US20140000450A1 - Gas Spring - Google Patents

Gas Spring Download PDF

Info

Publication number
US20140000450A1
US20140000450A1 US13/982,649 US201113982649A US2014000450A1 US 20140000450 A1 US20140000450 A1 US 20140000450A1 US 201113982649 A US201113982649 A US 201113982649A US 2014000450 A1 US2014000450 A1 US 2014000450A1
Authority
US
United States
Prior art keywords
piston rod
sliding element
gas spring
connection element
external part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/982,649
Inventor
Felix Estirado
Oscar Alejos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azol Gas SL
Original Assignee
Azol Gas SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azol Gas SL filed Critical Azol Gas SL
Assigned to AZOL-GAS, S.L. reassignment AZOL-GAS, S.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALEJOS, OSCAR, ESTIRADO, FELIX
Publication of US20140000450A1 publication Critical patent/US20140000450A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/0209Telescopic
    • F16F9/0218Mono-tubular units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/0209Telescopic
    • F16F9/0281Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/36Special sealings, including sealings or guides for piston-rods
    • F16F9/366Special sealings, including sealings or guides for piston-rods functioning as guide only, e.g. bushings
    • F16F9/367Special sealings, including sealings or guides for piston-rods functioning as guide only, e.g. bushings allowing misalignment of the piston rod

Definitions

  • the object of the invention is a gas spring which can absorb movements perpendicular to the operating axis thereof.
  • Gas springs are applied during sheet shaping processes, limiting the stress exerted thereon and making it possible for there to be displacement of the shaping tools with a slight increase of force.
  • the dies wherein these gas springs are installed tend to have guidance suitable to the functions thereof; however, specific parts thereof can have slight horizontal oscillations within its vertical movement actuated by the press. These types of horizontal oscillations are generally caused by floating plates used to hold the sheet piece while work is done thereon, or due to vibrations of the die itself when very localized stresses are made on a part thereof and not completely offset.
  • the present invention proposes an alternative solution to those mentioned above which resolves the aforementioned drawbacks.
  • the gas spring object of the invention is of the type which comprises a hollow cylindrical body with one open end and a piston rod located inside the hollow cylindrical body which can be moved therein through its open end.
  • the spring further comprises a sliding element connected to the free end of the piston rod and laterally displaceable with respect thereto, so that it permits the absorption of movements perpendicular to the operating axis thereof.
  • the spring that is object of the invention further comprises a connection element between the sliding element and the piston rod which comprises an internal part which is located inside the piston rod and an external part which protrudes from the free end of the piston rod.
  • the sliding element is also situated on the free end of the piston rod, and the sliding element and the connection element are configured so that the sliding element is laterally displaceable with respect to the external part of the connection element.
  • the gas spring is going to be compressed by means of the action of a force on the sliding element, which in turn transmits the force to the gas spring, which displaces the piston rod to the inside of the gas volume of the hollow cylindrical body, compressing it and increasing its pressure and, therefore, the force of the gas spring. If the piece in contact with the sliding element suffers an oscillation in a direction perpendicular to that of the movement of the piston rod of the gas spring during that compression process, the sliding element will accompany that oscillation, but the force transmitted to the gas spring will continue to have the same component in the direction of the movement of the piston rod thereof.
  • connection element between the sliding element and the piston rod also permits the sliding element to be fastened when the piston rod is in a reversed position and also facilitates the removal of the gas spring for maintenance work.
  • FIG. 1 shows a frontal schematic view of a first example of embodiment of the gas spring.
  • FIG. 2 shows a schematic and enlarged cross-section of the upper part of the piston rod corresponding to the example of embodiment from FIG. 1 .
  • FIG. 3 shows a frontal schematic cross-section of a second example of embodiment of the gas spring.
  • FIG. 1 represents a frontal view of an example of an embodiment of a gas spring which comprises a hollow cylindrical body ( 1 ), a piston rod ( 2 ) located in the hollow cylindrical body ( 1 ) and which is displaceable therein through its open end and a sliding element ( 3 ) connected to the free end of the piston rod ( 2 ) and laterally displaceable with respect thereto.
  • a gas spring which comprises a hollow cylindrical body ( 1 ), a piston rod ( 2 ) located in the hollow cylindrical body ( 1 ) and which is displaceable therein through its open end and a sliding element ( 3 ) connected to the free end of the piston rod ( 2 ) and laterally displaceable with respect thereto.
  • FIG. 1 features a first example of embodiment wherein the sliding element ( 3 ) is formed by a single body.
  • the connection element ( 4 ) between the sliding element ( 3 ) and the piston rod ( 2 ) comprises an internal part which is located inside the piston rod ( 2 ) and an external part ( 5 ) which projects from the free end of the piston rod ( 2 ).
  • the sliding element ( 3 ) is situated on the free end of the piston rod ( 2 ), and therefore projects out from the upper part of the piston rod.
  • the sliding element ( 3 ) and the connection element ( 4 ) are configured so that the sliding element ( 3 ) is laterally displaceable with respect to the external part ( 5 ) of the connection element ( 4 ). That is, the connection element ( 4 ) is solidly joined to the piston rod ( 2 ) and the sliding element ( 3 ) is displaced with respect to the connection element ( 4 ) as it is subject to a horizontal force.
  • connection element ( 4 ) is located in the centre of the piston rod ( 2 ) and the sliding element ( 3 ) is disposed surrounding the external part ( 5 ) thereof ( 4 ).
  • connection element ( 4 ) incorporates a central threaded orifice ( 11 ) for maintenance which permits the insertion of a threaded element and therefore the removal of the gas spring ( 1 ).
  • the sliding element ( 3 ) has a greater height than the external part ( 5 ) of the connection element ( 4 ) so that the piece which rests on the spring will make contact with the sliding element ( 3 ).
  • connection element ( 4 ) also fulfils the function of fastening the sliding element ( 3 ) when the spring is located in reversed position.
  • connection element ( 4 ) and the sliding element ( 3 ) are configured so that the connection element ( 4 ) comprises a projection ( 6 ) corresponding to a recess ( 7 ) of the sliding element ( 3 ).
  • the spring comprises an elastic element ( 8 ) between the external part ( 5 ) of the connection element ( 4 ) and the sliding element ( 3 ) to centre the sliding element ( 3 ).
  • FIGS. 1 and 2 a first example of embodiment is represented wherein the sliding element ( 3 ) is solely capable of absorbing loads lateral thereto ( 3 ); for this reason, the free surface of the piston rod ( 3 ) is straight, in correspondence to the adjacent surface of the sliding element ( 3 ).
  • FIG. 3 a second example of embodiment is represented wherein the sliding element ( 3 ) can absorb lateral loads and also achieves the adaptation to non-perpendicular thrust planes to said piston rod ( 2 ) of the gas spring.
  • the sliding element ( 3 ) comprises a first body ( 9 ) and a second body ( 10 ) situated between the first body ( 9 ) and the free surface of the piston rod ( 2 ), with at least one of the bodies ( 9 , 10 ) having a convex support surface corresponding to another concave support surface of the adjacent element ( 2 , 9 , 10 ) so that the sliding element ( 3 ) has a lateral displacement and a displacement in the direction of the concave surface.
  • FIG. 3 represents the case wherein it is the second body ( 10 ) that has the aforementioned convex surface corresponding to the concave surface of the upper part of the piston rod ( 2 ).
  • the concave and convex surfaces are spherical.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

The invention consists of a gas spring which can absorb movements perpendicular to its operating axis. To do that, it has a hollow cylindrical body (1) with an open end, a piston rod (2) located in the hollow cylindrical body (1) which can be moved therein and a sliding element (3) connected to the free end of the piston rod (2) and laterally displaceable with respect thereto. It also has a connection means (4) between the sliding element (3) and the piston rod (2) which comprises an internal part which is located inside the piston rod (2) and an external part (5) which projects out of the free end of the piston rod (2), the sliding element (3) being situated on the free end of the piston rod (2) and the sliding element (3) and the connection means (4) being configured so that the sliding element (3) is laterally displaceable with respect to the external part (5) of the connection means (4).

Description

    OBJECT OF THE INVENTION
  • The object of the invention is a gas spring which can absorb movements perpendicular to the operating axis thereof.
  • BACKGROUND OF THE INVENTION
  • Gas springs are applied during sheet shaping processes, limiting the stress exerted thereon and making it possible for there to be displacement of the shaping tools with a slight increase of force.
  • The dies wherein these gas springs are installed tend to have guidance suitable to the functions thereof; however, specific parts thereof can have slight horizontal oscillations within its vertical movement actuated by the press. These types of horizontal oscillations are generally caused by floating plates used to hold the sheet piece while work is done thereon, or due to vibrations of the die itself when very localized stresses are made on a part thereof and not completely offset.
  • In order to resolve this problem, the use of a spherical surface on the end of the mobile axis is known which permits a certain slope oscillation of the support on the gas spring and permits a certain displacement due to the lesser friction factor of those surfaces. Nevertheless, this solution presents the drawback that the surface can make a print on the die, deforming it and reducing the operational stroke.
  • Also known is another solution which has one or two sliding elements inserted into a mechanized box at the end of the piston rod which permits the absorption of the previously described movements perpendicular to the operating axis of the piston rod.
  • The present invention proposes an alternative solution to those mentioned above which resolves the aforementioned drawbacks.
  • DESCRIPTION OF THE INVENTION
  • The gas spring object of the invention is of the type which comprises a hollow cylindrical body with one open end and a piston rod located inside the hollow cylindrical body which can be moved therein through its open end. The spring further comprises a sliding element connected to the free end of the piston rod and laterally displaceable with respect thereto, so that it permits the absorption of movements perpendicular to the operating axis thereof.
  • The spring that is object of the invention further comprises a connection element between the sliding element and the piston rod which comprises an internal part which is located inside the piston rod and an external part which protrudes from the free end of the piston rod. The sliding element is also situated on the free end of the piston rod, and the sliding element and the connection element are configured so that the sliding element is laterally displaceable with respect to the external part of the connection element.
  • The gas spring is going to be compressed by means of the action of a force on the sliding element, which in turn transmits the force to the gas spring, which displaces the piston rod to the inside of the gas volume of the hollow cylindrical body, compressing it and increasing its pressure and, therefore, the force of the gas spring. If the piece in contact with the sliding element suffers an oscillation in a direction perpendicular to that of the movement of the piston rod of the gas spring during that compression process, the sliding element will accompany that oscillation, but the force transmitted to the gas spring will continue to have the same component in the direction of the movement of the piston rod thereof.
  • The connection element between the sliding element and the piston rod also permits the sliding element to be fastened when the piston rod is in a reversed position and also facilitates the removal of the gas spring for maintenance work.
  • DESCRIPTION OF THE DRAWINGS
  • In order to complement the description being carried out and with the purpose of helping towards a better understanding of the characteristics of the invention, in accordance with a preferred example of practical embodiment thereof, a set of drawings is attached as an integral part of said description wherein the following, in an illustrative and non-limitative character, has been represented:
  • FIG. 1 shows a frontal schematic view of a first example of embodiment of the gas spring.
  • FIG. 2 shows a schematic and enlarged cross-section of the upper part of the piston rod corresponding to the example of embodiment from FIG. 1.
  • FIG. 3 shows a frontal schematic cross-section of a second example of embodiment of the gas spring.
  • PREFERRED EMBODIMENT OF THE INVENTION
  • FIG. 1 represents a frontal view of an example of an embodiment of a gas spring which comprises a hollow cylindrical body (1), a piston rod (2) located in the hollow cylindrical body (1) and which is displaceable therein through its open end and a sliding element (3) connected to the free end of the piston rod (2) and laterally displaceable with respect thereto.
  • FIG. 1 features a first example of embodiment wherein the sliding element (3) is formed by a single body. The connection element (4) between the sliding element (3) and the piston rod (2) comprises an internal part which is located inside the piston rod (2) and an external part (5) which projects from the free end of the piston rod (2). The sliding element (3) is situated on the free end of the piston rod (2), and therefore projects out from the upper part of the piston rod. The sliding element (3) and the connection element (4) are configured so that the sliding element (3) is laterally displaceable with respect to the external part (5) of the connection element (4). That is, the connection element (4) is solidly joined to the piston rod (2) and the sliding element (3) is displaced with respect to the connection element (4) as it is subject to a horizontal force.
  • In the example of embodiment shown in the figures, the connection element (4) is located in the centre of the piston rod (2) and the sliding element (3) is disposed surrounding the external part (5) thereof (4).
  • The connection element (4) incorporates a central threaded orifice (11) for maintenance which permits the insertion of a threaded element and therefore the removal of the gas spring (1).
  • In order to enable the sliding element (3) to move with respect to the external part (5) of the connection element (4), there is a space between both elements (5, 3).
  • The sliding element (3) has a greater height than the external part (5) of the connection element (4) so that the piece which rests on the spring will make contact with the sliding element (3).
  • The connection element (4) also fulfils the function of fastening the sliding element (3) when the spring is located in reversed position. To do this, the connection element (4) and the sliding element (3) are configured so that the connection element (4) comprises a projection (6) corresponding to a recess (7) of the sliding element (3).
  • Finally, the spring comprises an elastic element (8) between the external part (5) of the connection element (4) and the sliding element (3) to centre the sliding element (3).
  • In FIGS. 1 and 2, a first example of embodiment is represented wherein the sliding element (3) is solely capable of absorbing loads lateral thereto (3); for this reason, the free surface of the piston rod (3) is straight, in correspondence to the adjacent surface of the sliding element (3).
  • In FIG. 3, a second example of embodiment is represented wherein the sliding element (3) can absorb lateral loads and also achieves the adaptation to non-perpendicular thrust planes to said piston rod (2) of the gas spring.
  • To do that, the sliding element (3) comprises a first body (9) and a second body (10) situated between the first body (9) and the free surface of the piston rod (2), with at least one of the bodies (9, 10) having a convex support surface corresponding to another concave support surface of the adjacent element (2, 9, 10) so that the sliding element (3) has a lateral displacement and a displacement in the direction of the concave surface.
  • FIG. 3 represents the case wherein it is the second body (10) that has the aforementioned convex surface corresponding to the concave surface of the upper part of the piston rod (2). Preferably, the concave and convex surfaces are spherical.
  • Therefore if, additionally, the direction of movement of the piece in contact with the sliding element (3) suffers an oscillation during that compression process so that the thrust plane is not perpendicular to that of the movement of the piston rod (2), the first body (9) of the sliding element (3) will accompany that oscillation thanks to the second body (10), so that the force transmitted to the gas spring will continue to have the same component in the direction of the movement of the piston rod thereof.

Claims (10)

1. A gas spring which comprises:
a hollow cylindrical body with an open end,
a piston rod located in the hollow cylindrical body which is displaceable therein through the open end thereof,
a sliding element connected to the free end of the piston rod and laterally displaceable with respect thereto,
wherein it further comprises a connection element between the sliding element and the piston rod which comprises an internal part that is located inside the piston rod and an external part which projects from the free end of the piston rod, with the sliding element being situated on the free end of the piston rod and the sliding element and the connection element being configured so that the sliding element is laterally displaceable with respect to the external part of the connection element.
2. The gas spring, of claim 1, characterised in that the connection element is located in the centre of the piston rod and the sliding element is disposed surrounding the external part thereof.
3. The gas spring of claim 1, characterised in that it comprises a space between the external part of the connection element and the sliding element for the lateral displacement of the sliding element.
4. The gas spring of claim 1, characterised in that the sliding element has a greater height than the external part of the connection element.
5. The gas spring of claim 1, characterised in that the connection element and the sliding element are configured so that the connection element comprises a projection corresponding to a recess of the sliding element for the fastening thereof.
6. The gas spring of claim 1, characterised in that it comprises an elastic element between the external part of the connection element and the sliding element.
7. The gas spring of claim 1, characterised in that the free surface of the piston rod is straight, in correspondence with the adjacent surface of the sliding element.
8. The gas spring of claim 1, characterised in that the sliding element comprises a first body and a second body situated between the first body and the free surface of the piston rod, at least one of the bodies comprising a convex support surface corresponding to another concave support surface of the adjacent element so that the sliding element is laterally displaceable and displaceable in the direction of the concave surface with respect to the piston rod.
9. The gas spring of claim 8, characterised in that the second body comprises a convex surface corresponding to the adjacent concave surface of the piston rod.
10. The gas spring of claim 1, characterised in that the connection element comprises a central threaded orifice for maintenance which permits the removal of the gas spring.
US13/982,649 2011-01-31 2011-01-31 Gas Spring Abandoned US20140000450A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070058 WO2012104442A1 (en) 2011-01-31 2011-01-31 Gas spring

Publications (1)

Publication Number Publication Date
US20140000450A1 true US20140000450A1 (en) 2014-01-02

Family

ID=44583088

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/982,649 Abandoned US20140000450A1 (en) 2011-01-31 2011-01-31 Gas Spring

Country Status (4)

Country Link
US (1) US20140000450A1 (en)
EP (1) EP2672138B1 (en)
ES (1) ES2527356T3 (en)
WO (1) WO2012104442A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828653A (en) * 1971-04-17 1974-08-13 Bosch Gmbh Robert Slide shoe and piston arrangement
US4632141A (en) * 1985-09-20 1986-12-30 Fmc Corporation Valve arrangement
US6510930B2 (en) * 2001-04-30 2003-01-28 Delphi Technologies, Inc. Floating rod guide
US7343846B2 (en) * 2003-03-10 2008-03-18 Actuant Corporation Actuator having external load supporting member
WO2010142606A2 (en) * 2009-06-12 2010-12-16 Nitrogas, S.A.U. Load cylinder for compensating unbalanced forces
US7896142B2 (en) * 2007-03-15 2011-03-01 Tenneco Automotive Operating Company Inc. Shock absorber dirt shield

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1478143C3 (en) * 1965-06-21 1974-08-08 Hannes 8100 Garmisch-Partenkirchen Marker Toe piece for safety ski bindings
DE3505984A1 (en) * 1985-02-21 1986-08-21 L. Schuler GmbH, 7320 Göppingen DRAWER ON PRESSES
JPH0790400B2 (en) * 1989-10-18 1995-10-04 アイダエンジニアリング株式会社 Press die cushion equipment
SE0402404L (en) * 2004-10-01 2005-08-16 Stroemsholmen Ab Impact plate and sheet metal forming tool including such impact plate
JP4973520B2 (en) * 2008-01-21 2012-07-11 倉敷化工株式会社 Gas spring vibration isolator
JP2010190354A (en) * 2009-02-19 2010-09-02 Kurashiki Kako Co Ltd Gas spring type vibration resistant device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828653A (en) * 1971-04-17 1974-08-13 Bosch Gmbh Robert Slide shoe and piston arrangement
US4632141A (en) * 1985-09-20 1986-12-30 Fmc Corporation Valve arrangement
US6510930B2 (en) * 2001-04-30 2003-01-28 Delphi Technologies, Inc. Floating rod guide
US7343846B2 (en) * 2003-03-10 2008-03-18 Actuant Corporation Actuator having external load supporting member
US7896142B2 (en) * 2007-03-15 2011-03-01 Tenneco Automotive Operating Company Inc. Shock absorber dirt shield
WO2010142606A2 (en) * 2009-06-12 2010-12-16 Nitrogas, S.A.U. Load cylinder for compensating unbalanced forces

Also Published As

Publication number Publication date
WO2012104442A1 (en) 2012-08-09
EP2672138A1 (en) 2013-12-11
EP2672138B1 (en) 2014-10-29
ES2527356T3 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
US7690630B2 (en) Long travel, high force combination spring
KR101402538B1 (en) Pedal simulator
CN103867522A (en) Fluid pressure cylinder
US20160084336A1 (en) Bump stopper cap
RU2008104914A (en) BLOCK PISTON CYLINDER
KR20200090898A (en) Mold device
KR20170013574A (en) Upper arm of cars manufacture molding machine
KR101312426B1 (en) Cam device
CN104550454A (en) Die structure
EP2672138B1 (en) Gas spring
ITPD20070377A1 (en) PUNCHING DEVICE WITH PREMILAMIER
CN107690501B (en) Hydraulic impact device
US10870141B2 (en) Shock absorber and press apparatus using the same
CN208178261U (en) A kind of C13 end casing stamping die
CN214866690U (en) Refrigerator bottom plate stamping device
CN103978113B (en) Upper mold of punching mold and punching mold
CN111167945B (en) Stamping die of metal rubber pipeline shock absorber
RU165253U1 (en) ABSORBING DEVICE WITH AN INCREASED TIME OF FAILURE-FREE OPERATION
CN107052167B (en) The position limiting structure of material pressing core
RU169528U1 (en) ABSORBING APPARATUS
JPS6137880Y2 (en)
CN105382105A (en) Forming die of radiator bracket of automobile
JP4534429B2 (en) Cam device
CN104455138A (en) Duplex-damping coupling absorber
CN214601340U (en) Punching machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: AZOL-GAS, S.L., SPAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ESTIRADO, FELIX;ALEJOS, OSCAR;REEL/FRAME:031242/0674

Effective date: 20130909

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION