US20140119980A1 - Novel solvents for metal ion reduction methods, compositions, and articles - Google Patents

Novel solvents for metal ion reduction methods, compositions, and articles Download PDF

Info

Publication number
US20140119980A1
US20140119980A1 US14/148,021 US201414148021A US2014119980A1 US 20140119980 A1 US20140119980 A1 US 20140119980A1 US 201414148021 A US201414148021 A US 201414148021A US 2014119980 A1 US2014119980 A1 US 2014119980A1
Authority
US
United States
Prior art keywords
metal
metal ion
composition
silver
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/148,021
Inventor
David R. Whitcomb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carestream Health Inc
Original Assignee
Carestream Health Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carestream Health Inc filed Critical Carestream Health Inc
Priority to US14/148,021 priority Critical patent/US20140119980A1/en
Publication of US20140119980A1 publication Critical patent/US20140119980A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/01Main component
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution

Definitions

  • Such preparations typically employ an aldehyde reducing agent generated by the oxidation of a compound having one or more primary hydroxyl moieties, such as, for example, ethylene glycol, propylene glycol, 1,4-butanediol, and glycerol.
  • an aldehyde reducing agent generated by the oxidation of a compound having one or more primary hydroxyl moieties, such as, for example, ethylene glycol, propylene glycol, 1,4-butanediol, and glycerol.
  • aldehyde reducing agents have been believed to be responsible for the production of silver metal nanostructures from silver ions.
  • At least some embodiments provide a method comprising providing a composition comprising at least one solvent comprising no primary hydroxyl moieties, where the solvent further comprises at least one ketone or secondary hydroxyl moiety; and reducing at least one first reducible metal ion to at one first metal nanostructure in the presence of the at least one solvent.
  • the composition further comprises at least one protecting agent, such as, for example, one or more surfactants, one or more acids, or one or more polar polymers.
  • at least one protecting agent such as, for example, one or more surfactants, one or more acids, or one or more polar polymers.
  • An exemplary protecting agent is polyvinylpyrrolidone.
  • the at least one first reducible metal ion may, for example, comprise at least one coinage metal ion or at least one ion of an element from IUPAC Group 11, such as, for example, at least one silver ion.
  • the at least one first compound may, for example, comprise silver nitrate.
  • the at least one solvent may, for example, comprise at least two secondary hydroxyl moieties, or at least one ketone comprising at least one secondary hydroxyl moiety.
  • the at least one solvent may comprise at least one of 2,3-butanediol, 3-hydroxybutanone, 2,3-butanedione, or (-)-ethyl-L-lactate.
  • the at least one first metal nanostructure may, for example, comprise one or more nanowires, nanocubes, nanorods, nanopyramids, nanotubes, or nanorings. Or the at least one first metal nanostructure may, for example, comprise at least one metal nanowire having an average diameter of between about 10 nm and about 500 nm. Or the at least one first metal nanostructure may, for example, comprise at least one metal nanowire having an aspect ratio between about 50 and about 10,000.
  • At least one metal nanowire with an average diameter of between about 10 nm and about 150 nm, and with an aspect ratio from about 50 to about 10,000.
  • Such a nanowire may, for example, comprise at least one first metal comprising at least one coinage metal, or at least one element of IUPAC Group 11, such as, for example, silver.
  • Yet still other embodiments comprise at least one article comprising such nanowires.
  • FIG. 1 shows an optical micrograph of the unpurified silver nanowire product of Example 1.
  • FIG. 2 shows an optical micrograph of the unpurified silver nanowire product of Example 2.
  • FIG. 3 shows an optical micrograph of the unpurified silver nanowire product of Example 3.
  • FIG. 4 shows an scanning electron micrograph of the unpurified silver nanowire product of Example 1.
  • Some embodiments provide methods comprising reducing at least one reducible metal ion to at least one metal nanostructure.
  • a reducible metal ion is a cation that is capable of being reduced to a metal nanostructure under some set of reaction conditions.
  • the at least one first reducible metal ion may, for example, comprise at least one coinage metal ion.
  • a coinage metal ion is an ion of one of the coinage metals, which include copper, silver, and gold.
  • a reducible metal ion may, for example, comprise at least one ion of an IUPAC Group 11 element.
  • An exemplary reducible metal ion is a silver cation.
  • Such reducible metal ions may, in some cases, be provided as salts.
  • Silver cations might, for example, be provided as silver nitrate.
  • a common method of preparing nanostructures is the “polyol” process.
  • Such a process is described in, for example, Angew. Chem. Int. Ed. 2009, 48, 60, Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, which is hereby incorporated by reference in its entirety.
  • Such processes typically reduce a metal cation, such as, for example, a silver cation, to the desired metal nanostructure product, such as, for example, a silver nanowire.
  • Such a reduction may be carried out in a reaction mixture that may, for example, comprise one or more polyols, such as, for example, ethylene glycol (EG), propylene glycol, butanediol, glycerol, sugars, carbohydrates, and the like; one or more protecting agents, such as, for example, polyvinylpyrrolidinone (also known as polyvinylpyrrolidone or PVP), other polar polymers or copolymers, surfactants, acids, and the like; and one or more metal ions.
  • polyols such as, for example, ethylene glycol (EG), propylene glycol, butanediol, glycerol, sugars, carbohydrates, and the like
  • protecting agents such as, for example, polyvinylpyrrolidinone (also known as polyvinylpyrrolidone or PVP), other polar polymers or copolymers, surfactants, acids, and the like
  • PVP polyvinylpyrrolidone
  • a solvent that cannot form an aldehyde reduction agent and that is not itself an aldehyde reduction agent.
  • a solvent comprises no primary hydroxyl moieties, but instead comprises at least one ketone or secondary hydroxyl moiety.
  • the at least one solvent may, for example, comprise at least two secondary hydroxyl moieties, or at least one ketone comprising at least one secondary hydroxyl moiety.
  • Exemplary solvents are 2,3-butanediol, 3-hydroxybutanone, 2,3-butanedione, (-)-ethyl-L-lactate.
  • Protecting agents are known. Protecting agents are also sometimes referred to by such terms as organic protective agents, protective agents, or capping agents.
  • protecting agents are compounds that are capable of being absorbed onto a metallic surface, such as, for example, the surface of a metal nanoparticle or metal nanowire.
  • a metallic surface such as, for example, the surface of a metal nanoparticle or metal nanowire.
  • polyvinylpyrrolidone is commonly used as a protecting agent.
  • other compounds are also capable of functioning as protecting agents.
  • other compounds that are capable of interacting electronically with metals such as compounds containing atoms with one or more free electron pairs, may be able to function as protecting agents.
  • Such atoms include oxygen, sulfur, and nitrogen; they may appear in a variety of functional groups within the protecting agent.
  • Non-limiting examples of such compounds include polyvinyl alcohol, sodium dodecyl sulfate, laurylamine, hydroxypropyl cellulose, and copolymers containing vinyl pyrrolidone moieties.
  • Other non-limiting examples of such compounds include copolymers containing ethylene and ethylene glycol moieties, copolymers containing ethylene and vinyl pyrrolidone moieties, copolymers containing ethylene and vinyl pyridine moieties, copolymers containing vinyl chloride and ethylene glycol moieties, copolymers containing vinyl chloride and vinyl pyrrolidone moieties, copolymers containing vinyl chloride and vinyl pyridine moieties, copolymers containing vinyl acetate and ethylene glycol moieties, copolymers containing vinyl acetate and vinyl pyrrolidone moieties, copolymer containing vinyl acetate and vinyl pyridine moieties, copolymers containing styrene and ethylene
  • the metal product formed by such methods is a nanostructure, such as, for example, a one-dimensional nanostructure.
  • Nanostructures are structures having at least one “nanoscale” dimension less than 300 nm, and at least one other dimension being much larger than the nanoscale dimension, such as, for example, at least about 10, or at least about 50, or at least about 100, or at least about 200, or at least about 1000 times larger.
  • Examples of such nanostructures are nanorods, nanowires, nanotubes, nanopyramids, nanoprisms, nanoplates, nanorings, and the like.
  • “One-dimensional” nanostructures have one dimension that is much larger than the other two dimensions, such as, for example, at least about 10 or at least about 100 or at least about 200 or at least about 1000 times larger.
  • Nanowires are one-dimensional nanostructures in which the two short dimensions (the thickness dimensions) are less than 300 nm, preferably less than 100 nm, while the third dimension (the length dimension) is greater than 1 micron, preferably greater than 10 microns, and the aspect ratio (ratio of the length dimension to the larger of the two thickness dimensions) is greater than five. Nanowires are being employed as conductors in electronic devices or as elements in optical devices, among other possible uses. Silver nanowires are preferred in some such applications.
  • Nanowires and other nanostructure products may be incorporated into articles, such as, for example, electronic displays, touch screens, portable telephones, cellular telephones, computer displays, laptop computers, tablet computers, point-of-purchase kiosks, music players, televisions, electronic games, electronic book readers, transparent electrodes, solar cells, light emitting diodes, other electronic devices, medical imaging devices, medical imaging media, and the like.
  • a method comprising:
  • composition comprising:
  • composition further comprises at least one protecting agent.
  • the at least one protecting agent comprises at least one of: one or more surfactants, one or more acids, or one or more polar polymers.
  • the at least one protecting agent comprises polyvinylpyrrolidinone.
  • the at least one first reducible metal ion comprises at least one ion of an element from IUPAC Group 11.
  • FIG. 1 An optical micrograph of the unpurified silver nanowire product is shown in FIG. 1 .
  • the average length and diameter of the nanowires were calculated by measurement of at least 100 nanowires and found to be 16.8 ⁇ 8.5 ⁇ m and 71.8 ⁇ 26.6 nm, respectively.
  • Example 1 The procedure of Example 1 was repeated, but using a reaction temperature of 125° C. instead of 145° C. Excellent silver nanowires were produced within 30 min.
  • FIG. 2 An optical micrograph of the unpurified silver nanowire product is shown in FIG. 2 .
  • the average length and diameter of the nanowires were calculated by measurement of at least 100 nanowires and found to be 16.5 ⁇ 9.4 ⁇ m and 64.6 ⁇ 28.7 ⁇ m, respectively.
  • FIG. 3 shows an optical micrograph of the silver nanowire product.
  • FIG. 4 shows a scanning electron micrograph of the silver nanowire product. The average length and diameter of the nanowires were calculated by measurement of at least 100 nanowires and found to be 7.6 ⁇ 1.9 ⁇ m and 350 ⁇ 152 nm, respectively.

Abstract

Methods employing novel solvents are disclosed for making metal nanostructures including metal nanowires. Such methods can be carried out at lower temperatures and higher production rates than those employing ethylene glycol. The products of these methods are useful for electronics applications.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 13/410,583, filed Mar. 2, 2012, entitled NOVEL SOLVENTS FOR METAL ION REDUCTION METHODS, COMPOSITIONS, AND ARTICLES, which claimed the benefit of U.S. Provisional Application No. 61/488,841, filed May 23, 2011, entitled NOVEL SOLVENTS FOR METAL ION REDUCTION METHODS, COMPOSITIONS, AND ARTICLES, both of which are incorporated by reference in their entirety.
  • BACKGROUND
  • The general preparation of silver nanowires (10-200 aspect ratio) from silver ions is known. See, for example, Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed. 2009, 48, 60, and J. Jiu, K. Murai, D. Kim, K. Kim, K. Suganuma, Mat. Chem. & Phys., 2009, 114, 333, both of which are hereby incorporated by reference in their entirety. Such preparations typically employ an aldehyde reducing agent generated by the oxidation of a compound having one or more primary hydroxyl moieties, such as, for example, ethylene glycol, propylene glycol, 1,4-butanediol, and glycerol. Such aldehyde reducing agents have been believed to be responsible for the production of silver metal nanostructures from silver ions.
  • SUMMARY
  • At least some embodiments provide a method comprising providing a composition comprising at least one solvent comprising no primary hydroxyl moieties, where the solvent further comprises at least one ketone or secondary hydroxyl moiety; and reducing at least one first reducible metal ion to at one first metal nanostructure in the presence of the at least one solvent.
  • In at least some embodiments, the composition further comprises at least one protecting agent, such as, for example, one or more surfactants, one or more acids, or one or more polar polymers. An exemplary protecting agent is polyvinylpyrrolidone.
  • The at least one first reducible metal ion may, for example, comprise at least one coinage metal ion or at least one ion of an element from IUPAC Group 11, such as, for example, at least one silver ion. In such methods, the at least one first compound may, for example, comprise silver nitrate.
  • The at least one solvent may, for example, comprise at least two secondary hydroxyl moieties, or at least one ketone comprising at least one secondary hydroxyl moiety. In some cases, the at least one solvent may comprise at least one of 2,3-butanediol, 3-hydroxybutanone, 2,3-butanedione, or (-)-ethyl-L-lactate.
  • Other embodiments provide the at least one first metal nanostructure produced according to such methods. Still other embodiments provide at least one article comprising the at least one first metal nanostructure produced according such methods. The at least one first metal nanostructure may, for example, comprise one or more nanowires, nanocubes, nanorods, nanopyramids, nanotubes, or nanorings. Or the at least one first metal nanostructure may, for example, comprise at least one metal nanowire having an average diameter of between about 10 nm and about 500 nm. Or the at least one first metal nanostructure may, for example, comprise at least one metal nanowire having an aspect ratio between about 50 and about 10,000.
  • Yet other embodiments provide at least one metal nanowire with an average diameter of between about 10 nm and about 150 nm, and with an aspect ratio from about 50 to about 10,000. Such a nanowire may, for example, comprise at least one first metal comprising at least one coinage metal, or at least one element of IUPAC Group 11, such as, for example, silver. Yet still other embodiments comprise at least one article comprising such nanowires.
  • These and other embodiments will be understood by the brief description of figures, figures, description, exemplary embodiments, examples, and claims that follow.
  • BRIEF DESCRIPTION OF FIGURES
  • FIG. 1 shows an optical micrograph of the unpurified silver nanowire product of Example 1.
  • FIG. 2 shows an optical micrograph of the unpurified silver nanowire product of Example 2.
  • FIG. 3 shows an optical micrograph of the unpurified silver nanowire product of Example 3.
  • FIG. 4 shows an scanning electron micrograph of the unpurified silver nanowire product of Example 1.
  • DESCRIPTION
  • All publications, patents, and patent documents referred to in this application are incorporated by reference herein in their entirety, as though individually incorporated by reference.
  • U.S. Provisional Application No. 61/488,841, filed May 23, 2011, entitled NOVEL SOLVENTS FOR METAL ION REDUCTION METHODS, COMPOSITIONS, AND ARTICLES, is incorporated by reference in its entirety.
  • U.S. application Ser. No. 13/410,583, filed Mar. 2, 2012, entitled NOVEL SOLVENTS FOR METAL ION REDUCTION METHODS, COMPOSITIONS, AND ARTICLES, is incorporated by reference in its entirety.
  • Reducible Metal Ions, IUPAC Group 11 Ions, and Metal Nanostructures
  • Some embodiments provide methods comprising reducing at least one reducible metal ion to at least one metal nanostructure. A reducible metal ion is a cation that is capable of being reduced to a metal nanostructure under some set of reaction conditions. In such methods, the at least one first reducible metal ion may, for example, comprise at least one coinage metal ion. A coinage metal ion is an ion of one of the coinage metals, which include copper, silver, and gold. Or such a reducible metal ion may, for example, comprise at least one ion of an IUPAC Group 11 element. An exemplary reducible metal ion is a silver cation. Such reducible metal ions may, in some cases, be provided as salts. Silver cations might, for example, be provided as silver nitrate.
  • Preparation Methods
  • A common method of preparing nanostructures, such as, for example, nanowires, is the “polyol” process. Such a process is described in, for example, Angew. Chem. Int. Ed. 2009, 48, 60, Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, which is hereby incorporated by reference in its entirety. Such processes typically reduce a metal cation, such as, for example, a silver cation, to the desired metal nanostructure product, such as, for example, a silver nanowire. Such a reduction may be carried out in a reaction mixture that may, for example, comprise one or more polyols, such as, for example, ethylene glycol (EG), propylene glycol, butanediol, glycerol, sugars, carbohydrates, and the like; one or more protecting agents, such as, for example, polyvinylpyrrolidinone (also known as polyvinylpyrrolidone or PVP), other polar polymers or copolymers, surfactants, acids, and the like; and one or more metal ions. These and other components may be used in such reaction mixtures, as is known in the art. The reduction may, for example, be carried out at one or more temperatures from about 80° C. to about 190° C.
  • Novel Solvents
  • The applicant has discovered that silver ions can be reduced to metallic silver in the presence of a solvent that cannot form an aldehyde reduction agent and that is not itself an aldehyde reduction agent. Such a solvent comprises no primary hydroxyl moieties, but instead comprises at least one ketone or secondary hydroxyl moiety. The at least one solvent may, for example, comprise at least two secondary hydroxyl moieties, or at least one ketone comprising at least one secondary hydroxyl moiety. Exemplary solvents are 2,3-butanediol, 3-hydroxybutanone, 2,3-butanedione, (-)-ethyl-L-lactate.
  • The applicant has also discovered that silver ion reduction to silver nanowire morphology in such solvents can occur rapidly at a relatively low reaction temperature. For example, such reduction at 125° C. in 2,3-butanediol occurs within 30 min, but requires approximately 4 hrs at this temperature when using ethylene glycol.
  • Protecting Agents
  • Protecting agents are known. Protecting agents are also sometimes referred to by such terms as organic protective agents, protective agents, or capping agents. U.S. Pat. No. 7,922,787 to Wang et al., which is hereby incorporated by reference in its entirety, provides an overview of such references.
  • For the purpose of this application, protecting agents are compounds that are capable of being absorbed onto a metallic surface, such as, for example, the surface of a metal nanoparticle or metal nanowire. When the metallic surface is that of silver, polyvinylpyrrolidone is commonly used as a protecting agent. However, other compounds are also capable of functioning as protecting agents. For example, other compounds that are capable of interacting electronically with metals, such as compounds containing atoms with one or more free electron pairs, may be able to function as protecting agents. Such atoms include oxygen, sulfur, and nitrogen; they may appear in a variety of functional groups within the protecting agent. Non-limiting examples of such compounds include polyvinyl alcohol, sodium dodecyl sulfate, laurylamine, hydroxypropyl cellulose, and copolymers containing vinyl pyrrolidone moieties. Other non-limiting examples of such compounds include copolymers containing ethylene and ethylene glycol moieties, copolymers containing ethylene and vinyl pyrrolidone moieties, copolymers containing ethylene and vinyl pyridine moieties, copolymers containing vinyl chloride and ethylene glycol moieties, copolymers containing vinyl chloride and vinyl pyrrolidone moieties, copolymers containing vinyl chloride and vinyl pyridine moieties, copolymers containing vinyl acetate and ethylene glycol moieties, copolymers containing vinyl acetate and vinyl pyrrolidone moieties, copolymer containing vinyl acetate and vinyl pyridine moieties, copolymers containing styrene and ethylene glycol moieties, copolymers containing styrene and vinyl pyrrolidone moieties, and copolymer containing styrene and vinyl pyridine moieties. These and other protecting agents will be understood by those skilled in the art.
  • Nanostructures and Nanowires
  • In some embodiments, the metal product formed by such methods is a nanostructure, such as, for example, a one-dimensional nanostructure. Nanostructures are structures having at least one “nanoscale” dimension less than 300 nm, and at least one other dimension being much larger than the nanoscale dimension, such as, for example, at least about 10, or at least about 50, or at least about 100, or at least about 200, or at least about 1000 times larger. Examples of such nanostructures are nanorods, nanowires, nanotubes, nanopyramids, nanoprisms, nanoplates, nanorings, and the like. “One-dimensional” nanostructures have one dimension that is much larger than the other two dimensions, such as, for example, at least about 10 or at least about 100 or at least about 200 or at least about 1000 times larger.
  • Such one-dimensional nanostructures may, in some cases, comprise nanowires. Nanowires are one-dimensional nanostructures in which the two short dimensions (the thickness dimensions) are less than 300 nm, preferably less than 100 nm, while the third dimension (the length dimension) is greater than 1 micron, preferably greater than 10 microns, and the aspect ratio (ratio of the length dimension to the larger of the two thickness dimensions) is greater than five. Nanowires are being employed as conductors in electronic devices or as elements in optical devices, among other possible uses. Silver nanowires are preferred in some such applications.
  • Such methods may be used to prepare nanostructures other than nanowires, such as, for example, nanocubes, nanorods, nanopyramids, nanotubes, nanorings, and the like. Nanowires and other nanostructure products may be incorporated into articles, such as, for example, electronic displays, touch screens, portable telephones, cellular telephones, computer displays, laptop computers, tablet computers, point-of-purchase kiosks, music players, televisions, electronic games, electronic book readers, transparent electrodes, solar cells, light emitting diodes, other electronic devices, medical imaging devices, medical imaging media, and the like.
  • EXEMPLARY EMBODIMENTS
  • U.S. Provisional Application No. 61/488,841, filed May 23, 2011, entitled NOVEL SOLVENTS FOR METAL ION REDUCTION METHODS, COMPOSITIONS, AND ARTICLES, which is incorporated by reference in its entirety, disclosed the following 24 non-limiting exemplary embodiments:
  • A. A method comprising:
  • providing a composition comprising:
      • at least one first compound comprising at least one first reducible metal ion; and
      • at least one solvent comprising no primary hydroxyl moieties, said solvent further comprising at least one ketone or secondary hydroxyl moiety; and
  • reducing the at least one first reducible metal ion to at least one first metal.
  • B. The method of embodiment A, wherein the composition further comprises at least one protecting agent.
    C. The method of embodiment B, wherein the at least one protecting agent comprises at least one of: one or more surfactants, one or more acids, or one or more polar polymers.
    D. The method of embodiment B, wherein the at least one protecting agent comprises polyvinylpyrrolidinone.
    E. The method of embodiment B, further comprising inerting the at least one protecting agent.
    F. The method of embodiment A, wherein the at least one first reducible metal ion comprises at least one coinage metal ion.
    G. The method of embodiment A, wherein the at least one first reducible metal ion comprises at least one ion of an element from IUPAC Group 11.
      • H. The method of embodiment A, wherein the at least one first reducible metal ion comprises at least one ion of silver.
        J. The method of embodiment A, wherein the at least one first compound comprises silver nitrate.
        K. The method of embodiment A, wherein the at least one solvent comprises at least two secondary hydroxyl moieties.
        L. The method of embodiment A, wherein the at least one solvent comprises at least one ketone comprising at least one secondary hydroxyl moiety.
        M. The method of embodiment A, wherein the at least one solvent comprises at least one of: 2,3-butanediol, 3-hydroxybutanone, or 2,3-butanedione.
        N. The method of embodiment A, wherein the metal ion reduction is carried out at one or more temperatures from about 25° C. to about 190° C.
        P. The method of embodiment A, further comprising inerting one or more of: the composition, the at least one compound comprising at least one first reducible metal ion, or the at least one solvent.
        R. The at least one first metal produced according to the method of embodiment A.
        S. At least one article comprising the at least one first metal produced according to the method of embodiment A.
        T. The at least one article of embodiment S, wherein the at least one first metal comprises one or more nanowires, nanocubes, nanorods, nanopyramids, or nanotubes.
        U. The at least one article of embodiment S, wherein the at least one first metal comprises at least one object having an average diameter of between about 10 nm and about 500 nm.
        V. The at least one article of embodiment S, wherein the at least one first metal comprises at least one object having an aspect ratio from about 50 to about 10,000.
        W. At least one metal nanowire with an average diameter of between about 10 nm and about 150 nm, and with an aspect ratio from about 50 to about 10,000.
        X. The nanowire of embodiment W, wherein the at least one metal comprises at least one coinage metal.
        Y. The nanowire of embodiment W, wherein the at least one metal comprises at least one element of IUPAC Group 11.
        Z. The nanowire of embodiment W, wherein the at least one metal comprises silver.
        AA. At least one article comprising the at least one metal nanowire of embodiment W.
    EXAMPLES Example 1
  • Into a 500 mL reaction flask was added 230 mL 2,3-butanediol and 0.8 g of a 22 mM solution of FeCl2 in 2,3-butanediol. This solution was stripped of at least some dissolved gases by bubbling N2 into the solution for at least 2 hrs using a TEFLON® fluoropolymer tube at room temperature with mechanical stirring while at 100 rpm. (This operation will be referred to as “degassing” in the sequel.) Stock solutions of 0.25 M AgNO3 in 2,3-butanediol and 0.84 M polyvinylpyrrolidinone (PVP) in 2,3-butanediol were also degassed by bubbling N2 into the solutions at room temperature. Two syringes were loaded with 20 mL each of the AgNO3 and PVP solutions. The reaction mixture was heated to 145° C. over 45 min under 0.5 mL/min N2 blanketing. The AgNO3 and PVP solutions were then added at a constant rate over 20 minutes via 12 gauge TEFLON® fluoropolymer syringe needles. Excellent silver nanowires were produced even before the addition of the AgNO3 and PVP solutions was complete.
  • An optical micrograph of the unpurified silver nanowire product is shown in FIG. 1. The average length and diameter of the nanowires were calculated by measurement of at least 100 nanowires and found to be 16.8±8.5 μm and 71.8±26.6 nm, respectively.
  • Example 2
  • The procedure of Example 1 was repeated, but using a reaction temperature of 125° C. instead of 145° C. Excellent silver nanowires were produced within 30 min.
  • An optical micrograph of the unpurified silver nanowire product is shown in FIG. 2. The average length and diameter of the nanowires were calculated by measurement of at least 100 nanowires and found to be 16.5±9.4 μm and 64.6±28.7 μm, respectively.
  • Example 3
  • Into a 500 mL reaction flask was added 200 mL of (-)-ethyl-L-lactate (EL) and 1.2 g of 3.0 mM SnCl2 in EL. This solution was degassed 60 min using a TEFLON® fluoropolymer tube. The tube was partially retracted to provide nitrogen headspace blanketing at 0.5 L/min. Stock solutions of 0.18 M AgNO3 in EL and 0.56 M polyvinylpyrrolidinone (PVP) in EL were also degassed by bubbling N2 into the solutions at room temperature. Two syringes were loaded with 30 mL each of the AgNO3 and PVP solutions. The reaction mixture was heated to 145° C. under 0.5 mL/min N2 blanketing. The AgNO3 and PVP solutions were then added at a constant rate of 0.8 mL/min via 12 gauge TEFLON® fluoropolymer syringe needles.
  • FIG. 3 shows an optical micrograph of the silver nanowire product. FIG. 4 shows a scanning electron micrograph of the silver nanowire product. The average length and diameter of the nanowires were calculated by measurement of at least 100 nanowires and found to be 7.6±1.9 μm and 350±152 nm, respectively.
  • Example 4 (Comparative)
  • Into a 100 mL reaction flask was added 30 mL diethyleneglycol dimethylether (DEGME), 30 g of pinacol, 0.35 g of 22 mM SnCl2 in pinacol/DEGDME, and 0.44 g polyvinylpyrrolidone. This solution was degassed with argon for more than two hours using a glass pipette. The pipette was partially retracted to provide argon headspace blanketing at 0.5 L/min. A stock AgNO3 solution was also degassed using argon. A syringe was loaded with 10 mL of the AgNO3 solution. The reaction mixture was heated to 143° C. under argon blanketing. The AgNO3 solution was then added at a constant rate over 25 min via a 20 gauge TEFLON® fluoropolymer syringe needle. After 60 min, no nanowires were present, but only nanoparticles.
  • The invention has been described in detail with particular reference to a presently preferred embodiment, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims, and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.

Claims (11)

What is claimed:
1. A method comprising:
providing a first composition comprising at least one solvent comprising no primary hydroxyl moieties, said solvent further comprising at least one ketone;
heating the first composition to form a heated first composition;
adding at least one second composition to the heated first composition, the at least one second composition comprising at least one reducible metal ion; and
reducing the at least one reducible metal ion to at least one metal nanostructure in the presence of the at least one solvent.
2. The method according to claim 1, wherein the at least one second composition further comprises at least one protecting agent.
3. The method according to claim 1, wherein the at least one second composition further comprises polyvinylpyrrolidone.
4. The method according to claim 1, wherein the at least one reducible metal ion comprises at least one of coinage metal ion or ion of an element from IUPAC Group 11.
5. The method according to claim 1, wherein the at least one reducible metal ion comprises at least one silver ion.
6. The method according to claim 1, wherein the at least one solvent comprises at least one ketone comprising at least one secondary hydroxyl moiety.
7. The method according to claim 1, wherein the at least one solvent comprises at least one of: 3-hydroxybutanone or 2,3-butanedione.
8. The at least one metal nanostructure produced according to the method of claim 1.
9. The at least one metal nanostructure according to claim 8, comprising at least one metal nanowire.
10. The at least one metal nanostructure according to claim 8, comprising at least one metal nanowire comprising an aspect ratio between about 50 and about 10,000.
11. The method according to claim 1, wherein the first composition is heated to a temperature between about 80° C. and about 190° C.
US14/148,021 2011-05-23 2014-01-06 Novel solvents for metal ion reduction methods, compositions, and articles Abandoned US20140119980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/148,021 US20140119980A1 (en) 2011-05-23 2014-01-06 Novel solvents for metal ion reduction methods, compositions, and articles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161488841P 2011-05-23 2011-05-23
US13/410,583 US20120301348A1 (en) 2011-05-23 2012-03-02 Novel solvents for metal ion reduction methods, compositions, and articles
US14/148,021 US20140119980A1 (en) 2011-05-23 2014-01-06 Novel solvents for metal ion reduction methods, compositions, and articles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/410,583 Continuation US20120301348A1 (en) 2011-05-23 2012-03-02 Novel solvents for metal ion reduction methods, compositions, and articles

Publications (1)

Publication Number Publication Date
US20140119980A1 true US20140119980A1 (en) 2014-05-01

Family

ID=45852738

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/410,583 Abandoned US20120301348A1 (en) 2011-05-23 2012-03-02 Novel solvents for metal ion reduction methods, compositions, and articles
US14/148,021 Abandoned US20140119980A1 (en) 2011-05-23 2014-01-06 Novel solvents for metal ion reduction methods, compositions, and articles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/410,583 Abandoned US20120301348A1 (en) 2011-05-23 2012-03-02 Novel solvents for metal ion reduction methods, compositions, and articles

Country Status (3)

Country Link
US (2) US20120301348A1 (en)
TW (1) TW201247340A (en)
WO (1) WO2012161851A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607653A (en) * 2015-02-09 2015-05-13 济宁利特纳米技术有限责任公司 Method of regulating and controlling lengths of silver nanorods in polyhydric alcohol reduction method through hydrogen peroxide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140251087A1 (en) * 2013-03-08 2014-09-11 Innova Dynamics, Inc. Production of nanostructures
JP6736035B2 (en) * 2018-05-25 2020-08-05 星光Pmc株式会社 Method for producing silver nanowire
CN112264601A (en) * 2020-09-30 2021-01-26 青海海镁特镁业有限公司 Environment-friendly mixed protective gas for magnesium alloy production process and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922787B2 (en) * 2008-02-02 2011-04-12 Seashell Technology, Llc Methods for the production of silver nanowires
JP2009299162A (en) * 2008-06-16 2009-12-24 Fujifilm Corp Silver nanowire, method for producing the same, water base dispersion product and transparent conductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607653A (en) * 2015-02-09 2015-05-13 济宁利特纳米技术有限责任公司 Method of regulating and controlling lengths of silver nanorods in polyhydric alcohol reduction method through hydrogen peroxide

Also Published As

Publication number Publication date
TW201247340A (en) 2012-12-01
WO2012161851A1 (en) 2012-11-29
US20120301348A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
US8741026B2 (en) Branched nanowire preparation methods, compositions, and articles
US20120126181A1 (en) Nanowire preparation methods, compositions, and articles
US9321108B2 (en) Nanowire preparation methods, compositions, and articles
US8613888B2 (en) Nanowire preparation methods, compositions, and articles
US20120328469A1 (en) Nanowire preparation methods, compositions, and articles
US9017450B2 (en) Nanowire preparation methods, compositions, and articles
US20140119980A1 (en) Novel solvents for metal ion reduction methods, compositions, and articles
US20140123808A1 (en) Nanowire preparation methods, compositions, and articles
US9283623B2 (en) Nanowire preparation methods, compositions, and articles
WO2012170291A2 (en) Nanowire preparation methods, compositions, and articles
US8815151B2 (en) Metal ion catalysis of metal ion reduction, methods, compositions, and articles
US20120148861A1 (en) Nanowire preparation methods, compositions, and articles
US9101983B2 (en) Nanowire preparation methods, compositions, and articles
US20120148443A1 (en) Nanowire preparation methods, compositions, and articles
US8764878B2 (en) Copper nanowire preparation methods and compositions
WO2012161894A1 (en) Nanowire preparation methods, compositions, and articles
US9095903B2 (en) Nanowire ring preparation methods, compositions, and articles
US9278390B2 (en) Nanowire preparation methods, compositions, and articles
WO2012161893A1 (en) Metal ion catalysis of metal ion reduction, methods, compositions, and articles

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION