US20140176822A1 - Touch panel and touch display device - Google Patents

Touch panel and touch display device Download PDF

Info

Publication number
US20140176822A1
US20140176822A1 US13/854,157 US201313854157A US2014176822A1 US 20140176822 A1 US20140176822 A1 US 20140176822A1 US 201313854157 A US201313854157 A US 201313854157A US 2014176822 A1 US2014176822 A1 US 2014176822A1
Authority
US
United States
Prior art keywords
sensing
sensing unit
bars
touch
signal terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/854,157
Other languages
English (en)
Inventor
Hui-Shu Li
Shi-Hao Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hannstouch Solution Inc
Original Assignee
Hannstouch Solution Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hannstouch Solution Inc filed Critical Hannstouch Solution Inc
Assigned to HANNSTOUCH SOLUTION INCORPORATED reassignment HANNSTOUCH SOLUTION INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, HUI-SHU, LI, SHI-HAO
Publication of US20140176822A1 publication Critical patent/US20140176822A1/en
Priority to US14/918,597 priority Critical patent/US9471191B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the present invention relates to a touch panel and a touch display device.
  • the touch-sensing panel has been widely used in the input interfaces of the instruments for its properties such as the great interaction between machines and humans.
  • more consumer electronics such as mobile phones, GPS navigator systems, tablet computers, personal digital assistances (PDA), and laptop computers are employed with touch display panels.
  • PDA personal digital assistances
  • two patterned conductive layer are disposed on a transparent substrate, and the patterned conductive layers form a plurality of horizontal sensing stripes and a plurality of vertical sensing stripes.
  • the horizontal sensing stripes are sequentially arranged along a vertical direction
  • the vertical sensing stripes are sequentially arranged along a vertical direction, so that the horizontal sensing stripes and the vertical sensing stripes preferably cross each other.
  • each horizontal sensing stripe and each vertical sensing stripe are electrically connected to a signal end of a control device respectively. Accordingly, the horizontal sensing stripes and the vertical sensing stripes can be used to sense a vertical position and a horizontal position of an object touching the touch panel, and the position of the object can be obtained.
  • the conventional touch panel requires two dimensional sensing stripes, so that the two conductive layers are required to form the horizontal sensing stripes and the vertical sensing stripes crossing each other. Additionally, each sensing stripe requires one signal end to control, and thus, the control device should have enough operating ability to perform touch sensing. Therefore, how to simply the touch panel to reduce the cost of the touch panel has become an important task in the field.
  • a touch panel includes a substrate and a plurality of sensing units.
  • the substrate has a touch region and a peripheral region.
  • the sensing units are disposed on the substrate.
  • Each sensing unit includes two sensing bars adjacent to each other respectively, and each sensing bar has a first end and a second end respectively.
  • Each first end and each second end are disposed adjacent to two opposite sides of the substrate respectively, and the sensing bars of the sensing units are parallel to each other and extending along a direction to cross the touch region.
  • the second end of one of the sensing bars of each sensing unit is configured for receiving a first signal respectively.
  • the first ends of the sensing bars of each sensing unit are electrically connected to each other and configured for receiving a second signal respectively.
  • the second end of the other one of the sensing bars of each sensing unit is configured for receiving a third sensing signal respectively.
  • a touch display device includes a display device and a touch panel.
  • the display device has a displaying surface, and the display device includes a plurality of pixels arranged in an array.
  • the touch panel is disposed on the displaying surface, and the touch panel includes a substrate and a plurality of sensing units.
  • the substrate has a touch region and a peripheral region.
  • the sensing units are disposed on the substrate.
  • Each sensing unit includes two sensing bars adjacent to each other respectively, and each sensing bar having a first end and a second end respectively. Each first end and each second end are disposed adjacent to two opposite sides of the substrate respectively, and the sensing bars of the sensing units are parallel to each other and extend along a direction to cross the touch region.
  • the second end of one of the sensing bars of each sensing unit is configured for receiving a first signal respectively.
  • the first ends of the sensing bars of each sensing unit are electrically connected to each other and configured for receiving a second signal respectively.
  • the second end of the other one of the sensing bars of each sensing unit is configured for receiving a third sensing signal respectively.
  • the sensing units, the first conductive lines, the second conductive lines and the third conductive lines are formed with the same one patterned conductive layer in the present invention, and the single patterned conductive layer can perform a multi-touch function.
  • the touch panel of the present invention not only can reduce material costs through decreasing one conductive material layer in the manufacturing process, but also reduce the steps of the manufacturing process and the number of masks for forming the patterned conductive material layers to decrease manufacturing cost of the touch panel as compared with the two patterned conductive layers for performing the multi-touch function in the prior art.
  • FIG. 1 is a schematic diagram illustrating a top view of a touch panel according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a cross-sectional view of FIG. 1 taken along a cross-sectional line A-A′.
  • FIG. 3 illustrates a touch panel according to a variant of the first embodiment of the present invention.
  • FIG. 4 illustrates a touch panel according to another variant of the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating the touch panel without being touched in the present invention.
  • FIG. 6 is a schematic diagram illustrating each sensing unit sensing a single touch object in the present invention.
  • FIG. 7 is a schematic diagram illustrating each sensing unit sensing two touch objects in the present invention.
  • FIG. 8 is a schematic diagram illustrating a touch panel according to a second embodiment of the present invention.
  • FIG. 9 is a schematic diagram illustrating a cross-sectional view of a touch display device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram illustrating a top view of the touch display device according to the embodiment of the present invention.
  • FIG. 11 is a schematic diagram illustrating a top view of a touch display device according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram illustrating a top view of a touch panel according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a cross-sectional view of FIG. 1 taken along a cross-sectional line A-A′.
  • the touch panel 100 includes a substrate 102 , and a patterned conductive layer 103 .
  • the patterned conductive layer 103 includes a plurality of sensing units 104 .
  • the substrate 102 has a touch region 102 a and a peripheral region 102 b surrounding the touch region 102 a, and the substrate 102 can include a transparent substrate, a color filter substrate, an array substrate or a polarizer, but the present invention is not limited thereto.
  • the transparent substrate can be made of a transparent material, such as glass, quartz or plastic.
  • the sensing units 104 are disposed on the substrate 102 and sequentially arranged along a first direction 106 .
  • each sensing unit 104 includes two sensing bars 108 and a connecting part 110 .
  • the sensing bars 108 of each sensing unit 104 are disposed adjacent to each other and disposed on the substrate 102 in the touch region 102 a.
  • the sensing bars 108 are disposed parallel to each other and arranged sequentially along the first direction 106 .
  • Each sensing bar 108 extends along a second direction 112 different from the first direction 106 , and each sensing bar 108 extends from the substrate in the peripheral region 102 b at a side of the touch region 102 a to the substrate in the peripheral region 102 b at another side of the touch region 102 a and crosses the whole touch region 102 a.
  • each sensing bar 108 has a first end 108 a and a second end 108 b, and the first end 108 a and the second end 108 b are disposed adjacent to two opposite sides of the substrate 102 respectively.
  • the second end 108 b of one of the sensing bars 108 of each sensing unit 104 is configured for receiving a first signal.
  • the first ends 108 a of the sensing bars 108 of each sensing unit 104 are electrically connected to each other and configured for receiving a second signal.
  • the second end 108 b of the other one of the sensing bars 108 of each sensing unit 104 is configured for receiving a third signal.
  • each sensing bar 108 crosses the touch region 102 a, each sensing bar 108 should be transparent, and each sensing bar 108 includes a transparent conductive material, such as indium tin oxide or indium zinc oxide, but the present invention is not limited herein.
  • each connecting part 110 is disposed on the substrate 102 in the peripheral region 102 b, and each connecting part 110 connects the first ends 108 a of the sensing bars of each sensing unit 104 to each other, so that the sensing bars 108 of each sensing unit 104 can be electrically connected to each other through each connecting part 110 of each sensing unit 104 , in which the sensing bars 108 and the connecting part 110 of each sensing unit 104 constitute a U-shaped structure, but the present invention is not limited thereto.
  • Each connecting part 110 in this embodiment also can include a transparent conductive material, such as indium tin oxide or indium zinc oxide, but the present invention is not limited herein.
  • the connecting parts 110 and the sensing bars 108 also can be formed with a same transparent conductive material layer 124 , but the present invention is not limited herein.
  • the connecting part may be disposed on the substrate in the peripheral region, and the connecting part can include opaque conductive material, such as metal, or other conductive material, such as carbon nanotube.
  • the sensing bars may not cross the whole touch region, and the sensing bars may extend from the substrate in the touch region adjacent to a side of the peripheral region to the substrate in the touch region adjacent to another side of the peripheral region.
  • the connecting parts may be formed with the transparent conductive material, and the connecting parts are disposed on the substrate in the touch region and disposed adjacent to a border between the touch region and the peripheral region.
  • the touch panel 104 further can include a control unit 114 .
  • a sensing chip can be disposed on the flexible circuit board and electrically connected to the sensing units 104 through the flexible circuit board.
  • the control unit 114 includes a plurality of signal terminal sets 116 .
  • Each signal terminal set 116 is configured for transmitting a signal to each sensing unit 104 and recording a charging time and a discharging time of the signal transmitting to each sensing unit 104 .
  • Each signal terminal set 116 includes a first signal terminal 116 a, a second signal terminal 116 b and a third signal terminal 116 c.
  • the first signal terminal 116 a is configured for transmitting the first signal.
  • the second signal terminal is configured for transmitting the second signal.
  • the third signal terminal is configured for transmitting the third signal.
  • the second end 108 b of one of the sensing bars of each sensing unit 104 is electrically connected to each first signal terminal 116 a so as to receive the first signal.
  • Each connecting part 110 is electrically connected to each second signal terminal 116 b of the control unit 114 so as to receive the second signal.
  • the second end 108 b of the other one of the sensing bars 108 of each sensing unit 104 is electrically connected each third signal terminal 116 c of the control unit 114 so as to receive the third signal.
  • the control unit may be directly disposed on the substrate in the peripheral region.
  • the patterned conductive layer 103 further includes a plurality of first conductive lines 118 , a plurality of second conductive lines 120 , and a plurality of third conductive lines 122 , and the first conductive lines 118 , the second conductive lines 120 and the third conductive lines 122 are disposed on the substrate 102 in the peripheral region 102 b.
  • the first conductive lines 118 , the second conductive lines 120 and the third conductive lines 122 are formed with a conductive material layer 126 and disposed on the transparent conductive material layer 124 .
  • the conductive material layer 126 may include metal material or transparent conductive material, such as indium tin oxide or indium zinc oxide, but the present invention is not limited herein.
  • Each first conductive line 118 is connected to one of the sensing bars 108 of each sensing unit 104 , and each first conductive line 118 is electrically connected to each first signal terminal 116 a.
  • each conductive line 118 can electrically connect each first signal terminal 116 a to the second end 108 b of one of the sensing bars 108 of each sensing unit 104 , and each first signal can be transmitted to the second end 108 b of one of the sensing bars 108 of each sensing unit 104 .
  • Each second conductive line 120 is connected to the connecting part 110 of each sensing unit 104 , and each second conductive line 120 is electrically connected to each second signal terminal 116 b. Thus, each second signal can be transmitted to each connecting part 110 .
  • Each third conductive line 122 is connected to the other one of the sensing bars 108 of each sensing unit 104 , and each third conductive line 122 is electrically connected to each third signal terminal 116 c.
  • each third conductive line 122 electrically connects each third signal terminal 116 c to the second end 108 b of the other one of the sensing bars 108 of each sensing unit 104 , and the third signal can be transmitted to the second end 108 b of the other one of the sensing bars 108 of each sensing unit 104 .
  • the control unit 114 can accurately calculate a resistance between each sensing unit 104 and the control unit 144 so as to obtain differences between the charging times of the first signal, the second signal and the third signal before a touch object, such finger or touch pen, touching the touch panel 104 and the charging times of the first signal, the second signal and the third signal after the touch object touching the touch panel 104 and obtain differences between the discharging times of the first signal, the second signal and the third signal before the touch object touching the touch panel 104 and the discharging times of the first signal, the second signal and the third signal after the touch object touching the touch panel 104 also can be accurately calculated by the control unit 114 .
  • the conductive material layer is not limited to be disposed on the transparent conductive material layer, and the conductive material layer is not limited to be formed with the conductive material layer different from the transparent conductive material layer.
  • FIG. 3 illustrates a touch panel according to a variant of the first embodiment of the present invention.
  • FIG. 4 illustrates a touch panel according to another variant of the first embodiment of the present invention.
  • the transparent conductive material layer 110 of this variant can be disposed on the conductive material layer 126 .
  • the conductive material layer 126 used for forming the first conductive lines 118 , the second conductive lines 120 and the third conductive lines 122 is first formed on the substrate 102 , and then, the transparent conductive material layer 110 used for forming the sensing units 104 is formed on the substrate 102 and the conductive material layer 126 .
  • the conductive material layer used for forming the first conductive lines 118 , the second conductive lines 120 and the third conductive lines 122 and the transparent conductive material layer 124 used for forming the sensing units 104 are the same layer.
  • the first conductive lines 118 , the second conductive lines 120 and the third conductive lines 122 are formed with the transparent conductive material layer 124 used for forming the sensing units 104 , which means the first conductive lines 118 , the second conductive lines 120 , the third conductive lines 122 and the sensing units 104 are integrally formed at the same time.
  • the sensing bars 108 of the sensing units 104 is a rectangular stripe-shaped structure, but the present invention is not limited to thereto. In other modified embodiments of the present invention, the sensing bars may be wave-shaped, ragged or irregular striped structure (not shown in figures).
  • FIG. 5 is a schematic diagram illustrating the touch panel when no touch object touches the touch panel according to the present invention.
  • FIG. 6 is a schematic diagram illustrating each sensing unit sensing a single touch object according the present invention.
  • FIG. 7 is a schematic diagram illustrating each sensing unit sensing two touch objects according the present invention.
  • the control unit 114 transmits the first signals 128 , the second signals 130 and the third signals 132 sequentially.
  • Each first signal 128 is transmitted to one of the sensing bars 108 of each sensing unit 104 so as to charge and discharge each sensing unit 104 and record a charging time and a discharging time of each first signal 128 when there is no touch object touching on the touch panel 100 .
  • each second signal 130 is transmitted to the connecting part 110 of each sensing unit 104 so as to charge and discharge each sensing unit 104 and record a charging time and a discharging time of each second signal 130 .
  • each third signal 132 is transmitted to the other one of the sensing bars 108 of each sensing unit 104 so as to charge and discharge each sensing unit 104 and record a charging time and a discharging time of each third signal 130 . As shown in FIG.
  • the control unit 114 further transmits each first signal 128 , each second signal 130 and each third signal 132 to one of the sensing bars 108 of each sensing unit 104 , the connecting part 110 of each sensing unit 104 and the other one of the sensing bars of each sensing unit 104 respectively, when the touch panel 100 is touched by a plurality of touch objects 134 , such as fingers, and each touch object 134 corresponds to each sensing unit 104 .
  • each sensing unit 104 is charged and discharged by the control unit 114 , and the charging times and the discharging times of the first signal 128 , the second signal 130 and the third signal 132 can be recorded by the control unit 114 .
  • the control unit 114 can distinguish and calculate the position of the touch object 134 in the first direction 106 .
  • the control unit 114 further compares the charging times and the discharging times of the first signal 128 when the touch object 134 touches the touch panel 100 to the charging times and the discharging times of the first signal 128 when no touch object 134 touches the touch panel 100 , and then, the control unit 114 calculates the touch position of the touch object 134 in the second direction 112 according the lengths of the sensing bars 108 .
  • the control unit may compare the differences between the charging times and the discharging times of the second signal or third signal when the touch object touches the touch panel and when no touch object touches the touch panel to calculate the positions of the touch object in the first direction and the second direction.
  • the control unit 114 when a first touch object 134 a and a second touch object 134 b touch the touch panel 100 at the same time, and the first touch object 134 a and the second touch object 134 b corresponds to the same one sensing unit 104 , the control unit 114 also sequentially transmits each first signal 128 , each second signal 130 and each third signal 132 to one of sensing bars of each sensing unit 104 , the connecting part 110 of each sensing unit 104 and the other one of the sensing bars of each sensing unit 104 respectively so as to charge and discharge each sensing unit 104 and record the charging times and the discharging times of the first signal 128 , the second signal 130 and the third signal 132 .
  • the control unit 114 When the control unit 114 transmits the first signal 128 , the first signal 128 will encounter the first touch object 134 a adjacent to the second end 108 b of one of the sensing bars 108 first. Thus, the control unit 114 can calculate the position of the first touch object 134 a in the first direction 106 through the changes of the charging times and the discharging times of the first signal 128 generated by the first touch object 134 a. When the control unit 114 transmits the second signal 130 , the second signal 130 will encounter the second touch object 134 b adjacent to the first ends 108 b of the sensing bars 108 .
  • the control unit 114 can calculate the position of the second touch object 134 a in the second direction 112 through the changes of the charging times and the discharging times of the second signal 130 generated by the second touch object 134 b. Moreover, through the changes of the charging times and the discharging times of the third signal 132 , the control unit 114 can verify whether a misjudgment is generated. In another modified embodiment of the present invention, a sequence of the first signal, the second signal and the third signal may be changed; that is, the control unit may sequentially transmit the second signal, the first signal and the third signal, but the present invention is not limited herein.
  • the sensing unit 104 , the first conductive lines 118 , the second conductive lines 120 and the third conductive lines 122 are formed with the same one patterned conductive layer 103 in this embodiment, and the single patterned conductive layer 103 can perform a multi-touch function.
  • the touch panel 100 not only can reduce material costs through decreasing one conductive material layer in the manufacturing process, but also reduce the steps of the manufacturing process and the number of masks for forming the patterned conductive material layers to decrease manufacturing cost of the touch panel as compared with the two patterned conductive layers for performing the multi-touch function in the prior art.
  • the touch panel 100 does not require two-dimensional sensing stripes, and the touch panel 100 can sense the position of the touch object 134 with the sensing units 104 arranged along the one-dimensional first direction 106 in this embodiment, so that the number of the signal terminals that the sensing units 104 require only is three times the number of the sensing units 104 .
  • the number of the signal terminals of the touch panel 100 further can be effectively reduced, and the cost of the touch panel 100 can be decreased in this embodiment.
  • the touch panel of the present invention is not limited to the above-mentioned embodiment.
  • the following description continues to detail the other embodiments or modifications, and in order to simplify and show the differences between the other embodiments or modifications and the above-mentioned embodiment, the same numerals denote the same components in the following description, and the same parts are not detailed redundantly.
  • FIG. 8 is a schematic diagram illustrating a touch panel according to a second embodiment of the present invention.
  • the control unit 114 of the touch panel 200 in this embodiment is disposed on the substrate 102 in the peripheral region 102 b, and each sensing unit 104 does not include the connecting part.
  • the first end 108 a of each sensing bar 108 of each sensing unit 104 is directly connected to each second conductive line 120 , so that the first end 108 a of each sensing bar 108 of each sensing unit 104 can be electrically connected to each second signal terminal 116 b of the control unit 114 .
  • the present invention further provides a touch display device.
  • the touch panel in the following description takes the touch panel in the above-mentioned first embodiment as an example, and the present invention is not limited thereto.
  • the touch panel in the following description may be the touch panel of other embodiments. Please refer to FIG. 9 and FIG. 10 together with FIG. 1 .
  • FIG. 9 is a schematic diagram illustrating a cross-sectional view of a touch display device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram illustrating a top view of the touch display device according to the embodiment of the present invention. As shown in FIG. 1 , FIG. 9 and FIG.
  • the touch display device 300 includes a display device 302 and a touch panel 100 .
  • the display device 302 has a display surface 302 a, and the display device 302 includes a plurality of pixels 304 arranged in an array.
  • the display device may be for example a liquid crystal display device, an organic light-emitting diode display device or a plasma display device, but the present invention is not limited thereto.
  • the first direction 106 is the row direction
  • the second direction 112 is the column direction in this embodiment.
  • Each sensing unit 104 of the touch panel 304 overlaps at least one column of the pixels 30 , so that the sensing unit 104 corresponding to the column of the pixels 304 can sense the touch object touching the region corresponding to at least one pixel 304 in the column of pixels 304 .
  • the sensing bars 108 of each sensing unit 104 corresponding to each column of the pixels 304 overlap the column of the pixels 304 or are disposed at two sides of the column of the pixels 304 respectively. Accordingly, when the touch object touches the region corresponding to at least one pixel 304 in the column of the pixels 304 , the sensing unit 104 corresponding to the column of the pixels 304 can sense the touch object and calculate the position of the touch object through the control unit 114 .
  • each sensing unit of the touch panel can overlap a plurality of columns of the pixels, and the number of the columns of the pixels overlapping each sensing unit is determined according to the size of the touch object.
  • FIG. 11 is a schematic diagram illustrating a top view of a touch display device according to another embodiment of the present invention.
  • the first direction 106 of the touch display device 400 in this embodiment is the column direction
  • the second direction 112 is the row direction.
  • each sensing unit 104 of the touch panel 400 in this embodiment overlaps at least one row of the pixels 304
  • the sensing bars 108 of each sensing unit 104 corresponding to each row of the pixels 304 overlap the row of the pixels 304 or are disposed at two sides of the row of the pixel 304 respectively.
  • each sensing unit of the touch panel can overlap a plurality of rows of the pixels, and the number of the rows of the pixels overlapping each sensing unit is determined according to the size of the touch object.
  • the touch panel of the present invention does not require two-dimensional sensing stripes, and the touch panel can sense the position of the touch object with the sensing units arranged along the one-dimensional first direction. Furthermore, the sensing units, the first conductive lines, the second conductive lines and the third conductive lines are formed with the same one patterned conductive layer in the present invention, and the single patterned conductive layer can perform a multi-touch function.
  • the touch panel of the present invention not only can reduce material costs through decreasing one conductive material layer in the manufacturing process, but also reduce the steps of the manufacturing process and the number of masks for forming the patterned conductive material layers to decrease production cost of the touch panel as compared with the two patterned conductive layers for performing the multi-touch function in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Computer Hardware Design (AREA)
US13/854,157 2012-12-26 2013-04-01 Touch panel and touch display device Abandoned US20140176822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/918,597 US9471191B2 (en) 2012-12-26 2015-10-21 Touch panel and touch display device with sensing bars arranged along one-dimensional direction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW101150083A TWI469012B (zh) 2012-12-26 2012-12-26 觸控面板及觸控顯示裝置
TW101150083 2012-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/918,597 Continuation US9471191B2 (en) 2012-12-26 2015-10-21 Touch panel and touch display device with sensing bars arranged along one-dimensional direction

Publications (1)

Publication Number Publication Date
US20140176822A1 true US20140176822A1 (en) 2014-06-26

Family

ID=50974235

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/854,157 Abandoned US20140176822A1 (en) 2012-12-26 2013-04-01 Touch panel and touch display device
US14/918,597 Active US9471191B2 (en) 2012-12-26 2015-10-21 Touch panel and touch display device with sensing bars arranged along one-dimensional direction

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/918,597 Active US9471191B2 (en) 2012-12-26 2015-10-21 Touch panel and touch display device with sensing bars arranged along one-dimensional direction

Country Status (3)

Country Link
US (2) US20140176822A1 (zh)
CN (1) CN103902093B (zh)
TW (1) TWI469012B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112035013A (zh) * 2020-08-31 2020-12-04 京东方科技集团股份有限公司 触控面板及其制备方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090322355A1 (en) * 2008-06-27 2009-12-31 Day Shawn P Object position sensing apparatus
US20110247884A1 (en) * 2010-04-12 2011-10-13 Woon Chun Kim Touch panel
US8638112B2 (en) * 2009-09-11 2014-01-28 Synaptics Incorporated Input device based on voltage gradients
US8854334B2 (en) * 2009-10-22 2014-10-07 Innolux Corporation Touch panel and touch display device using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825833B2 (en) * 2001-11-30 2004-11-30 3M Innovative Properties Company System and method for locating a touch on a capacitive touch screen
US8248383B2 (en) * 2008-04-24 2012-08-21 Integrated Device Technology, Inc. Multi-touch touch screen with single-layer ITO bars arranged in parallel
US8390580B2 (en) * 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8217913B2 (en) * 2009-02-02 2012-07-10 Apple Inc. Integrated touch screen
TWI489356B (zh) * 2009-12-15 2015-06-21 Au Optronics Corp 觸控顯示裝置與觸控裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090322355A1 (en) * 2008-06-27 2009-12-31 Day Shawn P Object position sensing apparatus
US8638112B2 (en) * 2009-09-11 2014-01-28 Synaptics Incorporated Input device based on voltage gradients
US8854334B2 (en) * 2009-10-22 2014-10-07 Innolux Corporation Touch panel and touch display device using the same
US20110247884A1 (en) * 2010-04-12 2011-10-13 Woon Chun Kim Touch panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112035013A (zh) * 2020-08-31 2020-12-04 京东方科技集团股份有限公司 触控面板及其制备方法、显示装置

Also Published As

Publication number Publication date
US20160041655A1 (en) 2016-02-11
TW201426439A (zh) 2014-07-01
US9471191B2 (en) 2016-10-18
CN103902093B (zh) 2016-12-28
CN103902093A (zh) 2014-07-02
TWI469012B (zh) 2015-01-11

Similar Documents

Publication Publication Date Title
US9817533B2 (en) Single layer capacitive imaging sensors
EP2538313B1 (en) Touch sensor panel
US9927832B2 (en) Input device having a reduced border region
US8988387B2 (en) Touch sensor panel with in-plane backup bypass connections
EP3153956B1 (en) Capacitive touch structure, embedded touchscreen, display device and scanning method therefor
US10133421B2 (en) Display stackups for matrix sensor
US9423918B2 (en) Electrostatic capacitive touch screen panel
US10372264B2 (en) Touch panel including touch sensor and driving method thereof
US20170060318A1 (en) Touch screen and touch control device
US9568999B2 (en) Method for representing a tactile image and touch screen apparatus for performing the method
US10209841B2 (en) Position inputting device and display device with position inputting function
US20160183382A1 (en) Capacitive image sensor with selectable function electrodes
US9507457B2 (en) Method of determining touch coordinate and touch panel assembly for performing the same
US20180335878A1 (en) Touch control display panel
CN105045453A (zh) 一种内嵌式触摸屏及显示装置
US20140225844A1 (en) Display device and touch panel
CN108874244B (zh) 触控面板及触控装置
KR102183655B1 (ko) 표시 장치
US20140340598A1 (en) Touch panel
US20160349870A1 (en) Self Capacitance Type Touch Panel and Conductive Layer Structure Thereof
US9423896B2 (en) Method for representing a tactile image and touch screen apparatus for performing the method
US9471191B2 (en) Touch panel and touch display device with sensing bars arranged along one-dimensional direction
US20160103509A1 (en) Touch display device
CN105487701A (zh) 触控面板
US9870105B2 (en) Far-field sensing with a display device having an integrated sensing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: HANNSTOUCH SOLUTION INCORPORATED, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, HUI-SHU;LI, SHI-HAO;REEL/FRAME:030120/0173

Effective date: 20130301

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION