US20140187655A1 - Methods and compositions for preparing and purifying noribogaine - Google Patents

Methods and compositions for preparing and purifying noribogaine Download PDF

Info

Publication number
US20140187655A1
US20140187655A1 US13/104,406 US201113104406A US2014187655A1 US 20140187655 A1 US20140187655 A1 US 20140187655A1 US 201113104406 A US201113104406 A US 201113104406A US 2014187655 A1 US2014187655 A1 US 2014187655A1
Authority
US
United States
Prior art keywords
noribogaine
ibogaine
solid support
bound
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/104,406
Other versions
US8765737B1 (en
Inventor
Deborah C. Mash
Richard D. Gless, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DemeRx Inc
Original Assignee
DemeRx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DemeRx Inc filed Critical DemeRx Inc
Priority to US13/104,406 priority Critical patent/US8765737B1/en
Assigned to DEMERX, INC. reassignment DEMERX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLESS, RICHARD D, JR, Mash, Deborah C
Priority to US14/298,534 priority patent/US9394294B2/en
Application granted granted Critical
Publication of US8765737B1 publication Critical patent/US8765737B1/en
Publication of US20140187655A1 publication Critical patent/US20140187655A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings

Definitions

  • This invention relates generally to methods and compositions for purifying the non-addictive alkaloid noribogaine.
  • Noribogaine is a well known derivative of ibogaine and is sometimes referred to as 12-hydroxyibogaine. It is a metabolite of ibogaine. U.S. Pat. No. 2,813,873 claims noribogaine albeit as “12-O-demethylibogaine” while providing an incorrect structural formula for ibogaine. The structure of noribogaine has now been thoroughly evaluated and is found to combine the features of tyrptamine, tetrahydrohavaine and indolazepines. Noribogaine can be depicted by the following formula:
  • Noribogaine and its pharmaceutically acceptable salts have recently received significant attention as a non-addictive alkaloid useful in treating drug dependency (U.S. Pat. No. 6,348,456) and as a potent analgesic (U.S. Pat. No. 7,220,737).
  • noribogaine is prepared by demethylation of naturally occurring ibogaine:
  • Demethylation may be accomplished by conventional techniques such as by reaction with boron tribromide/methylene chloride at room temperature followed by conventional purification.
  • Ibogaine possesses hallucinogenic properties. It is a Schedule 1-controlled substance as provided by the US Food and Drug Administration. Accordingly, methods for preparing noribogaine from ibogaine require high levels of assurance that contamination with unacceptable levels of ibogaine is avoided. As above, a one-step method for preparation of noribogaine from ibogaine via demethylation does not provide the requisite assurance that ibogaine will consistently be removed as a potential contaminant.
  • This invention provides methods and compositions for the preparation of noribogaine wherein contamination by ibogaine is predictably reduced to acceptable levels.
  • this invention employs the use of solid supports to effect separation of noribogaine from ibogaine such that any ibogaine contamination is significantly reduced if not essentially eliminated.
  • this invention is directed to a method for preparing and purifying noribogaine which method comprises:
  • this invention is directed to a method for preparing and purifying noribogaine which method comprises:
  • this invention is directed to a solid support having ibogaine or noribogaine covalently bound thereto through a cleavable linker
  • the solid support of this invention comprises ibogaine covalently bound thereto through a cleavable linker. In another embodiment, the solid support of this invention comprises noribogaine covalently bound thereto through a cleavable linker.
  • This invention is directed to methods and compositions comprising noribogaine and, in particular, methods and compositions comprising highly pure noribogaine.
  • noribogaine and, in particular, methods and compositions comprising highly pure noribogaine.
  • compositions and methods are intended to mean that the compositions and methods include the recited elements, but not excluding others.
  • Consisting essentially of when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination for the stated purpose. Thus, a composition consisting essentially of the elements as defined herein would not exclude other materials or steps that do not materially affect the basic and novel characteristic(s) of the claimed invention.
  • Consisting of shall mean excluding more than trace elements of other ingredients and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this invention.
  • compositions comprising noribogaine and an excipient to facilitate transport across the blood brain barrier.
  • noribogaine refers to the compound:
  • noribogaine is prepared by demethylation of naturally occurring ibogaine:
  • Demethylation may be accomplished by conventional techniques such as by reaction with boron tribromide/methylene chloride at room temperature, or reaction with lithium diphenylphosphine (preferably an excess thereof), followed by conventional purification.
  • This invention is not limited to any particular chemical form of noribogaine and the compound may be present as either as a free base or as an acceptable addition salt.
  • solid support refers to a material having a rigid or semi-rigid surface which contain or can be derivatized to contain reactive functionality which covalently links noribogaine or ibogaine to the surface thereof through a cleavable linker
  • materials are well known in the art and include, by way of example, silica, synthetic silicates, biogenic silicates, porous glass, hydrogels, silicate-containing minerals, synthetic polymers, polystyrene, polypropylene, polyacrylamide, polyethylene glycol, polyacrylamide and copolymers thereof including copolymers of polystyrene/polyethylene glycol and polyacrylamide/polyethylene glycol, and the like.
  • ion exchange resin refers to an insoluble organic polymer containing charged groups that attract and hold oppositely charged ions present in a surrounding solution in exchange for counterions previously held. Suitable ion exchange resins to be used herein contain cationic groups that attract and hold anions present in a surrounding solution, and are sometimes referred to as “anion exchange resins”.
  • the term “cleavable linking arms” refers to linking arms, which are a chemical group or a covalent bond which covalently attaches at one end to a solid support and at the other end to ibogaine or noribogaine. At least one of the covalent bonds of the linking arm which attaches ibogaine or noribogaine to the solid support can be readily broken by specific chemical or enzymatic reactions, thereby providing for ibogaine or noribogaine free of the solid support.
  • the chemical or enzymatic reactions employed to break the covalent bond of the linking arm are selected so as to be specific for bond breakage thereby preventing unintended reactions occurring elsewhere on the compound.
  • the cleavable linking group is selected relative to ibogaine/noribogaine formed on the solid support so as to prevent premature cleavage of either ibogaine or noribogaine from the solid support as well as not to interfere with any of the procedures employed during synthesis on the support.
  • Suitable cleavable linking arms are well known in the art, and may include such groups as carbonate groups, carbamate groups, amide groups, and the like.
  • the cleavable linker arm contains no more than 10 atoms. More preferably, the cleavable linker contains from 1 to 4 carbon atoms and from 2 to 4 heteroatoms selected from oxygen, nitrogen, sulfur, S(O) and S(O) 2 .
  • an acceptable addition salt refers to pharmaceutically acceptable salts of a compound of Formula I which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate and the like.
  • protecting group refers to well known functional groups which, when bound to a functional group, render the resulting protected functional group inert to the reaction conditions to be conducted on other portions of the compound and which, at the appropriate time, can be reacted to regenerate the original functionality.
  • the identity of the protecting group is not critical and is selected to be compatible with the remainder of the molecule.
  • the protecting group is an “amino protecting group” which protects the amino functionality of ibogaine or noribogaine during the reactions described herein. Examples of conventional amino protecting groups include, for instance, benzyl, acetyl, oxyacetyl, carboxybenzyl (Cbz), and the like.
  • the protecting group is a “hydroxy protecting group” which protects the hydroxyl functionality of noribogaine.
  • hydroxyl protecting groups include, for instance, benzyl, p-methoxybenzyl, p-nitrobenzyl, allyl, trityl, dialkylsilylethers, such as dimethylsilyl ether, and trialkylsilyl ethers such as trimethylsilyl ether, triethylsilyl ether, and t-butyldimethylsilyl ether; esters such as benzoyl, acetyl, phenylacetyl, formyl, mono-, di-, and trihaloacetyl such as chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl; and carbonates such as methyl, ethyl, 2,2,2-trichloroethyl, allyl, benzyl, and p
  • hydroxy protecting groups may be found in standard reference works such as Greene and Wuts, Protective Groups in Organic Synthesis., 2d Ed., 1991, John Wiley & Sons, and McOmie Protective Groups in Organic Chemistry, 1975, Plenum Press.
  • the compounds of this invention can be prepared from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
  • protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions.
  • Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene and G. M. Wuts, Protecting Groups in Organic Synthesis, Fourth Edition, Wiley, N.Y., 2007, and references cited therein.
  • the compounds of this invention will typically contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers, or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this invention, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents and the like.
  • noribogaine can be prepared and/or purified from ibogaine by utilizing solid support as shown in the following Schemes, where PG represents an amine protecting group, LG represents a leaving group (e.g. a halo or alcohol), L represents a cleavable linking group (e.g. a carbonyl compound such as a carbonate or carbamate) and the shaded circle represents a solid support.
  • PG represents an amine protecting group
  • LG represents a leaving group (e.g. a halo or alcohol)
  • L represents a cleavable linking group (e.g. a carbonyl compound such as a carbonate or carbamate)
  • the shaded circle represents a solid support.
  • the O-demethylation of the aryl methoxy group to provide the corresponding phenol can be accomplishing using any suitable method known in the art.
  • Suitable reagents include a Lewis acid (e.g. BBr 3 , AlCl 3 ), a nucleophile
  • the O-demethylation should be performed without affecting the linkage to the solid support.
  • Suitable reagents can be readily ascertained by one of skill in the art and can be found, for example, in T. W. Greene and G. M. Wuts, Protecting Groups in Organic Synthesis, Fourth Edition, Wiley, N.Y., 2007 (see, e.g., the reactivity charts at pages 1006-1008 and 1022-1032), and references cited therein.
  • Noribogaine 5 can be prepared and purified from ibogaine 10 by any one of the routes shown in Scheme 1.
  • Noribogaine, compound 5 is differentiated from ibogaine by virtue of the fact that the methoxy group of ibogaine has been converted to a hydroxyl group in noribogaine.
  • the indole amine of ibogaine can be protected using an amine protecting group to provide compound 1, followed by either tandem O-demethylation and removal of the protecting group using L-selectride®, for example, or sequential O-demethylation and removal of the protecting group to provide noribogaine 5.
  • noribogaine can be directly prepared and purified from the O-demethylation of ibogaine using methods known in the art and then purified by appending noribogaine to a solid support (compound 12 or 13), washing any contaminants, cleaving the linking group L, and recovering the noribogaine 5.
  • a solid support compound 12 or 13
  • one or more of the noribogaine or intermediates shown above can be purified using standard purification techniques known in the art (e.g. column chromatography, HPLC, and the like).
  • Compounds of formula 11 are commercially available or can be synthesized in one or two steps from commercially available starting materials (see, e.g. commercially available resins from Sigma-Aldrich®).
  • purification techniques can be used to maximize the purity of the recovered noribogaine.
  • noribogaine can be contacted with a suitable ion exchange resin at a pH where the phenol group has deprotonated to a sufficient degree such that these compounds are suitable for purification. Typically for phenol deprotonation, a pH of 10 or greater is used.
  • a pH of 10 or greater is used for phenol deprotonation.
  • ibogaine does not have an ionizable phenolic group, it will not bind to the ion exchange resin and can thus be eluted from column and separated from the resin-bound noribogaine.
  • Suitable ion exchange resins are commercially available and include Amberlite®, Toyopearl®, Lewatit®, Dowex®, DiaionTM, and Amberlyst® (Sigma Aldrich, Inc.)
  • an aqueous solution having a pH of at least 10 and a compound of the formula:
  • the purification process typically comprises pretreating or washing the resin with a solvent system which has the same pH, and other components such buffers, stabilizers, etc., that will be used to dissolve the noribogaine or salt thereof (“wash solvent”). Washing preferably includes passing at least 1 void volume (the volume of solvent needed to fill the resin vessel) of the wash solvent through the resin under ambient conditions. Subsequently, noribogaine is added to the same solvent system used as the wash solvent at a concentration preferably less than the saturation concentration for noribogaine. Noribogaine may be present as the phenolic anion under these conditions and, accordingly, both will bind to the anion exchange resin while other compounds lacking an anionic charge (i.e. ibogaine) will pass through the resin. Elution of the purified noribogaine can be then be accomplished using a cation-containing solution.
  • wash solvent preferably includes passing at least 1 void volume (the volume of solvent needed to fill the resin vessel) of the wash solvent through the resin under ambient conditions.
  • noribogaine is
  • an anion exchange resin comprising an aqueous solvent system and a pH of at least 10 and either compound 2a or compound 4a bound thereto.
  • noribogaine can be prepared and purified from ibogaine in the manner described in Scheme 2 below:
  • Pg is hydrogen or an amino protecting group and the shaded circle represents a solid support.
  • amino protected ibogaine, compound 1 is contacted with boron tribromide in methylene chloride or lithium diphenylphosphine using conditions well known in the art to provide for the amino protected noribogaine, compound 2.
  • a small portion of the solid support can be removed to provide a sample of noribogaine (after cleavage and deprotection).
  • the sample can then be analyzed for purity relative to any ibogaine present by conventional methods such as GC/MS, NMR, C 13 -NMR, etc.
  • exceptionally pure noribogaine, compound 5 can be obtained by repeating the process of forming the amino protected noribogaine, compound 2, binding compound 2 to a solid support via the hydroxyl group of amino protected noribogaine and washing any contaminating ibogaine from the solid support. By repeating this process as often as necessary and preferably no more than 5 times, it is contemplated that noribogaine having less than 5 ppm ibogaine and preferably less than 100 ppt ibogaine can be prepared.
  • noribogaine can be prepared and purified from ibogaine in the manner described in Scheme 3 below:
  • ibogaine, compound 10 is bound via conventional techniques to a solid support, compound 11, through a cleavable linker arm which, for the sake of illustration only, is depicted as a carbamate bond in resulting compound 12.
  • Compound 12 is then contacted with boron tribromide in methylene chloride or lithium diphenylphosphine using conditions well known in the art to provide for the noribogaine bound via the indole nitrogen to a solid support, compound 13.
  • Cleavage of the cleavable linker in compound 13 provides for noribogaine, compound 5.
  • compound 5 can be directly obtained from compound 12 using a reducing agent (e.g. L-Selectride®). See U.S. Pat. No. 6,291,675.
  • a reducing agent e.g. L-Selectride®
  • compound 5 can be purified by conventional techniques including high performance liquid chromatography (HPLC) and the purity level of the resulting purified compound confirmed by GC/MS.
  • HPLC high performance liquid chromatography
  • compound 5 can be used in Scheme 2 as recited above by attaching a solid support to the hydroxyl functionality. In either case, very high levels of noribogaine purity can be obtained.
  • Example 1 illustrates one method for the synthesis and purification of noribogaine from ibogaine which method follows Scheme 4 below:
  • ibogaine is contacted with a stoichiometric excess of benzyl chloroformate in an inert solvent such as methylene chloride.
  • the reaction mixture further contains at least a stoichiometric equivalent of diisopropylethylamine relative to ibogaine so as to scavenge the acid generated during the reaction.
  • the reaction is maintained at room temperature under an inert atmosphere until the reaction is substantially complete as evidenced by, for example, thin layer chromatograpy.
  • an O-demethylation reagent e.g.
  • boron tribromide, aluminum trichloride, or lithium diphenylphosphine), or preferably a stoichiometric excess thereof, is added to the reaction mixture which is then maintained under conditions (e.g. room temperature) wherein the methoxy group of ibogaine has been converted to the hydroxyl group of noribogaine.
  • hydroxyl group generated above is then employed as a complementary functionality for attachment of a solid support.
  • an excess of chloroformate bound to a solid support is combined with N-CBZ-noribogaine under conventional conditions wherein a cleavable carbonate bond is formed.
  • Chloroformate bound to a solid support can be prepared from a hydroxy-bearing polymer support (e.g. hydroxymethyl)polystyrene or polymer-bound benzyl alcohol, both commercially available from Sigma-Aldrich®) and carbonyl dichloride.
  • CBZ-ibogaine does not readily react under these O-demethylation conditions, it will remain in the solution phase of the reaction mixture and can be washed from the reaction mixture by conventional techniques including placing the solid support into a column and passing excess solvent through the column.
  • 1 kg of solid support containing CBZ-noribogaine is loaded onto a column.
  • the stopper of the column is partially opened so that a flow rate through the column of 0.5 liters per hour is maintained.
  • Methylene chloride is continuously fed to the top of the column and recovered at the base of the column.
  • the recovered methylene chloride is stripped to provide residual CBZ-ibogaine.
  • the process is continued until the effluent from the column no longer contains CBZ-ibogaine.
  • a portion of the solid support is loaded into a hydrogenation vessel together with methanol and a catalytic amount of palladium on carbon. Hydrogenation is continued under elevated pressure for approximately 5 hours.
  • the reaction is then stopped and the methanol recovered and stripped to provide for noribogaine. Additional purification of noribogaine can be achieved by HPLC as desired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Disclosed are methods and compositions for purifying the non-addictive alkaloid noribogaine.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/333,476, filed on May 11, 2010, and to U.S. Provisional Patent Application Ser. No. 61/419,772, filed on Dec. 3, 2010, both of which applications are incorporated by reference herein in their entirety.
  • FIELD OF THE INVENTION
  • This invention relates generally to methods and compositions for purifying the non-addictive alkaloid noribogaine.
  • STATE OF THE ART
  • Noribogaine is a well known derivative of ibogaine and is sometimes referred to as 12-hydroxyibogaine. It is a metabolite of ibogaine. U.S. Pat. No. 2,813,873 claims noribogaine albeit as “12-O-demethylibogaine” while providing an incorrect structural formula for ibogaine. The structure of noribogaine has now been thoroughly evaluated and is found to combine the features of tyrptamine, tetrahydrohavaine and indolazepines. Noribogaine can be depicted by the following formula:
  • Figure US20140187655A1-20140703-C00001
  • Noribogaine and its pharmaceutically acceptable salts have recently received significant attention as a non-addictive alkaloid useful in treating drug dependency (U.S. Pat. No. 6,348,456) and as a potent analgesic (U.S. Pat. No. 7,220,737).
  • Conventionally, noribogaine is prepared by demethylation of naturally occurring ibogaine:
  • Figure US20140187655A1-20140703-C00002
  • which is isolated from Tabernanth iboga, a shrub of West Africa. Demethylation may be accomplished by conventional techniques such as by reaction with boron tribromide/methylene chloride at room temperature followed by conventional purification.
  • Ibogaine possesses hallucinogenic properties. It is a Schedule 1-controlled substance as provided by the US Food and Drug Administration. Accordingly, methods for preparing noribogaine from ibogaine require high levels of assurance that contamination with unacceptable levels of ibogaine is avoided. As above, a one-step method for preparation of noribogaine from ibogaine via demethylation does not provide the requisite assurance that ibogaine will consistently be removed as a potential contaminant.
  • Accordingly, there is an ongoing need to provide a method for preparing noribogaine from ibogaine wherein any ibogaine contamination of noribogaine can be effectively and repeatedly minimized.
  • SUMMARY OF THE INVENTION
  • This invention provides methods and compositions for the preparation of noribogaine wherein contamination by ibogaine is predictably reduced to acceptable levels. In particular, this invention employs the use of solid supports to effect separation of noribogaine from ibogaine such that any ibogaine contamination is significantly reduced if not essentially eliminated.
  • Accordingly, in one of its method aspects, this invention is directed to a method for preparing and purifying noribogaine which method comprises:
      • a) converting ibogaine to noribogaine wherein the indole nitrogen is optionally protected by an amino protecting group;
      • b) covalently attaching noribogaine to a solid support via the hydroxyl group of noribogaine so as to form a suspension of solid supports having noribogaine bound thereto;
      • c) removing residual ibogaine from said suspension;
      • d) cleaving and recovering noribogaine from the solid support; and
      • e) optionally repeating steps b), c) and d) up to 5 times;
      • f) purifying noribogaine as recovered per above.
  • In another of its method aspects, this invention is directed to a method for preparing and purifying noribogaine which method comprises:
      • a) covalently attaching ibogaine to a solid support via the amino group of ibogaine so as to form a suspension of solid supports having ibogaine bound thereto;
      • b) converting ibogaine to noribogaine under conditions wherein the level of ibogaine bound to the solid support is less than 0.1 weight percent;
      • c) cleaving and recovering noribogaine from the solid support; and
      • d) purifying noribogaine as recovered per above.
  • In one of its composition aspects, this invention is directed to a solid support having ibogaine or noribogaine covalently bound thereto through a cleavable linker
  • In one embodiment, the solid support of this invention comprises ibogaine covalently bound thereto through a cleavable linker. In another embodiment, the solid support of this invention comprises noribogaine covalently bound thereto through a cleavable linker.
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention is directed to methods and compositions comprising noribogaine and, in particular, methods and compositions comprising highly pure noribogaine. However, prior to describing this invention in greater detail, the following terms will first be defined.
  • It is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
  • It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a pharmaceutically acceptable excipient” includes a plurality of such excipients.
  • 1. Definitions
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. As used herein the following terms have the following meanings.
  • As used herein, the term “comprising” or “comprises” is intended to mean that the compositions and methods include the recited elements, but not excluding others. “Consisting essentially of” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination for the stated purpose. Thus, a composition consisting essentially of the elements as defined herein would not exclude other materials or steps that do not materially affect the basic and novel characteristic(s) of the claimed invention. “Consisting of” shall mean excluding more than trace elements of other ingredients and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this invention.
  • The term “about” when used before a numerical designation, e.g., temperature, time, amount, and concentration, including range, indicates approximations which may vary by (+) or (−) 10%, 5% or 1%.
  • As stated above, the invention is directed to compositions comprising noribogaine and an excipient to facilitate transport across the blood brain barrier.
  • As used herein, the term “noribogaine” refers to the compound:
  • Figure US20140187655A1-20140703-C00003
  • and salts thereof Conventionally, noribogaine is prepared by demethylation of naturally occurring ibogaine:
  • Figure US20140187655A1-20140703-C00004
  • which is isolated from Tabernanth iboga, a shrub of West Africa. Demethylation may be accomplished by conventional techniques such as by reaction with boron tribromide/methylene chloride at room temperature, or reaction with lithium diphenylphosphine (preferably an excess thereof), followed by conventional purification. This invention is not limited to any particular chemical form of noribogaine and the compound may be present as either as a free base or as an acceptable addition salt.
  • The term “solid support” refers to a material having a rigid or semi-rigid surface which contain or can be derivatized to contain reactive functionality which covalently links noribogaine or ibogaine to the surface thereof through a cleavable linker Such materials are well known in the art and include, by way of example, silica, synthetic silicates, biogenic silicates, porous glass, hydrogels, silicate-containing minerals, synthetic polymers, polystyrene, polypropylene, polyacrylamide, polyethylene glycol, polyacrylamide and copolymers thereof including copolymers of polystyrene/polyethylene glycol and polyacrylamide/polyethylene glycol, and the like.
  • As used herein, the term “ion exchange resin” refers to an insoluble organic polymer containing charged groups that attract and hold oppositely charged ions present in a surrounding solution in exchange for counterions previously held. Suitable ion exchange resins to be used herein contain cationic groups that attract and hold anions present in a surrounding solution, and are sometimes referred to as “anion exchange resins”.
  • As used herein, the term “cleavable linking arms” refers to linking arms, which are a chemical group or a covalent bond which covalently attaches at one end to a solid support and at the other end to ibogaine or noribogaine. At least one of the covalent bonds of the linking arm which attaches ibogaine or noribogaine to the solid support can be readily broken by specific chemical or enzymatic reactions, thereby providing for ibogaine or noribogaine free of the solid support. The chemical or enzymatic reactions employed to break the covalent bond of the linking arm are selected so as to be specific for bond breakage thereby preventing unintended reactions occurring elsewhere on the compound. The cleavable linking group is selected relative to ibogaine/noribogaine formed on the solid support so as to prevent premature cleavage of either ibogaine or noribogaine from the solid support as well as not to interfere with any of the procedures employed during synthesis on the support. Suitable cleavable linking arms are well known in the art, and may include such groups as carbonate groups, carbamate groups, amide groups, and the like. In a preferred embodiment, the cleavable linker arm contains no more than 10 atoms. More preferably, the cleavable linker contains from 1 to 4 carbon atoms and from 2 to 4 heteroatoms selected from oxygen, nitrogen, sulfur, S(O) and S(O)2.
  • As used herein, the term “an acceptable addition salt” refers to pharmaceutically acceptable salts of a compound of Formula I which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate and the like.
  • As used herein, the term “protecting group” or “Pg” refers to well known functional groups which, when bound to a functional group, render the resulting protected functional group inert to the reaction conditions to be conducted on other portions of the compound and which, at the appropriate time, can be reacted to regenerate the original functionality. The identity of the protecting group is not critical and is selected to be compatible with the remainder of the molecule. In one embodiment, the protecting group is an “amino protecting group” which protects the amino functionality of ibogaine or noribogaine during the reactions described herein. Examples of conventional amino protecting groups include, for instance, benzyl, acetyl, oxyacetyl, carboxybenzyl (Cbz), and the like. In another embodiment, the protecting group is a “hydroxy protecting group” which protects the hydroxyl functionality of noribogaine. Examples of hydroxyl protecting groups include, for instance, benzyl, p-methoxybenzyl, p-nitrobenzyl, allyl, trityl, dialkylsilylethers, such as dimethylsilyl ether, and trialkylsilyl ethers such as trimethylsilyl ether, triethylsilyl ether, and t-butyldimethylsilyl ether; esters such as benzoyl, acetyl, phenylacetyl, formyl, mono-, di-, and trihaloacetyl such as chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl; and carbonates such as methyl, ethyl, 2,2,2-trichloroethyl, allyl, benzyl, and p-nitrophenyl. Additional examples of hydroxy protecting groups may be found in standard reference works such as Greene and Wuts, Protective Groups in Organic Synthesis., 2d Ed., 1991, John Wiley & Sons, and McOmie Protective Groups in Organic Chemistry, 1975, Plenum Press.
  • Preparation and Purification of Noribogaine
  • The compounds of this invention can be prepared from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
  • Additionally, as will be apparent to those skilled in the art, conventional protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions. Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene and G. M. Wuts, Protecting Groups in Organic Synthesis, Fourth Edition, Wiley, N.Y., 2007, and references cited therein.
  • Furthermore, the compounds of this invention will typically contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers, or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this invention, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents and the like.
  • It is contemplated that noribogaine can be prepared and/or purified from ibogaine by utilizing solid support as shown in the following Schemes, where PG represents an amine protecting group, LG represents a leaving group (e.g. a halo or alcohol), L represents a cleavable linking group (e.g. a carbonyl compound such as a carbonate or carbamate) and the shaded circle represents a solid support. In the following Schemes, the O-demethylation of the aryl methoxy group to provide the corresponding phenol can be accomplishing using any suitable method known in the art. Suitable reagents include a Lewis acid (e.g. BBr3, AlCl3), a nucleophile (e.g. RS—, N3—, SCN—), NaCN at low pH (e.g. pH 12), lithium diphenylphosphine (preferably an excess thereof), and the like. In some embodiments, the O-demethylation should be performed without affecting the linkage to the solid support. Suitable reagents can be readily ascertained by one of skill in the art and can be found, for example, in T. W. Greene and G. M. Wuts, Protecting Groups in Organic Synthesis, Fourth Edition, Wiley, N.Y., 2007 (see, e.g., the reactivity charts at pages 1006-1008 and 1022-1032), and references cited therein.
  • Figure US20140187655A1-20140703-C00005
  • Noribogaine 5 can be prepared and purified from ibogaine 10 by any one of the routes shown in Scheme 1. Noribogaine, compound 5, is differentiated from ibogaine by virtue of the fact that the methoxy group of ibogaine has been converted to a hydroxyl group in noribogaine. In one embodiment, the indole amine of ibogaine can be protected using an amine protecting group to provide compound 1, followed by either tandem O-demethylation and removal of the protecting group using L-selectride®, for example, or sequential O-demethylation and removal of the protecting group to provide noribogaine 5. In addition, in one embodiment, noribogaine can be directly prepared and purified from the O-demethylation of ibogaine using methods known in the art and then purified by appending noribogaine to a solid support (compound 12 or 13), washing any contaminants, cleaving the linking group L, and recovering the noribogaine 5. In the above syntheses, one or more of the noribogaine or intermediates shown above can be purified using standard purification techniques known in the art (e.g. column chromatography, HPLC, and the like). Compounds of formula 11 are commercially available or can be synthesized in one or two steps from commercially available starting materials (see, e.g. commercially available resins from Sigma-Aldrich®).
  • In one preferred embodiment, purification techniques can be used to maximize the purity of the recovered noribogaine. In one embodiment, noribogaine can be contacted with a suitable ion exchange resin at a pH where the phenol group has deprotonated to a sufficient degree such that these compounds are suitable for purification. Typically for phenol deprotonation, a pH of 10 or greater is used. As ibogaine does not have an ionizable phenolic group, it will not bind to the ion exchange resin and can thus be eluted from column and separated from the resin-bound noribogaine. Suitable ion exchange resins are commercially available and include Amberlite®, Toyopearl®, Lewatit®, Dowex®, Diaion™, and Amberlyst® (Sigma Aldrich, Inc.)
  • Accordingly, in one of its composition aspects, there is provided an aqueous solution having a pH of at least 10 and a compound of the formula:
  • Figure US20140187655A1-20140703-C00006
  • The purification process typically comprises pretreating or washing the resin with a solvent system which has the same pH, and other components such buffers, stabilizers, etc., that will be used to dissolve the noribogaine or salt thereof (“wash solvent”). Washing preferably includes passing at least 1 void volume (the volume of solvent needed to fill the resin vessel) of the wash solvent through the resin under ambient conditions. Subsequently, noribogaine is added to the same solvent system used as the wash solvent at a concentration preferably less than the saturation concentration for noribogaine. Noribogaine may be present as the phenolic anion under these conditions and, accordingly, both will bind to the anion exchange resin while other compounds lacking an anionic charge (i.e. ibogaine) will pass through the resin. Elution of the purified noribogaine can be then be accomplished using a cation-containing solution.
  • Accordingly, in another of its composition aspects, there is provided an anion exchange resin comprising an aqueous solvent system and a pH of at least 10 and either compound 2a or compound 4a bound thereto.
  • In one embodiment, noribogaine can be prepared and purified from ibogaine in the manner described in Scheme 2 below:
  • Figure US20140187655A1-20140703-C00007
  • wherein Pg is hydrogen or an amino protecting group and the shaded circle represents a solid support.
  • Specifically, in Scheme 2, amino protected ibogaine, compound 1, is contacted with boron tribromide in methylene chloride or lithium diphenylphosphine using conditions well known in the art to provide for the amino protected noribogaine, compound 2.
  • In Scheme 2, attachment of amino protected noribogaine, compound 2, to a solid support is accomplished by use of a chloroformate/solid support, compound 3, under conventional conditions to provide for compound 4 wherein the carbonate group is shown for illustrative purposes only as the cleavable linking group. Other cleavable linkers can likewise be used in Scheme 2. As amino protected ibogaine does not contain a functional group reactive with compound 3, only amino protected noribogaine, compound 2, will react with the solid support and provide for compound 4. Repeated washing of compound 4 will remove amino protected ibogaine contaminating the sample of amino protected noribogaine used in this reaction. Furthermore, at any time, a small portion of the solid support can be removed to provide a sample of noribogaine (after cleavage and deprotection). The sample can then be analyzed for purity relative to any ibogaine present by conventional methods such as GC/MS, NMR, C13-NMR, etc.
  • Upon achieving the desired level of purity of noribogaine relative to any contaminating ibogaine, noribogaine, compound 5, can be recovered from the solid support by cleavage of the cleavable linker and subsequent deprotection of the amino group. Both cleavage and deprotection are well known in the art.
  • As desired, exceptionally pure noribogaine, compound 5, can be obtained by repeating the process of forming the amino protected noribogaine, compound 2, binding compound 2 to a solid support via the hydroxyl group of amino protected noribogaine and washing any contaminating ibogaine from the solid support. By repeating this process as often as necessary and preferably no more than 5 times, it is contemplated that noribogaine having less than 5 ppm ibogaine and preferably less than 100 ppt ibogaine can be prepared.
  • In another embodiment, noribogaine can be prepared and purified from ibogaine in the manner described in Scheme 3 below:
  • Figure US20140187655A1-20140703-C00008
  • In Scheme 3, ibogaine, compound 10, is bound via conventional techniques to a solid support, compound 11, through a cleavable linker arm which, for the sake of illustration only, is depicted as a carbamate bond in resulting compound 12. Compound 12 is then contacted with boron tribromide in methylene chloride or lithium diphenylphosphine using conditions well known in the art to provide for the noribogaine bound via the indole nitrogen to a solid support, compound 13. Cleavage of the cleavable linker in compound 13 provides for noribogaine, compound 5. In certain embodiments, compound 5 can be directly obtained from compound 12 using a reducing agent (e.g. L-Selectride®). See U.S. Pat. No. 6,291,675.
  • In one embodiment, compound 5 can be purified by conventional techniques including high performance liquid chromatography (HPLC) and the purity level of the resulting purified compound confirmed by GC/MS. Alternatively, compound 5 can be used in Scheme 2 as recited above by attaching a solid support to the hydroxyl functionality. In either case, very high levels of noribogaine purity can be obtained.
  • The following synthetic and biological examples are offered to illustrate this invention and are not to be construed in any way as limiting the scope of this invention. Unless otherwise stated, all temperatures are in degrees Celsius.
  • EXAMPLES
  • In the examples below, the following abbreviations have the following meanings. If an abbreviation is not defined, it has its generally accepted meaning
  • Example 1 Synthesis and Purification of Noribogaine from Ibogaine
  • Example 1 illustrates one method for the synthesis and purification of noribogaine from ibogaine which method follows Scheme 4 below:
  • Figure US20140187655A1-20140703-C00009
  • Specifically, in Scheme 4, ibogaine is contacted with a stoichiometric excess of benzyl chloroformate in an inert solvent such as methylene chloride. The reaction mixture further contains at least a stoichiometric equivalent of diisopropylethylamine relative to ibogaine so as to scavenge the acid generated during the reaction. The reaction is maintained at room temperature under an inert atmosphere until the reaction is substantially complete as evidenced by, for example, thin layer chromatograpy. At which time, an O-demethylation reagent (e.g. boron tribromide, aluminum trichloride, or lithium diphenylphosphine), or preferably a stoichiometric excess thereof, is added to the reaction mixture which is then maintained under conditions (e.g. room temperature) wherein the methoxy group of ibogaine has been converted to the hydroxyl group of noribogaine.
  • The hydroxyl group generated above is then employed as a complementary functionality for attachment of a solid support. In particular, an excess of chloroformate bound to a solid support is combined with N-CBZ-noribogaine under conventional conditions wherein a cleavable carbonate bond is formed. Chloroformate bound to a solid support can be prepared from a hydroxy-bearing polymer support (e.g. hydroxymethyl)polystyrene or polymer-bound benzyl alcohol, both commercially available from Sigma-Aldrich®) and carbonyl dichloride. As CBZ-ibogaine does not readily react under these O-demethylation conditions, it will remain in the solution phase of the reaction mixture and can be washed from the reaction mixture by conventional techniques including placing the solid support into a column and passing excess solvent through the column.
  • In one particular example, 1 kg of solid support containing CBZ-noribogaine is loaded onto a column. The stopper of the column is partially opened so that a flow rate through the column of 0.5 liters per hour is maintained. Methylene chloride is continuously fed to the top of the column and recovered at the base of the column. The recovered methylene chloride is stripped to provide residual CBZ-ibogaine. The process is continued until the effluent from the column no longer contains CBZ-ibogaine. At which time, a portion of the solid support is loaded into a hydrogenation vessel together with methanol and a catalytic amount of palladium on carbon. Hydrogenation is continued under elevated pressure for approximately 5 hours. The reaction is then stopped and the methanol recovered and stripped to provide for noribogaine. Additional purification of noribogaine can be achieved by HPLC as desired.

Claims (5)

1. A method for preparing and purifying noribogaine which method comprises:
a) converting ibogaine to noribogaine wherein the indole nitrogen is optionally protected by an amino protecting group;
b) covalently attaching noribogaine to a solid support via the hydroxyl group of noribogaine so as to form a suspension of solid supports having noribogaine bound thereto;
c) removing residual ibogaine from said suspension;
d) cleaving and recovering noribogaine from the solid support; and
e) optionally repeating steps b), c) and d) up to 5 times; and
f) purifying noribogaine as recovered per above.
2. A method for preparing and purifying noribogaine which method comprises:
a) covalently attaching ibogaine to a solid support via the amino group of ibogaine so as to form a suspension of solid supports having ibogaine bound thereto;
b) converting ibogaine to noribogaine under conditions wherein the level of ibogaine bound to the solid support is less than 0.1 weight percent;
c) cleaving and recovering noribogaine from the solid support; and
d) purifying noribogaine as recovered per above.
3. A solid support having ibogaine or noribogaine covalently bound thereto through a cleavable linker.
4. The method of claim 1, wherein the method comprises purifying the noribogaine using an ion exchange resin.
5. An ion exchange resin having noribogaine ionically bound thereto through an anion of noribogaine's 12-hydroxy functional group.
US13/104,406 2010-05-11 2011-05-10 Methods and compositions for preparing and purifying noribogaine Active 2031-11-06 US8765737B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/104,406 US8765737B1 (en) 2010-05-11 2011-05-10 Methods and compositions for preparing and purifying noribogaine
US14/298,534 US9394294B2 (en) 2010-05-11 2014-06-06 Methods and compositions for preparing and purifying noribogaine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US33347610P 2010-05-11 2010-05-11
US41977210P 2010-12-03 2010-12-03
US13/104,406 US8765737B1 (en) 2010-05-11 2011-05-10 Methods and compositions for preparing and purifying noribogaine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/298,534 Continuation-In-Part US9394294B2 (en) 2010-05-11 2014-06-06 Methods and compositions for preparing and purifying noribogaine

Publications (2)

Publication Number Publication Date
US8765737B1 US8765737B1 (en) 2014-07-01
US20140187655A1 true US20140187655A1 (en) 2014-07-03

Family

ID=50982042

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/104,406 Active 2031-11-06 US8765737B1 (en) 2010-05-11 2011-05-10 Methods and compositions for preparing and purifying noribogaine

Country Status (1)

Country Link
US (1) US8765737B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394294B2 (en) 2010-05-11 2016-07-19 Demerx, Inc. Methods and compositions for preparing and purifying noribogaine
US9561232B2 (en) 2014-02-18 2017-02-07 Demerx, Inc. Low dose noribogaine for treating nicotine addiction and preventing relapse of nicotine use
US9591978B2 (en) 2014-03-13 2017-03-14 Demerx, Inc. Methods and compositions for pre-screening patients for treatment with noribogaine
US10519175B2 (en) 2017-10-09 2019-12-31 Compass Pathways Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US10660900B2 (en) 2014-11-26 2020-05-26 Demerx, Inc. Methods and compositions for potentiating the action of opioid analgesics using iboga alkaloids
US11564935B2 (en) 2019-04-17 2023-01-31 Compass Pathfinder Limited Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802832B2 (en) 2010-06-22 2014-08-12 Demerx, Inc. Compositions comprising noribogaine and an excipient to facilitate transport across the blood brain barrier
US9586954B2 (en) 2010-06-22 2017-03-07 Demerx, Inc. N-substituted noribogaine prodrugs
EP2481740B1 (en) 2011-01-26 2015-11-04 DemeRx, Inc. Methods and compositions for preparing noribogaine from voacangine
US9617274B1 (en) 2011-08-26 2017-04-11 Demerx, Inc. Synthetic noribogaine
JP2015500833A (en) 2011-12-09 2015-01-08 デメレックス, インコーポレイテッド Nolibogaine phosphate
US9150584B2 (en) 2012-01-25 2015-10-06 Demerx, Inc. Indole and benzofuran fused isoquinuclidene derivatives and processes for preparing them
CA2858820C (en) 2012-01-25 2021-08-17 Demerx, Inc. Synthetic voacangine
EP2934541A4 (en) 2012-12-20 2016-08-03 Demerx Inc Substituted noribogaine
WO2014143201A1 (en) 2013-03-15 2014-09-18 Demerx, Inc. Method for noribogaine treatment of addiction in patients on methadone
WO2015195673A2 (en) 2014-06-18 2015-12-23 Demerx, Inc. Halogenated indole and benzofuran derivatives of isoquinuclidene and processes for preparing them
US9549935B2 (en) 2014-07-14 2017-01-24 Demerx, Inc. Methods and compositions for treating migraines using noribogaine

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2813873A (en) 1957-11-19 Derivatives of the ibogaine alkaloids
GB841697A (en) 1956-03-22 1960-07-20 Ciba Ltd Analgesic compositions
GB924042A (en) 1959-03-05 1963-04-18 Geigy Ag J R Process for the decarboxylation of alkyl esters of unsaturated, nitrogen-containing carboxylic acids
US3639408A (en) 1967-06-03 1972-02-01 Shionogi & Co Process for the preparation of isoquinuclidine derivatives
US3516989A (en) 1967-10-02 1970-06-23 American Home Prod Intermediates for total synthesis of iboga alkaloids and means of preparation
FR7131M (en) 1968-01-31 1969-07-21
US3574220A (en) 1969-08-14 1971-04-06 American Home Prod 1,7-methano-1h-1-benzazepin-5(4h)-ones
US3557126A (en) 1969-08-14 1971-01-19 American Home Prod Derivatives of iboga alkaloids
CA982478A (en) 1971-04-12 1976-01-27 Jerome Berk Orally administered drug composition for therapy in the treatment of narcotic drug addiction
US4375414A (en) 1971-05-20 1983-03-01 Meir Strahilevitz Immunological methods for removing species from the blood circulatory system and devices therefor
US3715361A (en) 1971-10-08 1973-02-06 American Cyanamid Co Acyl derivatives of 10-methoxyibogamine
US3875011A (en) 1972-11-06 1975-04-01 Syva Co Enzyme immunoassays with glucose-6-phosphate dehydrogenase
US4107288A (en) 1974-09-18 1978-08-15 Pharmaceutical Society Of Victoria Injectable compositions, nanoparticles useful therein, and process of manufacturing same
FR2296418B1 (en) 1974-12-30 1978-07-21 Anvar
US4272541A (en) 1978-06-02 1981-06-09 Miles Laboratories, Inc. 7,8 and 7-8 Substituted 4,5α-epoxymorphinan-6-one compounds, and methods of treating pain and drug dependence with them
US4464378A (en) 1981-04-28 1984-08-07 University Of Kentucky Research Foundation Method of administering narcotic antagonists and analgesics and novel dosage forms containing same
CA1188989A (en) 1981-05-21 1985-06-18 Richard R. Scherschlicht Nonapeptide for the treatment of drug withdrawal symptoms
US4604365A (en) 1981-06-02 1986-08-05 Electro-Nucleonics, Inc. Immunoprecipitation assay
US4462941A (en) 1982-06-10 1984-07-31 The Regents Of The University Of California Dynorphin amide analogs
US4499096A (en) 1983-11-18 1985-02-12 Lotsof Howard S Rapid method for interrupting the narcotic addiction syndrome
US5266574A (en) 1984-04-09 1993-11-30 Ian S. Zagon Growth regulation and related applications of opioid antagonists
US4626539A (en) 1984-08-10 1986-12-02 E. I. Dupont De Nemours And Company Trandermal delivery of opioids
US4573995A (en) 1984-10-09 1986-03-04 Alza Corporation Transdermal therapeutic systems for the administration of naloxone, naltrexone and nalbuphine
GB8430346D0 (en) 1984-11-30 1985-01-09 Reckitt & Colmann Prod Ltd Analgesic compositions
EP0186019B1 (en) 1984-12-22 1993-10-06 Schwarz Pharma Ag Medicated dressing
US4806341A (en) 1985-02-25 1989-02-21 Rutgers, The State University Of New Jersey Transdermal absorption dosage unit for narcotic analgesics and antagonists and process for administration
US4587243A (en) 1985-07-15 1986-05-06 Lotsof Howard S Rapid method for interrupting the ***e and amphetamine abuse syndrome
US5316759A (en) 1986-03-17 1994-05-31 Robert J. Schaap Agonist-antagonist combination to reduce the use of nicotine and other drugs
US4857523A (en) 1988-07-18 1989-08-15 Nda International, Inc. Rapid method for attenuating the alcohol dependency syndrome
US5629307A (en) 1989-10-20 1997-05-13 Olney; John W. Use of ibogaine in reducing excitotoxic brain damage
US5075341A (en) 1989-12-01 1991-12-24 The Mclean Hospital Corporation Treatment for ***e abuse
DE4010079A1 (en) 1990-03-29 1991-10-02 Lohmann Therapie Syst Lts PHARMACEUTICAL FORMULATION FOR THE TREATMENT OF ALCOHOLISM
US5026697A (en) 1990-05-30 1991-06-25 Nda International, Inc. Rapid method for interrupting or attenuating the nicotine/tobacco dependency syndrome
US5152994A (en) 1990-05-31 1992-10-06 Lotsof Howard S Rapid method for interrupting or attenuating poly-drug dependency syndromes
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5283247A (en) 1991-02-06 1994-02-01 Research Corporation Technologies, Inc. Anticonvulsant substituted quinazolones
US5149538A (en) 1991-06-14 1992-09-22 Warner-Lambert Company Misuse-resistive transdermal opioid dosage form
US5290784A (en) 1991-07-18 1994-03-01 Yueqian Qu Aconitane derivatives used as a medication to treat addiction
HU219476B (en) 1992-04-10 2001-04-28 Merrell Dow Pharmaceuticals Inc. Process for producing pharmaceutical compositions containing 2'-halomethylidene derivatives and an s-phase or m-phase specific antineoplastic agent
WO1993025217A1 (en) 1992-06-12 1993-12-23 Des-Tyr Dynorphin Partnership Des-tyr dynorphin analogues
US5256669A (en) 1992-08-07 1993-10-26 Aminotek Sciences, Inc. Methods and compositions for treating acute or chronic pain and drug addiction
US5382657A (en) 1992-08-26 1995-01-17 Hoffmann-La Roche Inc. Peg-interferon conjugates
US5580876A (en) 1992-09-21 1996-12-03 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other bimodally-acting opioid agonists
JPH08504189A (en) 1992-09-21 1996-05-07 キン、ボーイ Identification and use of low / non-epileptic opioid analgesics
CN1042895C (en) 1992-09-23 1999-04-14 曲曰谦 Medicines composition and its method for treating drop syndrome and de-addiction of drugaddict
WO1994014490A1 (en) 1992-12-23 1994-07-07 Bernhard Hugemann Compacted drug body for use in the mechanical generation of inhalable active-substance particles
US5865444A (en) 1994-03-21 1999-02-02 Deere & Company Body leveling suspension including a pivoting arrangement
JP2819236B2 (en) 1994-05-06 1998-10-30 日東電工株式会社 Transdermal formulation
US5552406A (en) 1994-06-17 1996-09-03 The Mclean Hospital Corporation Method for treating pain and brain perfusion abnormalities using mixed opioid agonist-antagonists
ES2264562T3 (en) 1994-07-25 2007-01-01 Nda International, Inc. USE OF NORIBOGAIN DERIVATIVES TO TREAT CHEMICAL DEPENDENCE IN MAMMALS.
US5591738A (en) 1994-10-14 1997-01-07 Nda International, Inc. Method of treating chemical dependency using β-carboline alkaloids, derivatives and salts thereof
DE69635737D1 (en) 1995-08-08 2006-04-06 Albany Medical College Albany IBOGAMIN RELATED CONNECTIONS
US5760044A (en) 1996-05-16 1998-06-02 Archer; Sydney Method for treating ***e and amphetamine dependency
EP0912577A2 (en) 1996-05-21 1999-05-06 THE UNITED STATES OF AMERICA, as represented by the Secretary of the Department of Health and Human Services Novel methods of o-demethylation and n-deprotection
US7220737B1 (en) * 1997-09-04 2007-05-22 Novoneuron, Inc Noribogaine in the treatment of pain and drug addiction
CA2302754C (en) 1997-09-04 2011-11-08 Novoneuron, Inc. Noribogaine in the treatment of pain and drug addiction
US6451806B2 (en) 1999-09-29 2002-09-17 Adolor Corporation Methods and compositions involving opioids and antagonists thereof
JP4731114B2 (en) 2001-06-11 2011-07-20 プロキシマゲン・リミテッド Substituted sulfonamide compounds, methods for their use as medicaments for the treatment of CNS disorders, obesity and type II diabetes
US20030153552A1 (en) 2002-02-14 2003-08-14 Mash Deborah C. Method of treating chemical dependency in mammals and a composition therefor
US6864271B2 (en) 2002-11-12 2005-03-08 The Foundation For The Lsu Health Sciences Center Synergistic combinations including N-acylated 4-hydroxyphenylamine derivatives
US6806291B1 (en) 2003-10-09 2004-10-19 The Foundation For The Lsu Health Sciences Center Analgesic compounds, their synthesis and pharmaceutical compositions containing them
US8017151B2 (en) 2004-09-07 2011-09-13 Board Of Regents Of The University Of Nebraska By And Behalf Of The University Of Nebraska Medical Center Amphiphilic polymer-protein conjugates and methods of use thereof
ATE490237T1 (en) * 2005-08-26 2010-12-15 Medical Res Council ANIONIC SUBSTITUTED 7-NITROINDOLE DERIVATIVES AND THEIR USE
ATE500244T1 (en) * 2005-11-30 2011-03-15 Hoffmann La Roche 1,5-SUBSTITUTED INDOL-2-YL AMIDE DERIVATIVE
US8362007B1 (en) * 2010-05-11 2013-01-29 Demerx, Inc. Substituted noribogaine
AU2012308274B2 (en) * 2011-09-15 2017-08-17 Demerx, Inc. Noribogaine salt ansolvates

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394294B2 (en) 2010-05-11 2016-07-19 Demerx, Inc. Methods and compositions for preparing and purifying noribogaine
US9561232B2 (en) 2014-02-18 2017-02-07 Demerx, Inc. Low dose noribogaine for treating nicotine addiction and preventing relapse of nicotine use
US9591978B2 (en) 2014-03-13 2017-03-14 Demerx, Inc. Methods and compositions for pre-screening patients for treatment with noribogaine
US11260059B2 (en) 2014-11-26 2022-03-01 Demerx, Inc. Methods and compositions for potentiating the action of opioid analgesics using iboga alkaloids
US10660900B2 (en) 2014-11-26 2020-05-26 Demerx, Inc. Methods and compositions for potentiating the action of opioid analgesics using iboga alkaloids
US11197866B2 (en) 2014-11-26 2021-12-14 Demerx, Inc. Methods and compositions for potentiating the action of opioid analgesics using iboga alkaloids
US11180517B2 (en) 2017-10-09 2021-11-23 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11149044B2 (en) 2017-10-09 2021-10-19 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US10954259B1 (en) 2017-10-09 2021-03-23 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US10947257B2 (en) 2017-10-09 2021-03-16 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US10519175B2 (en) 2017-10-09 2019-12-31 Compass Pathways Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11447510B2 (en) 2017-10-09 2022-09-20 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11505564B2 (en) 2017-10-09 2022-11-22 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11629159B2 (en) 2017-10-09 2023-04-18 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11851451B2 (en) 2017-10-09 2023-12-26 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11939346B2 (en) 2017-10-09 2024-03-26 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11564935B2 (en) 2019-04-17 2023-01-31 Compass Pathfinder Limited Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin
US11738035B2 (en) 2019-04-17 2023-08-29 Compass Pathfinder Limited Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin
US11865126B2 (en) 2019-04-17 2024-01-09 Compass Pathfinder Limited Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin

Also Published As

Publication number Publication date
US8765737B1 (en) 2014-07-01

Similar Documents

Publication Publication Date Title
US8765737B1 (en) Methods and compositions for preparing and purifying noribogaine
US9394294B2 (en) Methods and compositions for preparing and purifying noribogaine
US20210275538A1 (en) Noribogaine compositions
US9403817B2 (en) Methods and compositions for preparing noribogaine from voacangine
US8742096B2 (en) Methods and compositions for preparing noribogaine from voacangine
US11649243B2 (en) Process for preparing beta 3 agonists and intermediates
WO2015142346A1 (en) Methods and compositions for preparing and purifying noribogaine
US9617274B1 (en) Synthetic noribogaine
CN102617574B (en) The method and composition of noribogaine (noribogaine) is prepared from voacangine (voacangine)
NZ614366B2 (en) Methods and compositions for preparing noribogaine from voacangine
AU2010214685C1 (en) Noribogaine compositions

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEMERX, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MASH, DEBORAH C;GLESS, RICHARD D, JR;SIGNING DATES FROM 20110726 TO 20110802;REEL/FRAME:026745/0969

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8