to lengthen the distance between grating 406 and compressor retro-reflection assembly 415, which would lengthen the resultant pulses. Again, a computer controlled stage may be employed to effectuate the desired position of the components. A further alternative would be to substitute a second grating for grating 406, such that a computer controlled stage may substitute in and/or reposition a second grating (not shown) in place of and/or in a position differing from grating 406. Other components may be reoriented to effectuate a desired change in position.
  • While illustrated with respect to a bulk-grating compressor, the present design may be employed in other types of compressors, including prism based compressors wherein components such as mirror(s), prism(s), and so forth may be provided on stages and adjusted, moved, rotated, translated, or substituted to alter pulse length. Alternately, a grism, generally a combination between a grating and a prism, may be employed in the compressor, and grism components and components associated with the grism may be provided on stages and adjusted, moved, rotated, translated, or substituted using computer control to alter pulse length.
  • A further implementation may include a separate dispersion adjustment element added to a compressor, stretcher, or elsewhere in the beam path such as assembly 401 in FIG. 4, that adjusts dispersion either continuously or in steps. Use of a dispersion element can change the pulse width when employed with a compressor. Alternately, the dispersion adjustment element can provide a fixed level of dispersion when positioned in the beam path or no dispersion when removed from the beam path.
  • FIG. 6 is a general representative drawing of a motorized stage that may be used with the design illustrated in FIG. 4 and includes components illustrated in FIG. 4. Mirrors 416 and 417 are root reflectors positioned on a motorized stage 415 configured to move toward and away from grating 406. Such movement tends to stretch or compress the pulses received. In the beam path illustrated, light passes to grating 406, mirror 416, mirror 417, back to grating 406, and to mirror 418, where it is reflected as a retro beam. Computer 601 controls the motorized stage to move in the direction shown.
  • Thus, the present design comprises offering a set of components in a laser engine compressor configured to be mechanically repositioned or replaced in order to alter pulse length of the resultant laser output. In one embodiment, at least one component is placed on a mechanical stage connected to a controller such that when a different pulse length is selected, the computer provides a command to move the stage and the component located thereon. Such movement alters the pulse width of the resultant pulse delivered to the patient in a surgical procedure such as a femtosecond laser ocular surgical procedure.
  • In another embodiment, multiple components may be repositioned, and in another embodiment, certain components may be replaced with other components or removed form or inserted into the beam path using computer control. Mechanical stages may be employed with any components in a pulse stretcher/pulse compressor or elsewhere in the beam path including but not limited to gratings, prisms, grisms, reflective surfaces or mirrors, half wave plates, lens assemblies or focusing lenses, retro-reflect assemblies, Faraday isolators, folding mirrors, half mirrors, energy wheels, and/or dispersion elements.
  • Those of skill in the art will recognize that the step of a method described in connection with an embodiment may be interchanged without departing from the scope of the invention. Those of skill in the art would also understand that information and signals may be represented using any of a variety of different technologies and techniques. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention. An apparatus implementing the techniques or components described herein may be a stand-alone device or may be part of a larger device.
  • Although embodiments of this invention are described and pictured in an exemplary form with a certain degree of particularity, describing the best mode contemplated of carrying out the invention, and of the manner and process of making and using it, those skilled in the art will understand that various modifications, alternative constructions, changes, and variations can be made in the ophthalmic interface and method without departing from the spirit or scope of the invention. Thus, it is intended that this invention cover all modifications, alternative constructions, changes, variations, as well as the combinations and arrangements of parts, structures, and steps that come within the spirit and scope of the invention as generally expressed by the following claims and their equivalents.

Claims (8)

What is claimed is:
1. A surgical laser system configured to deliver a laser pulse to a patient's eye, comprising:
a laser engine, having
a compressor configured to compress laser light energy received, the compressor comprising a dispersion altering component provided on a computer controlled stage connected to a computing device;
wherein a user providing an indication of a desired pulse width received by the computing device causes the computing device to reposition the stage and the component provided thereon, resulting in a different pulse length being transmitted by the laser engine.
2. A surgical laser system configured to deliver a laser pulse to a patient's eye, comprising:
a laser engine, having
a compressor configured to compress laser light energy received, the compressor comprising a spectrum altering component provided on a computer controlled stage connected to a computing device;
wherein a user providing an indication of a desired pulse width received by the computing device causes the computing device to reposition the stage and the component provided thereon, resulting in a different pulse length being transmitted by the laser engine.
3. The surgical laser system of claim 1 wherein the laser pulse has a wavelength in the range of 300 nm to 3000 nm.
4. The surgical laser system of claim 1 wherein the compressor further comprises a separate dispersion adjustment element configured to change the pulse width of the laser light energy.
5. The surgical laser system of claim 1 wherein the compressor further comprises a separate dispersion adjustment element, the separate dispersion adjustment element configured to provide a fixed level of dispersion when positioned in a beam path of the laser pulse and no dispersion when removed from the beam path.
6. The surgical laser system of claim 2 wherein the laser pulse has a wavelength in the range of 300 nm to 3000 nm.
7. The surgical laser system of claim 2 wherein the compressor further comprises a separate dispersion adjustment element configured to change the pulse width of the laser light energy.
8. The surgical laser system of claim 2 wherein the compressor further comprises a separate dispersion adjustment element, the separate dispersion adjustment element configured to provide a fixed level of dispersion when positioned in a beam path of the laser pulse and no dispersion when removed from the beam path.
US14/198,409 2013-03-15 2014-03-05 Short pulse laser with adjustable pulse length Abandoned US20140276669A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/198,409 US20140276669A1 (en) 2013-03-15 2014-03-05 Short pulse laser with adjustable pulse length
US15/348,858 US10390995B2 (en) 2013-03-15 2016-11-10 Short pulse laser with adjustable pulse length

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361794651P 2013-03-15 2013-03-15
US14/198,409 US20140276669A1 (en) 2013-03-15 2014-03-05 Short pulse laser with adjustable pulse length

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/348,858 Continuation US10390995B2 (en) 2013-03-15 2016-11-10 Short pulse laser with adjustable pulse length

Publications (1)

Publication Number Publication Date
US20140276669A1 true US20140276669A1 (en) 2014-09-18

Family

ID=51530857

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/198,409 Abandoned US20140276669A1 (en) 2013-03-15 2014-03-05 Short pulse laser with adjustable pulse length
US15/348,858 Active 2034-08-26 US10390995B2 (en) 2013-03-15 2016-11-10 Short pulse laser with adjustable pulse length

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/348,858 Active 2034-08-26 US10390995B2 (en) 2013-03-15 2016-11-10 Short pulse laser with adjustable pulse length

Country Status (1)

Country Link
US (2) US20140276669A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11389241B2 (en) 2019-01-15 2022-07-19 Boston Scientific Scimed, Inc. Alignment method and tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060159137A1 (en) * 2004-12-20 2006-07-20 Lawrence Shah Pulsed laser source with adjustable grating compressor
US20060207976A1 (en) * 2005-01-21 2006-09-21 Bovatsek James M Laser material micromachining with green femtosecond pulses
US20070129775A1 (en) * 2005-09-19 2007-06-07 Mordaunt David H System and method for generating treatment patterns

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764930A (en) 1988-01-27 1988-08-16 Intelligent Surgical Lasers Multiwavelength laser source
US5984916A (en) 1993-04-20 1999-11-16 Lai; Shui T. Ophthalmic surgical laser and method
US6325792B1 (en) 1991-11-06 2001-12-04 Casimir A. Swinger Ophthalmic surgical laser and method
US5549632A (en) 1992-10-26 1996-08-27 Novatec Laser Systems, Inc. Method and apparatus for ophthalmic surgery
US5993438A (en) 1993-11-12 1999-11-30 Escalon Medical Corporation Intrastromal photorefractive keratectomy
US7804864B2 (en) * 2004-03-31 2010-09-28 Imra America, Inc. High power short pulse fiber laser
US8308716B2 (en) * 2006-06-30 2012-11-13 Novartis Ag Apparatus and method for auto-titrating a laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060159137A1 (en) * 2004-12-20 2006-07-20 Lawrence Shah Pulsed laser source with adjustable grating compressor
US20060207976A1 (en) * 2005-01-21 2006-09-21 Bovatsek James M Laser material micromachining with green femtosecond pulses
US20070129775A1 (en) * 2005-09-19 2007-06-07 Mordaunt David H System and method for generating treatment patterns

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CORTES: http://www.dmphotonics.com/CORTES-800%2040%20TW%20web.pdf archived on 15 August 2009 (retrieved on 10 March 2016), backdated using the Internet webpage <URL:https://web.archive.org/web/20090415000000*/http://www.dmphotonics.com/CORTES-800%2040%20TW%20web.pdf> *
Spitifre - Ti:Sapphire Rengerative Amplifier Systems User's Manual. Spectra-Physics. Part Number 0000-255A, Rev, A. August 2004    *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11389241B2 (en) 2019-01-15 2022-07-19 Boston Scientific Scimed, Inc. Alignment method and tools
US11844494B2 (en) 2019-01-15 2023-12-19 Boston Scientific Scimed, Inc. Alignment method and tools

Also Published As

Publication number Publication date
US20170119577A1 (en) 2017-05-04
US10390995B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
JP4102801B2 (en) Ophthalmic laser system
JP4763615B2 (en) Laser apparatus for processing materials by laser radiation
EP2384727B1 (en) Ophthalmic laser treatment system
US20090048586A1 (en) Precise disruption of tissue in retinal and preretinal structures
MX2014007639A (en) Low wavefront error devices, systems, and methods for treating an eye.
US20230201037A1 (en) Treatment laser with reflex mirror
JP2005512759A (en) Refractive laser surgical apparatus and process
US11406536B2 (en) Confocal detection to minimize capsulotomy overcut while dynamically running on the capsular surface
KR101624600B1 (en) Laser-assisted epithelial removal
US10363173B2 (en) Confocal detection to minimize capsulotomy overcut while dynamically running on the capsular surface
US10390995B2 (en) Short pulse laser with adjustable pulse length
RU2423959C1 (en) Ophthalmosurgical laser system based on femtosecond laser
US20140276672A1 (en) Stable mode-locked laser apparatus
US20140324032A1 (en) Hybrid fiber-bulk laser isolator
EP3878416A1 (en) Modular laser therapeutic device

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMO DEVELOPMENT, LLC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IMESHEV, GENNADY;REEL/FRAME:033140/0807

Effective date: 20140607

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION