US20130213086A1 - Methods and apparatuses for processing natural gas - Google Patents

Methods and apparatuses for processing natural gas Download PDF

Info

Publication number
US20130213086A1
US20130213086A1 US13/399,802 US201213399802A US2013213086A1 US 20130213086 A1 US20130213086 A1 US 20130213086A1 US 201213399802 A US201213399802 A US 201213399802A US 2013213086 A1 US2013213086 A1 US 2013213086A1
Authority
US
United States
Prior art keywords
stream
natural gas
overhead
membrane
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/399,802
Inventor
Gregory F. Maher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Original Assignee
UOP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UOP LLC filed Critical UOP LLC
Priority to US13/399,802 priority Critical patent/US20130213086A1/en
Assigned to UOP LLC reassignment UOP LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAHER, GREGORY F.
Priority to PCT/US2013/024716 priority patent/WO2013122773A1/en
Publication of US20130213086A1 publication Critical patent/US20130213086A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/106Removal of contaminants of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/80Quasi-closed internal or closed external carbon dioxide refrigeration cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • This document generally relates to methods and apparatuses for processing natural gas, and particularly relates to such methods and apparatuses that remove carbon dioxide from natural gas to form methane products.
  • Natural gas as sold in commerce is substantively different from natural gas that is extracted through wellheads. Processing of extracted natural gas to form commercial grade natural gas is in many respects less complicated than the processing and refining of crude oil, however, it is equally necessary before its use by end users.
  • the natural gas used by consumers is composed almost entirely of methane. While natural gas as extracted from the earth contains a significant amount of methane, it is not nearly pure enough for commercial use. As extracted, natural gas typically exists in mixtures with other compounds including carbon dioxide and water.
  • Certain natural gas wells produce natural gas having high levels of carbon dioxide, such as levels above 30 mole percent (mol %). Natural gas with high levels of carbon dioxide can be difficult and/or expensive to process.
  • Various fractionation methods, including cryogenic fractionation have been utilized to remove carbon dioxide from natural gas feedstocks. However, improvement both in process efficiency for carbon dioxide removal from natural gas feedstocks and in cost reduction for such processing are desirable for the production of methane rich, commercial grade natural gas.
  • a method for processing a natural gas stream includes fractionating the natural gas stream to form an overhead stream and a bottoms stream. The overhead stream is then separated with a membrane to form a methane rich residual stream and a permeate stream.
  • a method for producing a methane product includes passing a natural gas stream through a molecular sieve to remove water therefrom to form a dried natural gas stream.
  • the dried natural gas stream is fractionated in a fractionation unit to form an overhead stream and a bottoms stream.
  • the overhead stream is compressed in a compressor to form a compressed stream.
  • the compressed stream is separated with a membrane to form a methane rich residual stream and a permeate stream.
  • the apparatus includes a fractionation unit configured to separate the natural gas stream into a bottoms stream and an overhead stream. Further, the apparatus includes a selective permeation membrane in fluid communication with the fractionation unit and configured to separate the overhead stream into a methane rich residual stream and a permeate stream.
  • FIG. 1 is simplified schematic representation of a natural gas processing apparatus arranged in accordance with an exemplary embodiment herein.
  • the methods and apparatuses for processing natural gas described herein utilize a two stage carbon dioxide removal process. Specifically, a first stage removes carbon dioxide from the natural gas feedstock through fractionation. A second stage then takes the methane rich overhead stream resulting from fractionation and uses a membrane with selective permeation to remove carbon dioxide to form a carbon dioxide rich permeate stream, leaving behind a residual stream with a higher concentration of methane.
  • FIG. 1 illustrates an exemplary embodiment of an apparatus 10 for processing natural gas with high levels of carbon dioxide.
  • a feed stream 12 of natural gas with high levels of carbon dioxide is fed to a dehydration unit 16 .
  • the composition of the feed stream 12 depends on its source, and the apparatus 10 and methods described herein are not limited to use with a particular composition.
  • the feed stream 12 is comprised of about 30 mol % to about 40 mol % methane (CH 4 ) and about 60 mol % to about 70 mol % carbon dioxide (CO 2 ).
  • CH 4 mol % methane
  • CO 2 carbon dioxide
  • Other compounds may be present such as, for example, water.
  • An exemplary dehydration unit 16 uses molecular sieves to remove water from the feed stream 12 to form a dried feed stream 18 .
  • Molecular sieve dehydration units utilize adsorption and diffusion processes, rather than a thermal process, to separate water from the other vapors. As a result, molecular sieve dehydration units can be considerably more energy efficient.
  • An exemplary molecular sieve dehydration unit utilizes two parallel columns with molecular sieves that preferentially adsorb water. As the feed stream vapor passes through the first dehydration column, water is continually adsorbed resulting in a dryer feed stream as it exits the first column.
  • the first column Over time, the first column will reach a saturation limit, at which time the flow of the feed stream is diverted to the second column and the molecular sieves in the first column are regenerated.
  • the feed stream 12 entering the dehydration unit 16 contains about 0.0147 mol % water and the dried feed stream 18 exiting the dehydration unit 16 contains about 0.0050 mol % water.
  • cryogenic fractionation is particularly suited to the removal of carbon dioxide from a natural gas stream.
  • the stream 18 is compressed and cooled to a temperature sufficiently low to allow separation by distillation.
  • the carbon dioxide is condensed to a liquid and forms a liquid bottoms stream 28 .
  • the carbon dioxide rich bottoms stream 28 may then be removed from the fractionation unit 22 .
  • An exemplary cryogenic fractionation unit 22 uses dual refrigerants for bulk removal of carbon dioxide.
  • the refrigerant for an overhead condenser is a portion of the carbon dioxide bottoms stream 28 .
  • the bottoms stream 28 may be compressed by a pump 30 to feed a recycle stream 32 of liquid carbon dioxide that is fed back to the fractionation unit 22 .
  • the liquid carbon dioxide is flashed to a relative low pressure where it chills and partially condenses the overhead vapor stream 26 .
  • the carbon dioxide used as refrigerant in the overhead condenser is then compressed, cooled, and returned back to the fractionation column where it is recovered in liquid form.
  • the bottoms stream 28 leaving the fractionation unit 22 is pumped by pump 30 to pipeline pressure.
  • the majority of any propane and heavier hydrocarbons in the natural gas stream 18 exit the column with the liquefied carbon dioxide 28 .
  • the bottoms stream 28 typically contains over 95 mol % carbon dioxide.
  • the overhead stream 26 is fed to a compressor 34 which compresses the stream into a membrane feed stream 36 .
  • An exemplary overhead stream 26 exiting the fractionation unit 22 is comprised of less than about 25 mol % carbon dioxide and more than about 75 mol % methane.
  • the overhead stream 26 has a pressure of about 500 psig to about 600 psig and is compressed to a pressure of about 1200 psig by the compressor 34 .
  • the compressed membrane feed stream 36 is then delivered to a module 38 holding a membrane 40 which separates a methane rich residual stream 42 from a carbon dioxide rich permeate stream 44 .
  • the compressed membrane feed stream 36 flows into contact with the membrane 40 in the module 38 . Carbon dioxide permeates through the membrane 40 , leaving the methane.
  • the carbon dioxide permeable membrane 40 operates on the principle of selective permeation.
  • Each gas component i.e., the methane and the carbon dioxide
  • the rate of permeation is determined by the rate which a component dissolves into the membrane surface and the rate at which it diffuses through the membrane.
  • An exemplary membrane 40 is a nanoporous polybenzoxale (PBO) polymer modified inorganic membrane.
  • PBO polybenzoxale
  • Such a membrane 40 may have a pore size with a diameter in the range of about 0.5 nm to about 500 nm, such as about 0.5 nm to about 200 nm, or about 0.5 nm to about 50 nm.
  • the inorganic membranes may be composed of silica, metal such as stainless steel, alumina such as alpha-alumina, gamma alumina and transition alumina, ceramics, or mixtures thereof. The selection of the material will depend on the conditions of separation as well as the type of nanoporous structure formed.
  • An exemplary inorganic membrane 40 can have different geometries such as a disk, tube, hollow fiber, or others.
  • An exemplary PBO polymer is insoluble in any organic solvents and is stable up to about 500° C.
  • An exemplary PBO polymer is derived from a PBO precursor polymer such as poly(hydroxyl imide), poly(hydroxyl amic acid), poly(hydroxyl amide), or a mixture thereof.
  • An exemplary PBO precursor polymer is soluble in organic solvents such as NMP, DMAc, 1,3-dioxolane, and the like.
  • the function of the PBO material in an exemplary membrane 40 is to enhance the membrane selectivity compared to the unmodified porous inorganic membrane.
  • a porous ceramic membrane disk having 180 nm pores and with dimension of 39.0 mm diameter and 2.0 mm thick obtained from ECO Ceramics BV can be used for the preparation of PBO modified nanoporous membrane.
  • the membrane can be prepared by incorporating a layer of PBO polymer on the inside wall of the pores of the separation surface of the above porous ceramic membrane.
  • An exemplary membrane preparation procedure includes: the above-mentioned commercial porous ceramic membrane disk having 180 nm pores is cleaned first by rinsing with 2-propanol and water to remove surface impurities and drying at 110° C. for at least 24 hours in a vacuum oven. Then, one surface of the porous ceramic membrane is immersed in a PBO precursor solution for a certain time.
  • the PBO precursor solution can be a solution of poly(hydroxyl imide), poly(hydroxyl amic acid), poly(hydroxyl amide), or a mixture thereof. After that, the excess solution on the surface of the ceramic membrane is removed and the surface is carefully cleaned. The resulting modified ceramic membrane is dried at room temperature under high vacuum followed by drying at 200° C. under vacuum. The membrane is then heated to 400-450° C. for a certain time to convert the PBO precursor polymer inside the pores of the ceramic membrane to high temperature stable PBO polymer.
  • the components with higher permeation rates e.g., carbon dioxide
  • components with lower permeation rates e.g., methane
  • the membrane feed stream 36 contacts the membrane 40 , the carbon dioxide will permeate through the membrane at a faster rate than the methane.
  • the membrane feed stream 36 is separated into the methane rich residual stream 42 on the interior of the membrane 40 and the carbon dioxide rich permeate stream 44 on the exterior of the membrane 40 .
  • the primary driving force of the selective permeation membrane separation is the differential partial pressure of the permeating component. Therefore, the pressure difference between the membrane feed stream 36 and permeate stream 44 and the concentration of the carbon dioxide determine the product purity and the amount of carbon dioxide membrane surface required.
  • the residual stream 42 comprises at least about 90 mol % methane, such as more than about 95 mol % methane. Further, an exemplary residual stream comprises less than about 10 mol % carbon dioxide, such as about 6 mol % or about 2 mol % carbon dioxide.
  • the permeate stream 44 is fed to a recompression unit 48 .
  • the recompression unit 48 recompresses the permeate stream 44 to form a carbon dioxide recycle stream 52 at a pressure of about 550 psig to about 600 psig.
  • the recycle stream 52 is mixed with the dried feed stream 18 to form a combined feed 54 that is fed to the carbon dioxide fractionation unit 22 .
  • the stream 12 will include about 60 to about 70 mol % carbon dioxide, about 30 to about 40 mol % methane, and less than about 5 mol % of other components which may include, for example, nitrogen, propane, water, and other alkanes, at a pressure of about 1100 to about 1300 psig and at a temperature of about 15 to about 25° C. Water content is reduced by about 60-70% in the dehydration unit 16 . Mixing with the recycle stream 52 further reduces water content by about 5%, and reduces pressure by about 50%.
  • the overhead stream 26 includes about 20-25 mol % carbon dioxide and about 70-80 mol % methane, while the bottoms stream 28 includes about 95-99 mol % carbon dioxide and less than 1 mol % methane.
  • the overhead stream 26 is compressed to about 1200 psig for interaction with the membrane 40 .
  • the residual 42 formed includes about 96% methane and about 2% carbon dioxide, while the permeate 44 is formed by about 50-60 mol % carbon dioxide and about 40-50 mol % methane.
  • the exemplary embodiment is provided for illustration purposes only and is not meant to limit the various embodiments of the apparatus or methods contemplated herein.
  • the feed stream 12 is fractionated in the fractionation unit 22 to form the carbon dioxide depleted overhead stream 26 and the carbon dioxide rich bottoms stream 28 .
  • the overhead stream 26 is then separated by the membrane 40 to form the methane rich residual stream or methane product stream 42 and the carbon dioxide rich permeate stream 44 .
  • the membrane 40 is able to efficiently form the residual stream with a methane composition of over 90 mol % methane, such as over 95 mol % methane, and with a carbon dioxide composition of less than 10 mol % carbon dioxide, such as about 6 mol % carbon dioxide or about 2 mol % carbon dioxide. Further, the membrane 40 forms the permeate stream 44 having a carbon dioxide composition of over 60 mol % carbon dioxide.
  • the present methods and apparatuses for processing natural gas produce a methane rich product from a natural gas stream having high levels of carbon dioxide.
  • the methods and apparatuses utilize a two stage carbon dioxide separation process, including a first carbon dioxide fractionation stage and a second selective permeation membrane stage. As a result, carbon dioxide is removed from the natural gas stream in an efficient and cost effective manner.

Abstract

Methods and apparatuses for processing natural gas are provided. In a method for processing a natural gas stream, the natural gas stream is fractionated to form an overhead stream and a bottoms stream. The overhead stream is separated with a membrane to form a methane rich residual stream and a permeate stream.

Description

    TECHNICAL FIELD
  • This document generally relates to methods and apparatuses for processing natural gas, and particularly relates to such methods and apparatuses that remove carbon dioxide from natural gas to form methane products.
  • BACKGROUND
  • Natural gas as sold in commerce is substantively different from natural gas that is extracted through wellheads. Processing of extracted natural gas to form commercial grade natural gas is in many respects less complicated than the processing and refining of crude oil, however, it is equally necessary before its use by end users. The natural gas used by consumers is composed almost entirely of methane. While natural gas as extracted from the earth contains a significant amount of methane, it is not nearly pure enough for commercial use. As extracted, natural gas typically exists in mixtures with other compounds including carbon dioxide and water.
  • Certain natural gas wells produce natural gas having high levels of carbon dioxide, such as levels above 30 mole percent (mol %). Natural gas with high levels of carbon dioxide can be difficult and/or expensive to process. Various fractionation methods, including cryogenic fractionation have been utilized to remove carbon dioxide from natural gas feedstocks. However, improvement both in process efficiency for carbon dioxide removal from natural gas feedstocks and in cost reduction for such processing are desirable for the production of methane rich, commercial grade natural gas.
  • Accordingly, it is desirable to provide methods and apparatuses for the processing of natural gas with enhanced carbon dioxide removal. In addition, it is desirable to provide methods and apparatuses that utilize selective permeation membranes for the production of methane products. Furthermore, other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and this background.
  • BRIEF SUMMARY
  • Methods and apparatuses for processing natural gas are provided. In accordance with an exemplary embodiment, a method for processing a natural gas stream includes fractionating the natural gas stream to form an overhead stream and a bottoms stream. The overhead stream is then separated with a membrane to form a methane rich residual stream and a permeate stream.
  • In accordance with another exemplary embodiment, a method for producing a methane product includes passing a natural gas stream through a molecular sieve to remove water therefrom to form a dried natural gas stream. The dried natural gas stream is fractionated in a fractionation unit to form an overhead stream and a bottoms stream. The overhead stream is compressed in a compressor to form a compressed stream. Then the compressed stream is separated with a membrane to form a methane rich residual stream and a permeate stream.
  • Another exemplary embodiment provides an apparatus for processing a natural gas stream. The apparatus includes a fractionation unit configured to separate the natural gas stream into a bottoms stream and an overhead stream. Further, the apparatus includes a selective permeation membrane in fluid communication with the fractionation unit and configured to separate the overhead stream into a methane rich residual stream and a permeate stream.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Exemplary embodiments will hereinafter be described in conjunction with the following drawing figure, wherein:
  • FIG. 1 is simplified schematic representation of a natural gas processing apparatus arranged in accordance with an exemplary embodiment herein.
  • DETAILED DESCRIPTION
  • The following detailed description is merely exemplary in nature and is not intended to limit the natural gas processing methods and apparatuses claimed below. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description. Also, additional components, loops, and processes may be included in the apparatus but are not described herein for purposes of clarity. Stream compositions presented herein are merely illustrative of an embodiment and are not intended to limit the methods and apparatuses in any way.
  • The methods and apparatuses for processing natural gas described herein utilize a two stage carbon dioxide removal process. Specifically, a first stage removes carbon dioxide from the natural gas feedstock through fractionation. A second stage then takes the methane rich overhead stream resulting from fractionation and uses a membrane with selective permeation to remove carbon dioxide to form a carbon dioxide rich permeate stream, leaving behind a residual stream with a higher concentration of methane.
  • FIG. 1 illustrates an exemplary embodiment of an apparatus 10 for processing natural gas with high levels of carbon dioxide. A feed stream 12 of natural gas with high levels of carbon dioxide is fed to a dehydration unit 16. The composition of the feed stream 12 depends on its source, and the apparatus 10 and methods described herein are not limited to use with a particular composition. However, in an exemplary embodiment the feed stream 12 is comprised of about 30 mol % to about 40 mol % methane (CH4) and about 60 mol % to about 70 mol % carbon dioxide (CO2). Other compounds may be present such as, for example, water.
  • An exemplary dehydration unit 16 uses molecular sieves to remove water from the feed stream 12 to form a dried feed stream 18. Molecular sieve dehydration units utilize adsorption and diffusion processes, rather than a thermal process, to separate water from the other vapors. As a result, molecular sieve dehydration units can be considerably more energy efficient. An exemplary molecular sieve dehydration unit utilizes two parallel columns with molecular sieves that preferentially adsorb water. As the feed stream vapor passes through the first dehydration column, water is continually adsorbed resulting in a dryer feed stream as it exits the first column. Over time, the first column will reach a saturation limit, at which time the flow of the feed stream is diverted to the second column and the molecular sieves in the first column are regenerated. In an exemplary embodiment, the feed stream 12 entering the dehydration unit 16 contains about 0.0147 mol % water and the dried feed stream 18 exiting the dehydration unit 16 contains about 0.0050 mol % water.
  • After the dehydration unit 16 forms the dried feed stream 18, the stream is delivered to a carbon dioxide fractionation unit 22 which separates an overhead stream 26 from a bottoms stream 28. While various processes may be used, cryogenic fractionation is particularly suited to the removal of carbon dioxide from a natural gas stream. In cryogenic fractionation, the stream 18 is compressed and cooled to a temperature sufficiently low to allow separation by distillation. Specifically, the carbon dioxide is condensed to a liquid and forms a liquid bottoms stream 28. The carbon dioxide rich bottoms stream 28 may then be removed from the fractionation unit 22.
  • An exemplary cryogenic fractionation unit 22 uses dual refrigerants for bulk removal of carbon dioxide. In an exemplary dual refrigerant unit, the refrigerant for an overhead condenser is a portion of the carbon dioxide bottoms stream 28. Specifically, the bottoms stream 28 may be compressed by a pump 30 to feed a recycle stream 32 of liquid carbon dioxide that is fed back to the fractionation unit 22. The liquid carbon dioxide is flashed to a relative low pressure where it chills and partially condenses the overhead vapor stream 26. The carbon dioxide used as refrigerant in the overhead condenser is then compressed, cooled, and returned back to the fractionation column where it is recovered in liquid form. The bottoms stream 28 leaving the fractionation unit 22 is pumped by pump 30 to pipeline pressure. The majority of any propane and heavier hydrocarbons in the natural gas stream 18 exit the column with the liquefied carbon dioxide 28. The bottoms stream 28 typically contains over 95 mol % carbon dioxide.
  • As shown in FIG. 1, after fractionation, the overhead stream 26 is fed to a compressor 34 which compresses the stream into a membrane feed stream 36. An exemplary overhead stream 26 exiting the fractionation unit 22 is comprised of less than about 25 mol % carbon dioxide and more than about 75 mol % methane. Typically, the overhead stream 26 has a pressure of about 500 psig to about 600 psig and is compressed to a pressure of about 1200 psig by the compressor 34.
  • The compressed membrane feed stream 36 is then delivered to a module 38 holding a membrane 40 which separates a methane rich residual stream 42 from a carbon dioxide rich permeate stream 44. Specifically, the compressed membrane feed stream 36 flows into contact with the membrane 40 in the module 38. Carbon dioxide permeates through the membrane 40, leaving the methane.
  • The carbon dioxide permeable membrane 40 operates on the principle of selective permeation. Each gas component (i.e., the methane and the carbon dioxide) has a specific permeation rate. The rate of permeation is determined by the rate which a component dissolves into the membrane surface and the rate at which it diffuses through the membrane.
  • An exemplary membrane 40 is a nanoporous polybenzoxale (PBO) polymer modified inorganic membrane. Such a membrane 40 may have a pore size with a diameter in the range of about 0.5 nm to about 500 nm, such as about 0.5 nm to about 200 nm, or about 0.5 nm to about 50 nm. The inorganic membranes may be composed of silica, metal such as stainless steel, alumina such as alpha-alumina, gamma alumina and transition alumina, ceramics, or mixtures thereof. The selection of the material will depend on the conditions of separation as well as the type of nanoporous structure formed. An exemplary inorganic membrane 40 can have different geometries such as a disk, tube, hollow fiber, or others. An exemplary PBO polymer is insoluble in any organic solvents and is stable up to about 500° C. An exemplary PBO polymer is derived from a PBO precursor polymer such as poly(hydroxyl imide), poly(hydroxyl amic acid), poly(hydroxyl amide), or a mixture thereof. An exemplary PBO precursor polymer is soluble in organic solvents such as NMP, DMAc, 1,3-dioxolane, and the like. The function of the PBO material in an exemplary membrane 40 is to enhance the membrane selectivity compared to the unmodified porous inorganic membrane.
  • As an example, a porous ceramic membrane disk having 180 nm pores and with dimension of 39.0 mm diameter and 2.0 mm thick obtained from ECO Ceramics BV can be used for the preparation of PBO modified nanoporous membrane. The membrane can be prepared by incorporating a layer of PBO polymer on the inside wall of the pores of the separation surface of the above porous ceramic membrane. An exemplary membrane preparation procedure includes: the above-mentioned commercial porous ceramic membrane disk having 180 nm pores is cleaned first by rinsing with 2-propanol and water to remove surface impurities and drying at 110° C. for at least 24 hours in a vacuum oven. Then, one surface of the porous ceramic membrane is immersed in a PBO precursor solution for a certain time. The PBO precursor solution can be a solution of poly(hydroxyl imide), poly(hydroxyl amic acid), poly(hydroxyl amide), or a mixture thereof. After that, the excess solution on the surface of the ceramic membrane is removed and the surface is carefully cleaned. The resulting modified ceramic membrane is dried at room temperature under high vacuum followed by drying at 200° C. under vacuum. The membrane is then heated to 400-450° C. for a certain time to convert the PBO precursor polymer inside the pores of the ceramic membrane to high temperature stable PBO polymer.
  • The components with higher permeation rates (e.g., carbon dioxide) will permeate faster through the membrane module than components with lower permeation rates (e.g., methane). Therefore, when the membrane feed stream 36 contacts the membrane 40, the carbon dioxide will permeate through the membrane at a faster rate than the methane. Thus, the membrane feed stream 36 is separated into the methane rich residual stream 42 on the interior of the membrane 40 and the carbon dioxide rich permeate stream 44 on the exterior of the membrane 40. The primary driving force of the selective permeation membrane separation is the differential partial pressure of the permeating component. Therefore, the pressure difference between the membrane feed stream 36 and permeate stream 44 and the concentration of the carbon dioxide determine the product purity and the amount of carbon dioxide membrane surface required.
  • In an exemplary embodiment, as formed by the membrane 40, the residual stream 42 comprises at least about 90 mol % methane, such as more than about 95 mol % methane. Further, an exemplary residual stream comprises less than about 10 mol % carbon dioxide, such as about 6 mol % or about 2 mol % carbon dioxide.
  • In FIG. 1, the permeate stream 44 is fed to a recompression unit 48. The recompression unit 48 recompresses the permeate stream 44 to form a carbon dioxide recycle stream 52 at a pressure of about 550 psig to about 600 psig. As shown, the recycle stream 52 is mixed with the dried feed stream 18 to form a combined feed 54 that is fed to the carbon dioxide fractionation unit 22.
  • In an exemplary embodiment, the stream 12 will include about 60 to about 70 mol % carbon dioxide, about 30 to about 40 mol % methane, and less than about 5 mol % of other components which may include, for example, nitrogen, propane, water, and other alkanes, at a pressure of about 1100 to about 1300 psig and at a temperature of about 15 to about 25° C. Water content is reduced by about 60-70% in the dehydration unit 16. Mixing with the recycle stream 52 further reduces water content by about 5%, and reduces pressure by about 50%. The overhead stream 26 includes about 20-25 mol % carbon dioxide and about 70-80 mol % methane, while the bottoms stream 28 includes about 95-99 mol % carbon dioxide and less than 1 mol % methane. The overhead stream 26 is compressed to about 1200 psig for interaction with the membrane 40. The residual 42 formed includes about 96% methane and about 2% carbon dioxide, while the permeate 44 is formed by about 50-60 mol % carbon dioxide and about 40-50 mol % methane. The exemplary embodiment is provided for illustration purposes only and is not meant to limit the various embodiments of the apparatus or methods contemplated herein.
  • In the method for processing the natural gas stream 12, carbon dioxide is separated and removed from methane in the natural gas. The method involves a two stage separation process. First, the feed stream 12 is fractionated in the fractionation unit 22 to form the carbon dioxide depleted overhead stream 26 and the carbon dioxide rich bottoms stream 28. The overhead stream 26 is then separated by the membrane 40 to form the methane rich residual stream or methane product stream 42 and the carbon dioxide rich permeate stream 44. The membrane 40 is able to efficiently form the residual stream with a methane composition of over 90 mol % methane, such as over 95 mol % methane, and with a carbon dioxide composition of less than 10 mol % carbon dioxide, such as about 6 mol % carbon dioxide or about 2 mol % carbon dioxide. Further, the membrane 40 forms the permeate stream 44 having a carbon dioxide composition of over 60 mol % carbon dioxide.
  • As indicated above, the present methods and apparatuses for processing natural gas produce a methane rich product from a natural gas stream having high levels of carbon dioxide. The methods and apparatuses utilize a two stage carbon dioxide separation process, including a first carbon dioxide fractionation stage and a second selective permeation membrane stage. As a result, carbon dioxide is removed from the natural gas stream in an efficient and cost effective manner.
  • Accordingly, apparatuses and methods for processing natural gas have been provided. While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the isomerization and deisohexanizer apparatuses or methods in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope as set forth in the appended claims and their legal equivalents.

Claims (20)

What is claimed is:
1. A method for processing a natural gas stream comprising:
fractionating the natural gas stream to form an overhead stream and a bottoms stream; and
separating the overhead stream with a membrane to form a methane rich residual stream and a permeate stream.
2. The method of claim 1 wherein fractionating the natural gas stream forms the overhead stream comprising less than 25% carbon dioxide.
3. The method of claim 1 wherein separating the overhead stream with the membrane forms the methane rich residual stream comprising less than 10% carbon dioxide.
4. The method of claim 1 wherein separating the overhead stream with the membrane forms the methane rich residual stream comprising no more than about 6% carbon dioxide.
5. The method of claim 1 wherein separating the overhead stream with the membrane forms the methane rich residual stream comprising about no more than about 2% carbon dioxide.
6. The method of claim 1 wherein separating the overhead stream with the membrane forms the methane rich residual stream comprising no less than about 90% methane.
7. The method of claim 1 wherein separating the overhead stream with the membrane forms the methane rich residual stream comprising no less than about 95% methane.
8. The method of claim 1 further comprising compressing the overhead stream before separating the overhead stream.
9. The method of claim 1 further comprising removing water from the natural gas stream before fractionating.
10. The method of claim 1 further comprising removing water from the natural gas stream with a molecular sieve before fractionating.
11. The method of claim 1 further comprising mixing the permeate stream with the natural gas stream.
12. The method of claim 11 further comprising compressing the permeate stream before mixing the permeate stream with the natural gas stream.
13. A method for producing a methane product comprising:
passing a natural gas stream through a molecular sieve to remove water therefrom and to form a dried natural gas stream;
fractionating the dried natural gas stream in a fractionation unit to form an overhead stream and a bottoms stream;
compressing the overhead stream in a compressor to form a compressed stream; and
separating the compressed stream with a membrane to form a methane rich residual stream and a permeate stream.
14. The method of claim 13 further comprising compressing the permeate stream and mixing the compressed permeate stream with the dried natural gas stream upstream of the fractionation unit.
15. The method of claim 13 wherein fractionating the natural gas stream forms the overhead stream comprising less than 25% carbon dioxide.
16. The method of claim 13 wherein separating the overhead stream with the membrane forms the methane rich residual stream comprising less than about 10% carbon dioxide.
17. The method of claim 13 wherein separating the overhead stream with the membrane forms the methane rich residual stream comprising no less than about 90% methane.
18. The method of claim 13 wherein separating the overhead stream with the membrane forms the methane rich residual stream comprising no less than about 95% methane.
19. An apparatus for processing a natural gas stream comprising:
a fractionation unit configured to separate the natural gas stream into a bottoms stream and an overhead stream; and
a selective permeation membrane in fluid communication with the fractionation unit and configured to separate the overhead stream into a methane rich residual stream and a permeate stream.
20. The apparatus of claim 19 further comprising:
a dehydration unit including a molecular sieve configured to remove water from the natural gas stream, wherein the fractionation unit is in fluid communication with the dehydration unit and receives the natural gas stream from the dehydration unit;
a compressor in fluid communication with the fractionation unit and configured to compress the overhead stream to form a compressed stream, wherein the selective permeation membrane is in fluid communication with the fractionation unit and receives the overhead stream from the compressor;
a recompressor in fluid communication with the selective permeation membrane and configured to compress the permeate stream;
a conduit configured to recycle the compressed permeate stream to the natural gas stream upstream of the fractionation unit; and
a pump configured to pressurize the bottoms stream.
US13/399,802 2012-02-17 2012-02-17 Methods and apparatuses for processing natural gas Abandoned US20130213086A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/399,802 US20130213086A1 (en) 2012-02-17 2012-02-17 Methods and apparatuses for processing natural gas
PCT/US2013/024716 WO2013122773A1 (en) 2012-02-17 2013-02-05 Methods and apparatuses for processing natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/399,802 US20130213086A1 (en) 2012-02-17 2012-02-17 Methods and apparatuses for processing natural gas

Publications (1)

Publication Number Publication Date
US20130213086A1 true US20130213086A1 (en) 2013-08-22

Family

ID=48981220

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/399,802 Abandoned US20130213086A1 (en) 2012-02-17 2012-02-17 Methods and apparatuses for processing natural gas

Country Status (2)

Country Link
US (1) US20130213086A1 (en)
WO (1) WO2013122773A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160134344A (en) * 2015-05-15 2016-11-23 대우조선해양 주식회사 The System and Method for Carbon Dioxide Separation from Natural Gas before Gas Liquefaction Process on LNG-FPSO
US20170176100A1 (en) * 2015-12-18 2017-06-22 General Electric Company Flow management and co2-recovery apparatus and method of use
US10400187B2 (en) 2014-12-04 2019-09-03 Mitsubishi Heavy Industries, Ltd. Natural gas refining apparatus and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681612A (en) * 1984-05-31 1987-07-21 Koch Process Systems, Inc. Process for the separation of landfill gas
US5842357A (en) * 1995-01-11 1998-12-01 Acrion Technologies, Inc. Landfill gas recovery
US6011192A (en) * 1998-05-22 2000-01-04 Membrane Technology And Research, Inc. Membrane-based conditioning for adsorption system feed gases
US7124605B2 (en) * 2003-10-30 2006-10-24 National Tank Company Membrane/distillation method and system for extracting CO2 from hydrocarbon gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6425267B1 (en) * 2001-07-27 2002-07-30 Membrane Technology And Research, Inc. Two-step process for nitrogen removal from natural gas
US20040099138A1 (en) * 2002-11-21 2004-05-27 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et Membrane separation process
RU2296922C1 (en) * 2006-03-31 2007-04-10 ООО Производственный кооператив Научно-производственная фирма "ЭКИП" Method for producing pure methane
TW200914115A (en) * 2007-05-14 2009-04-01 Shell Int Research Process for producing purified natural gas from natural gas comprising water and carbon dioxide
US8337587B2 (en) * 2008-05-20 2012-12-25 Lummus Technology Inc. Carbon dioxide purification
US8388732B2 (en) * 2010-06-25 2013-03-05 Uop Llc Integrated membrane and adsorption system for carbon dioxide removal from natural gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681612A (en) * 1984-05-31 1987-07-21 Koch Process Systems, Inc. Process for the separation of landfill gas
US5842357A (en) * 1995-01-11 1998-12-01 Acrion Technologies, Inc. Landfill gas recovery
US6011192A (en) * 1998-05-22 2000-01-04 Membrane Technology And Research, Inc. Membrane-based conditioning for adsorption system feed gases
US7124605B2 (en) * 2003-10-30 2006-10-24 National Tank Company Membrane/distillation method and system for extracting CO2 from hydrocarbon gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400187B2 (en) 2014-12-04 2019-09-03 Mitsubishi Heavy Industries, Ltd. Natural gas refining apparatus and system
KR20160134344A (en) * 2015-05-15 2016-11-23 대우조선해양 주식회사 The System and Method for Carbon Dioxide Separation from Natural Gas before Gas Liquefaction Process on LNG-FPSO
KR102372751B1 (en) 2015-05-15 2022-03-10 대우조선해양 주식회사 The System and Method for Carbon Dioxide Separation from Natural Gas before Gas Liquefaction Process on LNG-FPSO
US20170176100A1 (en) * 2015-12-18 2017-06-22 General Electric Company Flow management and co2-recovery apparatus and method of use
US11473838B2 (en) * 2015-12-18 2022-10-18 Baker Hughes Holdings Llc Flow management and CO2-recovery apparatus and method of use

Also Published As

Publication number Publication date
WO2013122773A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
RU2605593C2 (en) Method of extracting helium and device therefor
Bernardo et al. 30 years of membrane technology for gas separation
US9375677B2 (en) Helium recovery from natural gas
US8419828B2 (en) Multi-stage membrane separation process
US10874979B2 (en) Method and system for purification of natural gas using membranes
US20040099138A1 (en) Membrane separation process
WO1997032171A1 (en) Membrane-augmented cryogenic methane/nitrogen separation
AU2009203713A1 (en) Multi - stage membrane separation process
US20190176083A1 (en) Process and plant for obtaining pure helium
JP2020523548A (en) Helium recovery from gaseous streams
US20140366446A1 (en) Methods and systems for gas separation
US20190201838A1 (en) Helium recovery from natural gas
CN104001408A (en) Helium recovery from natural gas
WO2017096146A1 (en) Method and system for purification of natural gas using membranes
WO2018093487A1 (en) High flux, cross-linked, fumed silica reinforced polyorganosiloxane membranes for separations
JP2002509083A (en) Olefin recovery method
US20130213086A1 (en) Methods and apparatuses for processing natural gas
CN104028076A (en) Method and device for carrying out membrane separation, pressure swing adsorption and combination recycle on low concentration refinery dry gas
US4842718A (en) Process for recovery of hydrocarbons from a fluid feed
US20150182908A1 (en) Method of recoverying a low concentration gas using two membrane stages with a second stage reflux
US9327248B1 (en) Copolyimide membranes with high permeability and selectivity for olefin/paraffin separations
US10052582B1 (en) Super high permeance and high selectivity rubbery polymeric membranes for separations
JP2003342009A (en) Method for producing high purity helium
CN112533866A (en) Method for purifying nitrous oxide
RU2779486C1 (en) Method and installation for production of pure helium

Legal Events

Date Code Title Description
AS Assignment

Owner name: UOP LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAHER, GREGORY F.;REEL/FRAME:027726/0476

Effective date: 20120216

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION