US20130259731A1 - Simple rotation engine with variable compression and high gas flow - Google Patents

Simple rotation engine with variable compression and high gas flow Download PDF

Info

Publication number
US20130259731A1
US20130259731A1 US13/622,409 US201213622409A US2013259731A1 US 20130259731 A1 US20130259731 A1 US 20130259731A1 US 201213622409 A US201213622409 A US 201213622409A US 2013259731 A1 US2013259731 A1 US 2013259731A1
Authority
US
United States
Prior art keywords
rotor
rocker
rockers
axis
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/622,409
Inventor
Jan Hendrik Ate Wiekamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/622,409 priority Critical patent/US20130259731A1/en
Publication of US20130259731A1 publication Critical patent/US20130259731A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/10Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/40Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member
    • F01C1/46Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member with vanes hinged to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/70Use of multiplicity of similar components; Modular construction

Definitions

  • the invention is to be applied as pump, motor, compressor or thermodynamic engine.
  • thermodynamic engine variable compression, high swirl for fast combustion, low emissions, high speeds, high fuel efficiency and high specific power.
  • U.S. Pat. No. 1,972,302 (Hutchington M. R., 04-09-1934), describes a pump with rockers and a rotor with intake and exhaust ports, with seals at the tips of the rockers.
  • U.S. Pat. No. 1,983,033 US (Hutchington M. R., 04-12-1934) describes a pump with rockers and a flexible rotor, with the flexible rotor allowing for proper sealing.
  • U.S. Pat. No. 2,006,298 (Hutchington M. R., 25-06-1935) describes pumps with a rotor and rocking elements with rollers creating a seal. A specific feature of all these pumps is that the distance between the two rocker-rotor contact points is constant.
  • the rocker has fixed contact zones and the distance between the two rocker-rotor contact zones is constant.
  • the two rocker contact zones move along the flat surface of the rocker, and the distance between the two rocker-rotor contact zones is not constant.
  • a first advantage of this being much lower thermal pressure on the seal and distributed wear on the rocker.
  • the geometry now allows for relatively larger variable volumes .
  • FIG. 1 rotation of elliptical rotor and two straightedged rockers
  • FIG. 2 planar view of engine with non-elliptical rotor
  • FIG. 3 rotation of non-elliptical rotor in engine (e.g. HCCI)
  • FIG. 4 side views of FIG. 2
  • FIG. 5 side views of rotor of FIG. 2
  • FIG. 6 side views of rocker of FIG. 2
  • FIG. 7 side views of housing and top seal of FIG. 2
  • FIG. 8 geometry of rotor and rocker
  • FIG. 1 shows a cross-section of a machine comprising in essence of one rotor( 1 ), two rockers ( 3 ) and a housing ( 10 ), creating inside the housing eighth separate variable volumes.
  • the rotor ( 1 ) In operation, the rotor ( 1 ), here shown an ellipse, rotates around an axis ( 2 ), and contacts two rockers ( 3 ), that pivot around their axes ( 4 ) inside a housing ( 10 ).
  • a pivoting straightedge centered at a distance of squareroot ⁇ t squared plus s squared ⁇ will always have two, and only two contact points ( 9 ).
  • the rocker has a straightedge shape only on the contacting path with the ellipse.
  • top and bottom volumes ( 5 ) and ( 7 ) expand from minimum to maximum
  • right and left volumes ( 6 ) and ( 8 ) contract from maximum to minimum
  • secondary volumes ( 5 a ) and ( 7 a ) are first expanding and then contracting
  • secondary volumes ( 6 a ) and ( 8 a ) are first contracting and then expanding.
  • Applications can be for instance as pump, compressor, steam or Stirling engine.
  • a not so obvious part of this invention is the use as a progressive cavity pump, made by stacking sections on top of each other. We could do this by taking sections according to each picture of FIG. 1 with certain thickness, aligning the rotor sections on top of each other as if it were extruded, and rotating housing and rockers. Looking in we would see a cavity progressing when the rotor is turned. Of course with more sections with smaller angles between each next section and the previous, the cavity shapes can be more continuous axially. This could be extended to continuously shaped cavities using flexible rockers spiraling around the rotor. If we would increase or decrease the shape of rotor and rockers linearly from top to bottom, as described above, we could have expansion respectively compression axially as well. Of course alternatively all rockers could be stacked axially on top of each other with all rocker axes in parallel along two straight lines , which would allow for a simple to machine or extrude housing, but now with a twisted rotor.
  • FIG. 2 a possible application is shown with a non-elliptical rotor ( 11 ) with inlet ( 21 ) and exhaust ( 22 ).
  • the rotor has a bearing ( 12 ) and the rockers ( 13 ) have bearings ( 14 ) and are rotating inside the housing ( 20 ). Together they create volumes ( 15 ), ( 16 ), ( 17 ) and ( 18 ), and secondary volumes ( 15 a ), ( 16 a ), ( 17 a ) and ( 18 a ).
  • the contact areas on the rockers here are made of separate glide plates ( 19 ) that act as mating surfaces for the rotor material, and act as sideway seals to compensate for manufacturing tolerances and wear.
  • cylindrical bodies ( 24 ) are inserted, which can move along their axis, and which can change the expansion ratio's of volumes ( 15 ), ( 16 ), ( 17 ) and ( 18 ).
  • spark plugs ( 25 ) fuel injectors ( 23 ), valves and other devices can be inserted, for instance to facilitate venting, inlet/exhaust timing, ignition timing, addition or recirculation of gasses or fuel.
  • each primary volume ( 15 ), ( 16 ), ( 17 ) and ( 18 ), is sealed from the top and bottom by seals on the housing ( 26 ), rockers ( 27 ) and rotor ( 28 ), pressed down by the top seal ( 31 ) and body ( 33 ) (as shown in FIG. 7 ).
  • Lubricating oil is supplied to the gliding plates by bodies ( 29 ) or from inside the rockers ( 13 ). Cooling and lubricating fluid can be transported in the rotor ( 11 ) through the bearing ( 12 ) radius, inside the rockers ( 13 ) through their bearing ( 14 ) radii, and inside the housing ( 20 ). Additional (e.g.
  • FIG. 3 half a rotation is shown of the configuration of FIG. 2
  • FIG. 4 several views are shown of the configuration of FIG. 2
  • FIG. 5 several views are shown of the rotor of configuration of FIG. 2
  • FIG. 6 several views are shown of a rocker of configuration of FIG. 2 .
  • the glide plates ( 19 ) are inserted into recesses, where they can move within the recesses, and be pressurized externally or through openings ( 30 ) by combustion gasses.
  • FIG. 7 the housing ( 20 ) and top cover ( 33 ) are shown. If tolerances allow, a fixed top plate ( 33 ) is sufficient. Otherwise, the top plate ( 33 ) and seal ( 31 ) can co-rotate with the rotor and take up axial tolerances and wear. In this case a small hole ( 32 ) can be used, allowing high pressure combustion gasses to enter, to pressurize the seal downwards towards the rotor, pivoting bodies and housing.
  • the straightedge is the operator, mapping one section ( 34 ) on the next section ( 34 a ), and this section ( 34 a ) on the next ( 34 ), continuing back to the first section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

This invention relates to rotary compressors, pumps, motors and thermodynamic engines, and in essence consists of a central rotor and two rockers contained in a housing creating eight variable volumes. By the use of the construction described herein each volume remains sealed from the others during rotation of the rotor, with the contact zones moving along the surface of the rockers. Described is a way to construct the rockers and the rotor, including asymmetric and non-elliptic rotors.
A HCCI engine is shown in the drawings with 4×250 cc chambers measuring approximately 50×40×30 cm and a total weight of under 50 kg. As example of a compressor a similar design is shown with 4 main chambers and 4 auxiliary out-of-phase chambers, which could also be applied as steam or Stirling engine. By concatenating sections an all-metal non-Moineau progressive cavity pump can be created with low vibrations and great sturdiness.

Description

    TECHNOLOGY
  • The invention is to be applied as pump, motor, compressor or thermodynamic engine.
  • OBJECTS OF THE INVENTION
  • A design and way of constructing a simple engine with no valves and low restrictions. Low manufacturing cost, high durability, robust sealing, lubrication and cooling. For application as thermodynamic engine: variable compression, high swirl for fast combustion, low emissions, high speeds, high fuel efficiency and high specific power.
  • BACKGROUND OF THE INVENTION
  • The simple geometry of the reciprocating piston engine has made it the dominant choice for pumps, compressors and combustion engines. Demands on efficiency and pollution have however increased complexity and added many auxiliary devices, and further improvements can only be made at great costs. A more adaptable simple geometry is sought after, that will allow higher thermodynamic efficiency by having faster combustion, variable compression and less restrictions to gas flow, maintaining at the same time proper sealing, lubrication and cooling.
  • U.S. Pat. No. 1,972,302 (Hutchington M. R., 04-09-1934), describes a pump with rockers and a rotor with intake and exhaust ports, with seals at the tips of the rockers. U.S. Pat. No. 1,983,033 US (Hutchington M. R., 04-12-1934) describes a pump with rockers and a flexible rotor, with the flexible rotor allowing for proper sealing. U.S. Pat. No. 2,006,298 (Hutchington M. R., 25-06-1935) describes pumps with a rotor and rocking elements with rollers creating a seal. A specific feature of all these pumps is that the distance between the two rocker-rotor contact points is constant. Another description of machines of this type is given in German Patent DE 1,401,391 (A. J. Ignacio,21-10-1968). U.S. Pat. No. 3,186,385 (Walker H., 01-06-65) shows such an engine with a elliptical rotor, and two rockers, with ports inside the rotor, describing the advantages as 4 stroke engine.
  • In all these inventions the rocker has fixed contact zones and the distance between the two rocker-rotor contact zones is constant. In our invention the two rocker contact zones move along the flat surface of the rocker, and the distance between the two rocker-rotor contact zones is not constant. A first advantage of this being much lower thermal pressure on the seal and distributed wear on the rocker. Also the geometry now allows for relatively larger variable volumes .
  • U.S. Pat. No. 3,302,870 (Schell, Carl M, 1967-02-07) describes a pump with an elliptical rotor and two “oscillatable rocker members”. The patent however fails to describe a construction method for the rockers, which is not obvious for someone skilled in the art, who will find it difficult if not impossible to construct an engine with the information provided.
  • We present in this document the construction of engines, including asymmetric and non-elliptical rotors, with rockers with two perpendicular arms, which each have a flat contact zone towards the rotor, and have their juncture point, which is also their center of rotation, at a distance from the center of rotation of the rotor of squareroot(s*s+t*t), with s halve the length and t halve the width of the rotor. That these engines can be constructed follows from the insight that the junction point of any straightedge encompassing any ellipse creates a circle (Apollonius-Fermat circle).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 rotation of elliptical rotor and two straightedged rockers
  • FIG. 2 planar view of engine with non-elliptical rotor
  • FIG. 3 rotation of non-elliptical rotor in engine (e.g. HCCI)
  • FIG. 4 side views of FIG. 2
  • FIG. 5 side views of rotor of FIG. 2
  • FIG. 6 side views of rocker of FIG. 2
  • FIG. 7 side views of housing and top seal of FIG. 2
  • FIG. 8 geometry of rotor and rocker
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a cross-section of a machine comprising in essence of one rotor(1), two rockers (3) and a housing (10), creating inside the housing eighth separate variable volumes. One volume between each rocker and the rotor (5),(7), two volumes between the first rocker and the housing (5 a),(8 a), two volumes between the second rocker and the housing (6 a),(7 a) and two volumes between housing, rotor and rockers (6),(8), all volumes being constrained in the axial direction by the housing(10) at the bottom and a plate or co-rotating seal at the top, which in case of uniform cross-sections would be flat. In case the cross-sections linearly increase in size from bottom to top, the axes of the rockers are no longer parallel to the rotating axis of the rotor, but the arms of the rockers will still make a right angle in any plane perpendicular to the rotating axis of the rotor, but will make an obtuse angle in any plane perpendicular to the respective rocker axis. Shaping the bottom and top bodies spherically, with the rotor axis and both rocker axes normal to the spherical shapes, a full enclosure of the eighth volumes can be guaranteed. An advantage of this more complex construction could be expansion towards one end.
  • In operation, the rotor (1), here shown an ellipse, rotates around an axis (2), and contacts two rockers (3), that pivot around their axes (4) inside a housing (10). For an ellipse, with major semi-axis t and minor semi-axis s, it can be shown that a pivoting straightedge, centered at a distance of squareroot {t squared plus s squared} will always have two, and only two contact points (9). As shown here, it is sufficient that the rocker has a straightedge shape only on the contacting path with the ellipse. In this way, four expanding and compressing internal volumes (5), (6), (7) and (8) are created, which can be filled or emptied through openings in the rotor, the straightedges, top or bottom. Additionally four secondary expanding and compressing volumes are created (5 a), (6 a), (7 a) and (8 a), between the housing and the straightedges. Here shown are four stages of one quarter of a rotor rotation, in which top and bottom volumes (5) and (7) expand from minimum to maximum, right and left volumes (6) and (8) contract from maximum to minimum, secondary volumes (5 a) and (7 a) are first expanding and then contracting, and secondary volumes (6 a) and (8 a) are first contracting and then expanding. Mirroring and reversing the order of the pictures can easily show the other three quarters of the rotor rotation. Applications can be for instance as pump, compressor, steam or Stirling engine.
  • A not so obvious part of this invention is the use as a progressive cavity pump, made by stacking sections on top of each other. We could do this by taking sections according to each picture of FIG. 1 with certain thickness, aligning the rotor sections on top of each other as if it were extruded, and rotating housing and rockers. Looking in we would see a cavity progressing when the rotor is turned. Of course with more sections with smaller angles between each next section and the previous, the cavity shapes can be more continuous axially. This could be extended to continuously shaped cavities using flexible rockers spiraling around the rotor. If we would increase or decrease the shape of rotor and rockers linearly from top to bottom, as described above, we could have expansion respectively compression axially as well. Of course alternatively all rockers could be stacked axially on top of each other with all rocker axes in parallel along two straight lines , which would allow for a simple to machine or extrude housing, but now with a twisted rotor.
  • In FIG. 2 a possible application is shown with a non-elliptical rotor (11) with inlet (21) and exhaust (22). The rotor has a bearing (12) and the rockers (13) have bearings (14) and are rotating inside the housing (20). Together they create volumes (15), (16), (17) and (18), and secondary volumes (15 a), (16 a), (17 a) and (18 a). The contact areas on the rockers here are made of separate glide plates (19) that act as mating surfaces for the rotor material, and act as sideway seals to compensate for manufacturing tolerances and wear. Inside the housing (20) and rockers (13), and through the bottom of housing (20), cylindrical bodies (24) are inserted, which can move along their axis, and which can change the expansion ratio's of volumes (15), (16), (17) and (18). In, on, or instead of these bodies (24), spark plugs (25), fuel injectors (23), valves and other devices can be inserted, for instance to facilitate venting, inlet/exhaust timing, ignition timing, addition or recirculation of gasses or fuel. Next to the glide seals (19), each primary volume (15), (16), (17) and (18), is sealed from the top and bottom by seals on the housing (26), rockers (27) and rotor (28), pressed down by the top seal (31) and body (33) (as shown in FIG. 7). Lubricating oil is supplied to the gliding plates by bodies (29) or from inside the rockers (13). Cooling and lubricating fluid can be transported in the rotor (11) through the bearing (12) radius, inside the rockers (13) through their bearing (14) radii, and inside the housing (20). Additional (e.g. steam) cooling can be applied through the secondary volumes (15 a), (16 a), (17 a) and (18 a), possibly creating additional power, and possible air cooling along the rotor(11) axis, heat pipes and cooling fins. Bearings can be large, long and robust to accept fast combustion. Concatenation of units can minimize vibrations. Application for instance as Controlled Auto Ignition (HCCI) combustion engine.
  • In FIG. 3 half a rotation is shown of the configuration of FIG. 2
  • In FIG. 4 several views are shown of the configuration of FIG. 2
  • In FIG. 5 several views are shown of the rotor of configuration of FIG. 2
  • In FIG. 6 several views are shown of a rocker of configuration of FIG. 2. The glide plates (19) are inserted into recesses, where they can move within the recesses, and be pressurized externally or through openings (30) by combustion gasses.
  • In FIG. 7 the housing (20) and top cover (33) are shown. If tolerances allow, a fixed top plate (33) is sufficient. Otherwise, the top plate (33) and seal (31) can co-rotate with the rotor and take up axial tolerances and wear. In this case a small hole (32) can be used, allowing high pressure combustion gasses to enter, to pressurize the seal downwards towards the rotor, pivoting bodies and housing.
  • In FIG. 8 a cross-section of a rotor (41) is shown, in a plane perpendicular to its rotating central axis, its point-symmetric boundary curve made up out of (infinitesimal) sections of ellipses with equal origin, with t′*t′+s′*s′=R*R, with f=t(m) the maximum semi-axis and s′=s(m) the minimum semi-axis of an ellipse, both function of the origin based vector m of the boundary curve, and R the distance between central axis and axis of a rocker(44) in this cross-section plane, where on the boundary an inscribed rectangle (46) can be defined, such that (a,b), (−a,b), (a,−b) and (−a,−b), lie on the boundary, with a+b=R. The boundary curve of the rotor has a continuous mapping by its normal vector n, (−pi<angle(n)<=pi) to the origin based vector m of a boundary point (−pi<angle(m)<=pi), where the mapping can be bijective (one-to-one) as on point (36) of rotor (42), or surjective (one-or-more-to-one) as on point (35) and (35 a) of rotor (41). In either case the boundary can be cut up into connected smooth sections (34) and (34 a), and the direction of rotation of the normal vector n follows the direction of rotation of m on the boundary curve. In effect, the straightedge is the operator, mapping one section (34) on the next section (34 a), and this section (34 a) on the next (34), continuing back to the first section. This means shapes will be point symmetric (45) and for any given phi, a part of a boundary curve with m defined for phi<angle(n)<=phi+pi/2 defines the whole boundary curve.
  • Shown is an ellipse (43), which could be defined for any point of the boundary curve, by the point and its normal vector (37) and a perpendicular normal vector (38) at another point on the boundary. This meaning a straightedge (44) would contact these points precisely. Within some mathematically definable boundaries, tolerances and some curvature can be allowed on the straightedge (47), which will slightly differently map one point on the boundary, to another point on the boundary. A remaining property is that, on each arm of the straightedge, a plane through the rocker axis and any rocker contact point at distance sqrt(2)*a will go through any rocker contact point at sqrt(2)*b, and the cross-section lines of these contact planes of the two arms with a plane perpendicular to the central axis are perpendicular. Even though approximate, the rotor will now not be made up out of (infinitesimal) ellipses as describe above, but will be close.

Claims (7)

1) A rotation engine for pumping, compressing or expanding a gas or liquid with eight variable volumes created between a housing, a rotor on a central axis, axially symmetric regarding the central axis, and two rockers, the latter each pivoting on a parallel axis, no more than 90 degrees in either direction, sandwiched between flat top and bottom structures, where the two contact planes of either rocker with the rotor are flat and perpendicular to each other, and where the two contact zones between a rocker and the rotor move over the flat contact surfaces of the rocker and have a mutual variable distance, and where each cross section in a plane perpendicular to the central axis, within the closed curve formed by the contact surface of the rotor a rectangle can be placed such that the corner points (a,b), (−a,b), (a,−b) en (−a,−b) are on this curve and a+b=R, with R the distance between the intersection point of the central axis (0,0) and the intersection point of the axis of either rocker, and where the closed curve can be approximated with any desired precision by (infinitesimal) parts of ellipses with equal origin, with semi-axes t′=t(angle(n)), s′=s(angle(n)), where n is the local normal vector (−pi<angle(n)<=pi), and t′*t′+s′*s′=R*R, and where, following the curve, the normal vector rotates in the same direction, but at a different pace, and no two points have the same normal vector, where the rotor if required can be asymmetric and non-elliptic.
2) An engine according to claim 1, wherein a tolerance of the distance R of less than 5% is allowed and a tolerance of the flatness of the contact surfaces of the rockers of less than 5% is allowed, where the flatness is given by the maximum distance of a contact point to the nearest in claim 1 mentioned flat contact surface, divided by the distance of this contact point to the rotation axis of the rocker, and where a tolerance of the shape of the rotor of 5% is allowed, where this tolerance is given by the maximum distance between a point on the curve formed by the contact surface of the rotor in a plane perpendicular to the rotor axis and the curve described in claim 1, divided by the distance between this point and the central rotating axis of the rotor.
3) A rotation engine for pumping, compressing or expanding a gas or liquid with eight variable volumes created between a housing, a rotor on a central axis, axially symmetric regarding the central axis, and two rockers, the latter each pivoting on a NON-parallel axis, no more than 90 degrees in either direction, sandwiched between a spherical hollow top and a spherical bulging bottom structure, where the two contact planes of either rocker with the rotor are flat, and where the two contact zones between a rocker and the rotor move over the flat contact surfaces of the rocker and have a mutual variable distance, and where each cross section in a plane perpendicular to the central axis, within the closed curve formed by the contact surface of the rotor a rectangle can be placed such that the corner points (a,b), (−a,b), (a,−b) en (−a,−b) are on this curve and a+b=R, with R the distance between the intersection point of the central axis (0,0) and the intersection point of the axis of either rocker, and where the closed curve can be approximated with any desired precision by (infinitesimal) parts of ellipses with equal origin, with semi-axes t′=t(angle(n)), s′=s(angle(n)), where n is the local normal vector (−pi<angle(n)<=pi), and t′*t′+s′*s′=R*R, and where, following the curve, the normal vector rotates in the same direction, but at a different pace, and no two points have the same normal vector, where the rotor if required can be asymmetric and non-elliptic.
4) An engine according to claim 3, wherein a tolerance of the distance R of less than 5% is allowed and a tolerance of the flatness of the contact surfaces of the rockers of less than 5% is allowed, where the flatness is given by the maximum distance of a contact point to the nearest in claim 3 mentioned flat contact surface, divided by the distance of this contact point to the rotation axis of the rocker, and where a tolerance of the shape of the rotor of 5% is allowed, where this tolerance is given by the maximum distance between a point on the curve formed by the contact surface of the rotor in a plane perpendicular to the rotor axis and the curve described in claim 3, divided by the distance between this point and the central rotating axis of the rotor.
5) An engine according to any one of claims 1 to 4, wherein the rotor has a uniform shape in the axial direction, and sections of housing and rockers are concatenated in axial direction, being rotated several degrees, so as to make eight variable volumes in the axial direction, which move in axial direction as the rotor is turned.
6) An engine according to any one of claims 1 to 4, wherein the rotor has a uniform shape in the axial direction, and the rockers are flexible and wind around the rotor like spirals, where eight volumes are created, which move in the axial direction as the rotor is turned.
7) An engine according to any one of claims 1 to 4, wherein the housing has a uniform shape in the axial direction with rockers placed on top of each other with all rocker axes along two straight lines with the rotor now twisted such that each cross-section perpendicular to the rotating axis, will be as described as in the respective claims 1 to 4.
US13/622,409 2011-09-20 2012-09-19 Simple rotation engine with variable compression and high gas flow Abandoned US20130259731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/622,409 US20130259731A1 (en) 2011-09-20 2012-09-19 Simple rotation engine with variable compression and high gas flow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161536861P 2011-09-20 2011-09-20
US13/622,409 US20130259731A1 (en) 2011-09-20 2012-09-19 Simple rotation engine with variable compression and high gas flow

Publications (1)

Publication Number Publication Date
US20130259731A1 true US20130259731A1 (en) 2013-10-03

Family

ID=49235300

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/622,409 Abandoned US20130259731A1 (en) 2011-09-20 2012-09-19 Simple rotation engine with variable compression and high gas flow

Country Status (1)

Country Link
US (1) US20130259731A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108061032A (en) * 2017-11-21 2018-05-22 燕山大学 Pulse free high order elliptic gear pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1401391A1 (en) * 1961-11-20 1968-10-24 Artajo Jose Ignacio Martin Thermal engine
US5571005A (en) * 1995-06-07 1996-11-05 Delaware Capital Formation, Inc. Hinged vane rotary pump
US5704332A (en) * 1996-03-27 1998-01-06 Motakef; Ardeshir Rotary engine
US7597548B2 (en) * 2006-07-19 2009-10-06 1564330 Ontario Inc. Dual arc vane pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1401391A1 (en) * 1961-11-20 1968-10-24 Artajo Jose Ignacio Martin Thermal engine
US5571005A (en) * 1995-06-07 1996-11-05 Delaware Capital Formation, Inc. Hinged vane rotary pump
US5704332A (en) * 1996-03-27 1998-01-06 Motakef; Ardeshir Rotary engine
US7597548B2 (en) * 2006-07-19 2009-10-06 1564330 Ontario Inc. Dual arc vane pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108061032A (en) * 2017-11-21 2018-05-22 燕山大学 Pulse free high order elliptic gear pump

Similar Documents

Publication Publication Date Title
US6401686B1 (en) Apparatus using oscillating rotating pistons
KR101032262B1 (en) Rotary combustion apparatus
EP1016785A1 (en) Eccentric sliding vane equilibrium rotor device and its applications
US20110100321A1 (en) Rotary power device
US3877850A (en) Spherical power device
US8689766B2 (en) Spherical two stroke engine system
US5681156A (en) Piston machine having a piston mounted on synchronously rotating crankshafts
US20130259731A1 (en) Simple rotation engine with variable compression and high gas flow
US20090148323A1 (en) Rotary Machine and Combustion Engine
US3950117A (en) Machine with rotary articulated pistons
US6357397B1 (en) Axially controlled rotary energy converters for engines and pumps
NL2004120C2 (en) Simple rotation engine with variable compression and high gas flow.
US20070280844A1 (en) Rotary Machine and Internal Combustion Engine
US7621254B2 (en) Internal combustion engine with toroidal cylinders
US20030062020A1 (en) Balanced rotary internal combustion engine or cycling volume machine
RU2373400C2 (en) Double-auger unit of movable working chambers of mechanical compression or using pressure of liquid and/or gaseous working body, method of producing spherical helical wall of spherical auger of double-auger unit
US3241745A (en) Rotary gas compression apparatus
CN1548703A (en) Multi-arc cylinder body sliding sheet rotor positive displacement machinery
Spark et al. The orbital displacer: Implications and applications
US4578950A (en) Double-acting rotary mechanism for combustion engines and the like
US6799542B2 (en) Engine having piston-cam assembly powertrain
US11873813B2 (en) Suction/compression rotating mechanism, rotary compressor and rotary engine
EP0187148A1 (en) Rotary machine.
KR100368119B1 (en) Axial flow 4 stroke engine
TW201433686A (en) Piston mechanism assembly

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION