US20140185269A1 - Solid-state lamps utilizing photoluminescence wavelength conversion components - Google Patents

Solid-state lamps utilizing photoluminescence wavelength conversion components Download PDF

Info

Publication number
US20140185269A1
US20140185269A1 US14/136,972 US201314136972A US2014185269A1 US 20140185269 A1 US20140185269 A1 US 20140185269A1 US 201314136972 A US201314136972 A US 201314136972A US 2014185269 A1 US2014185269 A1 US 2014185269A1
Authority
US
United States
Prior art keywords
component
lamp
wavelength conversion
light
photoluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/136,972
Inventor
Yi-Qun Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intematix Corp
Intermatix Corp
Original Assignee
Intermatix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermatix Corp filed Critical Intermatix Corp
Priority to US14/136,972 priority Critical patent/US20140185269A1/en
Publication of US20140185269A1 publication Critical patent/US20140185269A1/en
Assigned to INTEMATIX CORPORATION reassignment INTEMATIX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, YI-QUN
Priority to US15/815,577 priority patent/US10557594B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • F21K9/56
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0096Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/506Cooling arrangements characterised by the adaptation for cooling of specific components of globes, bowls or cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/048Optical design with facets structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • This invention relates to solid-state lamps that utilize photoluminescence wavelength conversion components.
  • embodiments concern photoluminescence wavelength conversion components for solid-state lamps (bulbs) with an omnidirectional emission pattern.
  • the invention provides methods of manufacturing photoluminescence wavelength conversion components.
  • White light generating LEDs are a relatively recent innovation and offer the potential for a whole new generation of energy efficient lighting systems to come into existence. It is predicted that white LEDs could replace filament (incandescent), fluorescent and compact fluorescent light sources due to their long operating lifetimes, potentially many 100,000 of hours, and their high efficiency in terms of low power consumption. It was not until LEDs emitting in the blue/ultraviolet part of the electromagnetic spectrum were developed that it became practical to develop white light sources based on LEDs. As taught, for example in U.S. Pat. No.
  • white LEDs include one or more phosphor materials, that is photoluminescence materials, which absorb a portion of the radiation emitted by the LED and re-emit radiation of a different color (wavelength).
  • the LED die generates blue light and the phosphor(s) absorbs a percentage of the blue light and emits yellow light or a combination of green and red light, green and yellow light or yellow and red light.
  • the portion of the blue light generated by the LED that is not absorbed by the phosphor is combined with the light emitted by the phosphor to provide light which appears to the human eye as being nearly white in color.
  • the phosphor material is mixed with a light transmissive material such as a silicone or epoxy material and the mixture applied to the light emitting surface of the LED die. It is also known to provide the phosphor material as a layer on, or incorporate the phosphor material within, an optical component (a photoluminescence wavelength conversion component) that is located remote to the LED die (typically physically spatially separated from the LED die). Such arrangements are termed “remote phosphor” arrangements. Advantages of a remotely located phosphor wavelength conversion component are a reduced likelihood of thermal degradation of the phosphor materials and a more consistent color of generated light.
  • LED-based technology is moving to replace traditional bulbs and even CFL (Compact Fluorescent Lamp) with a more efficient and longer life lighting solution.
  • CFL Compact Fluorescent Lamp
  • the known LED-based lamps have difficulty matching the omnidirectional (evenly in all directions) emission characteristics of an incandescent bulb due to the intrinsically highly directional light emission characteristics of LEDs.
  • FIG. 1 shows a schematic partial sectional view of a known LED-based lamp (light bulb) 10 that utilizes a photoluminescence wavelength conversion component.
  • the lamp 10 comprises a generally conical shaped thermally conductive body 12 and connector cap 14 mounted to the truncated apex of the body 12 .
  • the body 12 further comprises a conical shaped pedestal 16 extending from the base of the body 12 and one or more blue light emitting LEDs 18 mounted in thermal communication with the truncated apex of the pedestal 16 .
  • the lamp 10 further comprises a photoluminescence wavelength conversion component 20 mounted to the pedestal and configured to enclose the LED(s) 18 . As indicated in FIG.
  • the wavelength conversion component 20 comprises a spherical hollow shell and includes one or more phosphor materials to provide photoluminescence wavelength conversion of blue light generated by the LED(s).
  • the lamp 10 further comprise a light transmissive envelope 22 which encloses the wavelength conversion component 20 .
  • the lamp 10 of FIG. 1 has an improved emission characteristic, the emission characteristic of such a lamp fails to meet required industry standards since it emits too much light on axis 24 .
  • a further problem with such lamps is the relatively high manufacturing cost of the photoluminescence wavelength conversion component which is typically manufactured by injection molding. The high cost of manufacture results from the opening of the component being smaller than the maximum internal size of the component requiring use of a collapsible former to enable removal of the component from the injection molder.
  • Embodiments of the invention at least in-part address the limitation of the known LED-based lamps.
  • Embodiments of the invention concern improved photoluminescence wavelength conversion components and lamps that incorporate such components.
  • the improved lamps and wavelength conversion components of the embodiments of the invention provide for improved emission characteristic, while allowing for relatively cost-effective manufacturing costs.
  • the photoluminescence wavelength conversion component comprises a hollow cylindrical tube having a bore of diameter ⁇ and an axial length L.
  • the length of the component is approximately four times the bore diameter of the component and the aspect ratio of the component in an axial direction (ratio of length to bore diameter) is approximately 4:1.
  • the relative dimensions and shape of the component can affect the radial emission pattern of the component and are configured to give a required emission pattern (typically omnidirectional).
  • the bore ⁇ of the component is between about 1 mm and 10 mm.
  • the photoluminescence material can be homogeneously distributed throughout the volume of the component during manufacture of the component.
  • the wall thickness of the photoluminescence material is typically between 200 ⁇ m and 2 mm.
  • the component Since the component has a constant cross section it can be readily manufactured using an extrusion method.
  • the component can be formed using a light transmissive thermoplastics (thermosoftening) material such as polycarbonate, acrylic or a low temperature glass using a hot extrusion process.
  • the component can comprise a thermosetting or UV curable material such as a silicone or epoxy material and be formed using a cold extrusion method.
  • a benefit of extrusion is that it is relatively inexpensive method of manufacture.
  • the component can be formed by injection molding. Since the component has a constant cross section it can be formed using injection molding without the need to use an expensive collapsible former. In other embodiments the component can be formed by casting.
  • the component is by forming a flexible sheet material to include the phosphor and/or quantum dots, and then rolling the sheet material into the desired shape and dimensions for the component.
  • the phosphor may be applied as a layer onto the sheet material, e.g., by coating, printing, or other suitable deposition methods.
  • the phosphor may be incorporated within the material of the flexible sheet.
  • photoluminescence components in accordance with embodiments of the invention can also improve overall light emission efficiency.
  • the hollow tubular wavelength conversion components described can gives a total light emission that is greater than the known wavelength conversion components.
  • the increase in emission efficiency can result from the component having a high aspect ratio which reduces the possibility of re-absorption of light by the LED(s) positioned at the opening of the component.
  • a further advantage of photoluminescence wavelength conversion components in accordance with the invention is that their light emission resembles a filament of a conventional incandescent light bulb.
  • the photoluminescence materials comprise phosphors.
  • the invention is applicable to any type of photoluminescence material, such as either phosphor materials, quantum dots or combinations thereof
  • a lamp comprises a generally conical shaped thermally conductive body, where the outer surface of the body generally resembles a frustum of a cone. If the lamp is intended to replace a conventional incandescent A-19 light bulb, the dimensions of the lamp are selected to ensure that the device will fit a conventional lighting fixture.
  • One or more solid-state light emitters are provided within the lamp, e.g., using a gallium nitride-based blue light emitting LED operable to generate blue light with a dominant wavelength of 455 nm-465 nm.
  • the solid-state light emitters can be configured such that their principle emission axis is parallel with the axis of the lamp.
  • the lamp further comprises a photoluminescence wavelength conversion component that includes one or more photoluminescence materials.
  • the photoluminescence wavelength conversion component comprises an elongate component having a constant cross section and a reflector on the end of the component distal to the LEDs.
  • the reflector operates to reduce or eliminate light emission from the end of the component. By reducing or eliminating light emission from the end of the component reduces the overall emission intensity along the axis of the lamp.
  • An alternate embodiment comprises an LED candle bulb utilizing a photoluminescence wavelength conversion component in accordance the invention.
  • the photoluminescence wavelength conversion component comprises an elongate tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • a photoluminescence wavelength conversion component which comprises a tubular component in which the photoluminescence material is incorporated into the material comprising the component, and where the component is mounted to a hollow light transmissive tube and has a length such that it covers only the end portion of the tube distal to the LED(s).
  • the component can comprise a semi-flexible material and the component is slipped over the tube.
  • the portion of the tube that is not covered with phosphor i.e. the portion of the tube proximal to the LED(s)
  • a plurality of openings at, within, and/or communicating with the interior of the lamp is provided to enable airflow through the lamp.
  • one or more passages within the lamp are in fluid communication with a plurality of openings between the fins on the lamp body. In operation, heat generated by the LEDs heats air within the passage which through a process of convection causes air to be drawn into and pass through the bulb thereby providing passive cooling of the LEDs.
  • the component can comprise a component having a solid light transmissive core.
  • a component with a light transmissive core can further increase light emission by eliminating or significantly any air interface between the wavelength conversion component and the LEDs. This is particularly so for light travelling in a radial direction between walls of the component.
  • a photoluminescence wavelength conversion component that comprises a solid cylindrical shaped component composed of a cylindrical light transmissive core and an outer coaxial phosphor layer.
  • a component can be formed by co-extrusion of the core and phosphor layers.
  • the component can be manufactured by fabricating the component and then inserting a light transmissive cylindrical rod, such as a glass rod, into the bore of the component.
  • the component can be fabricated by coating the phosphor material onto the outer surface of a light transmissive rod such as a glass or polycarbonate rod.
  • the component is fabricated from a resiliently deformable (semi-flexible) light transmissive material such as a silicone material. A benefit of using a resiliently deformable material is that this can assist in insertion of the rod.
  • the reflector can comprise a coating, such as a light reflective paint or metallization layer, that is applied directly to the end face of the component.
  • the photoluminescence wavelength conversion component comprises a cylindrical light transmissive component with latitudinally extending phosphor regions (strips), e.g., where there are four phosphor regions that are equally circumferentially spaced, although it will be appreciated that the number, shape and configuration of the phosphor regions can be varied within the scope of the invention.
  • photoluminescence wavelength conversion components of the invention can be utilized in other light emitting devices and lighting arrangements.
  • Embodiments of the invention can be applied to manufacture an LED reflector lamp, such as an MR16 lamp.
  • the photoluminescence wavelength conversion component comprises has either a hollow or a solid core with a phosphor layer covering an end portion distal to the LED(s).
  • the portion of the core that is not covered with phosphor i.e. the portion of the tube proximal to the LED(s)
  • Embodiments may also be applied to the manufacture of an LED downlight that utilizes multiple photoluminescence wavelength conversion components in accordance with the invention.
  • some or all of the photoluminescence wavelength conversion components comprise an elongate hollow (or solid) tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • the photoluminescence wavelength conversion component in some embodiments comprises a first proximal end for receiving light and a reflector on the distal end. In alternate embodiments, the photoluminescence wavelength conversion component is configured such that each end of the component is configured to receive light thereby eliminating the need for the reflector.
  • the component is configured to have LEDs located at both ends.
  • the photoluminescence wavelength conversion component comprises an elongate hollow (or solid) tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • a first LED(s) are located at a first end of the component and a second LED(s) at the opposite end of the component.
  • the component comprises a tubular component whose ends are looped around such that both ends share a common plane.
  • each photoluminescence wavelength conversion component comprises an elongate tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • FIG. 1 is a schematic partial sectional view of a known LED bulb as previously described
  • FIG. 2 is schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention
  • FIG. 3 is an schematic exploded perspective view of the hollow photoluminescence wavelength conversion component of FIG. 2 ;
  • FIG. 4 is a schematic partial sectional view of an LED candle bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention
  • FIG. 5 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention
  • FIG. 6 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention
  • FIG. 7 is a schematic exploded perspective view of a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention.
  • FIGS. 8A and 8B respectively show schematic end and perspective views of a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention
  • FIG. 9 is a schematic partial sectional view of an LED bulb utilizing a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention.
  • FIG. 10 is a schematic partial sectional view of an LED reflector lamp utilizing a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention.
  • FIG. 11 is a schematic partial sectional view of an LED downlight utilizing multiple hollow photoluminescence wavelength conversion components in accordance with an embodiment of the invention.
  • FIG. 12 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention.
  • FIG. 13 is a schematic partial sectional view of an LED bulb utilizing a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention
  • FIG. 14 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention.
  • FIG. 15 is a schematic partial sectional view of an LED linear lamp utilizing multiple hollow photoluminescence wavelength conversion components in accordance with an embodiment of the invention.
  • Lamps are available in a number of forms, and are often standardly referenced by a combination of letters and numbers.
  • the letter designation of a lamp typically refers to the particular shape of type of that lamp, such as General Service (A, mushroom), High Wattage General Service (PS—pear shaped), Decorative (B—candle, CA—twisted candle, BA—bent-tip candle, F—flame, P—fancy round, G—globe), Reflector (R), Parabolic aluminized reflector (PAR) and Multifaceted reflector (MR).
  • the number designation refers to the size of a lamp, often by indicating the diameter of a lamp in units of eighths of an inch.
  • an A-19 type lamp refers to a general service lamp (bulb) whose shape is referred to by the letter “A” and has a maximum diameter two and three eights of an inch.
  • the most commonly used household “light bulb” is the lamp having the A-19 envelope, which in the United States is commonly sold with an E26 screw base.
  • A-19 lamp is associated with very specific physical sizing and dimension requirements, which is needed to make sure A-19 type lamps sold in the marketplace will fit into common household lighting fixtures.
  • LED-based replacement lamp for an LED-based replacement lamp to be qualified as an A-19 replacement by ENERGY STAR, it must demonstrate certain performance-related criteria that are difficult to achieve with a solid-state lighting product when limited to the form factor and size of the A-19 light lamp.
  • LED replacement lamps need electronic drive circuitry and an adequate heat sink area; in order to fit these components into an A-19 form factor, the bottom portion of the lamp (envelope) is replaced by a thermally conductive housing that acts as a heat sink and houses the driver circuitry needed to convert AC power to low voltage DC power used by the LEDs.
  • a problem created by the housing of an LED lamp is that it blocks light emission in directions towards the base as is required to be ENERGY STAR compliant. As a result many LED lamps lose the lower light emitting area of traditional bulbs and become directional light sources, emitting most of the light out of the top dome (180° pattern) and virtually no light downward since it is blocked by the heat sink (body), which frustrates the ability of the lamp to comply with the luminous intensity distribution criteria in the ENERGY STAR specification.
  • LED replacement lamps are considered too expensive for the general consumer market.
  • an A-19, 60 W replacement LED lamp costs many times the cost of an incandescent bulb or compact fluorescent lamp.
  • the high cost is due to the complex and expensive construction and components used in these lamps.
  • FIG. 2 shows a schematic partial sectional view of the lamp.
  • the lamp 100 is configured for operation with a 110V (r.m.s.) AC (60 Hz) mains power supply as is found in North America and is intended for use as an ENERGY STAR compliant replacement for an A-19 incandescent light bulb.
  • 110V r.m.s.
  • AC 60 Hz
  • the lamp 100 comprises a generally conical shaped thermally conductive body 110 .
  • the outer surface of the body 110 generally resembles a frustum of a cone; that is, a cone whose apex (vertex) is truncated by a plane that is parallel to the base (i.e. substantially frustoconical).
  • the body 110 is made of a material with a high thermal conductivity (typically ⁇ 150 Wm ⁇ 1 K ⁇ 1 , preferably ⁇ 200 Wm ⁇ 1 K ⁇ 1 ) such as for example aluminum ( ⁇ 250 Wm ⁇ 1 K ⁇ 1 ), an alloy of aluminum, a magnesium alloy, a metal loaded plastics material such as a polymer, for example an epoxy.
  • the body 110 can be die cast when it comprises a metal alloy or molded, by for example injection molding, when it comprises a metal loaded polymer.
  • a plurality of latitudinal radially extending heat radiating fins (veins) 120 is circumferentially spaced around the outer curved surface of the body 110 . Since the lamp is intended to replace a conventional incandescent A-19 light bulb the dimensions of the lamp are selected to ensure that the device will fit a conventional lighting fixture.
  • the body 110 further comprises a conical shaped pedestal portion 130 extending from the base of the body 110 .
  • the body 110 can further comprise a coaxial cylindrical cavity (not shown) that extends into the body from the truncated apex the body for housing rectifier or other driver circuitry for operating the lamp.
  • the lamp 100 further comprises an E26 connector cap (Edison screw lamp base) 140 enabling the lamp to be directly connected to a mains power supply using a standard electrical lighting screw socket.
  • E26 connector cap Esison screw lamp base
  • other connector caps can be used such as, for example, a double contact bayonet connector (i.e. B22d or BC) as is commonly used in the United Kingdom, Ireland, Australia, New Zealand and various parts of the British Commonwealth or an E27 screw base (Edison screw lamp base) as used in Europe.
  • the connector cap 140 is mounted to the truncated apex of the body 110 .
  • the substrate 160 comprises a circular MCPCB (Metal Core Printed Circuit Board).
  • a MCPCB comprises a layered structure composed of a metal core base, typically aluminum, a thermally conducting/electrically insulating dielectric layer and a copper circuit layer for electrically connecting electrical components in a desired circuit configuration.
  • the metal core base of the MCPCB 160 is mounted in thermal communication with the upper surface of the conical pedestal 130 with the aid of a thermally conducting compound such as for example a material containing a standard heat sink compound containing beryllium oxide or aluminum nitride.
  • Each solid-state light emitter 150 can comprise a gallium nitride-based blue light emitting LED operable to generate blue light with a dominant wavelength of 455 nm-465 nm. As indicated in FIG. 3 the LEDs 150 can be configured as a circular array and oriented such that their principle emission axis is parallel with the axis 170 of the lamp with light being emitted in a direction away from the connector cap 140 .
  • a light reflective mask can be provided overlaying the MCPCB that includes apertures corresponding to each LED to maximize light emission from the lamp.
  • the lamp 100 further comprises a photoluminescence wavelength conversion component 180 that includes one or more photoluminescence materials.
  • the photoluminescence wavelength conversion component 180 comprises an elongate component 190 having a constant cross section and a reflector 200 on the end of the component 190 distal to the LEDs 150 .
  • the reflector 200 has a shape that corresponds to the outer shape of the component 190 , that is circular in this example, thereby reducing or eliminating light emission from the end of the component. By reducing or eliminating light emission from the end of the component reduces the overall emission intensity along the axis 170 of the lamp.
  • the photoluminescence materials comprise phosphors.
  • photoluminescence materials embodied specifically as phosphor materials.
  • the invention is applicable to any type of photoluminescence material, such as either phosphor materials or quantum dots.
  • a quantum dot is a portion of matter (e.g. semiconductor) whose excitons are confined in all three spatial dimensions that may be excited by radiation energy to emit light of a particular wavelength or range of wavelengths.
  • the one or more phosphor materials can include an inorganic or organic phosphor such as for example silicate-based phosphor of a general composition A 3 Si(O,D) 5 or A 2 Si(O,D) 4 in which Si is silicon, O is oxygen, A includes strontium (Sr), barium (Ba), magnesium (Mg) or calcium (Ca) and D includes chlorine (Cl), fluorine (F), nitrogen (N) or sulfur (S).
  • silicate-based phosphors are disclosed in U.S. Pat. No. 7,575,697 B2 “Silicate-based green phosphors”, U.S. Pat. No. 7,601,276 B2 “Two phase silicate-based yellow phosphors”, U.S. Pat. No.
  • the phosphor can also include an aluminate-based material such as is taught in co-pending patent application US2006/0158090 A1 “Novel aluminate-based green phosphors” and patent U.S. Pat. No.
  • the phosphor material is not limited to the examples described and can include any phosphor material including nitride and/or sulfate phosphor materials, oxy-nitrides and oxy-sulfate phosphors or garnet materials (YAG).
  • Quantum dots can comprise different materials, for example cadmium selenide (CdSe).
  • CdSe cadmium selenide
  • the color of light generated by a quantum dot is enabled by the quantum confinement effect associated with the nano-crystal structure of the quantum dots.
  • the energy level of each quantum dot relates directly to the size of the quantum dot.
  • the larger quantum dots such as red quantum dots, can absorb and emit photons having a relatively lower energy (i.e. a relatively longer wavelength).
  • orange quantum dots which are smaller in size can absorb and emit photons of a relatively higher energy (shorter wavelength).
  • daylight panels are envisioned that use cadmium free quantum dots and rare earth (RE) doped oxide colloidal phosphor nano-particles, in order to avoid the toxicity of the cadmium in the quantum dots.
  • RE rare earth
  • quantum dots examples include: CdZnSeS (cadmium zinc selenium sulfide), Cd x Zn 1-x Se (cadmium zinc selenide), CdSe x S 1-x (cadmim selenium sulfide), CdTe (cadmium telluride), CdTe x S 1-x (cadmium tellurium sulfide), InP (indium phosphide), In x Ga 1-x P (indium gallium phosphide), InAs (indium arsenide), CuInS 2 (copper indium sulfide), CuInSe 2 (copper indium selenide), CuInS x Se 2-x (copper indium sulfur selenide), CuIn x Ga 1-x S 2 (copper indium gallium sulfide), CuIn x Ga 1-x Se 2 (copper indium gallium selenide), CuIn x Al 1-x Se 2 (copper indium aluminum selenide), CuGaS 2
  • the quantum dots material can comprise core/shell nano-crystals containing different materials in an onion-like structure.
  • the above described exemplary materials can be used as the core materials for the core/shell nano-crystals.
  • the optical properties of the core nano-crystals in one material can be altered by growing an epitaxial-type shell of another material.
  • the core/shell nano-crystals can have a single shell or multiple shells.
  • the shell materials can be chosen based on the band gap engineering.
  • the shell materials can have a band gap larger than the core materials so that the shell of the nano-crystals can separate the surface of the optically active core from its surrounding medium.
  • the core/shell quantum dots can be synthesized using the formula of CdSe/ZnS, CdSe/CdS, CdSe/ZnSe, CdSe/CdS/ZnS, or CdSe/ZnSe/ZnS.
  • the core/shell nanocrystals can be synthesized using the formula of CuInS 2 /ZnS, CuInS 2 /CdS, CuInS 2 /CuGaS 2 , CuInS 2 /CuGaS 2 /ZnS and so on.
  • the photoluminescence wavelength conversion component 150 is mounted over the LED(s) on top of the pedestal 130 and fully encloses the LED(s) 150 .
  • the lamp 100 can further comprise a light diffusive envelope or cover 210 mounted to the base of the body and encloses the component 180 .
  • the cover 210 can comprise a glass or a light transmissive polymer such as a polycarbonate, acrylic, PET or PVC that incorporates or has a layer of light diffusive (scattering) material.
  • Example of light diffusive materials include particles of Zinc Oxide (ZnO), titanium dioxide (TiO 2 ), barium sulfate (BaSO 4 ), magnesium oxide (MgO), silicon dioxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ).
  • ZnO Zinc Oxide
  • TiO 2 titanium dioxide
  • BaSO 4 barium sulfate
  • MgO magnesium oxide
  • SiO 2 silicon dioxide
  • Al 2 O 3 aluminum oxide
  • FIG. 3 show a schematic exploded perspective view of the photoluminescence wavelength conversion component 180 .
  • the component 190 can comprise a hollow cylindrical tube having a bore of diameter ⁇ and an axial length L.
  • the length of the component is approximately four times the bore diameter of the component and the aspect ratio of the component 180 in an axial direction (ratio of length to bore diameter) is approximately 4:1.
  • the relative dimensions and shape of the component can affect the radial emission pattern of the component and are configured to give a required emission pattern (typically omnidirectional).
  • the bore ⁇ of the component is between about 1 mm and 10 mm.
  • the photoluminescence material can be homogeniously distributed throughout the volume of the component 190 during manufacture of the component.
  • the wall thickness of the photoluminescence material is typically between 200 ⁇ m and 2 mm.
  • the reflector 200 can comprise a light reflective circular disc that is mounted to the end of the component such that covers the end face of the component.
  • the reflector 200 can comprise an injection molded part composed of a light reflective plastics material.
  • the reflector can comprise a metallic component or a component with a metallization surface.
  • the component Since the component has a constant cross section it can be readily manufactured using an extrusion method.
  • the component can be formed using a light transmissive thermoplastics (thermosoftening) material such as polycarbonate, acrylic or a low temperature glass using a hot extrusion process.
  • the component can comprise a thermosetting or UV curable material such as a silicone or epoxy material and be formed using a cold extrusion method.
  • a benefit of extrusion is that it is relatively inexpensive method of manufacture.
  • the component can be formed by injection molding though such a method tends to be more expensive than extrusion. Since the component has a constant cross section it can be formed using injection molding without the need to use an expensive collapsible former. In other embodiments the component can be formed by casting.
  • the component is by forming a flexible sheet material to include the phosphor and/or quantum dots, and then rolling the sheet material into the desired shape and dimensions for the component.
  • the phosphor may be applied as a layer onto the sheet material, e.g., by coating, printing, or other suitable deposition methods.
  • the phosphor may be incorporated within the material of the flexible sheet.
  • the LEDs 150 In operation the LEDs 150 generate blue excitation light a portion of which excite the photoluminescence material within the wavelength conversion component 180 which in response generates by a process of photoluminescence light of another wavelength (color) typically yellow, yellow/green, orange, red or a combination thereof.
  • the portion of blue LED generated light combined with the photoluminescence material generated light gives the lamp an emission product that is white in color.
  • a particular benefit of photoluminescence components in accordance with embodiments of the invention is that as well as improving the emission distribution pattern they can also improve overall light emission efficiency.
  • the hollow tubular wavelength conversion components described can gives a total light emission that is greater than the known wavelength conversion components. It is believed that the increase in emission efficiency results from the component having a high aspect ratio which it believed reduces the possibility of re-absorption of light by the LED(s) positioned at the opening of the component.
  • a further advantage of photoluminescence wavelength conversion components in accordance with the invention is that their light emission resembles a filament of a conventional incandescent light bulb.
  • FIG. 4 is schematic partial sectional view of an LED candle bulb utilizing a photoluminescence wavelength conversion component in accordance the invention.
  • the photoluminescence wavelength conversion component 180 comprises an elongate tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • FIG. 5 is a schematic partial sectional view of an LED bulb utilizing a photoluminescence wavelength conversion component in accordance the invention.
  • the photoluminescence wavelength conversion component 180 comprises a tubular component in which the photoluminescence material is incorporated into the material comprising the component.
  • the component 180 is mounted to a hollow light transmissive tube 220 and has a length such that it covers only the end portion of the tube 220 distal to the LED(s) 150 .
  • the component 180 can comprise a semi-flexible material and the component, which comprises a sleeve, slipped over the tube 220 .
  • the portion of the tube 220 that is not covered with phosphor i.e. the portion of the tube proximal to the LED(s)
  • FIG. 6 is a schematic partial sectional view of an LED bulb utilizing a photoluminescence wavelength conversion component in accordance with an embodiment of the invention.
  • the photoluminescence wavelength conversion component 180 comprises a tubular component in which the photoluminescence material is incorporated into the material comprising the component.
  • a plurality of LEDs 150 is mounted on an annular MCPCB 160 an configured as a circular array.
  • a thermally conductive light reflective tubular passage 240 is mounted coaxially within the component and in thermal communication with the pedestal 130 and body 110 .
  • the light reflective passage 240 passes through the reflector 200 which is annular in shape and has a circular opening 250 to a surrounding environment.
  • a plurality of openings between the fins 110 are in fluid communication with the interior of the light reflective passage 240 enabling air flow through the passage.
  • heat generated by the LEDs heats air within the passage which through a process of convection causes air to be drawn into and pass through the bulb thereby providing passive cooling of the LEDs.
  • the movement of air by thermal convection is indicated by heavy solid arrows 260 .
  • the photoluminescence components comprise a hollow component (i.e. the central region or bore does not include a light transmissive medium) in other embodiments the component can comprise a component having a solid light transmissive core.
  • a component with a light transmissive core can further increase light emission by eliminating or significantly any air interface between the wavelength conversion component 180 and the LEDs 150 . This is particularly so for light travelling in a radial direction between walls of the component.
  • FIG. 7 shows a perspective exploded view of a photoluminescence wavelength conversion component in accordance with an embodiment of the invention with a solid core.
  • the component comprises a solid cylindrical shaped component composed of a cylindrical light transmissive core 270 and an outer coaxial phosphor layer 190 .
  • Such a component can be formed by co-extrusion of the core 270 and phosphor layers 190 .
  • the component can be manufactured by fabricating the component of FIG. 3 and then inserting a light transmissive cylindrical rod, such as a glass rod, into the bore of the component.
  • the component can be fabricated by coating the phosphor material onto the outer surface of a light transmissive rod such as a glass or polycarbonate rod.
  • the component is fabricated from a resiliently deformable (semi-flexible) light transmissive material such as a silicone material. A benefit of using a resiliently deformable material is that this can assist in insertion of the rod.
  • the reflector 200 can comprise a coating, such as a light reflective paint or metallization layer, that is applied directly to the end face of the component.
  • FIGS. 8A and 8B show schematic perspective and end views of a photoluminescence wavelength conversion component in accordance with an embodiment of the invention.
  • the component comprises a cylindrical light transmissive component 270 with latitudinally extending phosphor regions (strips) 190 .
  • FIGS. 8A and 8B show four phosphor regions 190 that are equally circumferentially spaced though it will be appreciated that the number, shape and configuration of the phosphor regions can be varied within the scope of the invention.
  • FIG. 9 is a schematic partial sectional view of an LED bulb utilizing a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention.
  • the photoluminescence wavelength conversion component 180 comprises has a solid core 270 with a phosphor layer 190 covering an end portion distal to the LED(s) 150 .
  • the phosphor layer 190 can comprise a semi-flexible material which is slipped over the core 270 .
  • the portion of the core 270 that is not covered with phosphor i.e. the portion of the tube proximal to the LED(s)
  • photoluminescence wavelength conversion components of the invention can be utilized in other light emitting devices and lighting arrangements such as for example linear lamps.
  • FIG. 10 is a schematic partial sectional view of an LED reflector lamp, such as an MR16 lamp.
  • the photoluminescence wavelength conversion component 180 comprises has a solid core 270 with a phosphor layer 190 covering an end portion distal to the LED(s) 150 .
  • the portion of the core 270 that is not covered with phosphor i.e. the portion of the tube proximal to the LED(s)
  • the light emitting portion of the component is located at or near the focal point of a multifaceted reflector 280 .
  • FIG. 11 is a schematic partial sectional view of an LED downlight utilizing multiple hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention.
  • the photoluminescence wavelength conversion components 180 comprise an elongate hollow tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • FIG. 12 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component having LEDs located at both ends.
  • the photoluminescence wavelength conversion component 180 comprises an elongate hollow tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume. A first LED(s) are located at a first end of the component and a second LED(s) at the opposite end of the component.
  • FIG. 13 is a schematic partial sectional view of an LED bulb utilizing a solid photoluminescence wavelength conversion component 180 having LEDs located at both ends.
  • the component 180 can comprise the solid component of FIG. 7 .
  • FIG. 14 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component 180 having LEDs located at both ends.
  • the component 180 comprises a tubular component whose ends are looped around such that both ends share a common plane.
  • FIG. 15 is a schematic partial sectional view of an LED linear lamp utilizing multiple hollow photoluminescence wavelength conversion components in accordance with an embodiment of the invention.
  • each photoluminescence wavelength conversion component 180 comprises an elongate hollow tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • the photoluminescence wavelength conversion component has a circular cross section
  • the component can have other cross sections such as elliptical, triangular, square, pentagonal, hexagonal.

Abstract

Disclosed are improved photoluminescence wavelength conversion components and lamps that incorporate such components. The photoluminescence wavelength conversion component comprises a hollow cylindrical tube having a given bore of diameter and an axial length. The relative dimensions and shape of the component can affect the radial emission pattern of the component and are configured to give a required emission pattern (typically omnidirectional). The photoluminescence material can be homogeneously distributed throughout the volume of the component during manufacture of the component. An extrusion method can be used to form the improved photoluminescence wavelength conversion component. Injection molding or casting can also be used to form the component. Another possible approach is to manufacture the component is by forming a flexible sheet material to include the phosphor and/or quantum dots, and then rolling the sheet material into the desired shape and dimensions for the component. The improved wavelength conversion components and lamps that incorporate these components provide for improved emission characteristic, while allowing for relatively cost-effective manufacturing costs. A further advantage of components is that their light emission resembles a filament of a conventional incandescent light bulb.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application claims the benefit of U.S. Provisional App. Ser. No. 61/746,986, filed on Dec. 28, 2013 and entitled “SOLID-STATE LIGHT EMITTING LAMPS UTILIZING PHOTOLUMINESCENCE WAVELENGTH CONVERSION COMPONENTS”, which is hereby expressly incorporated by reference in its entirety.
  • FIELD
  • This invention relates to solid-state lamps that utilize photoluminescence wavelength conversion components. In particular, although not exclusively, embodiments concern photoluminescence wavelength conversion components for solid-state lamps (bulbs) with an omnidirectional emission pattern. Moreover, the invention provides methods of manufacturing photoluminescence wavelength conversion components.
  • BACKGROUND
  • White light generating LEDs, “white LEDs”, are a relatively recent innovation and offer the potential for a whole new generation of energy efficient lighting systems to come into existence. It is predicted that white LEDs could replace filament (incandescent), fluorescent and compact fluorescent light sources due to their long operating lifetimes, potentially many 100,000 of hours, and their high efficiency in terms of low power consumption. It was not until LEDs emitting in the blue/ultraviolet part of the electromagnetic spectrum were developed that it became practical to develop white light sources based on LEDs. As taught, for example in U.S. Pat. No. 5,998,925, white LEDs include one or more phosphor materials, that is photoluminescence materials, which absorb a portion of the radiation emitted by the LED and re-emit radiation of a different color (wavelength). Typically, the LED die generates blue light and the phosphor(s) absorbs a percentage of the blue light and emits yellow light or a combination of green and red light, green and yellow light or yellow and red light. The portion of the blue light generated by the LED that is not absorbed by the phosphor is combined with the light emitted by the phosphor to provide light which appears to the human eye as being nearly white in color.
  • Due to their long operating life expectancy (>50,000 hours) and high luminous efficacy (70 lumens per watt and higher) high brightness white LEDs are increasingly being used to replace conventional fluorescent, compact fluorescent and incandescent light sources.
  • Typically in white LEDs the phosphor material is mixed with a light transmissive material such as a silicone or epoxy material and the mixture applied to the light emitting surface of the LED die. It is also known to provide the phosphor material as a layer on, or incorporate the phosphor material within, an optical component (a photoluminescence wavelength conversion component) that is located remote to the LED die (typically physically spatially separated from the LED die). Such arrangements are termed “remote phosphor” arrangements. Advantages of a remotely located phosphor wavelength conversion component are a reduced likelihood of thermal degradation of the phosphor materials and a more consistent color of generated light.
  • Traditional incandescent light bulbs are inefficient and have life time issues. LED-based technology is moving to replace traditional bulbs and even CFL (Compact Fluorescent Lamp) with a more efficient and longer life lighting solution. However the known LED-based lamps have difficulty matching the omnidirectional (evenly in all directions) emission characteristics of an incandescent bulb due to the intrinsically highly directional light emission characteristics of LEDs.
  • FIG. 1 shows a schematic partial sectional view of a known LED-based lamp (light bulb) 10 that utilizes a photoluminescence wavelength conversion component. The lamp 10 comprises a generally conical shaped thermally conductive body 12 and connector cap 14 mounted to the truncated apex of the body 12. The body 12 further comprises a conical shaped pedestal 16 extending from the base of the body 12 and one or more blue light emitting LEDs 18 mounted in thermal communication with the truncated apex of the pedestal 16. In order to generate white light the lamp 10 further comprises a photoluminescence wavelength conversion component 20 mounted to the pedestal and configured to enclose the LED(s) 18. As indicated in FIG. 1 the wavelength conversion component 20 comprises a spherical hollow shell and includes one or more phosphor materials to provide photoluminescence wavelength conversion of blue light generated by the LED(s). To give a diffuse light emission, and for aesthetic considerations, the lamp 10 further comprise a light transmissive envelope 22 which encloses the wavelength conversion component 20.
  • Whilst the lamp 10 of FIG. 1 has an improved emission characteristic, the emission characteristic of such a lamp fails to meet required industry standards since it emits too much light on axis 24. A further problem with such lamps is the relatively high manufacturing cost of the photoluminescence wavelength conversion component which is typically manufactured by injection molding. The high cost of manufacture results from the opening of the component being smaller than the maximum internal size of the component requiring use of a collapsible former to enable removal of the component from the injection molder. Embodiments of the invention at least in-part address the limitation of the known LED-based lamps.
  • SUMMARY
  • Embodiments of the invention concern improved photoluminescence wavelength conversion components and lamps that incorporate such components. The improved lamps and wavelength conversion components of the embodiments of the invention provide for improved emission characteristic, while allowing for relatively cost-effective manufacturing costs.
  • According to some embodiments, the photoluminescence wavelength conversion component comprises a hollow cylindrical tube having a bore of diameter Ø and an axial length L. In one exemplary embodiment, the length of the component is approximately four times the bore diameter of the component and the aspect ratio of the component in an axial direction (ratio of length to bore diameter) is approximately 4:1. The relative dimensions and shape of the component can affect the radial emission pattern of the component and are configured to give a required emission pattern (typically omnidirectional). For an A-19 bulb the bore Ø of the component is between about 1 mm and 10 mm. The photoluminescence material can be homogeneously distributed throughout the volume of the component during manufacture of the component. The wall thickness of the photoluminescence material is typically between 200 μm and 2 mm.
  • Since the component has a constant cross section it can be readily manufactured using an extrusion method. The component can be formed using a light transmissive thermoplastics (thermosoftening) material such as polycarbonate, acrylic or a low temperature glass using a hot extrusion process. Alternatively the component can comprise a thermosetting or UV curable material such as a silicone or epoxy material and be formed using a cold extrusion method. A benefit of extrusion is that it is relatively inexpensive method of manufacture.
  • In an alternate embodiment, the component can be formed by injection molding. Since the component has a constant cross section it can be formed using injection molding without the need to use an expensive collapsible former. In other embodiments the component can be formed by casting.
  • Another possible approach is to manufacture the component is by forming a flexible sheet material to include the phosphor and/or quantum dots, and then rolling the sheet material into the desired shape and dimensions for the component. The phosphor may be applied as a layer onto the sheet material, e.g., by coating, printing, or other suitable deposition methods. Alternatively, the phosphor may be incorporated within the material of the flexible sheet.
  • One benefit of photoluminescence components in accordance with embodiments of the invention is that as well as improving the emission distribution pattern, they can also improve overall light emission efficiency. The hollow tubular wavelength conversion components described can gives a total light emission that is greater than the known wavelength conversion components. The increase in emission efficiency can result from the component having a high aspect ratio which reduces the possibility of re-absorption of light by the LED(s) positioned at the opening of the component.
  • A further advantage of photoluminescence wavelength conversion components in accordance with the invention is that their light emission resembles a filament of a conventional incandescent light bulb.
  • In some embodiments, the photoluminescence materials comprise phosphors. However, the invention is applicable to any type of photoluminescence material, such as either phosphor materials, quantum dots or combinations thereof
  • In one embodiment, a lamp comprises a generally conical shaped thermally conductive body, where the outer surface of the body generally resembles a frustum of a cone. If the lamp is intended to replace a conventional incandescent A-19 light bulb, the dimensions of the lamp are selected to ensure that the device will fit a conventional lighting fixture. One or more solid-state light emitters are provided within the lamp, e.g., using a gallium nitride-based blue light emitting LED operable to generate blue light with a dominant wavelength of 455 nm-465 nm. The solid-state light emitters can be configured such that their principle emission axis is parallel with the axis of the lamp. The lamp further comprises a photoluminescence wavelength conversion component that includes one or more photoluminescence materials. The photoluminescence wavelength conversion component comprises an elongate component having a constant cross section and a reflector on the end of the component distal to the LEDs. The reflector operates to reduce or eliminate light emission from the end of the component. By reducing or eliminating light emission from the end of the component reduces the overall emission intensity along the axis of the lamp.
  • An alternate embodiment comprises an LED candle bulb utilizing a photoluminescence wavelength conversion component in accordance the invention. In this embodiment the photoluminescence wavelength conversion component comprises an elongate tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • Another embodiment is directed to a photoluminescence wavelength conversion component which comprises a tubular component in which the photoluminescence material is incorporated into the material comprising the component, and where the component is mounted to a hollow light transmissive tube and has a length such that it covers only the end portion of the tube distal to the LED(s). In some embodiments, the component can comprise a semi-flexible material and the component is slipped over the tube. In certain designs, the portion of the tube that is not covered with phosphor (i.e. the portion of the tube proximal to the LED(s)) can include a light reflective surface to prevent light emission from this portion of the tube.
  • In another embodiment, a plurality of openings at, within, and/or communicating with the interior of the lamp is provided to enable airflow through the lamp. In one approach, one or more passages within the lamp are in fluid communication with a plurality of openings between the fins on the lamp body. In operation, heat generated by the LEDs heats air within the passage which through a process of convection causes air to be drawn into and pass through the bulb thereby providing passive cooling of the LEDs.
  • While certain embodiments pertain to photoluminescence components that comprise a hollow component (i.e. the central region or bore does not include a light transmissive medium), in other embodiments the component can comprise a component having a solid light transmissive core. A component with a light transmissive core can further increase light emission by eliminating or significantly any air interface between the wavelength conversion component and the LEDs. This is particularly so for light travelling in a radial direction between walls of the component.
  • One embodiment of the invention pertains to a photoluminescence wavelength conversion component that comprises a solid cylindrical shaped component composed of a cylindrical light transmissive core and an outer coaxial phosphor layer. Such a component can be formed by co-extrusion of the core and phosphor layers. Alternatively the component can be manufactured by fabricating the component and then inserting a light transmissive cylindrical rod, such as a glass rod, into the bore of the component. In other embodiments the component can be fabricated by coating the phosphor material onto the outer surface of a light transmissive rod such as a glass or polycarbonate rod. In some embodiments the component is fabricated from a resiliently deformable (semi-flexible) light transmissive material such as a silicone material. A benefit of using a resiliently deformable material is that this can assist in insertion of the rod.
  • Where the photoluminescence wavelength conversion component comprises a solid component, the reflector can comprise a coating, such as a light reflective paint or metallization layer, that is applied directly to the end face of the component.
  • In an alternate embodiment, the photoluminescence wavelength conversion component comprises a cylindrical light transmissive component with latitudinally extending phosphor regions (strips), e.g., where there are four phosphor regions that are equally circumferentially spaced, although it will be appreciated that the number, shape and configuration of the phosphor regions can be varied within the scope of the invention.
  • Whilst the invention finds particular application to light bulbs, photoluminescence wavelength conversion components of the invention can be utilized in other light emitting devices and lighting arrangements. Embodiments of the invention can be applied to manufacture an LED reflector lamp, such as an MR16 lamp. In this embodiment the photoluminescence wavelength conversion component comprises has either a hollow or a solid core with a phosphor layer covering an end portion distal to the LED(s). Optionally, the portion of the core that is not covered with phosphor (i.e. the portion of the tube proximal to the LED(s)) can include a light reflective surface to prevent light emission from this portion of the core.
  • Embodiments may also be applied to the manufacture of an LED downlight that utilizes multiple photoluminescence wavelength conversion components in accordance with the invention. In this embodiment, some or all of the photoluminescence wavelength conversion components comprise an elongate hollow (or solid) tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • The photoluminescence wavelength conversion component in some embodiments comprises a first proximal end for receiving light and a reflector on the distal end. In alternate embodiments, the photoluminescence wavelength conversion component is configured such that each end of the component is configured to receive light thereby eliminating the need for the reflector.
  • In some embodiments, the component is configured to have LEDs located at both ends. In this embodiment the photoluminescence wavelength conversion component comprises an elongate hollow (or solid) tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume. A first LED(s) are located at a first end of the component and a second LED(s) at the opposite end of the component. In an alternate embodiment, the component comprises a tubular component whose ends are looped around such that both ends share a common plane.
  • Yet another embodiment is directed to an LED linear lamp utilizing multiple photoluminescence wavelength conversion components. In this embodiment each photoluminescence wavelength conversion component comprises an elongate tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • Further details of aspects, objects, and advantages of the invention are described below in the detailed description, drawings and claims. Both the foregoing general description and the following detailed description are exemplary and explanatory, and are not intended to be limiting as to the scope of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order that the present invention is better understood, LED lamps and photoluminescence components in accordance with embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
  • FIG. 1 is a schematic partial sectional view of a known LED bulb as previously described;
  • FIG. 2 is schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention;
  • FIG. 3 is an schematic exploded perspective view of the hollow photoluminescence wavelength conversion component of FIG. 2;
  • FIG. 4 is a schematic partial sectional view of an LED candle bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention;
  • FIG. 5 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention;
  • FIG. 6 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention;
  • FIG. 7 is a schematic exploded perspective view of a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention;
  • FIGS. 8A and 8B respectively show schematic end and perspective views of a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention;
  • FIG. 9 is a schematic partial sectional view of an LED bulb utilizing a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention;
  • FIG. 10 is a schematic partial sectional view of an LED reflector lamp utilizing a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention;
  • FIG. 11 is a schematic partial sectional view of an LED downlight utilizing multiple hollow photoluminescence wavelength conversion components in accordance with an embodiment of the invention;
  • FIG. 12 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention;
  • FIG. 13 is a schematic partial sectional view of an LED bulb utilizing a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention;
  • FIG. 14 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention; and
  • FIG. 15 is a schematic partial sectional view of an LED linear lamp utilizing multiple hollow photoluminescence wavelength conversion components in accordance with an embodiment of the invention.
  • DETAILED DESCRIPTION
  • Lamps (light bulbs) are available in a number of forms, and are often standardly referenced by a combination of letters and numbers. The letter designation of a lamp typically refers to the particular shape of type of that lamp, such as General Service (A, mushroom), High Wattage General Service (PS—pear shaped), Decorative (B—candle, CA—twisted candle, BA—bent-tip candle, F—flame, P—fancy round, G—globe), Reflector (R), Parabolic aluminized reflector (PAR) and Multifaceted reflector (MR). The number designation refers to the size of a lamp, often by indicating the diameter of a lamp in units of eighths of an inch. Thus, an A-19 type lamp refers to a general service lamp (bulb) whose shape is referred to by the letter “A” and has a maximum diameter two and three eights of an inch. As of the time of filing of this patent document, the most commonly used household “light bulb” is the lamp having the A-19 envelope, which in the United States is commonly sold with an E26 screw base.
  • There are various standardization and regulatory bodies that provide exact specifications to define criteria under which a manufacturer is entitled to label a lighting product using these standard reference designations. With regard to the physical dimensions of the lamp, ANSI provides the specifications (ANSI C78.20-2003) that outline the required sizing and shape by which compliance will entitle the manufacture to permissibly label the lamp as an A-19 type lamp. Besides the physical dimensions of the lamp, there may also be additional specifications and standards that refer to performance and functionality of the lamp. For example in the United States the US Environmental Protection Agency (EPA) in conjunction with the US Department of Energy (DOE) promulgates performance specifications under which a lamp may be designated as an “ENERGY STAR” compliant product, e.g. identifying the power usage requirements, minimum light output requirements, luminous intensity distribution requirements, luminous efficacy requirements and life expectancy.
  • The problem is that the disparate requirements of the different specifications and standards create design constraints that are often in tension with one another. For example, the A-19 lamp is associated with very specific physical sizing and dimension requirements, which is needed to make sure A-19 type lamps sold in the marketplace will fit into common household lighting fixtures. However, for an LED-based replacement lamp to be qualified as an A-19 replacement by ENERGY STAR, it must demonstrate certain performance-related criteria that are difficult to achieve with a solid-state lighting product when limited to the form factor and size of the A-19 light lamp.
  • For example, with regard to the luminous intensity distribution criteria in the ENERGY STAR specifications, for an LED-based replacement lamp to be qualified as an A-19 replacement by ENERGY STAR it must demonstrate an even (+/−20%) luminous emitted intensity over 270° with a minimum of 5% of the total light emission above 270°. The issue is that LED replacement lamps need electronic drive circuitry and an adequate heat sink area; in order to fit these components into an A-19 form factor, the bottom portion of the lamp (envelope) is replaced by a thermally conductive housing that acts as a heat sink and houses the driver circuitry needed to convert AC power to low voltage DC power used by the LEDs. A problem created by the housing of an LED lamp is that it blocks light emission in directions towards the base as is required to be ENERGY STAR compliant. As a result many LED lamps lose the lower light emitting area of traditional bulbs and become directional light sources, emitting most of the light out of the top dome (180° pattern) and virtually no light downward since it is blocked by the heat sink (body), which frustrates the ability of the lamp to comply with the luminous intensity distribution criteria in the ENERGY STAR specification.
  • Currently LED replacement lamps are considered too expensive for the general consumer market. Typically an A-19, 60 W replacement LED lamp costs many times the cost of an incandescent bulb or compact fluorescent lamp. The high cost is due to the complex and expensive construction and components used in these lamps.
  • An LED-based lamp 100 in accordance with embodiments of the invention is now described with reference to FIG. 2 which shows a schematic partial sectional view of the lamp. In some embodiments, the lamp 100 is configured for operation with a 110V (r.m.s.) AC (60 Hz) mains power supply as is found in North America and is intended for use as an ENERGY STAR compliant replacement for an A-19 incandescent light bulb.
  • The lamp 100 comprises a generally conical shaped thermally conductive body 110. The outer surface of the body 110 generally resembles a frustum of a cone; that is, a cone whose apex (vertex) is truncated by a plane that is parallel to the base (i.e. substantially frustoconical). The body 110 is made of a material with a high thermal conductivity (typically ≧150 Wm−1 K−1, preferably ≧200 Wm−1 K−1) such as for example aluminum (≈250 Wm−1 K−1), an alloy of aluminum, a magnesium alloy, a metal loaded plastics material such as a polymer, for example an epoxy. Conveniently the body 110 can be die cast when it comprises a metal alloy or molded, by for example injection molding, when it comprises a metal loaded polymer.
  • A plurality of latitudinal radially extending heat radiating fins (veins) 120 is circumferentially spaced around the outer curved surface of the body 110. Since the lamp is intended to replace a conventional incandescent A-19 light bulb the dimensions of the lamp are selected to ensure that the device will fit a conventional lighting fixture. The body 110 further comprises a conical shaped pedestal portion 130 extending from the base of the body 110. The body 110 can further comprise a coaxial cylindrical cavity (not shown) that extends into the body from the truncated apex the body for housing rectifier or other driver circuitry for operating the lamp.
  • The lamp 100 further comprises an E26 connector cap (Edison screw lamp base) 140 enabling the lamp to be directly connected to a mains power supply using a standard electrical lighting screw socket. It will be appreciated that depending on the intended application other connector caps can be used such as, for example, a double contact bayonet connector (i.e. B22d or BC) as is commonly used in the United Kingdom, Ireland, Australia, New Zealand and various parts of the British Commonwealth or an E27 screw base (Edison screw lamp base) as used in Europe. The connector cap 140 is mounted to the truncated apex of the body 110.
  • One or more solid-state light emitter 150 is/are mounted on a circular substrate 160. In some embodiments, the substrate 160 comprises a circular MCPCB (Metal Core Printed Circuit Board). As is known a MCPCB comprises a layered structure composed of a metal core base, typically aluminum, a thermally conducting/electrically insulating dielectric layer and a copper circuit layer for electrically connecting electrical components in a desired circuit configuration. The metal core base of the MCPCB 160 is mounted in thermal communication with the upper surface of the conical pedestal 130 with the aid of a thermally conducting compound such as for example a material containing a standard heat sink compound containing beryllium oxide or aluminum nitride.
  • Each solid-state light emitter 150 can comprise a gallium nitride-based blue light emitting LED operable to generate blue light with a dominant wavelength of 455 nm-465 nm. As indicated in FIG. 3 the LEDs 150 can be configured as a circular array and oriented such that their principle emission axis is parallel with the axis 170 of the lamp with light being emitted in a direction away from the connector cap 140. A light reflective mask can be provided overlaying the MCPCB that includes apertures corresponding to each LED to maximize light emission from the lamp.
  • The lamp 100 further comprises a photoluminescence wavelength conversion component 180 that includes one or more photoluminescence materials. The photoluminescence wavelength conversion component 180 comprises an elongate component 190 having a constant cross section and a reflector 200 on the end of the component 190 distal to the LEDs 150. The reflector 200 has a shape that corresponds to the outer shape of the component 190, that is circular in this example, thereby reducing or eliminating light emission from the end of the component. By reducing or eliminating light emission from the end of the component reduces the overall emission intensity along the axis 170 of the lamp.
  • In some embodiments, the photoluminescence materials comprise phosphors. For the purposes of illustration only, the following description is made with reference to photoluminescence materials embodied specifically as phosphor materials. However, the invention is applicable to any type of photoluminescence material, such as either phosphor materials or quantum dots. A quantum dot is a portion of matter (e.g. semiconductor) whose excitons are confined in all three spatial dimensions that may be excited by radiation energy to emit light of a particular wavelength or range of wavelengths.
  • The one or more phosphor materials can include an inorganic or organic phosphor such as for example silicate-based phosphor of a general composition A3Si(O,D)5 or A2Si(O,D)4 in which Si is silicon, O is oxygen, A includes strontium (Sr), barium (Ba), magnesium (Mg) or calcium (Ca) and D includes chlorine (Cl), fluorine (F), nitrogen (N) or sulfur (S). Examples of silicate-based phosphors are disclosed in U.S. Pat. No. 7,575,697 B2 “Silicate-based green phosphors”, U.S. Pat. No. 7,601,276 B2 “Two phase silicate-based yellow phosphors”, U.S. Pat. No. 7,655,156 B2 “Silicate-based orange phosphors” and U.S. Pat. No. 7,311,858 B2 “Silicate-based yellow-green phosphors”. The phosphor can also include an aluminate-based material such as is taught in co-pending patent application US2006/0158090 A1 “Novel aluminate-based green phosphors” and patent U.S. Pat. No. 7,390,437 B2 “Aluminate-based blue phosphors”, an aluminum-silicate phosphor as taught in co-pending application US2008/0111472 A1 “Aluminum-silicate orange-red phosphor” or a nitride-based red phosphor material such as is taught in co-pending United States patent application US2009/0283721 A1 “Nitride-based red phosphors” and International patent application WO2010/074963 A1 “Nitride-based red-emitting in RGB (red-green-blue) lighting systems”. It will be appreciated that the phosphor material is not limited to the examples described and can include any phosphor material including nitride and/or sulfate phosphor materials, oxy-nitrides and oxy-sulfate phosphors or garnet materials (YAG).
  • Quantum dots can comprise different materials, for example cadmium selenide (CdSe). The color of light generated by a quantum dot is enabled by the quantum confinement effect associated with the nano-crystal structure of the quantum dots. The energy level of each quantum dot relates directly to the size of the quantum dot. For example, the larger quantum dots, such as red quantum dots, can absorb and emit photons having a relatively lower energy (i.e. a relatively longer wavelength). On the other hand, orange quantum dots, which are smaller in size can absorb and emit photons of a relatively higher energy (shorter wavelength). Additionally, daylight panels are envisioned that use cadmium free quantum dots and rare earth (RE) doped oxide colloidal phosphor nano-particles, in order to avoid the toxicity of the cadmium in the quantum dots.
  • Examples of suitable quantum dots include: CdZnSeS (cadmium zinc selenium sulfide), CdxZn1-xSe (cadmium zinc selenide), CdSexS1-x (cadmim selenium sulfide), CdTe (cadmium telluride), CdTexS1-x (cadmium tellurium sulfide), InP (indium phosphide), InxGa1-x P (indium gallium phosphide), InAs (indium arsenide), CuInS2 (copper indium sulfide), CuInSe2 (copper indium selenide), CuInSxSe2-x (copper indium sulfur selenide), CuInxGa1-xS2 (copper indium gallium sulfide), CuInxGa1-xSe2 (copper indium gallium selenide), CuInxAl1-xSe2 (copper indium aluminum selenide), CuGaS2 (copper gallium sulfide) and CuInS2xZnS1-x (copper indium selenium zinc selenide).
  • The quantum dots material can comprise core/shell nano-crystals containing different materials in an onion-like structure. For example, the above described exemplary materials can be used as the core materials for the core/shell nano-crystals.
  • The optical properties of the core nano-crystals in one material can be altered by growing an epitaxial-type shell of another material. Depending on the requirements, the core/shell nano-crystals can have a single shell or multiple shells. The shell materials can be chosen based on the band gap engineering. For example, the shell materials can have a band gap larger than the core materials so that the shell of the nano-crystals can separate the surface of the optically active core from its surrounding medium.
  • In the case of the cadmiun-based quantum dots, e.g. CdSe quantum dots, the core/shell quantum dots can be synthesized using the formula of CdSe/ZnS, CdSe/CdS, CdSe/ZnSe, CdSe/CdS/ZnS, or CdSe/ZnSe/ZnS. Similarly, for CuInS2 quantum dots, the core/shell nanocrystals can be synthesized using the formula of CuInS2/ZnS, CuInS2/CdS, CuInS2/CuGaS2, CuInS2/CuGaS2/ZnS and so on.
  • As shown in FIG. 2 the photoluminescence wavelength conversion component 150 is mounted over the LED(s) on top of the pedestal 130 and fully encloses the LED(s) 150. The lamp 100 can further comprise a light diffusive envelope or cover 210 mounted to the base of the body and encloses the component 180. The cover 210 can comprise a glass or a light transmissive polymer such as a polycarbonate, acrylic, PET or PVC that incorporates or has a layer of light diffusive (scattering) material. Example of light diffusive materials include particles of Zinc Oxide (ZnO), titanium dioxide (TiO2), barium sulfate (BaSO4), magnesium oxide (MgO), silicon dioxide (SiO2) or aluminum oxide (Al2O3).
  • FIG. 3 show a schematic exploded perspective view of the photoluminescence wavelength conversion component 180. As shown in FIG. 3 the component 190 can comprise a hollow cylindrical tube having a bore of diameter Ø and an axial length L. In the exemplary embodiment shown the length of the component is approximately four times the bore diameter of the component and the aspect ratio of the component 180 in an axial direction (ratio of length to bore diameter) is approximately 4:1. The relative dimensions and shape of the component can affect the radial emission pattern of the component and are configured to give a required emission pattern (typically omnidirectional). For an A-19 bulb the bore Ø of the component is between about 1 mm and 10 mm. The photoluminescence material can be homogeniously distributed throughout the volume of the component 190 during manufacture of the component. The wall thickness of the photoluminescence material is typically between 200 μm and 2 mm.
  • The reflector 200 can comprise a light reflective circular disc that is mounted to the end of the component such that covers the end face of the component. Conveniently the reflector 200 can comprise an injection molded part composed of a light reflective plastics material. Alternatively the reflector can comprise a metallic component or a component with a metallization surface.
  • Since the component has a constant cross section it can be readily manufactured using an extrusion method. The component can be formed using a light transmissive thermoplastics (thermosoftening) material such as polycarbonate, acrylic or a low temperature glass using a hot extrusion process. Alternatively the component can comprise a thermosetting or UV curable material such as a silicone or epoxy material and be formed using a cold extrusion method. A benefit of extrusion is that it is relatively inexpensive method of manufacture.
  • Alternatively the component can be formed by injection molding though such a method tends to be more expensive than extrusion. Since the component has a constant cross section it can be formed using injection molding without the need to use an expensive collapsible former. In other embodiments the component can be formed by casting.
  • Another possible approach is to manufacture the component is by forming a flexible sheet material to include the phosphor and/or quantum dots, and then rolling the sheet material into the desired shape and dimensions for the component. The phosphor may be applied as a layer onto the sheet material, e.g., by coating, printing, or other suitable deposition methods. Alternatively, the phosphor may be incorporated within the material of the flexible sheet.
  • In operation the LEDs 150 generate blue excitation light a portion of which excite the photoluminescence material within the wavelength conversion component 180 which in response generates by a process of photoluminescence light of another wavelength (color) typically yellow, yellow/green, orange, red or a combination thereof. The portion of blue LED generated light combined with the photoluminescence material generated light gives the lamp an emission product that is white in color.
  • A particular benefit of photoluminescence components in accordance with embodiments of the invention is that as well as improving the emission distribution pattern they can also improve overall light emission efficiency. For example preliminary tests indicate that the hollow tubular wavelength conversion components described can gives a total light emission that is greater than the known wavelength conversion components. It is believed that the increase in emission efficiency results from the component having a high aspect ratio which it believed reduces the possibility of re-absorption of light by the LED(s) positioned at the opening of the component.
  • A further advantage of photoluminescence wavelength conversion components in accordance with the invention is that their light emission resembles a filament of a conventional incandescent light bulb.
  • FIG. 4 is schematic partial sectional view of an LED candle bulb utilizing a photoluminescence wavelength conversion component in accordance the invention. In this embodiment the photoluminescence wavelength conversion component 180 comprises an elongate tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • FIG. 5 is a schematic partial sectional view of an LED bulb utilizing a photoluminescence wavelength conversion component in accordance the invention. In this embodiment the photoluminescence wavelength conversion component 180 comprises a tubular component in which the photoluminescence material is incorporated into the material comprising the component. The component 180 is mounted to a hollow light transmissive tube 220 and has a length such that it covers only the end portion of the tube 220 distal to the LED(s) 150. The component 180 can comprise a semi-flexible material and the component, which comprises a sleeve, slipped over the tube 220. Optionally as indicated by heavy solid lines 230 the portion of the tube 220 that is not covered with phosphor (i.e. the portion of the tube proximal to the LED(s)) can include a light reflective surface to prevent light emission from this portion of the tube.
  • FIG. 6 is a schematic partial sectional view of an LED bulb utilizing a photoluminescence wavelength conversion component in accordance with an embodiment of the invention. In this embodiment the photoluminescence wavelength conversion component 180 comprises a tubular component in which the photoluminescence material is incorporated into the material comprising the component. A plurality of LEDs 150 is mounted on an annular MCPCB 160 an configured as a circular array. A thermally conductive light reflective tubular passage 240 is mounted coaxially within the component and in thermal communication with the pedestal 130 and body 110. The light reflective passage 240 passes through the reflector 200 which is annular in shape and has a circular opening 250 to a surrounding environment. A plurality of openings between the fins 110 are in fluid communication with the interior of the light reflective passage 240 enabling air flow through the passage. In operation heat generated by the LEDs heats air within the passage which through a process of convection causes air to be drawn into and pass through the bulb thereby providing passive cooling of the LEDs. The movement of air by thermal convection is indicated by heavy solid arrows 260.
  • Whilst the foregoing photoluminescence components comprise a hollow component (i.e. the central region or bore does not include a light transmissive medium) in other embodiments the component can comprise a component having a solid light transmissive core. A component with a light transmissive core can further increase light emission by eliminating or significantly any air interface between the wavelength conversion component 180 and the LEDs 150. This is particularly so for light travelling in a radial direction between walls of the component.
  • FIG. 7 shows a perspective exploded view of a photoluminescence wavelength conversion component in accordance with an embodiment of the invention with a solid core. In this embodiment the component comprises a solid cylindrical shaped component composed of a cylindrical light transmissive core 270 and an outer coaxial phosphor layer 190.
  • Such a component can be formed by co-extrusion of the core 270 and phosphor layers 190. Alternatively the component can be manufactured by fabricating the component of FIG. 3 and then inserting a light transmissive cylindrical rod, such as a glass rod, into the bore of the component. In other embodiments the component can be fabricated by coating the phosphor material onto the outer surface of a light transmissive rod such as a glass or polycarbonate rod. In some embodiments the component is fabricated from a resiliently deformable (semi-flexible) light transmissive material such as a silicone material. A benefit of using a resiliently deformable material is that this can assist in insertion of the rod.
  • Where the component comprises a solid component, the reflector 200 can comprise a coating, such as a light reflective paint or metallization layer, that is applied directly to the end face of the component.
  • FIGS. 8A and 8B show schematic perspective and end views of a photoluminescence wavelength conversion component in accordance with an embodiment of the invention. As can be seen in the embodiment illustrated in FIGS. 8A-B the component comprises a cylindrical light transmissive component 270 with latitudinally extending phosphor regions (strips) 190. FIGS. 8A and 8B show four phosphor regions 190 that are equally circumferentially spaced though it will be appreciated that the number, shape and configuration of the phosphor regions can be varied within the scope of the invention.
  • FIG. 9 is a schematic partial sectional view of an LED bulb utilizing a solid photoluminescence wavelength conversion component in accordance with an embodiment of the invention. In this embodiment the photoluminescence wavelength conversion component 180 comprises has a solid core 270 with a phosphor layer 190 covering an end portion distal to the LED(s) 150. The phosphor layer 190 can comprise a semi-flexible material which is slipped over the core 270. Optionally as indicated by heavy solid lines 230 the portion of the core 270 that is not covered with phosphor (i.e. the portion of the tube proximal to the LED(s)) can include a light reflective surface to prevent light emission from this portion of the core.
  • Whilst the invention arose in relation to and finds particular application to light bulbs, photoluminescence wavelength conversion components of the invention can be utilized in other light emitting devices and lighting arrangements such as for example linear lamps.
  • FIG. 10 is a schematic partial sectional view of an LED reflector lamp, such as an MR16 lamp. In this embodiment the photoluminescence wavelength conversion component 180 comprises has a solid core 270 with a phosphor layer 190 covering an end portion distal to the LED(s) 150. Optionally as indicated by heavy solid lines 230 the portion of the core 270 that is not covered with phosphor (i.e. the portion of the tube proximal to the LED(s)) can include a light reflective surface to prevent light emission from this portion of the core. The light emitting portion of the component is located at or near the focal point of a multifaceted reflector 280.
  • FIG. 11 is a schematic partial sectional view of an LED downlight utilizing multiple hollow photoluminescence wavelength conversion component in accordance with an embodiment of the invention. In this embodiment, some or all of the photoluminescence wavelength conversion components 180 comprise an elongate hollow tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • In each of foregoing embodiments the components comprises a first proximal end for receiving light and a reflector on the distal end. It is envisioned in further embodiments that each end of the component is configured to receive light thereby eliminating the need for the reflector. FIG. 12 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component having LEDs located at both ends. In this embodiment the photoluminescence wavelength conversion component 180 comprises an elongate hollow tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume. A first LED(s) are located at a first end of the component and a second LED(s) at the opposite end of the component.
  • FIG. 13 is a schematic partial sectional view of an LED bulb utilizing a solid photoluminescence wavelength conversion component 180 having LEDs located at both ends. In this embodiment the component 180 can comprise the solid component of FIG. 7.
  • FIG. 14 is a schematic partial sectional view of an LED bulb utilizing a hollow photoluminescence wavelength conversion component 180 having LEDs located at both ends. In this embodiment the component 180 comprises a tubular component whose ends are looped around such that both ends share a common plane.
  • FIG. 15 is a schematic partial sectional view of an LED linear lamp utilizing multiple hollow photoluminescence wavelength conversion components in accordance with an embodiment of the invention. In this embodiment each photoluminescence wavelength conversion component 180 comprises an elongate hollow tubular component with the photoluminescence material incorporated into the material comprising the component and homogeneously distributed throughout its volume.
  • It will be appreciated that the invention is not limited to the exemplary embodiments described and that variations can be made within the scope of the invention. For example whilst in the embodiments described the photoluminescence wavelength conversion component has a circular cross section, the component can have other cross sections such as elliptical, triangular, square, pentagonal, hexagonal.

Claims (26)

What is claimed is:
1. A photoluminescence wavelength conversion component comprising:
a light transmissive component having first and second ends and a substantially constant cross section, wherein the first end is for receiving light;
a light reflective surface provided over at least a part of the second end; and
at least one photoluminescence material.
2. The component of claim 1, wherein the component is elongate.
3. The component of claim 2, wherein the ratio of the length of the component to width is at least two to one.
4. The component of claim 1, wherein the ratio of the length of the component to width is at least four to one.
5. The component of claim 1, wherein the component has a substantially circular cross section.
6. The component of claim 1, wherein the light transmissive component comprises a hollow component.
7. The component of claim 1, wherein the light transmissive component comprises solid component with a light transmissive core.
8. The component of claim 1, wherein the at least one photoluminescence material is incorporated in and homogeneously distributed throughout the volume of the component.
9. The component of claim 1, wherein the at least one photoluminescence material is provided as a layer on at least a part of the outer surface of the component.
10. The component of claim 1, wherein the component is manufactured using a process selected from the group consisting of: extrusion; injection molding; and casting.
11. A lamp comprising:
at least one solid-state light source operable to generate excitation light; and
a photoluminescence wavelength conversion component comprising:
a light transmissive component having first and second ends and a substantially constant cross section;
a light reflective surface provided over at least a part of the second end of the component; and
at least one photoluminescence material;
wherein the at least one light source is configured to emit excitation light into a first end of the component.
12. The lamp of claim 11, wherein the component is elongate.
13. The lamp of claim 12, wherein the ratio of the length of the component to width is at least two to one.
14. The lamp of claim 11, wherein the component has a substantially circular cross section.
15. The lamp of claim 11, wherein the light transmissive component comprises a hollow component.
16. The lamp of claim 11, wherein the light transmissive component comprises solid component with a light transmissive core.
17. The lamp of claim 11, wherein the at least one photoluminescence material is incorporated in and homogeneously distributed throughout the volume of the component.
18. The lamp of claim 11, wherein the at least one photoluminescence material is provided as a layer on at least a part of the outer surface of the component.
19. A lamp comprising:
a photoluminescence wavelength conversion component comprising a light transmissive component having first and second ends and a substantially constant cross section and
at least one photoluminescence material;
at least one solid-state light source operable to generate excitation light and configured to emit excitation light into the first end of the component; and
at least one solid-state light source operable to generate excitation light and configured to emit excitation light into the second end of the component.
20. The lamp of claim 19, wherein the component is elongate.
21. The lamp of claim 20, wherein the ratio of the length of the component to width is at least two to one.
22. The lamp of claim 19, wherein the component has a substantially circular cross section.
23. The lamp of claim 19, wherein the light transmissive component comprises a hollow component.
24. The lamp of claim 19, wherein the light transmissive component comprises solid component with a light transmissive core.
25. The lamp of claim 19, wherein the at least one photoluminescence material is incorporated in and homogeneously distributed throughout the volume of the component.
26. The lamp of claim 19, wherein the at least one photoluminescence material is provided as a layer on at least a part of the outer surface of the component.
US14/136,972 2012-12-28 2013-12-20 Solid-state lamps utilizing photoluminescence wavelength conversion components Abandoned US20140185269A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/136,972 US20140185269A1 (en) 2012-12-28 2013-12-20 Solid-state lamps utilizing photoluminescence wavelength conversion components
US15/815,577 US10557594B2 (en) 2012-12-28 2017-11-16 Solid-state lamps utilizing photoluminescence wavelength conversion components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261746986P 2012-12-28 2012-12-28
US14/136,972 US20140185269A1 (en) 2012-12-28 2013-12-20 Solid-state lamps utilizing photoluminescence wavelength conversion components

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/815,577 Continuation US10557594B2 (en) 2012-12-28 2017-11-16 Solid-state lamps utilizing photoluminescence wavelength conversion components

Publications (1)

Publication Number Publication Date
US20140185269A1 true US20140185269A1 (en) 2014-07-03

Family

ID=51016991

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/136,972 Abandoned US20140185269A1 (en) 2012-12-28 2013-12-20 Solid-state lamps utilizing photoluminescence wavelength conversion components
US15/815,577 Active US10557594B2 (en) 2012-12-28 2017-11-16 Solid-state lamps utilizing photoluminescence wavelength conversion components

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/815,577 Active US10557594B2 (en) 2012-12-28 2017-11-16 Solid-state lamps utilizing photoluminescence wavelength conversion components

Country Status (5)

Country Link
US (2) US20140185269A1 (en)
EP (1) EP2938921B1 (en)
CN (1) CN105008795B (en)
TW (1) TWI679375B (en)
WO (1) WO2014105812A1 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130170178A1 (en) * 2012-01-02 2013-07-04 Samsung Electronics Co., Ltd. Light source module and illumination apparatus having the same
US20140355238A1 (en) * 2013-05-29 2014-12-04 Genesis Photonics Inc. Light-emitting device
US20150252986A1 (en) * 2014-03-10 2015-09-10 Chih-Ming Yu Lamp structure
US20150354757A1 (en) * 2013-01-22 2015-12-10 Seoul Semiconductor Co., Ltd. Led lamp
EP3056796A1 (en) * 2015-02-12 2016-08-17 Philips Lighting Holding B.V. Lighting device with a thermally conductive fluid
US20170168227A1 (en) * 2015-12-11 2017-06-15 Dynascan Technology Corp. Led light guide lamp
USD804062S1 (en) 2016-08-16 2017-11-28 Linaya Hahn Portion of a LED light bulb
EP3279556A1 (en) 2016-08-06 2018-02-07 biolitec Unternehmensbeteiligungs II AG Fiber optic light source
JP2018507529A (en) * 2015-03-02 2018-03-15 バスター・アンド・パンチ・リミテッド light bulb
WO2018095654A1 (en) * 2016-11-24 2018-05-31 Osram Gmbh Producing a lighting device
US10066160B2 (en) 2015-05-01 2018-09-04 Intematix Corporation Solid-state white light generating lighting arrangements including photoluminescence wavelength conversion components
WO2019008017A1 (en) 2017-07-07 2019-01-10 Philips Lighting Holding B.V. Light concentrator module
WO2019008092A1 (en) * 2017-07-07 2019-01-10 Philips Lighting Holding B.V. Light concentrator module
US20190128482A1 (en) * 2014-09-28 2019-05-02 Zhejiang Super Lighting Electric Appliance Co., Ltd. Led filament and led light bulb
US10663116B2 (en) * 2015-02-26 2020-05-26 Signify Holding B.V. Lighting device with dispenser for a reactive substance
US10711951B1 (en) 2014-09-28 2020-07-14 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
US10767817B2 (en) 2015-08-17 2020-09-08 Jiaxing Super Lighting Electric Appliance Co., Ltd LED light bulb and LED filament thereof
US10784428B2 (en) 2014-09-28 2020-09-22 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED filament and LED light bulb
US10790420B2 (en) 2017-12-26 2020-09-29 Jiaxing Super Lighting Electric Appliance Co., Ltd Light bulb with a symmetrical LED filament
US10823343B2 (en) 2014-09-28 2020-11-03 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp fit for being supplied by a ballast according to the voltage level of an external driving signal
US10890300B2 (en) 2015-03-10 2021-01-12 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US10976010B2 (en) 2015-08-17 2021-04-13 Zhejiang Super Lighting Electric Appliance Co., Lt LED filament and led light bulb
US10982048B2 (en) 2018-04-17 2021-04-20 Jiaxing Super Lighting Electric Appliance Co., Ltd Organosilicon-modified polyimide resin composition and use thereof
US11028973B2 (en) 2015-03-10 2021-06-08 Jiaxing Super Lighting Electric Appliance Co., Ltd. Led tube lamp
US11035526B2 (en) 2015-12-09 2021-06-15 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US11035525B2 (en) 2015-08-17 2021-06-15 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb
US11041614B2 (en) * 2019-11-07 2021-06-22 Delta Electronics, Inc. Wavelength conversion unit and lighting device
US11085591B2 (en) 2014-09-28 2021-08-10 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
US11112068B2 (en) 2014-09-28 2021-09-07 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11131431B2 (en) 2014-09-28 2021-09-28 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11168843B2 (en) 2014-09-28 2021-11-09 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED bulb lamp
US11187384B2 (en) 2014-09-28 2021-11-30 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED bulb lamp
US11421827B2 (en) 2015-06-19 2022-08-23 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED light bulb
US11519565B2 (en) 2015-03-10 2022-12-06 Jiaxing Super Lighting Electric Appliance Co., Ltd LED lamp and its power source module
US11525547B2 (en) 2014-09-28 2022-12-13 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
US11543083B2 (en) 2014-09-28 2023-01-03 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED light bulb
USD979104S1 (en) 2020-02-28 2023-02-21 Buster And Punch Limited Light fitting
USD981631S1 (en) 2020-01-30 2023-03-21 Buster And Punch Limited Light fixture
USD987859S1 (en) 2021-02-25 2023-05-30 Buster And Punch Limited Light bulb
USD987860S1 (en) 2021-02-25 2023-05-30 Buster And Punch Limited Light bulb
US11686457B2 (en) 2014-09-28 2023-06-27 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11686436B2 (en) 2014-09-28 2023-06-27 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and light bulb using LED filament
US11690148B2 (en) 2014-09-28 2023-06-27 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED filament and LED light bulb

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723810B (en) * 2019-03-18 2021-04-01 周志源 Optical device and illumination device
TWI719706B (en) * 2019-11-07 2021-02-21 台達電子工業股份有限公司 Wavelength conversion unit and lighting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090103293A1 (en) * 2007-10-17 2009-04-23 Xicato, Inc. Illumination Device with Light Emitting Diodes and Moveable Light Adjustment Member
US20100195861A1 (en) * 2007-05-18 2010-08-05 King Kristopher C Audio Speaker Illumination System
US20110310587A1 (en) * 2008-11-18 2011-12-22 John Adam Edmond Ultra-high efficacy semiconductor light emitting devices

Family Cites Families (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3290255A (en) 1963-09-30 1966-12-06 Gen Electric White electroluminescent phosphor
US3593055A (en) 1969-04-16 1971-07-13 Bell Telephone Labor Inc Electro-luminescent device
US3676668A (en) 1969-12-29 1972-07-11 Gen Electric Solid state lamp assembly
US3691482A (en) 1970-01-19 1972-09-12 Bell Telephone Labor Inc Display system
GB1311361A (en) 1970-02-19 1973-03-28 Ilford Ltd Electrophotographic material
US4104076A (en) 1970-03-17 1978-08-01 Saint-Gobain Industries Manufacture of novel grey and bronze glasses
US3670193A (en) 1970-05-14 1972-06-13 Duro Test Corp Electric lamps producing energy in the visible and ultra-violet ranges
NL7017716A (en) 1970-12-04 1972-06-06
JPS5026433B1 (en) 1970-12-21 1975-09-01
BE786323A (en) 1971-07-16 1973-01-15 Eastman Kodak Co REINFORCING SCREEN AND RADIOGRAPHIC PRODUCT THE
JPS48102585A (en) 1972-04-04 1973-12-22
US3932881A (en) 1972-09-05 1976-01-13 Nippon Electric Co., Inc. Electroluminescent device including dichroic and infrared reflecting components
US4081764A (en) 1972-10-12 1978-03-28 Minnesota Mining And Manufacturing Company Zinc oxide light emitting diode
US3819973A (en) 1972-11-02 1974-06-25 A Hosford Electroluminescent filament
US3849707A (en) 1973-03-07 1974-11-19 Ibm PLANAR GaN ELECTROLUMINESCENT DEVICE
US3819974A (en) 1973-03-12 1974-06-25 D Stevenson Gallium nitride metal-semiconductor junction light emitting diode
DE2314051C3 (en) 1973-03-21 1978-03-09 Hoechst Ag, 6000 Frankfurt Electrophotographic recording material
NL164697C (en) 1973-10-05 1981-01-15 Philips Nv LOW-PRESSURE MERCURY DISCHARGE LAMP.
JPS5079379A (en) 1973-11-13 1975-06-27
DE2509047C3 (en) 1975-03-01 1980-07-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Plastic housing for a light emitting diode
US4176299A (en) 1975-10-03 1979-11-27 Westinghouse Electric Corp. Method for efficiently generating white light with good color rendition of illuminated objects
US4176294A (en) 1975-10-03 1979-11-27 Westinghouse Electric Corp. Method and device for efficiently generating white light with good rendition of illuminated objects
DE2634264A1 (en) 1976-07-30 1978-02-02 Licentia Gmbh SEMICONDUCTOR LUMINESCENT COMPONENT
US4191943A (en) 1976-10-18 1980-03-04 Fairchild Camera And Instrument Corporation Filler-in-plastic light-scattering cover
US4211955A (en) 1978-03-02 1980-07-08 Ray Stephen W Solid state lamp
GB2017409A (en) 1978-03-22 1979-10-03 Bayraktaroglu B Light-emitting diode
US4305019A (en) 1979-12-31 1981-12-08 Westinghouse Electric Corp. Warm-white fluorescent lamp having good efficacy and color rendering and using special phosphor blend as separate undercoat
US4315192A (en) 1979-12-31 1982-02-09 Westinghouse Electric Corp. Fluorescent lamp using high performance phosphor blend which is protected from color shifts by a very thin overcoat of stable phosphor of similar chromaticity
JPS57174847A (en) 1981-04-22 1982-10-27 Mitsubishi Electric Corp Fluorescent discharge lamp
US4443532A (en) 1981-07-29 1984-04-17 Bell Telephone Laboratories, Incorporated Induced crystallographic modification of aromatic compounds
US4667036A (en) 1983-08-27 1987-05-19 Basf Aktiengesellschaft Concentration of light over a particular area, and novel perylene-3,4,9,10-tetracarboxylic acid diimides
US4573766A (en) 1983-12-19 1986-03-04 Cordis Corporation LED Staggered back lighting panel for LCD module
JPS60147743A (en) 1984-01-11 1985-08-03 Mitsubishi Chem Ind Ltd Electrophotographic sensitive body
US4678285A (en) 1984-01-13 1987-07-07 Ricoh Company, Ltd. Liquid crystal color display device
JPS60170194A (en) 1984-02-13 1985-09-03 ソニー株式会社 El element
US4772885A (en) 1984-11-22 1988-09-20 Ricoh Company, Ltd. Liquid crystal color display device
US4638214A (en) 1985-03-25 1987-01-20 General Electric Company Fluorescent lamp containing aluminate phosphor
US4663495A (en) 1985-06-04 1987-05-05 Atlantic Richfield Company Transparent photovoltaic module
US4621988A (en) 1985-09-16 1986-11-11 Ingersoll-Rand Company Liquid intensifier unit
JPH086086B2 (en) 1985-09-30 1996-01-24 株式会社リコー White electroluminescent device
JPS6283755A (en) 1985-10-08 1987-04-17 Toshiba Corp Electrophotographic sensitive body
US4845223A (en) 1985-12-19 1989-07-04 Basf Aktiengesellschaft Fluorescent aryloxy-substituted perylene-3,4,9,10-tetracarboxylic acid diimides
JPS62189770A (en) 1986-02-15 1987-08-19 Fumio Inaba Junction-type semiconductor light emitting device
FR2597851B1 (en) 1986-04-29 1990-10-26 Centre Nat Rech Scient NOVEL MIXED BORATES BASED ON RARE EARTHS, THEIR PREPARATION AND THEIR APPLICATION AS LUMINOPHORES
JPH0727747B2 (en) 1987-03-06 1995-03-29 日立電線株式会社 Electric equipment with built-in insulated conductor
US4859539A (en) 1987-03-23 1989-08-22 Eastman Kodak Company Optically brightened polyolefin coated paper support
JPH079998B2 (en) 1988-01-07 1995-02-01 科学技術庁無機材質研究所長 Cubic boron nitride P-n junction light emitting device
DE3740280A1 (en) 1987-11-27 1989-06-01 Hoechst Ag METHOD FOR PRODUCING N, N'-DIMETHYL-PERYLEN-3,4,9,10-TETRACARBONESEUREDIIMIDE IN HIGH-COVERING PIGMENT FORM
JPH01260707A (en) 1988-04-11 1989-10-18 Idec Izumi Corp Device for emitting white light
JPH0291980A (en) 1988-09-29 1990-03-30 Toshiba Lighting & Technol Corp Solid-state light emitting element
US4915478A (en) 1988-10-05 1990-04-10 The United States Of America As Represented By The Secretary Of The Navy Low power liquid crystal display backlight
US4918497A (en) 1988-12-14 1990-04-17 Cree Research, Inc. Blue light emitting diode formed in silicon carbide
US5126214A (en) 1989-03-15 1992-06-30 Idemitsu Kosan Co., Ltd. Electroluminescent element
US4992704A (en) 1989-04-17 1991-02-12 Basic Electronics, Inc. Variable color light emitting diode
JPH0324692A (en) 1989-06-21 1991-02-01 Fuji Electric Co Ltd Controller for automatic lending machine
DE3926564A1 (en) 1989-08-11 1991-02-14 Hoechst Ag NEW PIGMENT PREPARATIONS BASED ON PERYLENE COMPOUNDS
WO1991008508A1 (en) 1989-11-24 1991-06-13 Innovare Limited A display device
DE4006396A1 (en) 1990-03-01 1991-09-05 Bayer Ag FLUORESCENTLY COLORED POLYMER EMULSIONS
US5210051A (en) 1990-03-27 1993-05-11 Cree Research, Inc. High efficiency light emitting diodes from bipolar gallium nitride
US5077161A (en) 1990-05-31 1991-12-31 Xerox Corporation Imaging members with bichromophoric bisazo perylene photoconductive materials
GB9022343D0 (en) 1990-10-15 1990-11-28 Emi Plc Thorn Improvements in or relating to light sources
JP2593960B2 (en) 1990-11-29 1997-03-26 シャープ株式会社 Compound semiconductor light emitting device and method of manufacturing the same
JPH04289691A (en) 1990-12-07 1992-10-14 Mitsubishi Cable Ind Ltd El illuminant
US5166761A (en) 1991-04-01 1992-11-24 Midwest Research Institute Tunnel junction multiple wavelength light-emitting diodes
JP2791448B2 (en) 1991-04-19 1998-08-27 日亜化学工業 株式会社 Light emitting diode
JP2666228B2 (en) 1991-10-30 1997-10-22 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
US5143433A (en) 1991-11-01 1992-09-01 Litton Systems Canada Limited Night vision backlighting system for liquid crystal displays
JPH07507076A (en) 1991-11-12 1995-08-03 イーストマン ケミカル カンパニー fluorescent pigment concentrate
GB9124444D0 (en) 1991-11-18 1992-01-08 Black Box Vision Limited Display device
JPH05152609A (en) 1991-11-25 1993-06-18 Nichia Chem Ind Ltd Light emitting diode
US5208462A (en) 1991-12-19 1993-05-04 Allied-Signal Inc. Wide bandwidth solid state optical source
US5211467A (en) 1992-01-07 1993-05-18 Rockwell International Corporation Fluorescent lighting system
JPH05304318A (en) 1992-02-06 1993-11-16 Rohm Co Ltd Led array board
GB9207524D0 (en) 1992-04-07 1992-05-20 Smiths Industries Plc Radiation-emitting devices
US6137217A (en) 1992-08-28 2000-10-24 Gte Products Corporation Fluorescent lamp with improved phosphor blend
US5578839A (en) 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
JP2809951B2 (en) 1992-12-17 1998-10-15 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
US5518808A (en) 1992-12-18 1996-05-21 E. I. Du Pont De Nemours And Company Luminescent materials prepared by coating luminescent compositions onto substrate particles
WO1994022974A1 (en) 1993-03-26 1994-10-13 Sumitomo Electric Industries, Ltd. Organic electroluminescent elements
US5557168A (en) 1993-04-02 1996-09-17 Okaya Electric Industries Co., Ltd. Gas-discharging type display device and a method of manufacturing
US5677417A (en) 1993-05-04 1997-10-14 Max-Planck-Gesellschaft Zur Foerderung Tetraaroxyperylene-3,4,9,10-tetracarboxylic polyimides
US5405709A (en) 1993-09-13 1995-04-11 Eastman Kodak Company White light emitting internal junction organic electroluminescent device
JPH0784252A (en) 1993-09-16 1995-03-31 Sharp Corp Liquid crystal display device
JPH0794785A (en) 1993-09-22 1995-04-07 Stanley Electric Co Ltd Light-emitting diode
JPH0799345A (en) 1993-09-28 1995-04-11 Nichia Chem Ind Ltd Light emitting diode
DE69431333T2 (en) 1993-10-08 2003-07-31 Mitsubishi Cable Ind Ltd GaN single crystal
JPH07176794A (en) 1993-12-17 1995-07-14 Nichia Chem Ind Ltd Planar light source
US5679152A (en) 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
JPH07235207A (en) 1994-02-21 1995-09-05 Copal Co Ltd Back light
JP2596709B2 (en) 1994-04-06 1997-04-02 都築 省吾 Illumination light source device using semiconductor laser element
US5771039A (en) 1994-06-06 1998-06-23 Ditzik; Richard J. Direct view display device integration techniques
JP3116727B2 (en) 1994-06-17 2000-12-11 日亜化学工業株式会社 Planar light source
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
US5660461A (en) 1994-12-08 1997-08-26 Quantum Devices, Inc. Arrays of optoelectronic devices and method of making same
US5585640A (en) 1995-01-11 1996-12-17 Huston; Alan L. Glass matrix doped with activated luminescent nanocrystalline particles
JPH08250281A (en) 1995-03-08 1996-09-27 Olympus Optical Co Ltd Luminescent element and displaying apparatus
US5583349A (en) 1995-11-02 1996-12-10 Motorola Full color light emitting diode display
US6600175B1 (en) 1996-03-26 2003-07-29 Advanced Technology Materials, Inc. Solid state white light emitter and display using same
DE19638667C2 (en) 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mixed-color light-emitting semiconductor component with luminescence conversion element
DE29724848U1 (en) 1996-06-26 2004-09-30 Osram Opto Semiconductors Gmbh Light-emitting semiconductor component with luminescence conversion element
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
ATE229155T1 (en) 1996-10-16 2002-12-15 Koninkl Philips Electronics Nv SIGNAL LAMP WITH LEDS
JPH1173922A (en) 1997-08-29 1999-03-16 Matsushita Electric Works Ltd Light-emitting device
US5962971A (en) 1997-08-29 1999-10-05 Chen; Hsing LED structure with ultraviolet-light emission chip and multilayered resins to generate various colored lights
US6340824B1 (en) 1997-09-01 2002-01-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device including a fluorescent material
JP2900928B2 (en) 1997-10-20 1999-06-02 日亜化学工業株式会社 Light emitting diode
US6147367A (en) 1997-12-10 2000-11-14 Industrial Technology Research Institute Packaging design for light emitting diode
US6252254B1 (en) 1998-02-06 2001-06-26 General Electric Company Light emitting device with phosphor composition
US6255670B1 (en) 1998-02-06 2001-07-03 General Electric Company Phosphors for light generation from light emitting semiconductors
US6580097B1 (en) 1998-02-06 2003-06-17 General Electric Company Light emitting device with phosphor composition
JP3307316B2 (en) 1998-02-27 2002-07-24 サンケン電気株式会社 Semiconductor light emitting device
JP2000031548A (en) 1998-07-09 2000-01-28 Stanley Electric Co Ltd Surface mount light-emitting diode and its manufacture
US6139174A (en) * 1998-08-25 2000-10-31 Hewlett-Packard Company Light source assembly for scanning devices utilizing light emitting diodes
US7066628B2 (en) 2001-03-29 2006-06-27 Fiber Optic Designs, Inc. Jacketed LED assemblies and light strings containing same
JP2000078125A (en) 1998-08-28 2000-03-14 Hitachi Ltd Method for generating electronic data able to be authenticated
US5959316A (en) 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
JP4010665B2 (en) 1998-09-08 2007-11-21 三洋電機株式会社 Installation method of solar cell module
JP4010666B2 (en) 1998-09-11 2007-11-21 三洋電機株式会社 Solar power plant
US6680569B2 (en) 1999-02-18 2004-01-20 Lumileds Lighting U.S. Llc Red-deficiency compensating phosphor light emitting device
US6504301B1 (en) 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
EP1104799A1 (en) 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
JP2001177153A (en) 1999-12-17 2001-06-29 Sharp Corp Light emitting device
US6777871B2 (en) 2000-03-31 2004-08-17 General Electric Company Organic electroluminescent devices with enhanced light extraction
US6653765B1 (en) 2000-04-17 2003-11-25 General Electric Company Uniform angular light distribution from LEDs
US6555958B1 (en) 2000-05-15 2003-04-29 General Electric Company Phosphor for down converting ultraviolet light of LEDs to blue-green light
GB0017659D0 (en) 2000-07-19 2000-09-06 Secr Defence Light emitting diode with lens
US6361186B1 (en) 2000-08-02 2002-03-26 Lektron Industrial Supply, Inc. Simulated neon light using led's
US6538375B1 (en) 2000-08-17 2003-03-25 General Electric Company Oled fiber light source
GB2366610A (en) 2000-09-06 2002-03-13 Mark Shaffer Electroluminscent lamp
US6583550B2 (en) 2000-10-24 2003-06-24 Toyoda Gosei Co., Ltd. Fluorescent tube with light emitting diodes
JP2002133910A (en) 2000-10-24 2002-05-10 Toyoda Gosei Co Ltd Phosphor illumination tube
JP2002221616A (en) 2000-11-21 2002-08-09 Seiko Epson Corp Method and device for manufacturing color filter, method and device for manufacturing liquid crystal device, method and device for manufacturing el device, device for controlling inkjet head, method and device for discharging material and electronic instrument
JP5110744B2 (en) 2000-12-21 2012-12-26 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Light emitting device and manufacturing method thereof
EP1344200A1 (en) 2000-12-22 2003-09-17 Osram Opto Semiconductors GmbH Led-signal device for traffic lights
US20020084745A1 (en) 2000-12-29 2002-07-04 Airma Optoelectronics Corporation Light emitting diode with light conversion by dielectric phosphor powder
US6686676B2 (en) 2001-04-30 2004-02-03 General Electric Company UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same
US6642652B2 (en) 2001-06-11 2003-11-04 Lumileds Lighting U.S., Llc Phosphor-converted light emitting device
US6576488B2 (en) 2001-06-11 2003-06-10 Lumileds Lighting U.S., Llc Using electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor
JP3669299B2 (en) 2001-07-12 2005-07-06 住友化学株式会社 Methyl methacrylate resin composition and molded article thereof
TW552726B (en) 2001-07-26 2003-09-11 Matsushita Electric Works Ltd Light emitting device in use of LED
JP4076329B2 (en) 2001-08-13 2008-04-16 エイテックス株式会社 LED bulb
TW511303B (en) 2001-08-21 2002-11-21 Wen-Jr He A light mixing layer and method
EP1367655A4 (en) 2001-09-03 2009-05-06 Panasonic Corp Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
DE10146719A1 (en) 2001-09-20 2003-04-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
JP2003101078A (en) 2001-09-25 2003-04-04 Toyoda Gosei Co Ltd Light-emitting device
JP3948650B2 (en) 2001-10-09 2007-07-25 アバゴ・テクノロジーズ・イーシービーユー・アイピー(シンガポール)プライベート・リミテッド Light emitting diode and manufacturing method thereof
US6834979B1 (en) 2001-10-18 2004-12-28 Ilight Technologies, Inc. Illumination device for simulating neon lighting with reflector
US6936968B2 (en) 2001-11-30 2005-08-30 Mule Lighting, Inc. Retrofit light emitting diode tube
US7497596B2 (en) 2001-12-29 2009-03-03 Mane Lou LED and LED lamp
US7153015B2 (en) 2001-12-31 2006-12-26 Innovations In Optics, Inc. Led white light optical system
AU2003229124B2 (en) 2002-06-04 2009-04-23 Lwp International Pty Ltd Phosphorescent light cover or coating
US6860628B2 (en) 2002-07-17 2005-03-01 Jonas J. Robertson LED replacement for fluorescent lighting
ES2335878T3 (en) 2002-08-30 2010-04-06 Lumination, Llc COVERED LED WITH IMPROVED EFFECTIVENESS.
US7800121B2 (en) 2002-08-30 2010-09-21 Lumination Llc Light emitting diode component
US7224000B2 (en) 2002-08-30 2007-05-29 Lumination, Llc Light emitting diode component
US6717353B1 (en) 2002-10-14 2004-04-06 Lumileds Lighting U.S., Llc Phosphor converted light emitting device
AU2003277627A1 (en) 2002-11-08 2004-06-07 Nichia Corporation Light emitting device, phosphor and method for preparing phosphor
JP3716252B2 (en) 2002-12-26 2005-11-16 ローム株式会社 Light emitting device and lighting device
JP2003234513A (en) 2003-02-04 2003-08-22 Nichia Chem Ind Ltd Resin for wavelength conversion light-emitting diode allowing fluorescent dye or fluorescent pigment to be added
CA2517009A1 (en) 2003-02-26 2004-09-10 Cree, Inc. White light source using emitting diode and phosphor and method of fabrication
US20040183081A1 (en) 2003-03-20 2004-09-23 Alexander Shishov Light emitting diode package with self dosing feature and methods of forming same
US6903380B2 (en) 2003-04-11 2005-06-07 Weldon Technologies, Inc. High power light emitting diode
CN101556985B (en) 2003-04-30 2017-06-09 克利公司 High powered light emitter encapsulation with compact optical element
CN1802533B (en) 2003-05-05 2010-11-24 吉尔科有限公司 LED-based light bulb
US6869812B1 (en) 2003-05-13 2005-03-22 Heng Liu High power AllnGaN based multi-chip light emitting diode
US6982045B2 (en) 2003-05-17 2006-01-03 Phosphortech Corporation Light emitting device having silicate fluorescent phosphor
JP4259198B2 (en) 2003-06-18 2009-04-30 豊田合成株式会社 Method for manufacturing wavelength conversion unit for light emitting device and method for manufacturing light emitting device
US7391153B2 (en) 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation
JP4366139B2 (en) 2003-07-31 2009-11-18 株式会社朝日ラバー Lighting system design system, design method, and program thereof
US20050052885A1 (en) 2003-09-04 2005-03-10 Amazing International Enterprise Limited Structure of LED decoration lighting set
US7029935B2 (en) 2003-09-09 2006-04-18 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
JP4140042B2 (en) 2003-09-17 2008-08-27 スタンレー電気株式会社 LED light source device using phosphor and vehicle headlamp using LED light source device
JP4691955B2 (en) 2003-10-28 2011-06-01 日亜化学工業株式会社 Fluorescent substance and light emitting device
US20050110387A1 (en) 2003-11-25 2005-05-26 Luna Technologies International, Inc. Photoluminescent sleeve for electric lamps for producing a non-electrical light emitting source
JP3724490B2 (en) 2004-01-19 2005-12-07 日亜化学工業株式会社 Light emitting diode
EP1711739A4 (en) 2004-01-28 2008-07-23 Tir Technology Lp Directly viewable luminaire
TWI250664B (en) 2004-01-30 2006-03-01 South Epitaxy Corp White light LED
US20050243550A1 (en) 2004-04-30 2005-11-03 Albert Stekelenburg LED bulb
US20050242711A1 (en) 2004-04-30 2005-11-03 Joseph Bloomfield Multi-color solid state light emitting device
US7315119B2 (en) 2004-05-07 2008-01-01 Avago Technologies Ip (Singapore) Pte Ltd Light-emitting device having a phosphor particle layer with specific thickness
CA2466979A1 (en) 2004-05-18 2005-11-18 Dimitar Prodanov Stereometric superluminescent light emitting diodes (sleds)
JP2005332951A (en) 2004-05-19 2005-12-02 Toyoda Gosei Co Ltd Light emitting device
US20060007690A1 (en) 2004-07-07 2006-01-12 Tsian-Lin Cheng LED lamp
US7674005B2 (en) 2004-07-29 2010-03-09 Focal Point, Llc Recessed sealed lighting fixture
US7601276B2 (en) 2004-08-04 2009-10-13 Intematix Corporation Two-phase silicate-based yellow phosphor
US7390437B2 (en) 2004-08-04 2008-06-24 Intematix Corporation Aluminate-based blue phosphors
US7575697B2 (en) 2004-08-04 2009-08-18 Intematix Corporation Silicate-based green phosphors
US7311858B2 (en) 2004-08-04 2007-12-25 Intematix Corporation Silicate-based yellow-green phosphors
US7273300B2 (en) 2004-08-06 2007-09-25 Lumination Llc Curvilinear LED light source
US7256057B2 (en) 2004-09-11 2007-08-14 3M Innovative Properties Company Methods for producing phosphor based light sources
JP3724498B2 (en) 2004-09-27 2005-12-07 日亜化学工業株式会社 Light emitting diode
KR100666265B1 (en) 2004-10-18 2007-01-09 엘지이노텍 주식회사 Phosphor and LED using the same
US20060092644A1 (en) 2004-10-28 2006-05-04 Mok Thye L Small package high efficiency illuminator design
US7858408B2 (en) 2004-11-15 2010-12-28 Koninklijke Philips Electronics N.V. LED with phosphor tile and overmolded phosphor in lens
US7671529B2 (en) 2004-12-10 2010-03-02 Philips Lumileds Lighting Company, Llc Phosphor converted light emitting device
US7541728B2 (en) 2005-01-14 2009-06-02 Intematix Corporation Display device with aluminate-based green phosphors
KR100682874B1 (en) 2005-05-02 2007-02-15 삼성전기주식회사 White light emitting device
KR20060132298A (en) 2005-06-17 2006-12-21 삼성전기주식회사 Light emitting device package
KR100927154B1 (en) 2005-08-03 2009-11-18 인터매틱스 코포레이션 Silicate-based orange phosphors
US7281819B2 (en) 2005-10-25 2007-10-16 Chip Hope Co., Ltd. LED traffic light structure
KR100771806B1 (en) 2005-12-20 2007-10-30 삼성전기주식회사 White light emitting device
US7859185B2 (en) 2006-01-24 2010-12-28 Koninklijke Philips Electronics N.V. Light-emitting device
US7937865B2 (en) 2006-03-08 2011-05-10 Intematix Corporation Light emitting sign and display surface therefor
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
US20090114939A1 (en) 2006-04-27 2009-05-07 Koninklijke Philips Electronics N.V. Illumination system comprising a radiation source and a luminescent material
CN101484964A (en) 2006-05-02 2009-07-15 舒伯布尔斯公司 Method of light dispersion and preferential scattering of certain wavelengths of light for light-emitting diodes and bulbs constructed therefrom
US7665865B1 (en) * 2006-08-01 2010-02-23 Ilight Technologies, Inc. Lighting system with color adjustment means
US20080029720A1 (en) 2006-08-03 2008-02-07 Intematix Corporation LED lighting arrangement including light emitting phosphor
WO2008043519A1 (en) 2006-10-10 2008-04-17 Lexedis Lighting Gmbh Phosphor-converted light emitting diode
US7648650B2 (en) 2006-11-10 2010-01-19 Intematix Corporation Aluminum-silicate based orange-red phosphors with mixed divalent and trivalent cations
US7686478B1 (en) 2007-01-12 2010-03-30 Ilight Technologies, Inc. Bulb for light-emitting diode with color-converting insert
US7972030B2 (en) 2007-03-05 2011-07-05 Intematix Corporation Light emitting diode (LED) based lighting systems
US20080246044A1 (en) 2007-04-09 2008-10-09 Siew It Pang LED device with combined Reflector and Spherical Lens
US7999283B2 (en) 2007-06-14 2011-08-16 Cree, Inc. Encapsulant with scatterer to tailor spatial emission pattern and color uniformity in light emitting diodes
US7942556B2 (en) 2007-06-18 2011-05-17 Xicato, Inc. Solid state illumination device
US7663315B1 (en) 2007-07-24 2010-02-16 Ilight Technologies, Inc. Spherical bulb for light-emitting diode with spherical inner cavity
KR101374897B1 (en) 2007-08-14 2014-03-17 서울반도체 주식회사 Led package with diffusion means
US11114594B2 (en) 2007-08-24 2021-09-07 Creeled, Inc. Light emitting device packages using light scattering particles of different size
US7588351B2 (en) 2007-09-27 2009-09-15 Osram Sylvania Inc. LED lamp with heat sink optic
EP2235428A2 (en) 2008-01-22 2010-10-06 Koninklijke Philips Electronics N.V. Illumination device with led and a transmissive support comprising a luminescent material
US7815338B2 (en) 2008-03-02 2010-10-19 Altair Engineering, Inc. LED lighting unit including elongated heat sink and elongated lens
JP5355030B2 (en) 2008-04-24 2013-11-27 シチズンホールディングス株式会社 LED light source and chromaticity adjustment method of LED light source
US9287469B2 (en) 2008-05-02 2016-03-15 Cree, Inc. Encapsulation for phosphor-converted white light emitting diode
US8274215B2 (en) 2008-12-15 2012-09-25 Intematix Corporation Nitride-based, red-emitting phosphors
US20090283721A1 (en) 2008-05-19 2009-11-19 Intematix Corporation Nitride-based red phosphors
US7618157B1 (en) 2008-06-25 2009-11-17 Osram Sylvania Inc. Tubular blue LED lamp with remote phosphor
US8143769B2 (en) 2008-09-08 2012-03-27 Intematix Corporation Light emitting diode (LED) lighting device
EP2331869B1 (en) 2008-09-23 2015-04-22 Koninklijke Philips N.V. Illumination device with electrical variable scattering element
JP2012504860A (en) 2008-10-01 2012-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED with particles in encapsulant for increased light extraction and non-yellow off-state color
US7936802B2 (en) 2008-10-21 2011-05-03 Case Western Reserve University Co-extruded multilayer polymers films for all-polymer lasers
DE102008054029A1 (en) 2008-10-30 2010-05-06 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device
US8591057B2 (en) 2008-11-19 2013-11-26 Rohm Co., Ltd. LED lamp
JP2010129300A (en) * 2008-11-26 2010-06-10 Keiji Iimura Semiconductor light-emitting lamp and electric-bulb-shaped semiconductor light-emitting lamp
JP2010171342A (en) 2009-01-26 2010-08-05 Sony Corp Color conversion member, method of manufacturing the same, light-emitting device, and display
JP2010199145A (en) * 2009-02-23 2010-09-09 Ushio Inc Light source equipment
TWM367290U (en) 2009-02-27 2009-10-21 Energyled Corp Structure of LED lamp tube
US8597963B2 (en) 2009-05-19 2013-12-03 Intematix Corporation Manufacture of light emitting devices with phosphor wavelength conversion
EP2446190A4 (en) 2009-06-23 2013-02-20 Ilumisys Inc Led lamp with a wavelength converting layer
US8110839B2 (en) 2009-07-13 2012-02-07 Luxingtek, Ltd. Lighting device, display, and method for manufacturing the same
US8061867B2 (en) 2009-08-19 2011-11-22 Lg Innotek Co., Ltd. Lighting device
TW201107673A (en) 2009-08-28 2011-03-01 Foxconn Tech Co Ltd LED lamp
TW201116775A (en) 2009-11-02 2011-05-16 Ledtech Electronics Corp LDE lighting device
JP5707697B2 (en) 2009-12-17 2015-04-30 日亜化学工業株式会社 Light emitting device
US20110149548A1 (en) 2009-12-22 2011-06-23 Intematix Corporation Light emitting diode based linear lamps
CN102142510B (en) 2010-02-01 2013-02-27 深圳市光峰光电技术有限公司 Solid light source based on optical wavelength conversion and application of solid light source
CN201621505U (en) 2010-02-04 2010-11-03 东莞市坤广光电有限公司 LED lamp tube with function of dissipating heat
US8771577B2 (en) 2010-02-16 2014-07-08 Koninklijke Philips N.V. Light emitting device with molded wavelength converting layer
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US20110227102A1 (en) * 2010-03-03 2011-09-22 Cree, Inc. High efficacy led lamp with remote phosphor and diffuser configuration
JP4792531B2 (en) 2010-03-15 2011-10-12 兵治 新山 Light emitting device
CN201628127U (en) 2010-04-15 2010-11-10 台州立发电子有限公司 LED fluorescent lamp
US20110280036A1 (en) 2010-05-12 2011-11-17 Aqua-Tech Optical Corporation Light guide module and manufacturing method thereof
CN102261577B (en) 2010-05-31 2014-05-07 光宝电子(广州)有限公司 Light emitting diode lamp tube
TWM392320U (en) 2010-06-09 2010-11-11 Wang Xiang Yun Lighting structure
CN101881387A (en) 2010-06-10 2010-11-10 鸿富锦精密工业(深圳)有限公司 LED fluorescent lamp
US20110303940A1 (en) 2010-06-14 2011-12-15 Hyo Jin Lee Light emitting device package using quantum dot, illumination apparatus and display apparatus
US8506105B2 (en) 2010-08-25 2013-08-13 Generla Electric Company Thermal management systems for solid state lighting and other electronic systems
US20130271971A1 (en) 2010-09-27 2013-10-17 Toshiba Lighting & Technology Corporation Light-emitting circuit and luminaire
US8610340B2 (en) * 2010-10-05 2013-12-17 Intematix Corporation Solid-state light emitting devices and signage with photoluminescence wavelength conversion
CN101975345B (en) 2010-10-28 2013-05-08 鸿富锦精密工业(深圳)有限公司 LED (Light Emitting Diode) fluorescent lamp
KR20120137719A (en) * 2011-06-13 2012-12-24 주식회사 포스코엘이디 Omnidirectional lamp
JP6159322B2 (en) 2011-07-15 2017-07-05 エルジー イノテック カンパニー リミテッド Lighting device
US10823347B2 (en) 2011-07-24 2020-11-03 Ideal Industries Lighting Llc Modular indirect suspended/ceiling mount fixture
TWI488824B (en) 2011-12-05 2015-06-21 Mitsuboshi Diamond Ind Co Ltd The method and scribing device of glass substrate
US8905575B2 (en) 2012-02-09 2014-12-09 Cree, Inc. Troffer-style lighting fixture with specular reflector
US9476143B2 (en) 2012-02-15 2016-10-25 Imec Methods using mask structures for substantially defect-free epitaxial growth
TWM438583U (en) * 2012-05-18 2012-10-01 Evergreen Optronics Inc Light emitting diode lamp
EP2856005B1 (en) 2012-06-05 2015-11-18 Koninklijke Philips N.V. Lighting device having a remote wave length converting layer
TWM442584U (en) * 2012-07-03 2012-12-01 Alpha Plus Epi Inc Light emitting device
JP5418646B2 (en) * 2012-08-28 2014-02-19 三菱電機株式会社 Image reading line light source and light guide unit
TWI627371B (en) 2013-03-15 2018-06-21 英特曼帝克司公司 Photoluminescence wavelength conversion components
EP3008377B1 (en) 2013-06-03 2017-11-01 Philips Lighting Holding B.V. Tubular lighting device
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
JP6267301B2 (en) 2016-09-14 2018-01-24 株式会社デサント Upper garment
JP6283755B1 (en) 2017-01-11 2018-02-21 微創機械企業有限公司 Differential sealing mechanism of box making machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100195861A1 (en) * 2007-05-18 2010-08-05 King Kristopher C Audio Speaker Illumination System
US20090103293A1 (en) * 2007-10-17 2009-04-23 Xicato, Inc. Illumination Device with Light Emitting Diodes and Moveable Light Adjustment Member
US20110310587A1 (en) * 2008-11-18 2011-12-22 John Adam Edmond Ultra-high efficacy semiconductor light emitting devices

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130170178A1 (en) * 2012-01-02 2013-07-04 Samsung Electronics Co., Ltd. Light source module and illumination apparatus having the same
US9028082B2 (en) * 2012-01-02 2015-05-12 Samsung Electronics Co., Ltd. Light source module and illumination apparatus having the same
US20150354757A1 (en) * 2013-01-22 2015-12-10 Seoul Semiconductor Co., Ltd. Led lamp
US20140355238A1 (en) * 2013-05-29 2014-12-04 Genesis Photonics Inc. Light-emitting device
US9175819B2 (en) * 2013-05-29 2015-11-03 Genesis Photonics Inc. Light-emitting device with graphene enhanced thermal properties and secondary wavelength converting light shade
US20150252986A1 (en) * 2014-03-10 2015-09-10 Chih-Ming Yu Lamp structure
US10989365B2 (en) 2014-09-28 2021-04-27 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp for operating in different modes
US10845008B2 (en) * 2014-09-28 2020-11-24 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED filament and LED light bulb
US11168843B2 (en) 2014-09-28 2021-11-09 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED bulb lamp
US11892127B2 (en) 2014-09-28 2024-02-06 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED bulb lamp
US11131431B2 (en) 2014-09-28 2021-09-28 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11187384B2 (en) 2014-09-28 2021-11-30 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED bulb lamp
US11543083B2 (en) 2014-09-28 2023-01-03 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED light bulb
US11519567B2 (en) 2014-09-28 2022-12-06 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11525547B2 (en) 2014-09-28 2022-12-13 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
US11085591B2 (en) 2014-09-28 2021-08-10 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
US11690148B2 (en) 2014-09-28 2023-06-27 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED filament and LED light bulb
US11112068B2 (en) 2014-09-28 2021-09-07 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11686436B2 (en) 2014-09-28 2023-06-27 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and light bulb using LED filament
US11686457B2 (en) 2014-09-28 2023-06-27 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US20190128482A1 (en) * 2014-09-28 2019-05-02 Zhejiang Super Lighting Electric Appliance Co., Ltd. Led filament and led light bulb
US10823343B2 (en) 2014-09-28 2020-11-03 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp fit for being supplied by a ballast according to the voltage level of an external driving signal
US10711951B1 (en) 2014-09-28 2020-07-14 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
US11649934B2 (en) 2014-09-28 2023-05-16 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US10784428B2 (en) 2014-09-28 2020-09-22 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED filament and LED light bulb
US11629825B2 (en) 2014-09-28 2023-04-18 Zhejiang Super Lighting Electric Appliance Co., Lt LED light bulb with curved filament
CN107250662A (en) * 2015-02-12 2017-10-13 飞利浦照明控股有限公司 Lighting apparatus with heat-conducting fluid
WO2016128460A1 (en) * 2015-02-12 2016-08-18 Philips Lighting Holding B.V. Lighting device with a thermally conductive fluid
US9964296B2 (en) * 2015-02-12 2018-05-08 Philips Lighting Holding B.V. Lighting device with a thermally conductive fluid
EP3056796A1 (en) * 2015-02-12 2016-08-17 Philips Lighting Holding B.V. Lighting device with a thermally conductive fluid
JP2018508940A (en) * 2015-02-12 2018-03-29 フィリップス ライティング ホールディング ビー ヴィ Lighting device comprising a heat transfer fluid
US20160238228A1 (en) * 2015-02-12 2016-08-18 Koninklijke Philips N.V. Lighting device with a thermally conductive fluid
US10663116B2 (en) * 2015-02-26 2020-05-26 Signify Holding B.V. Lighting device with dispenser for a reactive substance
JP2018507529A (en) * 2015-03-02 2018-03-15 バスター・アンド・パンチ・リミテッド light bulb
US10890300B2 (en) 2015-03-10 2021-01-12 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US11028973B2 (en) 2015-03-10 2021-06-08 Jiaxing Super Lighting Electric Appliance Co., Ltd. Led tube lamp
US11226073B2 (en) 2015-03-10 2022-01-18 Jiaxing Super Lighting Electric Appliance Co., Ltd. Led tube lamp
US11841113B2 (en) 2015-03-10 2023-12-12 Jiaxing Super Lighting Electric Appliance Co., Ltd LED lamp and its power source module
US11698170B2 (en) 2015-03-10 2023-07-11 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US11519565B2 (en) 2015-03-10 2022-12-06 Jiaxing Super Lighting Electric Appliance Co., Ltd LED lamp and its power source module
US11543086B2 (en) 2015-03-10 2023-01-03 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US11073250B2 (en) 2015-04-29 2021-07-27 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp comprising a thyristor device and a noise suppressing circuit
US10066160B2 (en) 2015-05-01 2018-09-04 Intematix Corporation Solid-state white light generating lighting arrangements including photoluminescence wavelength conversion components
US11421827B2 (en) 2015-06-19 2022-08-23 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED light bulb
US10976010B2 (en) 2015-08-17 2021-04-13 Zhejiang Super Lighting Electric Appliance Co., Lt LED filament and led light bulb
US11035525B2 (en) 2015-08-17 2021-06-15 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb
US10767817B2 (en) 2015-08-17 2020-09-08 Jiaxing Super Lighting Electric Appliance Co., Ltd LED light bulb and LED filament thereof
US11035526B2 (en) 2015-12-09 2021-06-15 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US11441742B2 (en) 2015-12-09 2022-09-13 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US20170168227A1 (en) * 2015-12-11 2017-06-15 Dynascan Technology Corp. Led light guide lamp
EP3279556A1 (en) 2016-08-06 2018-02-07 biolitec Unternehmensbeteiligungs II AG Fiber optic light source
USD804062S1 (en) 2016-08-16 2017-11-28 Linaya Hahn Portion of a LED light bulb
WO2018095654A1 (en) * 2016-11-24 2018-05-31 Osram Gmbh Producing a lighting device
US10920939B2 (en) 2017-07-07 2021-02-16 Signify Holding B.V. Light concentrator module
WO2019008017A1 (en) 2017-07-07 2019-01-10 Philips Lighting Holding B.V. Light concentrator module
WO2019008092A1 (en) * 2017-07-07 2019-01-10 Philips Lighting Holding B.V. Light concentrator module
US10804446B2 (en) 2017-12-26 2020-10-13 Jiaxing Super Lighting Electric Appliance Co., Ltd LED light bulb with spectral distribution of natural light
US10790420B2 (en) 2017-12-26 2020-09-29 Jiaxing Super Lighting Electric Appliance Co., Ltd Light bulb with a symmetrical LED filament
US10797208B2 (en) 2017-12-26 2020-10-06 Jiaxing Super Lighting Electric Appliance Co., Ltd LED light bulb with conductive sections and exposed wires
US10982048B2 (en) 2018-04-17 2021-04-20 Jiaxing Super Lighting Electric Appliance Co., Ltd Organosilicon-modified polyimide resin composition and use thereof
US11041614B2 (en) * 2019-11-07 2021-06-22 Delta Electronics, Inc. Wavelength conversion unit and lighting device
USD981631S1 (en) 2020-01-30 2023-03-21 Buster And Punch Limited Light fixture
USD979104S1 (en) 2020-02-28 2023-02-21 Buster And Punch Limited Light fitting
USD987860S1 (en) 2021-02-25 2023-05-30 Buster And Punch Limited Light bulb
USD987859S1 (en) 2021-02-25 2023-05-30 Buster And Punch Limited Light bulb

Also Published As

Publication number Publication date
TWI679375B (en) 2019-12-11
EP2938921B1 (en) 2019-04-10
EP2938921A4 (en) 2016-10-19
US20180328548A1 (en) 2018-11-15
CN105008795B (en) 2019-07-26
EP2938921A1 (en) 2015-11-04
WO2014105812A1 (en) 2014-07-03
US10557594B2 (en) 2020-02-11
CN105008795A (en) 2015-10-28
TW201428215A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
US10557594B2 (en) Solid-state lamps utilizing photoluminescence wavelength conversion components
US8807799B2 (en) LED-based lamps
US20140218892A1 (en) Wide emission angle led package with remote phosphor component
TWI627371B (en) Photoluminescence wavelength conversion components
US8616714B2 (en) Solid-state lamps with improved radial emission and thermal performance
US8957585B2 (en) Solid-state light emitting devices with photoluminescence wavelength conversion
US8803412B2 (en) Semiconductor lamp
US9316361B2 (en) LED lamp with remote phosphor and diffuser configuration
US9546765B2 (en) Diffuser component having scattering particles
US8992051B2 (en) Solid-state lamps with improved radial emission and thermal performance
US20130214676A1 (en) Solid-state lamps with improved emission efficiency and photoluminescence wavelength conversion components therefor
US20110267801A1 (en) Led lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
CN103003624A (en) LED spotlight
US9217543B2 (en) Solid-state lamps with omnidirectional emission patterns
US20130094177A1 (en) Wavelength conversion component with improved thermal conductive characteristics for remote wavelength conversion
US20130176723A1 (en) Solid-state lamps with improved radial emission and thermal performance
US20170082248A1 (en) Led-based linear lamps and lighting arrangements

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEMATIX CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, YI-QUN;REEL/FRAME:036845/0894

Effective date: 20150723

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION