US20130252616A1 - Radio base station apparatus, terminal apparatus, radio communication system, and radio communication method in radio base station apparatus - Google Patents

Radio base station apparatus, terminal apparatus, radio communication system, and radio communication method in radio base station apparatus Download PDF

Info

Publication number
US20130252616A1
US20130252616A1 US13/895,569 US201313895569A US2013252616A1 US 20130252616 A1 US20130252616 A1 US 20130252616A1 US 201313895569 A US201313895569 A US 201313895569A US 2013252616 A1 US2013252616 A1 US 2013252616A1
Authority
US
United States
Prior art keywords
cell
base station
quality
radio base
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/895,569
Other languages
English (en)
Inventor
Akiko Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Assigned to FUJITSU LIMITED reassignment FUJITSU LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MURAKAMI, AKIKO
Publication of US20130252616A1 publication Critical patent/US20130252616A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments discussed herein are related to a radio base station apparatus, a terminal apparatus, a radio communication system, and a radio communication method in the radio base station apparatus.
  • a radio communication system such as a mobile phone system or a wireless MAN (Metropolitan Area Network) is widely used.
  • a radio communication system such as a mobile phone system or a wireless MAN (Metropolitan Area Network)
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • a radio base station apparatus (hereinafter referred to as “base station”) transmits a reference signal to a terminal apparatus (hereinafter referred to as “terminal”).
  • the terminal is allowed to perform synchronous detection or cell search and further measure the state of a radio propagation path.
  • the terminal is allowed to transmit or receive data in synchronization with the base station, which allows efficient radio communication to be performed.
  • FIG. 16A illustrates an example of a configuration of a radio frame in the 5 MHz band.
  • FIG. 16B illustrates an example of a configuration of a resource block also in the 5 MHz band.
  • the minimum unit of the radio frame is an OFDM (Orthogonal Frequency Division Multiplexing) symbol in a time axis direction (the abscissa direction in FIGS. 16A and 16B ) and a subcarrier in a frequency axis direction (the ordinate direction in FIGS. 16A and 16B ).
  • a time axis direction e.g., one slot (0.5 msec) includes twelve OFDM symbols, and one subframe (1 msec) includes two time slots.
  • one resource block includes twelve subcarriers, and includes twenty-five resource blocks when the radio band is the 5 MHz band. Note that one resource block includes, e.g., twelve subcarriers and seven OFDMA symbols.
  • each of the black blocks represents an example of the radio resource used to transmit the reference signal.
  • the reference signal is transmitted using even-numbered slots.
  • the terminal is allowed to receive the reference signal based on, e.g., radio resource allocation information (scheduling information) transmitted from the base station.
  • FIGS. 17A and 17C illustrate each illustrating an example of connection between the base station and the terminal.
  • FIGS. 17B and 17D illustrate an example of the allocation of the radio resource to the reference signal.
  • a base station (eNB: evolutional Node B) 100 is wirelessly connected to a plurality of terminals (UE: User Equipment) 200 - 1 to 200 - 3 present in the cell of the base station 100 to be able to transmit the reference signal thereto in parallel.
  • UE User Equipment
  • the terminals 200 - 1 to 200 - 3 are not present in the cell of the base station 100 (e.g., FIG. 17C ) or when the terminals 200 - 1 to 200 - 3 are present but in an idle state in which, e.g., the power source thereof is not turned ON, even if the base station 100 transmits the reference signal, the reference signal is not used. In such a case, the radio resource is used wastefully for the transmission of the reference signal, and consequently power consumed at the base station 100 is also used wastefully.
  • the base station 100 transmits the reference signal by intermittent transmission.
  • the intermittent transmission of the reference signal indicates selectively removing one or a plurality of slots from the slots (e.g., even-numbered slots) used for transmission and transmitting the reference signal using the remaining slots.
  • the base station 100 selectively removes the slots with the slot numbers “2”, “4”, and “6” and transmits the reference signal using the slots with the slot numbers “0”, “8”, . . . . Due to the intermittent transmission of the reference signal, there is timing with which the reference signal is not transmitted to allow a reduction in the power consumed at the base station 100 .
  • FIG. 18A illustrates an example of a configuration of the cell
  • FIG. 18B illustrates an example of the process sequence of the handover.
  • a terminal 200 is moved from the cell (hereinafter referred to as “host cell”) of the base station to which the terminal 200 is currently connected to a cell (hereinafter referred to as “another cell”) of a base station as a handover destination candidate.
  • a handover indicates, e.g., the movement of the terminal 200 from the host cell to anther cell.
  • Another cell as a handover destination candidate is the base station as a handover destination candidate having the other cell subordinate to thereof.
  • the base station as the handover destination candidate may be the base station 100 currently connected to the terminal 200 or another base station different from the base station currently connected to the terminal 200 .
  • the measurement of the quality of the host cell by the terminal 200 is the measurement of the quality by the terminal 200 based on the reference signal transmitted from the base station 100 currently connected to the terminal 200 and having the host cell within the cell range thereof.
  • the measurement of the quality of another cell by the terminal 200 is the measurement of the quality by the terminal 200 based on the reference signal transmitted from a base station including another cell as a handover destination candidate within the cell range thereof to the other cell.
  • the terminal 200 measures the quality of the host cell (cell #a) and further measures the respective qualities of other cells (cells #b to #d). After measuring the qualities of the host cell and the other cells, the terminal 200 transmits a measurement report message to the base station (S-eNB: Source eNB) 100 currently connected thereto.
  • the measurement report message includes the measurement values of the qualities of the host cell and the other cells.
  • FIG. 18B illustrates an example in which the handover is performed to the base station (T-eNB: Target eNB) as a handover destination other than the base station 100 currently connected to the terminal 200 .
  • the sequence of the handover in this case is as follows.
  • the base station 100 currently connected to the terminal 200 determines a handover destination base station based on the measurement values included in the message.
  • the base station 100 transmits a HO required/request message to the determined handover destination base station (S 101 ).
  • the HO required/request message serves as, e.g., a handover request to the handover destination base station.
  • the base station 100 currently connected to the terminal 200 transmits an RRCconnectionReconfiguration message including information related to the handover destination base station to the terminal 200 (S 102 ). Then, the terminal 200 transmits an RRCconnectionReconfigurationComplete message to the handover destination base station so that the handover is completed (S 103 ). Note that, after the HO required/request message, some of the messages between the HO required/request message and the RRCconnectionReconfiguration message are omitted.
  • FIGS. 19A and 19B illustrates an example of such a case.
  • the first one of the methods is called “s-Measure” (e.g., FIG. 19A ).
  • the base station 100 preliminarily transmits a threshold value related to the s-Measure to the terminal 200 .
  • the terminal 200 measures the quality of the host cell and, when the measurement value becomes not more than the threshold value, the measurement value is added to the measurement report message and transmitted.
  • the s-Measure is used as a threshold value for measuring the quality of the host cell.
  • the second one of the methods is called “reportStrongestCells” or “reportStrongestCellsForSON”.
  • the reportStrongestCells is a method (e.g., FIG. 19B ) in which, e.g., the base station 100 preliminarily transmits a threshold value about the reportStrongestCells to the terminals 200 - 1 and 200 - 2 , and the terminal 200 - 1 measures the quality of the host cell or another cell. When the measurement value of at least one of the cells becomes not less than the threshold value, the terminal 200 - 1 transmits the measurement value as the measurement report.
  • the report StrongestCellsForSON is a method in which, e.g., when a terminal 20 - 1 determines the strongest cell, the measurement value is added to the measurement report message and transmitted.
  • Each of the reportStrongestCells and the reportStrongestCellsForSON is used to measure, e.g., the qualities of the host cell and another cell.
  • the terminal 200 when the terminal 200 measures the quality of another cell serving as a handover destination candidate, if the intermittent transmission of the reference signal is performed in the other cell (e.g., see FIG. 20 ), the terminal 200 may be unable to precisely measure the quality of the other cell.
  • the other cell no longer serves as a handover destination candidate for the terminal 200 .
  • a measurement time is prescribed so that the terminal 200 measures the quality of the next cell or another cell within the prescribed time (e.g., FIG. 21 ).
  • the reference signal is transmitted with timing resulting from selective removal of several slots.
  • the terminal 200 is unable to measure the quality within the prescribed time.
  • the terminal 200 is unable to report the measurement value as the measurement report message. From the viewpoint of the terminal 200 , the other cell in which the intermittent transmission is performed no longer serves as a candidate cell for a cell handover destination. As a result, the terminal 200 may be unable to move to the other cell.
  • the measurement value may be less than the threshold value.
  • the terminal 200 is not allowed to transmit the measurement report message (e.g., FIG. 22 ).
  • the other cell no longer serves as a handover destination for the terminal 200 .
  • the terminal 200 may be unable to move to the other cell.
  • a radio base station apparatus for performing radio communication with a terminal apparatus, the radio base station apparatus includes an intermittence determination unit which controls to be transmitted a reference signal over a first transmission period in a second cell, when the intermittence determination unit receives a first message including a quality of a first cell subordinate to the radio base station or a quality of the second cell subordinate to the radio base station apparatus or another radio base station apparatus, measured by the terminal apparatus in the first cell, and when a reference signal is transmitted over a second transmission period shorter than a first transmission period in the second cell; and a handover determination unit which receives a second message including the quality of the second cell measured by the terminal apparatus in the first cell based on the reference signal transmitted over the first transmission period and determines a handover destination for the terminal apparatus based on the quality of the second cell.
  • FIG. 1 illustrates an example of a configuration of a radio communication system
  • FIG. 2 illustrates an example of the configuration of the radio communication system
  • FIG. 3 illustrates an example of the configuration of the radio communication system
  • FIG. 4 illustrates an example of the configuration of the radio communication system
  • FIG. 5 illustrates an example of the configuration of the radio communication system
  • FIG. 6 illustrates an example of a configuration of a base station
  • FIG. 7 illustrates an example of a configuration of a terminal
  • FIG. 8 is a sequence diagram illustrating an example of an overall operation
  • FIG. 9 is a flow chart illustrating an example of RS intermittent transmission processing
  • FIG. 10 is a flow chart illustrating an example of RS intermittent transmission halt processing
  • FIG. 11 is a flow chart illustrating examples of HO processing and intermittence resumption processing
  • FIG. 12 is a flow chart illustrating an example of terminal-side processing
  • FIG. 13 is a flow chart illustrating an example of the RS intermittent transmission halt processing
  • FIG. 14 is a flow chart illustrating an example of the terminal-side processing
  • FIGS. 15A to 15C illustrate an example of intermittent transmission timing
  • FIG. 5D illustrates an example of the relations among cells
  • FIG. 16A illustrates an example of a configuration of a radio frame
  • FIG. 16B illustrates an example of a configuration of a resource block
  • FIGS. 17A and 17C illustrate an example of the relations between a base station and terminals, and FIGS. 17B and 17D illustrate an example of transmission timing for a reference signal;
  • FIG. 18A illustrates an example of a configuration of the cells
  • FIG. 18B illustrates an example of the sequence of handover processing
  • FIGS. 19A and 19B illustrate an example of the relations between the base station and the terminals
  • FIG. 20 illustrates an example of the relation between the base station and the terminal
  • FIG. 21 illustrates an example of a measurement time for intermittent transmission
  • FIG. 22 illustrates an example of the relations between the base station and the terminals.
  • FIG. 1 illustrates an example of a configuration of a radio communication system in the first embodiment.
  • a radio communication system 1 includes a radio base station apparatus 10 , a terminal apparatus 50 , and another radio base station apparatus 120 .
  • the radio base station apparatus 10 and the terminal apparatus 50 perform radio communication.
  • the terminal apparatus 50 is located in (or within the range) of a first cell subordinate to the radio base station apparatus 10 and performs radio communication with the radio base station apparatus 10 in the first cell.
  • the radio base station apparatus 10 includes an intermittence determination unit 110 and a handover determination unit 111 .
  • the intermittence determination unit 110 controls to be transmitted the reference signal over the first transmission period in the second cell.
  • the handover determination unit 111 receives a second message including the quality of the second cell measured by the terminal apparatus 50 in the first cell based on the reference signal transmitted over the first transmission period and determines a handover destination for the terminal apparatus 50 based on the quality of the second cell.
  • the terminal apparatus 50 includes a measurement execution unit 510 and a transmission processing unit 511 .
  • the measurement execution unit 510 measures the quality of the first or second cell as a first quality and the quality of the second cell as a second quality after the measurement of the first quality.
  • the transmission processing unit 511 transmits the first message including the first quality and the second message including the second quality to the radio base station apparatus 10 .
  • the radio base station apparatus 10 Upon receipt of the first message when the reference signal is transmitted over the second transmission period (or when intermittent transmission of the reference signal is performed) in the second cell, the radio base station apparatus 10 halts the transmission and controls to be transmitted the reference signal over the first transmission period. This allows the terminal apparatus 50 to precisely measure the quality of the second cell. Since the radio base station apparatus 10 determines the handover destination based on the quality of the second cell, the terminal apparatus 50 is allowed to move even to the cell in which the intermittent transmission of the reference signal is performed by a handover.
  • FIG. 2 illustrates an example of the configuration of the radio communication system in the second embodiment.
  • the radio communication system 1 includes the radio base station apparatus (eNB) (hereinafter referred to as “base station”) 10 , and the terminal apparatus (UE) (hereinafter referred to as “terminal”) 50 .
  • eNB radio base station apparatus
  • UE terminal apparatus
  • the base station 10 includes one or a plurality of cells # 1 to # 4 , and can provide various services by radio communication to the terminal 50 within the range of each of the cells, for example.
  • the base station 10 is capable of parallel radio communication with a plurality of the terminals 50 .
  • each of the terminals 50 is connected to the base station 10 to perform radio communication therewith.
  • the terminal 50 is a mobile phone, an information mobile terminal, or the like, for example.
  • the base station 10 and the terminal 50 are capable of bidirectional radio communication within the range of each of the cells. That is, the base station 10 is capable of performing data transmission (downlink communication) to the terminal 50 , while the terminal 50 is capable of performing data transmission (uplink communication) to the base station 10 .
  • the base station 10 performs scheduling for each of the downlink communication and the uplink communication and allocates radio resources thereto to perform radio communication. Scheduling information is transmitted appropriately as, e.g., a control signal from the base station 10 to the terminal 50 .
  • the radio communication system 1 illustrated in FIG. 2 illustrates an example in which a handover is performed at the same base station 10 .
  • An inter-sector handover (or inter-cell handover) indicates such movement of the terminal 50 between the cells without changing the base station 10 of the handover destination, for example.
  • each of the cells # 1 and # 2 is subordinate to the same base station 10 .
  • each of the cells # 1 to # 4 may be called, e.g., a sector. It is assumed that, in the following, the cells and the sectors are used with no distinction unless particularly mentioned.
  • each of the cells indicates a range in which the base station 10 is capable of providing various services for the terminal 50 , for example.
  • a host cell indicates a cell subordinate to the base station 10 when the terminal 50 is connected to the base station 10 in the cell, for example.
  • Another cell indicate a cell subordinate to a base station serving as a handover destination candidate, for example.
  • a handover indicates movement of the terminal 50 from the host cell to another cell, for example.
  • Another cell as a handover destination candidate is assumed to be used in the same meaning as a base station including the other cell subordinate to thereof and serving as a handover destination candidate, for example.
  • the base station as the handover destination candidate may be the base station currently connected to the terminal 50 or another base station different from the base station currently connected to the terminal 50 , for example.
  • the measurement of the quality of the host cell by the terminal 50 is the measurement of the quality by the terminal 50 based on the reference signal transmitted from the base station 10 currently connected to the terminal 50 , for example.
  • the measurement of the quality of another cell by the terminal 50 is the measurement of the quality by the terminal 50 based on the reference signal transmitted from the base station including the other cell as the handover destination candidate subordinate to thereof to the other cell, for example.
  • Connection to each of the cells indicates connection of the terminal 50 to the base station 10 including the cell subordinate to thereof, for example.
  • FIG. 3 also illustrates an example of the configuration of the radio communication system 1 in which a handover is performed at a different base station. That is, FIG. 3 illustrates an example in which the terminal 50 moves from the cell # 1 subordinate to a base station (eNB# 1 ) 10 - 1 to the cell # 2 subordinate to the base station (eNB# 2 ) 10 - 2 .
  • An inter-base-station handover (or X2 handover) indicates that, e.g., the terminal 50 currently connected to the base station 10 - 1 switches the connection thereof to the base station 10 - 2 different from the base station 10 - 1 and moves between the cells.
  • data, a message, or the like is directly transmitted and received.
  • FIG. 4 also illustrates an example of the configuration of the radio communication system 1 .
  • the radio communication system 1 further includes a MME (Mobility Management Entity) 70 .
  • the MME 70 is connected to the base stations 10 - 1 and 10 - 2 , and performs the management of movement of the terminal 50 , the setting of a data path, and the like, for example.
  • the example of FIG. 4 is an example of the inter-base-station handover, similarly to the example of FIG. 3 .
  • FIG. 4 illustrates an example in which data, a message, or the like is transmitted and received via the MME 70 as a device higher in order than the base stations 10 - 1 and 10 - 2 .
  • FIG. 5 also illustrates an example of the configuration of the radio communication system 1 .
  • the radio communication system 1 further includes a plurality of MMEs 70 - 1 and 70 - 2 .
  • a handover in this case is an example of movement of the terminal 50 from the cell # 1 of the base station 10 - 1 subordinate to the MME 70 - 1 to the cell # 2 of a base station 10 - 10 subordinate to the MME 70 - 2 .
  • An inter-MME handover indicates that the terminal 50 moves between the cells over the plurality of MMEs, for example.
  • data, a message, or the like is transmitted and received between the base stations 10 - 1 and 10 - 1 via the MMEs 70 - 1 and 70 - 2 .
  • FIG. 6 illustrates the example of the configuration of the base station 10 .
  • FIG. 7 illustrates the example of the configuration of the terminal 50 .
  • the base station 10 includes an antenna 11 , a radio wave transmission and reception unit 12 , a signal reception processing unit 13 , a UE monitor unit 14 , a HO determination unit 15 , an X2/S1 message transmission and reception processing unit 16 , a traffic monitor unit 17 , an RS intermittence determination unit 18 , a scheduler 20 , and a signal transmission processing unit 21 .
  • the base station 10 has one or a plurality of cells.
  • the intermittence determination unit 10 corresponds to the antenna 11 , the radio wave transmission and reception unit 12 , the signal reception processing unit 13 , the UE monitor unit 14 , the traffic monitor unit 17 , and the RS intermittence determination unit 18 , for example.
  • the handover determination unit 111 corresponds to the antenna 11 , the radio wave transmission and reception unit 12 , the signal reception processing unit 13 , and the HO determination unit 15 , for example.
  • the antenna 11 receives a radio signal transmitted from the terminal 50 or transmits the radio signal output from the radio wave transmission and reception unit 12 to the terminal 50 .
  • the radio wave transmission and reception unit 12 converts the radio signal received by the antenna 11 to a baseband signal and outputs the baseband signal to the signal reception processing unit 13 or converts the baseband signal output from the signal transmission processing unit 21 to a radio signal and outputs the radio signal to the antenna 11 .
  • the radio wave transmission and reception unit 12 includes a frequency converter, a bandpass filter, and the like for the conversion between the radio signal and the baseband signal, for example.
  • the signal reception processing unit 13 performs demodulation processing, decoding processing, or the like on the baseband signal output from the radio wave transmission and reception unit 12 to extract data or a signal therefrom.
  • the signal reception processing unit 13 outputs the UE context to the UE monitor unit 14 .
  • the UE context includes information represents the cell ID of the cell in which the terminal 50 is located, the ID of the terminal 50 , and also a state (such as an active mode) of the terminal 50 , and is transmitted from the terminal 50 , for example.
  • the signal reception processing unit 13 When the extracted data includes a measurement report message, the signal reception processing unit 13 outputs the message to the HO determination unit 15 and to the RS intermittence determination unit 18 .
  • the measurement report message includes the cell ID of a measurement target, and a measurement value related to the quality of the state of a radio propagation path measured by the terminal 50 , for example.
  • the signal reception processing unit 13 When the extracted data includes a message, the signal reception processing unit 13 outputs the message to the X2/S1 message transmission and reception processing unit 16 , for example. The signal reception processing unit 13 also outputs the extracted data to the traffic monitor unit 17 , for example.
  • the UE monitor unit 14 monitors the UE context output from the signal reception processing unit 13 to monitor the cell in which the terminal 50 connected to the base station 10 is located and the state of the terminal 50 , for example.
  • the terminal 50 When the terminal 50 is brought into an idle state or the power source thereof is cut off, for example, the terminal 50 does not transmit the UE context. Therefore, when the UE context of a given cell is not input thereto from the signal reception processing unit 13 , the UE monitor unit 14 can detect that, in the cell, each of the terminals 50 is brought into the idle state or the like, for example.
  • the UE monitor unit 14 outputs the result of monitoring to the RS intermittence determination unit 18 .
  • the result of monitoring includes whether or not the UE context is received from each of the UEs (or whether or not each of the UEs is in an active state), the presence of a cell which no longer receives the UE context, if any, and the cell ID of the cell, for example.
  • the HO determination unit 15 determines the presence or absence of the execution of a handover, the base station as the handover destination (or the cell as the handover destination), and the like. The HO determination unit 15 determines another cell including the highest measurement value included in the measurement report message as the handover destination, for example. Upon determining that a handover is to be executed, the HO determination unit 15 requests transmission of a message (e.g., HO required/request message), such as a handover request, of the X2/S1 message transmission and reception processing unit 16 .
  • a message e.g., HO required/request message
  • the HO determination unit 15 makes the request when the base station including the other cell as the handover destination subordinate to thereof is different from the base station 10 currently connected to the terminal 50 and does not make the request when the base station including the other cell as the handover destination subordinate to thereof is the same as the base station 10 currently connected to the terminal 50 .
  • the HO determination unit 15 when notified of an RS intermittent transmission mode by the RS intermittence determination unit 18 , the HO determination unit 15 does not make a HO determination and, when notified of the halt of the RS intermittent transmission mode by the RS intermittence determination unit 18 , the HO determination unit 15 makes a HO determination, for example.
  • the RS intermittent transmission mode (or ES (Energy Saving) mode) is a mode in which from the slots used for transmission (e.g., even-numbered slots), one or a plurality of the slots are selectively removed and the reference signal is transmitted using the remaining slots used for transmission, as described above (e.g., FIG. 15B ), for example.
  • the RS intermittent transmission mode is a mode in which the slots used for transmission are selectively removed and the reference signal is transmitted over the second transmission period shorter than the first transmission period, for example.
  • the halt of the RS intermittent transmission mode is halting the RS intermittent transmission mode and, by the halt, e.g., the reference signal is transmitted to the terminal 50 using the even-numbered slots.
  • the X2/S1 message transmission and reception processing unit 16 generates an X2 message or a S1 message from the message output from the signal reception processing unit 13 and transmits the X2 message or S1 message to another base station (e.g., an adjacent base station) or the MME 70 .
  • the X2 message is a message based on an interface when the message is directly transmitted and received between the base stations, for example.
  • the S1 message is a message based on an interface when the message is transmitted and received to and from another base station via the MME 70 , for example.
  • the X2/S1 message transmission and reception processing unit 16 generates the X2 or S1 message output from the HO determination unit 15 and including the base station ID or cell ID indicating the handover destination or the like, and transmits the X2 or S1 message to another base station or the MME 70 .
  • the X2/S1 message transmission and reception processing unit 16 Upon receipt of the notification of the RS intermittent transmission mode from the RS intermittence determination unit 18 , the X2/S1 message transmission and reception processing unit 16 generates the X2 or S1 message notifying that the base station 10 is in the RS intermittent transmission mode or the like and transmits the X2 or S1 message to another base station or the MME 70 .
  • the X2/S1 message transmission and reception processing unit 16 can also receive the X2 or S1 message and outputs the received message to the signal transmission processing unit 21 .
  • the X2/S1 message transmission and reception processing unit 16 outputs the notification to the RS intermittence determination unit 18 .
  • the traffic monitor unit 17 receives data from the signal reception processing unit 13 and detects the amount of traffic (e.g., an amount of data per unit time) of the data received by the base station 10 (data in an upstream communication link). The traffic monitor unit 17 also receives data from the signal transmission processing unit 21 and detects the amount of traffic of data in a downstream communication link, which is transmitted from the base station 10 . The traffic monitor unit 17 outputs the detected amounts of traffic to the RS intermittence determination unit 18 . Note that the traffic monitor unit 17 may also receive the scheduling information from the scheduler 20 and detect the amount of traffic in the upstream or downstream communication link based thereon. The traffic monitor unit 17 outputs the detected amount of traffic to the RS intermittence determination unit 18 .
  • the traffic monitor unit 17 may also receive the scheduling information from the scheduler 20 and detect the amount of traffic in the upstream or downstream communication link based thereon. The traffic monitor unit 17 outputs the detected amount of traffic to the RS intermittence determination unit 18 .
  • the RS intermittence determination unit 18 determines whether or not the intermittent transmission of the reference signal is to be performed based on the result of monitoring output from the UE monitor unit 14 . For example, upon receipt of the notification that the UE context is received in the cell subordinate to thereof as the result of monitoring, the RS intermittence determination unit 18 determines to operate in a normal RS transmission mode (normal RS transmission mode, which will be described later in detail) relative to the cell and notifies the scheduler 20 of the determination. Upon receipt of the notification that the UE context is not present in the cell subordinate to thereof as the result of monitoring, the RS intermittence determination unit 18 determines to operate in the RS intermittent transmission mode relative to the cell and notifies the scheduler 20 of the determination. In this case, the RS intermittence determination unit 18 determines an intermittence cycle based on the amounts of traffic output from the traffic monitor unit 17 and notifies the scheduler 20 of the intermittence cycle.
  • a normal RS transmission mode normal RS transmission mode, which will be described later in detail
  • the RS intermittence determination unit 18 outputs the cell ID of the cell to be in the RS intermittent transmission mode and the intermittent transmission cycle to the X2/S1 message transmission and reception processing unit 16 . This allows another base station as a handover destination candidate to be notified of the fact that the cell in the base station 10 is in the RS intermittent transmission mode.
  • the RS intermittence determination unit 18 outputs the cell ID of the cell in the RS intermittent transmission mode and the intermittent transmission cycle to the scheduler 20 .
  • the scheduler 20 performs scheduling such that the cell ID of the cell in the RS intermittent transmission mode and the intermittent transmission cycle are transmitted as broadcast information (SIB).
  • SIB broadcast information
  • the RS intermittence determination unit 18 determines to halt the RS intermittent transmission mode. The details thereof will be described later.
  • the scheduler 20 When transmitting data or a signal to the terminal 50 (downstream communication link) or receiving data or a signal transmitted from the terminal 50 (upstream communication link), the scheduler 20 performs allocation of a radio resource to be used for the transmission or reception (or scheduling). As described above, the scheduler 20 performs the scheduling of the reference signal based on the notification from the RS intermittence determination unit 18 , for example.
  • the scheduler 20 Upon receipt of the notification of the normal RS transmission mode, the scheduler 20 performs scheduling such that transmission is performed using the radio resource in which even-numbered slots is determined in advance, for example. Upon receipt of the notification of the RS intermittent transmission mode, the scheduler 20 further performs the scheduling of an intermittent transmission target cell such that the intermittent transmission of the reference signal is performed in accordance with the intermittent transmission cycle, for example. The scheduler 20 outputs the result of the scheduling as scheduling information to the signal transmission processing unit 21 .
  • the signal transmission processing unit 21 performs coding processing, modulation processing, or the like on the user data output from the X2/S1 message transmission and reception processing unit 16 and outputs the user data so as to allow the user data to be transmitted in accordance with the scheduling information.
  • the signal transmission processing unit 21 generates the reference signal and outputs the reference signal such that the reference signal is transmitted in accordance with the scheduling information from the scheduler 20 .
  • FIG. 7 illustrates an example of a configuration of the terminal 50 .
  • the terminal 50 includes an antenna 51 , a radio wave transmission and reception unit 52 , a signal reception processing unit 53 , a HO execution unit 54 , a Measurement execution unit 55 , and a signal transmission processing unit 56 .
  • the measurement execution unit 510 corresponds to the Measurement execution unit 55
  • the transmission processing unit 511 corresponds to the signal transmission processing unit 56 , the radio wave transmission and reception unit 52 , and the antenna 51 , for example.
  • the antenna 51 receives the radio signal transmitted from the base station 10 and outputs the radio signal to the radio wave transmission and reception unit 52 or transmits the radio signal output from the radio wave transmission and reception unit 52 to the base station 10 .
  • the radio wave transmission and reception unit 52 converts the radio signal received by the antenna 51 to a baseband signal and outputs the baseband signal to the signal reception processing unit 53 or converts the baseband signal output from the signal transmission processing unit 56 to a radio signal and outputs the radio signal to the antenna 51 .
  • the radio wave transmission and reception unit 52 includes a frequency converter, a bandpass filter, and the like for the conversion between the radio signal and the baseband signal, for example.
  • the signal reception processing unit 53 performs demodulation processing, decoding processing, or the like on the baseband signal to extract the data or the signal transmitted to the terminal 50 in accordance with the scheduling information.
  • the signal reception processing unit 53 outputs the reference signal, which is included in the extracted signal, to the Measurement execution unit 55 .
  • the signal reception processing unit 53 also outputs a message related to a handover transmitted from the base station 10 , which is included in the received data, to the HO execution unit 54 .
  • the scheduling information is transmitted as a control signal from the base station 10 using the predetermined radio resource.
  • the terminal 50 receives the scheduling information produced by the base station 10 .
  • the HO execution unit 54 exchanges the message related to a handover with the base station 10 . For example, upon receipt of the RRCconnectionReconfiguration message including information related to a handover destination base station, the HO execution unit 54 generates various messages thereafter and transmits the generated messages to the base station 10 via the signal transmission and reception processing unit 56 .
  • the Measurement execution unit 55 measures a received power value (or received power) for the reference signal to measure the quality of the radio propagation path.
  • the measurement value may also be a SINR (Signal to Interference Noise and power Ratio), a SNR (Signal to Noise Ratio), or the like instead of the received power value.
  • the Measurement execution unit 55 measures the quality of the host cell or another cell based on the measurement method reported from the base station 10 . The details thereof will be described later.
  • the reference signal is transmitted by using a radio resource different from one cell to another, for example.
  • the Measurement execution unit 55 is assumed to hold information on which cell uses which radio resource to transmit the reference signal. Through comparison with the radio resource of the received reference signal, the Measurement execution unit 55 can link the cell ID of the measurement target to the measurement value. After the quality measurement, the Measurement execution unit 55 outputs the cell ID of the measurement target cell and the measurement value to the signal transmission processing unit 56 .
  • the signal transmission processing unit 56 performs signal processing such as modulation processing or coding processing on the cell ID and the measurement value to convert the cell ID and the measurement value to a baseband signal and outputs the baseband signal to the radio wave transmission and reception unit 52 . By the conversion, the signal transmission processing unit 56 generates the measurement report message including the cell ID and the measurement value, for example.
  • the signal transmission processing unit 56 can also perform signal processing on the user data from another processing unit (not illustrated).
  • the signal transmission processing unit 56 performs processing so as to transmit the measurement report message to the base station 10 in accordance with the scheduling information received by the signal reception processing unit 53 .
  • FIG. 8 is a sequence diagram illustrating an example of an overall operation in the radio communication system 1 .
  • the example illustrated in FIG. 8 illustrates an example (inter-base-station handover) in which the terminal 50 is handed over from the base station 10 - 1 currently connected thereto to the other base station 10 - 2 .
  • the base station 10 - 1 is referred to appropriately as a source base station (S-eNB) and the base station 10 - 2 is referred to appropriately as a target base station.
  • S-eNB source base station
  • the terminal 50 and the base station 10 - 1 perform connection processing. In this manner, the base station 10 - 1 becomes the source base station 10 - 1 for the terminal 50 . For example, in the connection processing, the base station 10 - 1 notifies the terminal 50 of a quality measurement method (S 10 ).
  • the s-Measure is for measuring the quality of the host cell, for example.
  • the terminal 50 transmits the measurement value to the source base station 10 - 1 .
  • the scheduler 20 determines that measurement is performed using the s-Measure as well as a threshold value related to the s-Measure and outputs the determinations to the signal transmission processing unit 21 .
  • the signal transmission processing unit 21 generates a message (e.g., RRCconnectionReconfiguration message) including information thereon and transmits the message to the terminal 50 .
  • the reportStrongestCells described above may also be used, and any method may be used as long as the method gives an instruction to perform the quality measurement of the other cell, for example.
  • the source base station 10 - 1 adds the measurement method to the message and transmits the message.
  • FIG. 9 is a flow chart illustrating an example of the RS intermittent transmission processing.
  • the source base station 10 - 1 starts processing (S 110 ), and it is assumed that the source base station 10 - 1 initially operates as the normal RS transmission mode (S 111 ).
  • the normal RS transmission mode is a mode in which the source base station 10 - 1 transmits the reference signal with normal timing (e.g., in each subframe using even-numbered slots), for example.
  • the scheduler 20 outputs to the signal transmission processing unit 21 the scheduling information indicating which the radios resource is used to transmit the reference signal, and the signal transmission processing unit 21 generates the reference signal based on the scheduling information and transmits the reference signal in the normal RS transmission mode.
  • the source base station 10 - 1 monitors the UE context and also monitors the amount of traffic (S 112 , S 113 ).
  • the UE monitor unit 14 monitors, for each of the cells, the presence or absence of the UE context in the cell, while the traffic monitor unit 17 monitors, for each of the cells, the amount of traffic (e.g., the amount of traffic in the downstream communication link) in the cell.
  • the amount of traffic e.g., the amount of traffic in the downstream communication link
  • the UE monitor unit 14 outputs the result of monitoring to the RS intermittence determination unit 18
  • the traffic monitor unit 17 outputs the amount of traffic to the RS intermittence determination unit 18 .
  • the source base station 10 - 1 determines whether or not there is a cell in which the UE context is not present (S 114 ). For example, the determination is made by the UE monitor unit 14 by monitoring whether or not the UE context is present in the cell subordinate to the base station 10 - 1 .
  • the source base station 10 - 1 When there is the UE context in a given cell (NO in S 114 ), the source base station 10 - 1 maintains the normal RS transmission mode for the reference signal since the terminal 50 located in the cell is in the active state (S 111 ). For example, upon receipt of the result of monitoring notifying that the UE context is present in a given cell from the UE monitor unit 14 , the RS intermittence determination unit 18 notifies the scheduler 20 to schedule the cell to operate in the normal RS transmission mode. The scheduler 20 performs the scheduling of the cell such that the reference signal is transmitted in the normal RS transmission mode. In this manner, the normal RS transmission mode is maintained.
  • the source base station 10 - 1 determines that the intermittent transmission of the reference signal is to be performed and determines the intermittent transmission cycle (S 15 ). For example, upon receipt of the result notifying that the UE context is not present in the cell as the result of monitoring from the UE monitor unit 14 , the RS intermittence determination unit 18 determines a transition to the RS intermittent transmission mode for the cell. Then, the RS intermittence determination unit 18 notifies the scheduler 20 of the cell ID of the cell determined to be in the RS intermittent transmission mode and the determination of operation thereof in the RS intermittent transmission mode. At this time, the RS intermittence determination unit 18 determines the intermittent transmission cycle based on the amount of traffic and notifies the scheduler 20 of the intermittent transmission cycle. For example, the intermittence cycle is preferably shortened as the amount of traffic increases.
  • the source base station 10 - 1 starts the intermittent transmission of the reference signal (S 116 ).
  • the scheduler 20 performs scheduling of the cell having the cell ID reported from the RS intermittence determination unit 18 such that the reference signal is transmitted in accordance with the intermittence cycle and outputs the scheduling information to the signal transmission processing unit 21 .
  • the signal transmission processing unit 21 generates the reference signal in accordance with the scheduling information and transmits the reference signal via the radio wave transmission and reception unit 12 and the antenna 11 . In this manner, in the cell, the reference signal is transmitted in the RS intermittent transmission mode.
  • the source base station 10 - 1 notifies the other base station (which is the target base station 10 - 2 in the present example) and the terminal 50 located in the cell in the intermittent transmission mode that the RS intermittent transmission mode is implemented (S 13 , S 14 , e.g., FIG. 8 ).
  • the target base station 10 - 2 transmits the cell ID of the cell in which the intermittent transmission is performed and the intermittence cycle as the broadcast information (or SIB: System Information Block) by broadcasting.
  • SIB System Information Block
  • the RS intermittence determination unit 18 outputs the cell ID of the RS intermittent transmission target and the intermittent transmission cycle to the X2/S1 message transmission and reception processing unit 16 .
  • the X2/S1 message transmission and reception processing unit 16 generates the X2 or S1 message including such information and transmits the X2 or S1 message to the target base station 10 - 2 .
  • source base station 10 - 1 may also change the order of the process in S 13 (S 14 ) and the process in S 116 and perform the processes.
  • Such RS intermittent transmission processing may also be performed even at the target base station 10 - 2 , for example.
  • the target base station 10 - 2 upon determining that the intermittent transmission is to be performed, notifies a base station (e.g., the source base station 10 - 1 ) serving as a handover destination candidate of the cell ID of the cell as the intermittent transmission target and the intermittent transmission cycle.
  • a base station e.g., the source base station 10 - 1
  • the X2/S1 message transmission and reception unit of the source base station 10 - 1 receives the X2 or S1 message from the target base station 10 - 2 , extracts the cell ID of the intermittent transmission target and the intermittent transmission cycle from the message, and outputs the cell ID and the intermittent transmission cycle to the RS intermittence determination unit 18 .
  • the RS intermittence determination unit 18 holds the cell ID and the intermittent transmission cycle in a memory. In the example of FIG.
  • the target base station 10 - 2 determines that the intermittent transmission is to be performed in a cell thereof and notifies the source base station 10 - 1 of the determination (S 11 ′, S 13 ′), and then the source base station 10 - 1 determines that the intermittent transmission of the reference signal is to be performed (S 10 ).
  • the RS intermittent transmission processing is performed in another cell subordinate to the source base station 10 - 1 , for example.
  • the above processing case corresponds to a case where each of the cells # 1 and # 2 is subordinate to the source base station 10 - 1 , and a case where the cell # 2 is in the RS intermittent transmission mode.
  • the RS intermittence determination unit 18 performs the RS intermittent transmission processing (S 11 ) and determines the cell (e.g., the cell # 2 ) in the RS intermittent transmission mode (S 115 ).
  • the RS intermittence determination unit 18 determines the intermittent transmission cycle for another cell subordinate to thereof, based on the amount of traffic from the traffic monitor unit 17 (S 115 ) and notifies the scheduler 20 of the cell ID and the intermittent transmission cycle. In this manner, the cell ID and the intermittent transmission cycle are broadcast as the broadcast information into the cell and the reference signal is further transmitted in the intermittent transmission cycle. In this case also, the RS intermittence determination unit 18 holds the cell ID of the cell in the RS intermittent transmission mode and the intermittent transmission cycle in the memory or the like, for example.
  • FIG. 10 is a flow chart illustrating an example of the RS intermittent transmission halt processing.
  • the source base station 10 - 1 receives the measurement report message for the s-Measure from the terminal 50 (S 200 , S 15 ).
  • the measurement report message includes the cell ID of the host cell in which the terminal 50 is located and the measurement value of the quality of the host cell.
  • the signal reception processing unit 13 of the source base station 10 - 1 receives the measurement report transmitted from the terminal 50 , extracts the cell ID of the host cell and the measurement value thereof, and outputs the cell ID and the measurement value to the RS intermittence determination unit 18 .
  • the RS intermittence determination unit 18 detects that, at the source base station 10 - 1 , the measurement report message for the s-Measure has been received.
  • the quality of the host cell is not more than the threshold value according to the s-Measure so that the host cell is at such a low quality level as to allow the terminal 50 to be handed over.
  • the terminal 50 may possibly be handed over from the host cell to another cell.
  • the terminal 50 may be unable to precisely measure the quality of another cell and unable to be handed over to another cell in the RS intermittent transmission mode. Accordingly, upon receipt of the measurement report message for the s-Measure, the source base station 10 - 1 is triggered by the reception to halt the RS intermittent transmission mode and cause the reference signal to be transmitted in the normal RS intermittent transmission mode.
  • the source base station 10 - 1 first determines whether or not the RS intermittent transmission mode is implemented in another cell (S 201 ). For example, the RS intermittence determination unit 18 makes a determination based on whether or not the cell ID of the cell in the RS intermittent transmission mode is held in the memory.
  • the source base station 10 - 1 determines whether or not the other cell is subordinate to thereof (S 202 ). For example, the RS intermittence determination unit 18 makes a determination based on whether the held cell ID of the cell in the intermittent transmission mode is the cell ID of a cell subordinate to thereof or the cell ID of a cell subordinate to another base station.
  • the source base station 10 - 1 halts the intermittent transmission of the reference signal performed in each of the other cells subordinate to thereof and causes the other cells to operate in the normal RS intermittent transmission mode (S 203 ).
  • the RS intermittence determination unit 18 notifies the scheduler 20 of the halt of the RS intermittent transmission mode (or the implementation of the normal RS transmission mode) and the cell ID of each of the cells in which the intermittent transmission is performed.
  • the scheduler 20 Based on the notification, the scheduler 20 performs the scheduling of each of the other cells subordinate to thereof in which the intermittent transmission is performed such that the normal RS transmission mode is implemented. As a result, the intermittent transmission of the reference signal performed in each of the other cells subordinate to the source base station 10 - 1 is halted and the reference signal is transmitted in the normal RS transmission mode. Note that, e.g., the RS intermittence determination unit 18 notifies the HO determination unit 15 that the RS intermittent transmission mode has been halted and of the cell ID of each of the cells in which the RS intermittent transmission mode has been halted.
  • the source base station 10 - 1 causes the terminal 50 to execute standard-regulation Measurement (S 204 ).
  • the source base station 10 - 1 does not particularly transmit a message to the terminal 50 , and when the source base station 10 - 1 first receives the measurement report message after halting the intermittent transmission of the reference signal, the source base station 10 - 1 performs the handover processing based on the measurement values in the message. This is because the received measurement value includes the measurement value of the other cell measured in the normal RS transmission mode.
  • the measurement report message received here includes the measurement values for the reportStrongestCells (e.g., S 10 ) reported for the measurement of the host cell and another cell, for example.
  • the received measurement values may also include the measurement value measured for the host cell in accordance with the s-Measure, for example.
  • the measurement of the quality of another cell at the terminal 50 is performed based on the reference signal transmitted in the normal RS transmission mode after the RS intermittent transmission was halted.
  • the source base station 10 - 1 notifies another base station (including also the target base station 10 - 2 ) including another cell subordinate to another base station to halt the RS intermittent transmission mode (or implement the normal RS transmission mode) (S 21 ).
  • the RS intermittence determination unit 18 notifies the X2/S1 message transmission and reception processing unit 16 at the other base station to halt the RS intermittent transmission mode (or implement the normal RS transmission mode).
  • the X2/S1 message transmission and reception processing unit 16 Based on the notification, the X2/S1 message transmission and reception processing unit 16 generates the X2 or S1 message including the halt of the RS intermittent transmission mode (or the implementation of the normal RS transmission mode) and the cell ID of the target cell and transmits the X2 or S1 message to the other base station.
  • the RS intermittence determination unit 18 notifies, the HO determination unit 15 that the RS intermittent transmission mode has been halted and of the cell ID of the cell in which the RS intermittent transmission mode has been halted, for example.
  • the source base station 10 - 1 causes the terminal 50 to implement the standard-regulation Measurement (S 204 ).
  • the source base station 10 - 1 when the source base station 10 - 1 first receives the measurement report message after halting the intermittent transmission of the reference signal, handover processing is performed based on the measurement values in the message, for example.
  • the source base station 10 - 1 may also be notified of the halt of the RS intermittent transmission mode by another base station (e.g., the target base station 10 - 1 ).
  • the X2/S1 message transmission and reception processing unit 16 receives the X2 or S1 message from another base station, extracts the halt of the RS intermittent transmission mode and the cell ID of the target cell, and outputs the halt of the RS intermittent transmission mode and the cell ID to the RS intermittence determination unit 18 .
  • the RS intermittence determination unit 18 Upon receipt of the halt of the RS intermittent transmission mode and the cell ID, the RS intermittence determination unit 18 notifies the scheduler 20 of the cell ID of the target and implementation of the normal RS transmission model.
  • the scheduler 20 performs the scheduling of the reference signal in the normal RS transmission mode for the target cell so that the intermittent transmission of the reference signal in the cell subordinate to thereof is halted and the reference signal is transmitted with normal timing (e.g., using even-numbered slots).
  • the standard-regulation Measurement is implemented (S 204 ). Since the intermittent transmission of the reference signal is not performed in the cell as the handover destination candidate, the source base station 10 - 1 causes the terminal 50 to implement the standard-regulation Measurement without performing processing such as the halt of the intermittent transmission.
  • FIG. 11 is a flow chart illustrating examples of the HO processing and the intermittent transmission resumption processing (S 30 ).
  • the source base station 10 - 1 determines a HO destination based on the measurement values (S 204 ) included in the received measurement report message (S 300 ). For example, upon receipt of the halt of the RS intermittent transmission mode from the RS intermittence determination unit 18 , the HO determination unit 15 determines a base station (or cell) as the handover destination. For example, the HO determination unit 15 determines the base station including a cell having the highest measurement value subordinate to thereof as the target base station as the handover destination.
  • the target base station may be the source base station currently connected to the terminal 50 or may also be another base station. Hereinbelow, the description will be given using an example in which the target base station is the other base station 10 - 2 .
  • the source base station 10 - 1 transmits the HO required/request message to the base station 10 - 2 as the handover destination target (S 301 (S 31 )).
  • the destination target is the same as the base station 10 - 1 currently connected to the terminal 50 , the source base station 10 - 1 need not particularly transmit such a message.
  • the transmission is performed by the HO determination unit 15 by determining the target base station 10 - 2 and then requesting transmission of a message of the X2/S1 message transmission and reception processing unit 16 .
  • the source base station 10 - 1 performs handover execution processing (S 302 (S 34 )).
  • the handover execution processing is performed by the source base station 10 - 1 by notifying the terminal 50 of the identification information of the target base station 10 - 2 (S 34 ) and by the terminal 50 by giving the RRCconnectionReconfigurationComplete message to the target base station 10 - 2 (S 35 ), for example.
  • the source base station 10 - 1 may also notify the terminal 50 of the cell ID of the other cell, for example.
  • the HO determination unit 15 outputs the identification information of the destination target to the scheduler 20 , and the scheduler 20 transmits the identification information of the destination target to the terminal 50 via the signal transmission processing unit 21 .
  • the RRCconnectionReconfiguration message including the identification information of the destination target is transmitted from the source base station 10 - 1 to the terminal 50 .
  • the source base station 10 - 1 transmits the RRCconnectionReconfiguration message including the identification information of the destination target to the terminal 50 .
  • the terminal 50 is allowed to know to where the terminal 50 is finally determined to be handed over.
  • the source base station 10 - 1 After transmitting a HO required/request message to the target base station 10 - 2 , the source base station 10 - 1 causes the halted RS intermittent transmission mode to be resumed (S 302 (S 32 )). It is sufficient for the terminal 50 to be able to measure the quality of the other cell in which the RS intermittent transmission mode has been halted. After the measurement, the base station 10 - 2 resumes the RS intermittent transmission mode to allow a reduction in the power consumed at the base station 10 - 2 .
  • the RS intermittent transmission mode is assumed to be resumed after the source base station 10 - 1 transmits a handover request message to the target base station 10 - 2 (S 301 ). This is because, when the target base station 10 - 2 is determined and the handover request message is transmitted thereto, it can be recognized that the measurement of the quality of the cell in which the intermittent transmission of the reference signal is performed has been precisely performed.
  • the HO determination unit 15 of the source base station 10 - 1 notifies the RS intermittence determination unit 18 of the determination, and the RS intermittence determination unit 18 determines to resume the halted RS intermittent transmission mode based on the notification.
  • the RS intermittence determination unit 18 requests the X2/S1 message transmission and reception processing unit 16 to notify the target base station 10 - 2 of the cell ID of the cell in which the RS intermittent transmission mode is to be resumed.
  • the RS intermittence determination unit 18 When the cell as a resumption target is a cell subordinate to thereof, the RS intermittence determination unit 18 notifies the scheduler 20 of the cell ID of the resumption target, and the scheduler 20 performs scheduling of the cell such that the reference signal is transmitted in the RS intermittent transmission mode.
  • the notification of the resumption of the RS intermittent transmission mode is issued from the target base station 10 - 2
  • the X2/S1 message transmission and reception processing unit 16 receives the notification and outputs the notification to the RS intermittence determination unit 18 .
  • the RS intermittence determination unit 18 notifies the scheduler 20 of the cell ID of the resumption target included in the notification so that the RS intermittent transmission mode is resumed.
  • the source base station 10 - 1 ends the HO processing and the intermittence resumption processing (S 301 ). Then, the terminal 50 moves to the cell as the handover destination, transmits the RRCconnectionReconfigurationComplete message to the base station 10 - 2 including the cell subordinate to thereof, for example, and the handover is completed.
  • the target base station 10 - 2 serves as the source base station.
  • the cell as the handover destination is a cell subordinate to the source base station 10 - 1 , such a message need not be transmitted.
  • FIG. 12 is a flow chart illustrating the example of the operation at the terminal 50 .
  • the terminal 50 has been notified of a measurement method (the s-Measurement or the like for the host cell) by the RRCconnectionReconfiguration message, for example (S 10 ).
  • the terminal 50 Upon starting the processing (S 500 ), the terminal 50 initially operates in a normal mode.
  • the normal mode is a mode in which the terminal 50 receives the reference signal from the source base station 10 - 1 with normal timing (e.g., even-numbered slots), for example (S 501 ).
  • the terminal 50 receives the RS intermittence cycle and the cell ID by the SIB (broadcast information) (S 502 ).
  • SIB broadcast information
  • the source base station 10 - 1 transmits the intermittent transmission cycle and the cell ID of the host cell so that the terminal 50 receives the intermittent transmission cycle and the cell ID.
  • the signal reception processing unit 53 receives the intermittent transmission cycle and the cell ID as the SIB (broadcast information) and outputs the intermittent transmission cycle and the cell ID to the Measurement execution unit 55 .
  • the Measurement execution unit 55 holds the intermittent transmission cycle and the cell ID. Note that, when the intermittent transmission is not performed in the host cell, the source base station 10 - 1 does not transmit the intermittent transmission cycle and the like so that the terminal 50 does not perform the process in S 502 .
  • the terminal 50 receives the reference signal from the source base station 10 - 1 (S 503 ).
  • the signal reception processing unit 53 receives the reference signal and notifies the Measurement execution unit 55 of the reference signal.
  • the signal reception processing unit 53 receives the reference signal transmitted in the RS intermittent transmission mode.
  • the terminal 50 measures the quality of the host cell (S 504 ).
  • the terminal 50 measures the quality thereof irrespective of a prescribed measurement time (or in a measurement time longer than the prescribed measurement time). This is because the terminal 50 may be unable to measure the quality within the prescribed time. Accordingly, upon receipt of, e.g., the intermittent transmission cycle and the cell ID (S 502 ), the terminal 50 is triggered by the reception to determine to measure the quality of the host cell irrespective of the prescribed measurement time when measuring the quality of the host cell.
  • the measurement of the quality is performed by the Measurement execution unit 55 , for example. Since it is notified that the quality of the host cell is measured in accordance with the s-Measure, the Measurement execution unit 55 outputs the measurement value when the measurement value becomes not more than the threshold value.
  • the terminal 50 adds the measurement value to the measurement report message and transmits the measurement report message to the source base station 10 - 1 (S 505 ).
  • the Measurement execution unit 55 outputs the measurement value to the signal transmission processing unit 56 and the signal transmission processing unit 56 performs coding processing, modulation processing, or the like on the measurement value, thereby generating and outputting the measurement report message including the measurement value.
  • This allows the terminal 50 to report the measurement value according to the s-Measure to the source base station 10 - 1 .
  • the source base station 10 - 1 halts the RS intermittent transmission mode (S 200 (S 15 )).
  • the terminal 50 measures the qualities of the host cell and the other cell, adds the measurement values to the measurement report message, and transmits the measurement report message (S 506 ).
  • the terminal 50 is allowed to precisely measure the quality of the other cell since the intermittent transmission of the reference signal has been already halted in the other cell and the reference signal is transmitted in the normal RS transmission mode.
  • the measurement is performed by the Measurement execution unit 55 .
  • the terminal 50 receives the RRCconnectionReconfiguration message from the source base station 10 - 1 (S 507 ).
  • the source base station 10 - 1 determines the handover destination and, by receiving the message, the terminal 50 is allowed to obtain information related to the base station (or cell) as the determined handover destination.
  • the HO execution unit 54 receives the message via the signal reception processing unit 53 .
  • the message includes the base station ID or cell ID of the destination target, and the HO execution unit 54 holds the base station ID or cell ID of the destination target.
  • the terminal 50 executes handover processing with the target base station 10 - 2 (S 508 ) and moves to the cell as the handover destination.
  • the HO execution unit 54 transmits the RRCconnectionReconfigurationComplete message to the target base station 10 - 2 .
  • the terminal 50 ends a sequence of processing (S 509 ).
  • the source base station 10 - 1 halts the intermittent transmission and causes the reference signal to be transmitted with normal transmission timing. This allows the terminal 50 to precisely measure the quality of the other cell so that, even when the intermittent transmission of the reference signal is performed in the other cell, the other cell is allowed to also serve as a handover destination.
  • the base station 10 - 1 received the measurement report message for the s-Measure is triggered by the reception (S 200 ) to halt the intermittent transmission of the reference signal and implement the operation in the normal RS transmission mode (S 203 , S 21 ).
  • the measurement report message is transmitted using a new IE (Information Element), instead of the s-Measure, to trigger the halt of the intermittent transmission of the reference and implement the operation in the normal RS transmission mode.
  • a new IE Information Element
  • the overall operation is the same as in FIG. 8 .
  • the source base station 10 - 1 notifies that the new IE is used as the measurement method for the other cell (S 10 ) in the measurement report message.
  • the new IE is referred to as a reportCellForES.
  • the reportCellForES is an IE which gives an instruction to issue a report as long as the quality of the other cell can be measured even to the slightest degree, for example. If the terminal 50 received the notification according to the reportCellForES can obtain at least any measurement value, the terminal 50 adds the measurement value and the cell ID of the measurement target cell to the measurement report message and transmits the measurement report message.
  • an IE is an information element included in the message, and the s-Measure is also one of IEs, for example.
  • the RS intermittent transmission processing (S 11 ) is the same as in the case with the s-Measure.
  • the source base station 10 - 1 can perform the intermittent transmission of the reference signal to the host cell and can also perform the intermittent transmission of the reference signal to another cell subordinate to thereof.
  • the source base station 10 - 1 can also receive the notification of the RS intermittent transmission mode from another base station (e.g., the target base station 10 - 2 ) as a handover destination candidate. Then, the source base station 10 - 1 performs RS intermittent transmission halt processing (S 20 ) when the reportCellForES is used.
  • FIG. 13 is a flow chart illustrating an example in such a case.
  • the source base station 10 - 1 receives the measurement report message from the terminal 50 (S 200 (S 15 )).
  • the measurement report message includes the measurement value for the reportCellForES.
  • Examples of the case where the terminal 50 reports such a measurement value include the case where the quality of another cell can be measured even to the slightest degree and where the terminal 50 can possibly be moved to the other cell by a handover. Therefore, in such a case, the source base station 10 - 1 halts the intermittent transmission of the reference signal, causes the reference signal to be transmitted in the normal RS transmission mode for the terminal 50 that has notified, and causes the quality to be measured. This allows the terminal 50 to precisely measure the quality of the cell in which the intermittent transmission is performed and move to the cell by a handover.
  • the measurement values for the reportCellForES are input to the RS intermittence determination unit 18 via the signal reception processing unit 13 or the like, for example.
  • the source base station 10 - 1 is assumed to notify the terminal 50 using the RRCconnectionReconfiguration message (S 10 ).
  • the source base station 10 - 1 determines whether or not there is the cell ID of the cell in the RS intermittent transmission mode in the received measurement report message (S 251 ).
  • the RS intermittence determination unit 18 makes a determination based on whether or not the held cell ID of the cell in the RS intermittent transmission mode coincides with the cell ID (cell ID as the measurement target) included in the received measurement report message.
  • the held cell ID of the cell in the RS intermittent transmission mode may be any of the cell ID of the host cell, the cell ID of another cell subordinate to the source base station 10 - 1 , and the cell ID of the cell subordinate to another base station.
  • the source base station 10 - 1 causes each of the other cells subordinate to thereof in which the intermittent transmission is performed to halt the intermittent transmission. This is because, in the case of using the s-Measure, the source base station 10 - 1 is notified of the quality of the host cell and is not notified of the quality of another cell. In the present example, the cell ID of another cell is included in the measurement report message. Therefore, when the other cell having the cell ID is in the intermittent transmission mode, the source base station 10 - 1 is allowed to cause a transition to the normal RS transmission mode using the cell ID.
  • the source base station 10 - 1 determines whether or not the measurement value satisfies a reference value (S 252 ).
  • the terminal 50 reports the measurement value irrespective of the prescribed measurement time as long as the quality of another cell can be measured even for a shortest period of time.
  • the measurement value is excessively low, another cell may be inappropriate as the handover destination.
  • the reference value is provided to be used by the source base station 10 - 1 for comparison.
  • the source base station 10 - 1 maintains the RS intermittent transmission mode in the cell so as to prevent the handover from being performed (S 255 ).
  • the measured quality does not satisfy a quality sufficient to allow the handover to be performed.
  • the RS intermittence determination unit 18 compares the measurement value included in the message to the reference value held in advance. For example, when the measurement value is lower than the reference value, the RS intermittence determination unit 18 then maintains the status quo without particularly performing processing.
  • the source base station 10 - 1 halts the intermittent transmission in the cell as the target (S 253 ).
  • the RS intermittence determination unit 18 causes the cell having the cell ID included in the measurement report message to halt the intermittent transmission. This is because the measurement value sufficient to allow the cell to serve as a handover destination has been obtained. Since the measurement value for the reportCellForES is the measurement value of another cell, the cell in which the intermittent transmission of the reference signal is to be halted is another cell subordinate to the source base station 10 - 1 or another cell subordinate to another base station, for example.
  • the intermittent transmission is halted by the RS intermittence determination unit 18 by notifying the scheduler 20 of the cell ID included in the measurement report message and the halt of the intermittent transmission.
  • the RS intermittence determination unit 18 outputs the halt of the intermittent transmission and the cell ID included in the measurement report message to the X2/S1 message transmission and reception processing unit 16 , for example. In this manner, the base station including the other cell subordinate to thereof is notified of the halt of the intermittent transmission, the intermittent transmission is halted, and the reference signal is transmitted in the normal RS transmission mode.
  • FIGS. 15A to 15C illustrate an example of timing for the intermittent transmission of the reference signal in each of the cells
  • FIG. 15D illustrates an example of the relations among the individual cells.
  • the cell #a is in the normal RS transmission mode
  • each of the cells #b and #c is in the RS intermittent transmission mode.
  • the intermittence cycle is longer in the cell #c than in the cell #b.
  • the measurement value of the cell #c is the lowest in comparison with that of each of the cells #a and #b.
  • the measurement value of the cell #c is lower than the reference value, if a handover to the cell #c is designed in advance, it is also possible to halt the RS intermittent transmission mode. This allows the terminal 50 to precisely measure the measurement value for the cell #c.
  • the handover to the cell #c is designed not to be performed, even when the measurement value satisfies the reference value, it is also possible to maintain the RS intermittent transmission mode in the cell #c. This reduces the possibility of a handover to the cell #c.
  • the RS intermittence determination unit 18 may also hold information related to a designed (configured) handover destination cell and give priority to the information in the present processing (S 252 ) in determining the halt or maintenance of the RS intermittent transmission mode.
  • the source base station 10 - 1 when NO is given in S 251 or when the processing in S 253 is ended, the source base station 10 - 1 causes the standard-regulation measurement to be executed (S 254 ).
  • the s-Measure when the s-Measure is used, for example, when the source base station 10 - 1 first receives the measurement report message after halting the intermittent transmission of the reference signal, handover processing is performed based on the measurement values in the message.
  • the measurement report message in this case may include the measurement value according to the s-Measure for the host cell and the measurement value according to the reportStrongestCells for another cell, for example.
  • the HO determination unit 15 performs processing such as determination of the handover destination.
  • the source base station 10 - 1 performs processing for resuming the intermittent transmission in the destination target in the same manner as in the case of using the s-Measure (S 303 (S 32 )).
  • FIG. 14 is a flow chart illustrating an example of an operation in terminal-side processing (S 50 ) in the case of using the reportCellForES.
  • S 500 After started (S 500 ), the processing is the same as in the case with the s-Measure up to the intermittent reception of the reference signal (S 503 ). It is assumed that, in connection processing, the terminal 50 is notified that the quality of another cell is measured in accordance with the reportCellForES by the RRCconnectionReconfiguration message (S 10 ).
  • the terminal 50 measures the quality of another cell based on the reportCellForES (S 521 ).
  • the Measurement execution unit 55 measures the quality by measuring a reception level based on the reference signal received in the signal reception processing unit 53 .
  • the terminal 50 transmits the Measurement report message including the measurement value to the source base station 10 - 1 (S 522 ). For example, if there is even the lowest reception level of the reference signal from another cell, the Measurement execution unit 55 outputs the reception level as the measurement value to the signal transmission processing unit 56 . The signal transmission processing unit 56 generates the Measurement report message including the measurement value and transmits the Measurement report message.
  • the source base station 10 - 1 halts the intermittent transmission of the reference signal in the other cell.
  • the measurement method in this case may be the measurement method for the reportCellForES described above for the other cell and the measurement method according to the reportStrongestCells or the s-Measure for the host cell. In either case, for example, it is assumed that the connection processing, the base station 10 - 1 has notified the terminal 50 of the measurement method (S 10 ).
  • the terminal 50 performs the HO processing or the like in the same manner as in the case of using the s-Measure (S 506 to S 509 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
US13/895,569 2010-11-19 2013-05-16 Radio base station apparatus, terminal apparatus, radio communication system, and radio communication method in radio base station apparatus Abandoned US20130252616A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070693 WO2012066676A1 (ja) 2010-11-19 2010-11-19 無線基地局装置、端末装置、無線通信システム、及び無線基地局装置における無線通信方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070693 Continuation WO2012066676A1 (ja) 2010-11-19 2010-11-19 無線基地局装置、端末装置、無線通信システム、及び無線基地局装置における無線通信方法

Publications (1)

Publication Number Publication Date
US20130252616A1 true US20130252616A1 (en) 2013-09-26

Family

ID=46083634

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/895,569 Abandoned US20130252616A1 (en) 2010-11-19 2013-05-16 Radio base station apparatus, terminal apparatus, radio communication system, and radio communication method in radio base station apparatus

Country Status (4)

Country Link
US (1) US20130252616A1 (ja)
EP (1) EP2642798A4 (ja)
JP (1) JP5692234B2 (ja)
WO (1) WO2012066676A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160157203A1 (en) * 2010-05-10 2016-06-02 Telecommunication Systems, Inc Cell-id translation in a location based system (lbs)
US9451546B2 (en) 2013-04-05 2016-09-20 Kyocera Corporation Mobile communication system, base station, and user terminal
EP3606176A4 (en) * 2017-03-28 2020-02-05 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR CONFIGURING SIGNAL PERIODS
US11026004B2 (en) 2018-04-16 2021-06-01 Charter Communications Operating, Llc Apparatus and methods for coordinated delivery of multiple data channels over physical medium
US11044597B2 (en) 2018-08-07 2021-06-22 Charter Communications Operating, Llc Apparatus and methods for registration and operation in wireless networks
US11129213B2 (en) * 2018-10-12 2021-09-21 Charter Communications Operating, Llc Apparatus and methods for cell identification in wireless networks
US11405797B2 (en) 2018-03-19 2022-08-02 Charter Communications Operating, Llc Apparatus and methods for cell activation in wireless networks

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5758351B2 (ja) * 2012-06-22 2015-08-05 株式会社Nttドコモ 無線通信システム
US9713148B2 (en) * 2012-08-02 2017-07-18 Mitsubishi Electric Corporation Communication system including base station device and communication terminal device
WO2015089303A1 (en) 2013-12-12 2015-06-18 Intel Corporation User equipment and method for cell association and beamforming training with a mmwave capable small cell
JP6298442B2 (ja) * 2015-12-28 2018-03-20 京セラ株式会社 基地局及びプロセッサ
JP7236275B2 (ja) * 2017-02-02 2023-03-09 株式会社Nttドコモ ユーザ装置及び無線通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060040668A1 (en) * 2004-08-11 2006-02-23 Nec Corporation Mobile communication system, UE, handover control method for use thereof and program thereof
US20070191013A1 (en) * 2004-03-30 2007-08-16 Fredrik Gunnarsson Methods of and apparatuses for cell-differentiated handover in a mobile communications systems
US20080261597A1 (en) * 2007-04-18 2008-10-23 Masao Hayama Handoff method between different systems and wireless terminal
US20100255845A1 (en) * 2007-07-30 2010-10-07 Kyocera Corporation Radio communication device
US8731558B2 (en) * 2008-08-08 2014-05-20 Ntt Docomo, Inc. Mobile station, radio base station, and mobile communication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049545A (ja) * 2007-08-15 2009-03-05 Tokyo Electric Power Co Inc:The 通信システム
CN102067682B (zh) * 2008-06-16 2014-07-16 日本电气株式会社 基站控制模块、无线基站、基站控制设备和基站控制方法
JP5787359B2 (ja) * 2009-03-03 2015-09-30 日本電気株式会社 無線通信システム、無線基地局装置、及びこれらの制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070191013A1 (en) * 2004-03-30 2007-08-16 Fredrik Gunnarsson Methods of and apparatuses for cell-differentiated handover in a mobile communications systems
US20060040668A1 (en) * 2004-08-11 2006-02-23 Nec Corporation Mobile communication system, UE, handover control method for use thereof and program thereof
US20080261597A1 (en) * 2007-04-18 2008-10-23 Masao Hayama Handoff method between different systems and wireless terminal
US20100255845A1 (en) * 2007-07-30 2010-10-07 Kyocera Corporation Radio communication device
US8731558B2 (en) * 2008-08-08 2014-05-20 Ntt Docomo, Inc. Mobile station, radio base station, and mobile communication method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160157203A1 (en) * 2010-05-10 2016-06-02 Telecommunication Systems, Inc Cell-id translation in a location based system (lbs)
US9451546B2 (en) 2013-04-05 2016-09-20 Kyocera Corporation Mobile communication system, base station, and user terminal
US10149243B2 (en) 2013-04-05 2018-12-04 Kyocera Corporation Mobile communication system, base station, and user terminal
US11129176B2 (en) 2017-03-28 2021-09-21 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for configuring signal period
EP3606176A4 (en) * 2017-03-28 2020-02-05 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR CONFIGURING SIGNAL PERIODS
US11405797B2 (en) 2018-03-19 2022-08-02 Charter Communications Operating, Llc Apparatus and methods for cell activation in wireless networks
US11026004B2 (en) 2018-04-16 2021-06-01 Charter Communications Operating, Llc Apparatus and methods for coordinated delivery of multiple data channels over physical medium
US11102560B2 (en) 2018-04-16 2021-08-24 Charter Communications Operating, Llc Apparatus and methods for integrated high-capacity data and wireless IoT (internet of things) services
US11190861B2 (en) 2018-04-16 2021-11-30 Charter Communications Operating, Llc Gateway apparatus and methods for wireless IoT (Internet of Things) services
US11716558B2 (en) 2018-04-16 2023-08-01 Charter Communications Operating, Llc Apparatus and methods for integrated high-capacity data and wireless network services
US11736841B2 (en) 2018-04-16 2023-08-22 Charter Communications Operating, Llc Apparatus and methods for enabling mobility of a user device in an enhanced wireless network
US11832034B2 (en) 2018-04-16 2023-11-28 Charter Communications Operating, Llc Apparatus and methods for coordinated delivery of multiple data channels over physical medium
US11974080B2 (en) 2018-04-16 2024-04-30 Charter Communications Operating, Llc Apparatus and methods for integrated high-capacity data and wireless IoT (internet of things) services
US12047719B2 (en) 2018-04-16 2024-07-23 Charter Communications Operating, Llc Gateway apparatus and methods for wireless IoT (internet of things) services
US11044597B2 (en) 2018-08-07 2021-06-22 Charter Communications Operating, Llc Apparatus and methods for registration and operation in wireless networks
US11129213B2 (en) * 2018-10-12 2021-09-21 Charter Communications Operating, Llc Apparatus and methods for cell identification in wireless networks
US11903049B2 (en) 2018-10-12 2024-02-13 Charter Communications Operating, Llc Apparatus and methods for cell identification in wireless networks

Also Published As

Publication number Publication date
EP2642798A4 (en) 2015-03-11
WO2012066676A1 (ja) 2012-05-24
JP5692234B2 (ja) 2015-04-01
EP2642798A1 (en) 2013-09-25
JPWO2012066676A1 (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
US20130252616A1 (en) Radio base station apparatus, terminal apparatus, radio communication system, and radio communication method in radio base station apparatus
CN109309969B (zh) 在rrc空闲模式下控制测量处理的方法及其装置
US11019675B2 (en) Radio resource control connection resume method of wireless communication system
US20220030490A1 (en) Machine-to-machine (m2m) terminal, base station, method, and computer readable medium
US20200162975A1 (en) Mobile communication system, base station and user equipment
US9473966B2 (en) Enabling reporting of non-real-time MDT measurements
EP2765806B1 (en) Method and apparatus for reselecting a cell in heterogeneous networks in a wireless communication system
JPWO2017135159A1 (ja) 通信システム
US20110201324A1 (en) Reporting of Non-Real-Time MDT Measurements
US20130308533A1 (en) Radio base station apparatus, radio communication system, radio communication method in radio base station apparatus, and terminal apparatus
CN111050369A (zh) 通信***中的终端及其方法
KR102084004B1 (ko) Rrc idle 모드에서의 측정 동작을 제어하는 방법 및 그 장치
WO2011101346A1 (en) Reporting of non-real-time mdt measurements
US8359034B2 (en) Mobile communication system, base station apparatus, user equipment and method
WO2018143864A1 (en) Systems and methods for using neighboring cell information to perform measurements
EP2725843B1 (en) Mobile communication system, mobile station device, base station device, and measurement method
JPWO2020022389A1 (ja) 通信システム、基地局および通信端末
US20240137827A1 (en) Pdcch monitoring method and devices
KR101655450B1 (ko) 이동통신 시스템에서 이동 네트워크 운영 방법 및 장치
CN112584426B (zh) 一种***帧号和帧定时偏差sftd测量方法
US10931344B2 (en) Methods and devices for information reception during intra-frequency measurement gap
CN116074927A (zh) 一种通信方法及装置
KR20210022114A (ko) 랜덤 액세스 방법, 데이터 수신 방법 및 그 장치, 및 통신 시스템
EP4301045A1 (en) Communication system and base station
WO2023013513A1 (ja) 通信システム

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJITSU LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MURAKAMI, AKIKO;REEL/FRAME:030439/0433

Effective date: 20130510

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION