US20130243642A1 - Metallic bondcoat or alloy with a high gamma/gamma' transition temperature and a component - Google Patents

Metallic bondcoat or alloy with a high gamma/gamma' transition temperature and a component Download PDF

Info

Publication number
US20130243642A1
US20130243642A1 US13/885,472 US201113885472A US2013243642A1 US 20130243642 A1 US20130243642 A1 US 20130243642A1 US 201113885472 A US201113885472 A US 201113885472A US 2013243642 A1 US2013243642 A1 US 2013243642A1
Authority
US
United States
Prior art keywords
metallic coating
alloy
alloy according
coating
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/885,472
Inventor
Anand A. Kulkarni
Jonathan E. Shipper, JR.
Werner Stamm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to US13/885,472 priority Critical patent/US20130243642A1/en
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS ENERGY, INC.
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STAMM, WERNER
Assigned to SIEMENS ENERGY, INC. reassignment SIEMENS ENERGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KULKARNI, ANAND A., SHIPER, JONATHAN E.
Publication of US20130243642A1 publication Critical patent/US20130243642A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a metallic bondcoat with phases of ⁇ and ⁇ ′ a component.
  • Components for the hot gas path in gas turbines are made from Ni- or Co based materials. These materials are optimized for strength and are not able to withstand oxidation and/or corrosion attack at higher temperatures. Therefore, these kinds of materials must be protected against oxidation by MCrAlY-coatings which can be used as bondcoats for thermal barrier coating (TBC) systems as well.
  • TBC thermal barrier coating
  • the MCrAlY coating is needed against hot gas attack on one side and on the other side this coating is needed to adhere the TBC to the substrate Improving such systems against oxidation will lead to increased bondcoats service temperatures with increased life properties.
  • MCrAlY overlay coatings are coated mainly by low pressure plasma spraying (LPPS), air plasma spraying (APS), electron beam physical vapor deposition (EBPVD), cold spray (CS) or high velocity oxy-fuel (HVOF) process.
  • LPPS low pressure plasma spraying
  • APS air plasma spraying
  • EBPVD electron beam physical vapor deposition
  • CS cold spray
  • HVOF high velocity oxy-fuel
  • the MCrAlY coating is based on nickel and/or cobalt, chromium, aluminum, silicon, rhenium and rare earth elements like yttrium.
  • With increasing bondcoat temperatures these coatings can fail which can lead to spallation of the thermal barrier coating. Therefore, with increasing service temperatures, improved coatings are needed to withstand the oxidation attack. Additionally this kind of coatings should have acceptable thermo-mechanical properties. These requests can only be achieved by an optimized composition of the bond coat.
  • FIG. 1 a turbine blade
  • FIG. 2 a gas turbine
  • FIG. 3 a list of superalloys.
  • FIG. 1 shows a perspective view of a rotor blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121 .
  • the turbomachine may be a gas turbine of an aircraft or of a power plant for generating electricity, a steam turbine or a compressor.
  • the blade or vane 120 , 130 has, in succession along the longitudinal axis 121 , a securing region 400 , an adjoining blade or vane platform 403 and a main blade or vane part 406 as well as a blade or vane tip 415 .
  • the vane 130 may have a further platform (not shown) at its vane tip 415 .
  • a blade or vane root 183 which is used to secure the rotor blades 120 , 130 to a shaft or disk (not shown), is formed in the securing region 400 .
  • the blade or vane root 183 is designed, for example, in hammerhead form. Other configurations, such as a fir-tree or dovetail root, are possible.
  • the blade or vane 120 , 130 has a leading edge 409 and a trailing edge 412 for a medium which flows past the main blade or vane part 406 .
  • the blade or vane 120 , 130 may in this case be produced by a casting process, also by means of directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a single-crystal structure or structures are used as components for machines which, in operation, are exposed to high mechanical, thermal and/or chemical stresses.
  • Single-crystal workpieces of this type are produced, for example, by directional solidification from the melt. This involves casting processes in which the liquid metallic alloy solidifies to form the single-crystal structure, i.e. the single-crystal workpiece, or solidifies directionally.
  • dendritic crystals are oriented along the direction of heat flow and form either a columnar crystalline grain structure (i.e. grains which run over the entire length of the workpiece and are referred to here, in accordance with the language customarily used, as directionally solidified) or a single-crystal structure, i.e. the entire workpiece consists of one single crystal.
  • a transition to globular (polycrystalline) solidification needs to be avoided, since non-directional growth inevitably forms transverse and longitudinal grain boundaries, which negate the favorable properties of the directionally solidified or single-crystal component.
  • directionally solidified microstructures refers in general terms to directionally solidified microstructures, this is to be understood as meaning both single crystals, which do not have any grain boundaries or at most have small-angle grain boundaries, and columnar crystal structures, which do have grain boundaries running in the longitudinal direction but do not have any transverse grain boundaries.
  • This second form of crystalline structures is also described as directionally solidified microstructures (directionally solidified structures).
  • the blades or vanes 120 , 130 may likewise have coatings protecting against corrosion or oxidation, e.g. MCrAlX (M is at least one element selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), X is an active element and represents yttrium (Y) and/or silicon and/or at least one rare earth element, or hafnium (HO). Alloys of this type are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • M is at least one element selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and represents yttrium (Y) and/or silicon and/or at least one rare earth element, or hafnium (HO). Alloys of this type are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 3
  • the density is preferably 95% of the theoretical density.
  • thermal barrier coating consisting for example of ZrO 2 , Y 2 O 3 -ZrO 2 , i.e. unstabilized, partially stabilized or fully stabilized by yttrium oxide and/or calcium oxide and/or magnesium oxide and/or one or more of rare earth element (lanthanum, gadolinium, yttrium, etc.), which is preferably the outermost layer, to be present on the MCrAlX.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Columnar grains are produced in the thermal barrier coating by means of suitable coating processes, such as for example electron beam physical vapor deposition (EB-PVD).
  • EB-PVD electron beam physical vapor deposition
  • the thermal barrier coating may include porous grains which have microcracks or macrocracks for improving its resistance to thermal shocks.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • the blade or vane 120 , 130 may be hollow or solid in form. If the blade or vane 120 , 130 is to be cooled, it is hollow and may also have film-cooling holes 418 (indicated by dashed lines).
  • FIG. 4 shows, by way of example, a partial longitudinal section through a gas turbine 100 .
  • the gas turbine 100 has a rotor 103 which is mounted such that it can rotate about an axis of rotation 102 , has a shaft 101 and is also referred to as the turbine rotor.
  • the annular combustion chamber 110 is in communication with a, for example, annular hot-gas passage 111 , where, by way of example, four successive turbine stages 112 form the turbine 108 .
  • Each turbine stage 112 is formed, for example, from two blade or vane rings. As seen in the direction of flow of a working medium 113 , in the hot-gas passage 111 a row of guide vanes 115 is followed by a row 125 formed from rotor blades 120 .
  • the guide vanes 130 are secured to an inner housing 138 of a stator 143 , whereas the rotor blades 120 of a row 125 are fitted to the rotor 103 for example by means of a turbine disk 133 .
  • a generator (not shown) is coupled to the rotor 103 .
  • the compressor 105 While the gas turbine 100 is operating, the compressor 105 sucks in air 135 through the intake housing 104 and compresses it. The compressed air provided at the turbine-side end of the compressor 105 is passed to the burners 107 , where it is mixed with a fuel. The mix is then burnt in the combustion chamber 110 , forming the working medium 113 . From there, the working medium 113 flows along the hot-gas passage 111 past the guide vanes 130 and the rotor blades 120 . The working medium 113 is expanded at the rotor blades 120 , transferring its momentum, so that the rotor blades 120 drive the rotor 103 and the latter in turn drives the generator coupled to it.
  • Substrates of the components may likewise have a directional structure, i.e. they are in single-crystal form (SX structure) or have only longitudinally oriented grains (DS structure).
  • SX structure single-crystal form
  • DS structure longitudinally oriented grains
  • iron-based, nickel-based or cobalt-based superalloys are used as material for the components, in particular for the turbine blade or vane 120 , 130 and components of the combustion chamber 110 .
  • the guide vane 130 has a guide vane root (not shown here) facing the inner housing 138 of the turbine 108 and a guide vane head at the opposite end from the guide vane root.
  • the guide vane head faces the rotor 103 and is fixed to a securing ring 140 of the stator 143 .
  • a new modified coating was developed which fulfils the requirements described above.
  • This coating has a good long term life, acceptable mechanical properties and improved oxidation resistance. This is based on the presence of tantalum (Ta) in a nickel based alloy but preferably without rhenium (Re). Tantalum (Ta) stabilizes the formation of a three phase system ( ⁇ ′/ ⁇ / ⁇ ) with a high ⁇ ′/ ⁇ transition temperature. This will reduce the local stresses as well because tantalum (Ta) will stabilize the high transition temperatures of ⁇ ′ which is higher than the bondcoat service temperature of a bond coat of this alloy.
  • a composition (Ni—25Co—17Cr—10Al—1.5Re—Y) which contains rhenium (Re) instead of tantalum (Ta) has a lower ⁇ ′/ ⁇ transition temperature because no tantalum is added.
  • the bondcoat is preferably a nickel (Ni) based super alloy with addition of cobalt (Co), chromium (Cr), aluminum (Al) and optionally yttrium (Y) which is preferably consisting of these elements.
  • the alloy contains no molybdenum (Mo), and/or no tungsten (W) and/or columbium (Nb).
  • Mo molybdenum
  • W tungsten
  • Nb columbium
  • the substrate of the component comprises a nickel-based or cobalt-based superalloy especially one of FIG. 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A metallic coating or alloy is provided, which is nickel based, and includes at least γ and γ′ phases. The metallic coating or the alloy further includes tantalum (Ta) in the range of between 4 wt % to 7.5 wt %. The metallic coating or the alloy also includes cobalt (Co) in the range between 11 wt %-14.5 wt %.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is the U.S. National Stage of International Application No. PCT/EP2011/069513 filed Nov. 7, 2011 and claims benefit thereof, the entire content of which is hereby incorporated herein by reference. The International Application claims priority to the U.S. application Ser. No. 12/953,520 filed Nov. 24, 2010, the entire contents of which is hereby incorporated herein by reference.
  • FIELD OF INVENTION
  • The invention relates to a metallic bondcoat with phases of γ and γ′ a component.
  • BACKGROUND OF INVENTION
  • Components for the hot gas path in gas turbines are made from Ni- or Co based materials. These materials are optimized for strength and are not able to withstand oxidation and/or corrosion attack at higher temperatures. Therefore, these kinds of materials must be protected against oxidation by MCrAlY-coatings which can be used as bondcoats for thermal barrier coating (TBC) systems as well. In TBS systems, the MCrAlY coating is needed against hot gas attack on one side and on the other side this coating is needed to adhere the TBC to the substrate Improving such systems against oxidation will lead to increased bondcoats service temperatures with increased life properties.
  • To protect the materials against hot corrosion/oxidation, MCrAlY overlay coatings are coated mainly by low pressure plasma spraying (LPPS), air plasma spraying (APS), electron beam physical vapor deposition (EBPVD), cold spray (CS) or high velocity oxy-fuel (HVOF) process. The MCrAlY coating is based on nickel and/or cobalt, chromium, aluminum, silicon, rhenium and rare earth elements like yttrium. With increasing bondcoat temperatures, these coatings can fail which can lead to spallation of the thermal barrier coating. Therefore, with increasing service temperatures, improved coatings are needed to withstand the oxidation attack. Additionally this kind of coatings should have acceptable thermo-mechanical properties. These requests can only be achieved by an optimized composition of the bond coat.
  • SUMMARY OF INVENTION
  • It is therefore the aim of the invention to solve the above mentioned problem.
  • The problem is solved by the features of the independent claim(s).
  • In the dependent claims further amendments are disclosed which can be arbitrarily combined with each other to yield further advantages.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • It shows
  • FIG. 1 a turbine blade,
  • FIG. 2 a gas turbine and
  • FIG. 3 a list of superalloys.
  • DETAILED DESCRIPTION OF INVENTION
  • The figures and the description are only embodiments of the invention.
  • FIG. 1 shows a perspective view of a rotor blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
  • The turbomachine may be a gas turbine of an aircraft or of a power plant for generating electricity, a steam turbine or a compressor.
  • The blade or vane 120, 130 has, in succession along the longitudinal axis 121, a securing region 400, an adjoining blade or vane platform 403 and a main blade or vane part 406 as well as a blade or vane tip 415.
  • As a guide vane 130, the vane 130 may have a further platform (not shown) at its vane tip 415.
  • A blade or vane root 183, which is used to secure the rotor blades 120, 130 to a shaft or disk (not shown), is formed in the securing region 400.
  • The blade or vane root 183 is designed, for example, in hammerhead form. Other configurations, such as a fir-tree or dovetail root, are possible.
  • The blade or vane 120, 130 has a leading edge 409 and a trailing edge 412 for a medium which flows past the main blade or vane part 406.
  • In the case of conventional blades or vanes 120, 130, by way of example solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade or vane 120, 130.
  • Superalloys of this type are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • The blade or vane 120, 130 may in this case be produced by a casting process, also by means of directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a single-crystal structure or structures are used as components for machines which, in operation, are exposed to high mechanical, thermal and/or chemical stresses.
  • Single-crystal workpieces of this type are produced, for example, by directional solidification from the melt. This involves casting processes in which the liquid metallic alloy solidifies to form the single-crystal structure, i.e. the single-crystal workpiece, or solidifies directionally.
  • In this case, dendritic crystals are oriented along the direction of heat flow and form either a columnar crystalline grain structure (i.e. grains which run over the entire length of the workpiece and are referred to here, in accordance with the language customarily used, as directionally solidified) or a single-crystal structure, i.e. the entire workpiece consists of one single crystal. In these processes, a transition to globular (polycrystalline) solidification needs to be avoided, since non-directional growth inevitably forms transverse and longitudinal grain boundaries, which negate the favorable properties of the directionally solidified or single-crystal component.
  • Where the text refers in general terms to directionally solidified microstructures, this is to be understood as meaning both single crystals, which do not have any grain boundaries or at most have small-angle grain boundaries, and columnar crystal structures, which do have grain boundaries running in the longitudinal direction but do not have any transverse grain boundaries. This second form of crystalline structures is also described as directionally solidified microstructures (directionally solidified structures).
  • Processes of this type are known from U.S. Pat. No. 6,024,792 and EP 0 892 090 A1.
  • The blades or vanes 120, 130 may likewise have coatings protecting against corrosion or oxidation, e.g. MCrAlX (M is at least one element selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), X is an active element and represents yttrium (Y) and/or silicon and/or at least one rare earth element, or hafnium (HO). Alloys of this type are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • The density is preferably 95% of the theoretical density.
  • A protective aluminum oxide layer (TGO=thermally grown oxide layer) forms on the MCrAlX layer (as an intermediate layer or an outermost layer).
  • It is also possible for a thermal barrier coating, consisting for example of ZrO2, Y2O3-ZrO2, i.e. unstabilized, partially stabilized or fully stabilized by yttrium oxide and/or calcium oxide and/or magnesium oxide and/or one or more of rare earth element (lanthanum, gadolinium, yttrium, etc.), which is preferably the outermost layer, to be present on the MCrAlX.
  • The thermal barrier coating covers the entire MCrAlX layer. Columnar grains are produced in the thermal barrier coating by means of suitable coating processes, such as for example electron beam physical vapor deposition (EB-PVD).
  • Other coating processes are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS, solution precursor plasma spray (SPPS) or CVD. The thermal barrier coating may include porous grains which have microcracks or macrocracks for improving its resistance to thermal shocks. The thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • The blade or vane 120, 130 may be hollow or solid in form. If the blade or vane 120, 130 is to be cooled, it is hollow and may also have film-cooling holes 418 (indicated by dashed lines).
  • FIG. 4 shows, by way of example, a partial longitudinal section through a gas turbine 100.
  • In the interior, the gas turbine 100 has a rotor 103 which is mounted such that it can rotate about an axis of rotation 102, has a shaft 101 and is also referred to as the turbine rotor.
  • An intake housing 104, a compressor 105, a, for example, toroidal combustion chamber 110, in particular an annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust-gas housing 109 follow one another along the rotor 103.
  • The annular combustion chamber 110 is in communication with a, for example, annular hot-gas passage 111, where, by way of example, four successive turbine stages 112 form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade or vane rings. As seen in the direction of flow of a working medium 113, in the hot-gas passage 111 a row of guide vanes 115 is followed by a row 125 formed from rotor blades 120.
  • The guide vanes 130 are secured to an inner housing 138 of a stator 143, whereas the rotor blades 120 of a row 125 are fitted to the rotor 103 for example by means of a turbine disk 133.
  • A generator (not shown) is coupled to the rotor 103.
  • While the gas turbine 100 is operating, the compressor 105 sucks in air 135 through the intake housing 104 and compresses it. The compressed air provided at the turbine-side end of the compressor 105 is passed to the burners 107, where it is mixed with a fuel. The mix is then burnt in the combustion chamber 110, forming the working medium 113. From there, the working medium 113 flows along the hot-gas passage 111 past the guide vanes 130 and the rotor blades 120. The working medium 113 is expanded at the rotor blades 120, transferring its momentum, so that the rotor blades 120 drive the rotor 103 and the latter in turn drives the generator coupled to it.
  • While the gas turbine 100 is operating, the components which are exposed to the hot working medium 113 are subject to thermal stresses. The guide vanes 130 and rotor blades 120 of the first turbine stage 112, as seen in the direction of flow of the working medium 113, together with the heat shield bricks which line the annular combustion chamber 110, are subject to the highest thermal stresses.
  • To be able to withstand the temperatures which prevail there, they can be cooled by means of a coolant.
  • Substrates of the components may likewise have a directional structure, i.e. they are in single-crystal form (SX structure) or have only longitudinally oriented grains (DS structure).
  • By way of example, iron-based, nickel-based or cobalt-based superalloys are used as material for the components, in particular for the turbine blade or vane 120, 130 and components of the combustion chamber 110.
  • Superalloys of this type are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • The guide vane 130 has a guide vane root (not shown here) facing the inner housing 138 of the turbine 108 and a guide vane head at the opposite end from the guide vane root. The guide vane head faces the rotor 103 and is fixed to a securing ring 140 of the stator 143.
  • A new modified coating was developed which fulfils the requirements described above. This coating has a good long term life, acceptable mechanical properties and improved oxidation resistance. This is based on the presence of tantalum (Ta) in a nickel based alloy but preferably without rhenium (Re). Tantalum (Ta) stabilizes the formation of a three phase system (γ′/γ/β) with a high γ′/γ transition temperature. This will reduce the local stresses as well because tantalum (Ta) will stabilize the high transition temperatures of γ′ which is higher than the bondcoat service temperature of a bond coat of this alloy.
  • Therefore there is preferably no need for hafnium (Hf) or silicon (Si) or zirconium (Zr) or platinum (Pt) or any melting depressant (like boron B) in the coating.
  • Very good results show the following elemental composition for getting the proposed 3-phase-system with increased γ′ transition temperatures: Ni—13Co—15.8Cr—11Al—6Ta.
  • A composition (Ni—25Co—17Cr—10Al—1.5Re—Y) which contains rhenium (Re) instead of tantalum (Ta) has a lower γ′/γ transition temperature because no tantalum is added.
  • The bondcoat is preferably a nickel (Ni) based super alloy with addition of cobalt (Co), chromium (Cr), aluminum (Al) and optionally yttrium (Y) which is preferably consisting of these elements.
  • Very preferably it is a MCrAlY alloy, with M═Ni, Co.
  • Preferably the alloy contains no molybdenum (Mo), and/or no tungsten (W) and/or columbium (Nb).
  • The substrate of the component comprises a nickel-based or cobalt-based superalloy especially one of FIG. 3.

Claims (20)

1-15. (canceled)
16. A metallic coating or alloy,
wherein the metallic coating or alloy is nickel based,
wherein the metallic coating or alloy comprises at least γ and γ′ phases,
wherein the metallic coating or the alloy further comprises tantalum (Ta) in the range of between 4 wt % to 7.5 wt %,
wherein the metallic coating or the alloy further comprises cobalt (Co) in the range between 11 wt %-14.5 wt %.
17. The metallic coating or alloy according to claim 16, wherein the amount of tantalum (Ta) is in the range between 5 wt % and 6.8 wt %.
18. The metallic coating or alloy according to claim 17, wherein the amount of tantalum (Ta) is 6 wt %.
19. The metallic coating or alloy according to claim 16, wherein the amount of cobalt (Co) is in the range between 12 wt %-14 wt %.
20. The metallic coating or alloy according to claim 19, wherein the amount of cobalt (Co) is 13 wt %.
21. The metallic coating or alloy according to claim 16, wherein the metallic coating or alloy contains no Yttrium (Y) and/or no platinum (Pt) and/or no melting depressant.
22. The metallic coating or alloy according to claim 16, further comprising chromium (Cr), wherein the amount of chromium (Cr) is between 14 t %-16 wt %.
23. The metallic coating or alloy according to claim 16, further comprising aluminum, wherein the amount of aluminum (Al) is between 9 wt %-13 wt %.
24. The metallic coating or alloy according to claim 16, further comprising yttrium, wherein the amount of yttrium (Y) is between 0,1 wt %-0,7 wt %.
25. The metallic coating or alloy according to claim 16, wherein the metallic coating or the alloy contains no rhenium (Re).
26. The metallic coating or alloy according to claim 16, wherein the metallic coating or the alloy contains 0.1 wt % to 2 wt % rhenium (Re).
27. The metallic coating or alloy according to claim 16, wherein the metallic coating or the alloy is a MCrAlY alloy with M=nickel (Ni) and/or M=cobalt (Co).
28. The metallic coating or alloy according to claim 16, wherein the metallic coating or alloy has higher γ′/γ transition compared to an NiCoCrAlY alloy or coating with rhenium (Re) and without tantalum (Ta).
29. The metallic coating or alloy according to claim 16, which contains no silicon (Si), and/or no hafnium (Hf) and/or no zirconium (Zr) and/or no tungsten (W).
30. The metallic coating or alloy according to claim 16, further comprising a β-phase.
31. The metallic coating or alloy according to claim 16, wherein the metallic coating or alloy comprises aluminum (Al) and chromium (Cr) in addition to nickel (Ni), cobalt (Co) and tantalum (Ta).
32. The metallic coating or alloy according to claim 27, further comprising yttrium (Y).
33. The metallic coating or alloy according to claim 16, wherein the metallic coating or alloy contains no iron (Fe).
34. A component, comprising:
a metallic coating according to claim 16.
US13/885,472 2010-11-24 2011-11-07 Metallic bondcoat or alloy with a high gamma/gamma' transition temperature and a component Abandoned US20130243642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/885,472 US20130243642A1 (en) 2010-11-24 2011-11-07 Metallic bondcoat or alloy with a high gamma/gamma' transition temperature and a component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/953,520 US20120128525A1 (en) 2010-11-24 2010-11-24 Metallic Bondcoat or Alloy with a High y/y' Transition Temperature and a Component
US12/953520 2010-11-24
PCT/EP2011/069513 WO2012069305A1 (en) 2010-11-24 2011-11-07 METALLIC BONDCOAT OR ALLOY WITH A HIGH γ/γ' TRANSITION TEMPERATURE AND A COMPONENT
US13/885,472 US20130243642A1 (en) 2010-11-24 2011-11-07 Metallic bondcoat or alloy with a high gamma/gamma' transition temperature and a component

Publications (1)

Publication Number Publication Date
US20130243642A1 true US20130243642A1 (en) 2013-09-19

Family

ID=45218660

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/953,520 Abandoned US20120128525A1 (en) 2010-11-24 2010-11-24 Metallic Bondcoat or Alloy with a High y/y' Transition Temperature and a Component
US13/885,472 Abandoned US20130243642A1 (en) 2010-11-24 2011-11-07 Metallic bondcoat or alloy with a high gamma/gamma' transition temperature and a component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/953,520 Abandoned US20120128525A1 (en) 2010-11-24 2010-11-24 Metallic Bondcoat or Alloy with a High y/y' Transition Temperature and a Component

Country Status (4)

Country Link
US (2) US20120128525A1 (en)
EP (1) EP2619344A1 (en)
CN (1) CN103354842B (en)
WO (1) WO2012069305A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427892B2 (en) 2017-11-24 2022-08-30 Siemens Energy Global GmbH & Co. KG Alloy for gas turbine applications with high oxidation resistance

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697250B1 (en) * 2013-02-14 2014-04-15 Praxair S.T. Technology, Inc. Selective oxidation of a modified MCrAlY composition loaded with high levels of ceramic acting as a barrier to specific oxide formations
EP2781616A1 (en) 2013-03-19 2014-09-24 ALSTOM Technology Ltd Method for coating a component of a turbomachine and coated component for a turbomachine
EP3118345B1 (en) 2015-07-17 2018-04-11 Ansaldo Energia IP UK Limited High temperature protective coating
US20170306451A1 (en) * 2016-04-26 2017-10-26 General Electric Company Three phase bond coat coating system for superalloys
US20190218668A1 (en) * 2016-09-12 2019-07-18 Siemens Aktiengesellschaft NiCoCrAlY-ALLOY, POWDER AND LAYER SYSTEM
CN114250432B (en) * 2021-12-22 2023-10-27 北京钢研高纳科技股份有限公司 Cracking prevention method for superalloy disc or ring and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095700A (en) * 1981-03-31 1982-10-06 Howmet Turbine Components Superalloy coating compositions
US20090311552A1 (en) * 2006-04-11 2009-12-17 Karl-Heinz Manier Component with a reinforcing plating

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3926479A1 (en) 1989-08-10 1991-02-14 Siemens Ag RHENIUM-PROTECTIVE COATING, WITH GREAT CORROSION AND / OR OXIDATION RESISTANCE
WO1991002108A1 (en) 1989-08-10 1991-02-21 Siemens Aktiengesellschaft High-temperature-resistant, corrosion-resistant coating, in particular for components of gas turbines
JP3370676B2 (en) 1994-10-14 2003-01-27 シーメンス アクチエンゲゼルシヤフト Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same
EP0861927A1 (en) 1997-02-24 1998-09-02 Sulzer Innotec Ag Method for manufacturing single crystal structures
EP0892090B1 (en) 1997-02-24 2008-04-23 Sulzer Innotec Ag Method for manufacturing single crystal structures
CN1198964C (en) * 1997-10-30 2005-04-27 阿尔斯通公司 High temp. protective coating
EP1306454B1 (en) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Rhenium containing protective coating protecting a product against corrosion and oxidation at high temperatures
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
DE50006694D1 (en) 1999-07-29 2004-07-08 Siemens Ag HIGH-TEMPERATURE-RESISTANT COMPONENT AND METHOD FOR PRODUCING THE HIGH-TEMPERATURE-RESISTANT COMPONENT
EP1319729B1 (en) 2001-12-13 2007-04-11 Siemens Aktiengesellschaft High temperature resistant part, made of single-crystal or polycrystalline nickel-base superalloy
EP1780294A1 (en) * 2005-10-25 2007-05-02 Siemens Aktiengesellschaft Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
JP5082563B2 (en) * 2007-04-18 2012-11-28 株式会社日立製作所 Heat-resistant member with thermal barrier coating
CN102971440B (en) * 2010-03-23 2015-04-22 西门子公司 Metallic bondcoat with a high gamma/gamma' transition temperature and a component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095700A (en) * 1981-03-31 1982-10-06 Howmet Turbine Components Superalloy coating compositions
US20090311552A1 (en) * 2006-04-11 2009-12-17 Karl-Heinz Manier Component with a reinforcing plating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427892B2 (en) 2017-11-24 2022-08-30 Siemens Energy Global GmbH & Co. KG Alloy for gas turbine applications with high oxidation resistance

Also Published As

Publication number Publication date
EP2619344A1 (en) 2013-07-31
US20120128525A1 (en) 2012-05-24
CN103354842B (en) 2015-09-16
WO2012069305A1 (en) 2012-05-31
CN103354842A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
US9856545B2 (en) Metallic bondcoat with a high γ/γ' transition temperature and a component
US7592071B2 (en) Layer system
US8057924B2 (en) Layer system comprising two pyrochlore phases
US9556748B2 (en) Layer system with double MCrAlX metallic layer
US20130243642A1 (en) Metallic bondcoat or alloy with a high gamma/gamma' transition temperature and a component
US20130136948A1 (en) Alloy, protective layer and component
US8278232B2 (en) Pyrochlore materials and a thermal barrier coating with these pyrochlore materials
US9133345B2 (en) Metallic bondcoat or alloy with a high gamma/gamma' transition temperature and a component
US20130302638A1 (en) Alloy, protective layer and component
US11092034B2 (en) Alloy, protective layer and component
US9435222B2 (en) Layer system having a two-ply metal layer
US20130288072A1 (en) Alloy, protective layer and component
US20130272917A1 (en) Metallic bondcoat or alloy with a high gamma/gamma' transition temperature and a component
JP2015034344A (en) METALLIC BONDCOAT WITH HIGH γ/γ' TRANSITION TEMPERATURE AND COMPONENT
GB2439312A (en) Protective coating for turbine components

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS ENERGY, INC.;REEL/FRAME:030422/0429

Effective date: 20130502

Owner name: SIEMENS ENERGY, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KULKARNI, ANAND A.;SHIPER, JONATHAN E.;REEL/FRAME:030422/0925

Effective date: 20130424

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STAMM, WERNER;REEL/FRAME:030422/0463

Effective date: 20130424

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION