US20130184435A1 - Multi-drug ligand conjugates - Google Patents

Multi-drug ligand conjugates Download PDF

Info

Publication number
US20130184435A1
US20130184435A1 US13/740,784 US201313740784A US2013184435A1 US 20130184435 A1 US20130184435 A1 US 20130184435A1 US 201313740784 A US201313740784 A US 201313740784A US 2013184435 A1 US2013184435 A1 US 2013184435A1
Authority
US
United States
Prior art keywords
linkers
drug delivery
drugs
linker
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/740,784
Inventor
Iontcho R. Vlahov
Christopher P. Leamon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endocyte Inc
Original Assignee
Endocyte Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endocyte Inc filed Critical Endocyte Inc
Priority to US13/740,784 priority Critical patent/US20130184435A1/en
Priority to US13/785,560 priority patent/US20140058064A1/en
Publication of US20130184435A1 publication Critical patent/US20130184435A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • A61K47/48338
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • A61K47/551Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to compositions and methods for use in targeted drug delivery.
  • the invention relates to ligand conjugates including two or more drugs, and analogs and derivatives thereof, such as conjugates of vitamin receptor binding compounds and two or more drugs.
  • the mammalian immune system provides a means for the recognition and elimination of tumor cells, other pathogenic cells, and invading foreign pathogens. While the immune system normally provides a strong line of defense, there are many instances where cancer cells, other pathogenic cells, or infectious agents evade a host immune response and proliferate or persist with concomitant host pathogenicity. Chemotherapeutic agents and radiation therapies have been developed to eliminate, for example, replicating neoplasms. However, many of the currently available chemotherapeutic agents and radiation therapy regimens have adverse side effects because they work not only to destroy pathogenic cells, but they also affect normal host cells, such as cells of the hematopoietic system. The adverse side effects of these anticancer drugs highlight the need for the development of new therapies selective for pathogenic cell populations and with reduced host toxicity.
  • Another approach for targeting populations of pathogenic cells, such as cancer cells or foreign pathogens, in a host is to enhance the host immune response against the pathogenic cells to avoid the need for administration of compounds that may also exhibit independent host toxicity.
  • One reported strategy for immunotherapy is to bind antibodies, for example, genetically engineered multimeric antibodies, to the surface of tumor cells to display the constant region of the antibodies on the cell surface and thereby induce tumor cell killing by various immune-system mediated processes (De Vita, V. T., Biologic Therapy of Cancer, 2d ed. Philadelphia, Lippincott, 1995; Soulillou, L P., U.S. Pat. No. 5,672,486).
  • these approaches have been complicated by the difficulties in defining tumor-specific antigens.
  • the conjugates include cell receptor binding ligands that are covalently attached to two or more drugs that may be targeted to cells.
  • the conjugates described herein may also include a polyvalent linker for attaching the ligands to the drugs.
  • a receptor binding drug delivery conjugate comprises a ligand of a cell surface receptor, two or more drugs, or analogs or derivatives thereof, and optionally a polyvalent linker, which may be generally represented by the formula
  • the polyvalent linker (L) can comprise multiple linkers covalently attached to each other.
  • the polyvalent linker (L) can comprise one or more spacer linkers (l s ), and/or releasable linkers (l r ), each connected to the other, and to the ligand and the drug, by one or more heteroatom linkers (l H ).
  • These various linkers may be selected and placed in any order to construct the polyvalent linker (L).
  • the polyvalent linker (L) may be constructed from one or more of the following bivalent linkers:
  • a, b, c, d, and e are integers, such as integers in the range from 0 to about 4, and (l s ), (l H ), and (l r ) are the spacer linkers, releasable linkers, heteroatom linkers, respectively.
  • Additional illustrative examples of bivalent linkers that may be used to construct the polyvalent linkers described herein are described in U.S. patent application Ser. No. 10/765,336 (also found as U.S. patent application publication no. US 2005/0002942 A1) and PCT international publication no. WO 2006/012527, the entirety of the disclosures of which are incorporated herein by reference.
  • polyvalent linkers may connect the receptor binding moiety to the two or more drugs in a variety of structural configurations, including but not limited to the following illustrative general formulae:
  • each of (L 1 ), (L 2 ), and (L 3 ) is a polyvalent linker constructed from one or more spacer, releasable, and/or heteroatom linkers, and each of (D 1 ), D 2 , and D 3 is a drug, or an analog or derivative thereof.
  • additional drugs, or analogs or derivatives thereof, additional linkers, and additional configurations of the arrangement of each of (B), (L), and (D), are also contemplated herein.
  • more than one receptor binding ligand is included in the drug delivery conjugates described herein, including but not limited to the following illustrative general formulae:
  • each B is a receptor binding ligand
  • each of (L 1 ), (L 2 ), and (L 3 ) is a polyvalent linker constructed from one or more spacer, releasable, and/or heteroatom linkers
  • each of (D 1 ), D 2 , and D 3 is a drug, or an analog or derivative thereof.
  • Other variations, including additional drugs, or analogs or derivatives thereof, additional linkers, and additional configurations of the arrangement of each of (B), (L), and (D), are also contemplated herein.
  • the receptor binding ligands are for the same receptor, and in another variation, the receptor binding ligands are for different receptors.
  • the polyvalent linker includes at least one releasable linker (I r ). In another illustrative embodiment of the drug delivery conjugates described herein, the polyvalent linker includes at least two releasable linkers (l 2 ) 2 . In another illustrative aspect, the polyvalent linker (L) includes at least one releasable linkers (l r ) that is not a disulfide releasable linker.
  • the polyvalent linker (L) has at least two releasable linkers (l r ) 2 where one releasable linker is not a disulfide releasable linker. It is appreciated that when more than one releasable linker is included in the polyvalent linker, those releasable linkers may be adjacent. It is further appreciated that when two releasable linkers are adjacent in the polyvalent linker, the two releasable linkers may cooperate to cause release of the drug.
  • the polyvalent linker includes at least one spacer linker that is a peptide formed from amino acids.
  • the peptide includes naturally occurring amino acids, and stereoisomers thereof.
  • the peptide is formed only from naturally occurring amino acids, and stereoisomers thereof.
  • the ligands described herein generally include ligands of cell surface receptors.
  • Illustrative ligands useful in the conjugates described herein include, but are not limited to, vitamins, and other moieties that bind to a vitamin receptor, transporter, or other surface-presented protein that specifically binds vitamins, or analogs or derivatives thereof, peptide ligands identified from library screens, tumor cell-specific peptides, tumor cell-specific aptamers, tumor cell-specific carbohydrates, tumor cell-specific monoclonal or polyclonal antibodies, Fab or scFv (i.e., a single chain variable region) fragments of antibodies such as, for example, an Fab fragment of an antibody directed to EphA2 or other proteins specifically expressed or uniquely accessible on metastatic cancer cells, small organic molecules derived from combinatorial libraries, growth factors, such as EGF, FGF, insulin, and insulin-like growth factors, and homologous polypeptides, somatostatin and its analogs, transferrin, lipoprotein
  • Tumor-specific antigens that could function as a binding site for ligand-drug conjugates include extracellular epitopes of members of the Ephrin family of proteins, such as EphA2.
  • EphA2 expression is restricted to cell-cell junctions in normal cells, but EphA2 is distributed over the entire cell surface in metastatic tumor cells.
  • EphA2 on metastatic cells would be accessible for binding to, for example, an Fab fragment of an antibody conjugated to a drug, or analog or derivative thereof, whereas the protein would not be accessible for binding to the Fab fragment on normal cells, resulting in a ligand-drug conjugate specific for metastatic cancer cells.
  • the drugs, and various analogs and derivatives thereof, described herein are generally drugs for eliminating, killing, interfering with, and/or decreasing the growth of a population of pathogenic cells, including infectious agents, cancers, tumors, and the like.
  • the drugs, and the various analogs and derivatives thereof, useful in the conjugates described herein may have a wide variety of mechanisms of action, including but not limited to alkylating agents, microtubule inhibitors, including those that stabilize and/or destabilize microtubule formation, including beta-tubulin agents, cyclin dependent kinase (CDK) inhibitors such as CDKN1a.
  • CDK cyclin dependent kinase
  • CDKN1b and the like, topoisomerase inhibitors, protein synthesis inhibitors, protein kinase inhibitors, including Ras, Raf, PKC, PI3K, and like inhibitors, transcription inhibitor, antifolates, heat shock protein blockers, and the like.
  • a pharmaceutical composition in another embodiment, comprises a drug delivery conjugate described herein in combination with a pharmaceutically acceptable carrier, excipient, and/or diluent therefor.
  • a method for eliminating a population of pathogenic cells in a host animal harboring the population of pathogenic cells is described.
  • the members of the pathogenic cell population have an accessible binding site for a receptor binding moiety, or the analog or derivative thereof, and that binding site is uniquely expressed, overexpressed, or preferentially expressed by the pathogenic cells.
  • the method includes the step of administering to the host a drug delivery conjugate described herein, or a pharmaceutical composition thereof, as described herein.
  • FIG. 1A shows the relative binding affinity of Example 9 ( ⁇ , 0.24) versus folic acid ( ⁇ , 1.0) at folic acid receptors.
  • FIG. 1B shows the activity of Example 9 on 3 H-thymidine incorporation in KB cells with ( ⁇ ) and without ( ⁇ ) excess folic acid; IC 50 of Example 9 is about 58 nM.
  • FIG. 2 shows the relative binding affinity of for Example 11 ( ⁇ , 0.21) versus folic acid ( ⁇ , 1.0) at folic acid receptors.
  • FIG. 4 shows the in vitro cytotoxic activity of Example 11 (a) on three different tumor cell lines (KB, 4T-1cl2, and ID8-cl15) compared to Example 11+ excess folic acid (b).
  • FIG. 5A shows the activity of Example 11 at 1 ⁇ mol/kg TIW (6 doses) ( ⁇ ), and 2 ⁇ mol/kg TIW (6 doses) ( ⁇ ) on FR-positive M109 tumors in Balb/c mice versus untreated controls ( ⁇ ).
  • FIG. 5B shows the absence of an effect by Example 11 at 1 ⁇ mol/kg TIW (6 doses) ( ⁇ ), and 2 ⁇ mol/kg TIW (6 doses) ( ⁇ ) on the weight of Balb/c mice versus untreated controls ( ⁇ ).
  • FIG. 6 shows the activity of Example 11 at 1 ⁇ mol/kg TIW for 2 weeks (6 doses) on FR-positive KB tumors with ( ⁇ ) and without ( ⁇ ) 40 ⁇ mol/kg EC20 (rhenium complex) versus untreated controls ( ⁇ );
  • Example 11 alone showed 5/5 complete responses;
  • Example 11+EC20 showed 0/5 complete responses.
  • FIG. 7 shows the absence of an effect by Example 11 at 1 ⁇ mol/kg TIW for 2 weeks (6 doses) on the weight of nu/nu mice with ( ⁇ ) and without ( ⁇ ) 40 ⁇ mol/kg EC20 (rhenium complex) versus untreated controls ( ⁇ ).
  • FIG. 8 shows the activity of Example 11 at 1 ⁇ mol/kg TIW for 2 weeks (6 doses) on s.c. human xenograft KB tumors implanted in nude mice with (b) and without (c) 40 ⁇ mol/kg EC20 (rhenium complex) versus untreated controls (a);
  • Example 11 alone showed 5/5 complete responses;
  • Example 11+EC20 showed 0/5 complete responses.
  • FIG. 9 shows the absence of an effect by Example 11 at 1 ⁇ mol/kg TIW for 2 weeks (6 doses) on the weight of nude mice with (b) and without (c) 40 ⁇ mol/kg EC20 (rhenium complex) versus untreated controls (a).
  • FIG. 10 shows the activity of Example 11 at 2 ⁇ mol/kg TIW (e) on folate receptor positive human tumors in nude mice as compared to a mixture of the unconjugated base drugs, mitomycin C and desacetylvinblastine monohydrazide, at 0.5 ⁇ mol/kg TIW (b), 1 ⁇ mol/kg TIW (c), and 2 ⁇ mol/kg TIW (d), and compared to untreated controls (a).
  • FIG. 11 shows the absence of an effect by Example 11 at 2 ⁇ mol/kg TIW for 2 weeks (e) on the weight of nude mice compared to controls (a). Weight loss occurred at the all three doses of the mixture of the unconjugated base drugs, mitomycin C and desacetylvinblastine monohydrazide (0.5 ⁇ mol/kg TIW (b), 1 ⁇ mol/kg TIW (c), 2 ⁇ mol/kg TIW (d)). The high dose (d) was discontinued prior to day 20.
  • FIG. 12 shows the activity of Example 11 on three sizes of large KB tumors, 250 mm 3 (b), 500 mm 3 (c), and 750 mm 3 (d) in nu/nu mice at 2 ⁇ mol/kg TIW for 2 weeks compared to controls (a).
  • FIG. 13 shows the activity of Example 11 (e) compared to conjugates of only the single drug mitomycin C (b), desacetylvinblastine monohydrazide (c), or a mixture of those two single drug conjugates (d), compared to controls (a).
  • FIG. 14 shows the absence of activity of Example 11 (b) at 2 ⁇ mol/kg TIW for two weeks of treatment on folate receptor negative 4T1 tumors in Bablb/c mice, compared to controls (a).
  • the data in FIG. 14 show that Example 11 (b) does not have any effect on the tumors compared to controls (a) due to the absence of folate receptors on those tumors.
  • FIG. 15 shows the activity of Example 12 on 3 H-thymidine incorporation into FR-positive KB cells
  • the conjugates include cell receptor binding ligands, including ligands of cell surface receptors, that are covalently attached to two or more drugs that may be targeted to cells, including pathogenic cells.
  • the conjugates described herein may also include a polyvalent linker for attaching the ligands to the drugs.
  • Receptor binding drug delivery conjugates comprising a receptor binding moiety (B), a polyvalent linker (L), and two or more drugs, or drug analogs or drug derivatives, (D) n are described, where n is greater than or equal to 2.
  • the receptor binding moiety (B) and the two or more drugs (D) n are each bound to the polyvalent linker (L), through an independently selected heteroatom linker (l H ).
  • the polyvalent linker (L) comprises one or more spacer linkers, heteroatom linkers, and releasable linkers, and combinations thereof, in any order.
  • a receptor binding drug delivery conjugate comprises a ligand, such as a ligand of a cell surface receptor, two or more drugs, or analogs or derivatives thereof, and optionally a polyvalent linker, which may be generally represented by the formula
  • the polyvalent linker (L) can comprise multiple linkers covalently attached to each other.
  • the polyvalent linker (L) can comprise one or more spacer linkers (l s ), and/or releasable linkers (l r ), each connected to the other, and to the ligand and the drug, by one or more heteroatom linkers (l H ). These various linkers may be selected and placed in any order to construct the polyvalent linker (L).
  • the polyvalent linker (L) may be constructed from one or more of the following bivalent linkers:
  • a, b, c, d, and e are integers, such as integers in the range from 0 to about 4, and (l s ), (l H ), and (l r ) are the spacer linkers, releasable linkers, heteroatom linkers, respectively.
  • Additional illustrative examples of bivalent linkers that may be used to construct the polyvalent linkers described herein are described in U.S. patent application Ser. No. 10/765,336 (also found as U.S. patent application publication no. US 2005/0002942 A1) and PCT international publication no. WO2006/012527, the entirety of the disclosures of which are incorporated herein by reference.
  • polyvalent linkers may connect the receptor binding moiety to the two or more drugs in a variety of structural configurations, including but not limited to the following illustrative general formulae:
  • each of (L 1 ), (L 2 ), and (L 3 ) is a polyvalent linker constructed from one or more spacer, releasable, and/or heteroatom linkers, and each of (D 1 ), D 2 , and D 3 is a drug, or an analog or derivative thereof.
  • additional drugs, or analogs or derivatives thereof, additional linkers, and additional configurations of the arrangement of each of (B), (L), and (D), are also contemplated herein.
  • more than one receptor binding ligand is included in the drug delivery conjugates described herein, including but not limited to the following illustrative general formulae:
  • each B is a receptor binding ligand
  • each of (L 1 ), (L 2 ), and (L 3 ) is a polyvalent linker constructed from one or more spacer, releasable, and/or heteroatom linkers
  • each of (D 1 ), D 2 , and D 3 is a drug, or an analog or derivative thereof.
  • Other variations, including additional drugs, or analogs or derivatives thereof, additional linkers, and additional configurations of the arrangement of each of (B), (L), and (D), are also contemplated herein.
  • the receptor binding ligands are for the same receptor, and in another variation, the receptor binding ligands are for different receptors.
  • more than one polyvalent linker may be included in the drug delivery conjugates described herein. It is understood that in one aspect, the number of linkers are selected depending upon the configuration of the receptor binding ligands, and the drugs.
  • linkers are covalently assembled to form the polyvalent linker, or part of the polyvalent linker, heteroatom linkers, spacer linkers, and releasable linkers are connected to form a polyvalent group of the formula:
  • (l s ) 1 is the tripeptide Asp-Asp-Asp
  • (l s ) 2 is Cys
  • (l r ) 1 is S—S
  • (l s ) 3 is CH 2 CH 2
  • (l H ) 1 is O
  • (l r ) 2 is C(O)NHNH
  • (l s ) 4 is w-Lys
  • (l s ) 5 is C(O)CH2CH2
  • (l r ) 3 is S—S
  • (l s ) 6 is CH 2 CH 2 .
  • the ligands of cell surface receptors useful in the conjugates described herein include, but are not limited to, vitamins, and other moieties that bind to a vitamin receptor, transporter, or other surface-presented protein that specifically binds vitamins, or analog or derivative thereof, peptide ligands identified from library screens, tumor cell-specific peptides, tumor cell-specific aptamers, tumor cell-specific carbohydrates, tumor cell-specific monoclonal or polyclonal antibodies, Fab or scFv (i.e., a single chain variable region) fragments of antibodies such as, for example, an Fab fragment of an antibody directed to EphA2 or other proteins specifically expressed or uniquely accessible on metastatic cancer cells, small organic molecules derived from combinatorial libraries, growth factors, such as EGF, FGF, insulin, and insulin-like growth factors, and homologous polypeptides, somatostatin and its analogs, transferrin, lipoprotein complexes, bile salts, selectins, steroid hormones, Arg
  • An example of a tumor-specific antigen that could function as a binding site for ligand-drug, or analog or derivative thereof, conjugates include extracellular epitopes of a member of the Ephrin family of proteins, such as EphA2.
  • EphA2 expression is restricted to cell-cell junctions in normal cells, but EphA2 is distributed over the entire cell surface in metastatic tumor cells.
  • EphA2 on metastatic cells would be accessible for binding to, for example, an Fab fragment of an antibody conjugated to a drug, or analog or derivative thereof, whereas the protein would not be accessible for binding to the Fab fragment on normal cells, resulting in a ligand-drug conjugate specific for metastatic cancer cells.
  • the receptor binding moiety is a vitamin, or a vitamin receptor binding analog or derivative thereof, such as vitamins and analogs and derivatives thereof that are capable of binding vitamin receptors.
  • the vitamins that can be used in accordance with the methods and compounds described herein include carnitine, inositol, lipoic acid, pyridoxal, ascorbic acid, niacin, pantothenic acid, folic acid, riboflavin, thiamine, biotin, vitamin B 12 , vitamins A, D, E and K, other related vitamin molecules, analogs and derivatives thereof, and combinations thereof.
  • vitamins, and their receptor-binding analogs and derivatives constitute illustrative targeting entities that can be coupled with the drug compounds, or their analogs or derivatives, by the polyvalent linkers (L) described herein to make drug delivery conjugates.
  • the vitamin can be folic acid, a folic acid analog, or another folate receptor-binding molecule.
  • exemplary of analogs of folate that can be used include folinic acid, pteroylpolyglutamic acid, pteroic acid and other amino acid derivatives thereof, and folate receptor-binding pteridines such as tetrahydropterins, dihydrofolates, tetrahydrofolates, and their deaza and dideaza analogs.
  • the terms “deaza” and “dideaza” analogs refers to the art recognized analogs having a carbon atom substituted for one or two nitrogen atoms in the naturally occurring folic acid structure.
  • the deaza analogs include the 1-deaza, 3-deaza, 5-deaza, 8-deaza, and 10-deaza analogs.
  • the dideaza analogs include, for example, 1,5 dideaza, 5,10-dideaza, 8,10-dideaza, and 5,8-dideaza analogs.
  • the foregoing folic acid analogs are conventionally termed “folates,” reflecting their capacity to bind to folate receptors.
  • folate receptor-binding analogs include aminopterin, amethopterin (methotrexate), N 10 -methylfolate, 2-deamino-hydroxyfolate, deaza analogs such as 1-deazamethopterin or 3-deazamethopterin, and 3′,5′-dichloro-4-amino-4-deoxy-N 10 -methylpteroylglutamic acid (dichloromethotrexate).
  • suitable ligands capable of binding to folate receptors to initiate receptor mediated endocytotic transport of the drug delivery conjugate include antibodies to the folate receptor. Accordingly, in one illustrative aspect, a vinca compound in complex with an antibody to a folate receptor can be used to trigger transmembrane transport of the complex.
  • vitamin analogs and/or derivatives also include analogs and derivatives of biotin such as biocytin, biotin sulfoxide, oxybiotin and other biotin receptor-binding compounds, and the like. It is appreciated that analogs and derivatives of the other vitamins described herein are also contemplated herein.
  • any shape of the described conjugates is contemplated herein, and is determined by the manner in which the drugs, receptor-binding moiety, and various polyvalent linkers are connected.
  • the overall three-dimensional shape of the conjugates described herein are linear.
  • the overall three-dimensional shape of the conjugates described herein are “Y” or “T” shaped.
  • the overall three-dimensional shape of the conjugates described herein are “X” shaped or cross-shaped.
  • the polyvalent linker includes at least one releasable linker (l r ). In another illustrative embodiment of the drug delivery conjugates described herein, the polyvalent linker includes at least two releasable linkers (l r ) 2 . In another illustrative aspect, the polyvalent linker (L) includes at least one releasable linkers (l r ) that is not a disulfide releasable linker.
  • the polyvalent linker (L) has at least two releasable linkers (l r ) 2 where one releasable linker is not a disulfide releasable linker. It is appreciated that when more than one releasable linker is included in the polyvalent linker, those releasable linkers may be adjacent. It is further appreciated that when two releasable linkers are adjacent in the polyvalent linker, the two releasable linkers may cooperate to cause release of the drug.
  • cleavable linker refers to a linker that includes at least one bond that can be broken under physiological conditions (e.g., a pH-labile, acid-labile, oxidatively-labile, or enzyme-labile bond). It should be appreciated that such physiological conditions resulting in bond breaking include standard chemical hydrolysis reactions that occur, for example, at physiological pH, or as a result of compartmentalization into a cellular organelle such as an endosome having a lower pH than cytosolic pH.
  • physiological conditions resulting in bond breaking include standard chemical hydrolysis reactions that occur, for example, at physiological pH, or as a result of compartmentalization into a cellular organelle such as an endosome having a lower pH than cytosolic pH.
  • a cleavable bond can connect two adjacent atoms within the releasable linker and/or connect other linkers or (B) and/or (D), as described herein, at either or both ends of the releasable linker.
  • a cleavable bond connects two adjacent atoms within the releasable linker, following breakage of the bond, the releasable linker is broken into two or more fragments.
  • the releasable linker is separated from the other moiety.
  • another moiety such as an heteroatom linker, a spacer linker, another releasable linker, the drug, or analog or derivative thereof, or the vitamin, or analog or derivative thereof, following breakage of the bond.
  • the lability of the cleavable bond can be adjusted by, for example, substitutional changes at or near the cleavable bond, such as including alpha branching adjacent to a cleavable disulfide bond, increasing the hydrophobicity of substituents on silicon in a moiety having a silicon-oxygen bond that may be hydrolyzed, homologating alkoxy groups that form part of a ketal or acetal that may be hydrolyzed, and the like.
  • Illustrative mechanisms for cleavage of the bivalant linkers described herein include the following 1,4 and 1,6 fragmentation mechanisms
  • X is an exogenous or endogenous nucleophile, glutathione, or bioreducing agent, and the like, and either of Z or Z′ is the vitamin, or analog or derivative thereof, or the drug, or analog or derivative thereof, or a vitamin or drug moiety in conjunction with other portions of the polyvalent linker. It is to be understood that although the above fragmentation mechanisms are depicted as concerted mechanisms, any number of discrete steps may take place to effect the ultimate fragmentation of the polyvalent linker to the final products shown.
  • the bond cleavage may also occur by acid-catalyzed elimination of the carbamate moiety, which may be anchimerically assisted by the stabilization provided by either the aryl group of the beta sulfur or disulfide illustrated in the above examples.
  • the releasable linker is the carbamate moiety.
  • the fragmentation may be initiated by a nucleophilic attack on the disulfide group, causing cleavage to form a thiolate.
  • the thiolate may intermolecularly displace a carbonic acid or carbamic acid moiety and form the corresponding thiacyclopropane.
  • the resulting phenyl thiolate may further fragment to release a carbonic acid or carbamic acid moiety by forming a resonance stabilized intermediate.
  • the releasable nature of the illustrative polyvalent linkers described herein may be realized by whatever mechanism may be relevant to the chemical, metabolic, physiological, or biological conditions present.
  • Z is the vitamin, or analog or derivative thereof, or the drug, or analog or derivative thereof, or each is a vitamin or drug moiety in conjunction with other portions of the polyvalent linker, such as a drug or vitamin moiety including one or more spacer linkers, heteroatom linkers, and/or other releasable linkers.
  • acid-catalyzed elimination of the carbamate leads to the release of CO 2 and the nitrogen-containing moiety attached to Z, and the formation of a benzyl cation, which may be trapped by water, or any other Lewis base.
  • Another illustrative mechanism involves an arrangement of the releasable, spacer, and heteroatom linkers in such a way that subsequent to the cleavage of a bond in the polyvalent linker, released functional groups chemically assist the breakage or cleavage of additional bonds, also termed anchimeric assisted cleavage or breakage.
  • An illustrative embodiment of such a polyvalent linker or portion thereof includes compounds having the formula:
  • X is an heteroatom, such as nitrogen, oxygen, or sulfur
  • n is an integer selected from 0, 1, 2, and 3
  • R is hydrogen, or a substituent, including a substituent capable of stabilizing a positive charge inductively or by resonance on the aryl ring, such as alkoxy, and the like
  • Z or Z′ is the vitamin, or analog or, derivative thereof, or the drug, or analog or derivative thereof, or a vitamin or drug moiety in conjunction with other portions of the polyvalent linker.
  • Assisted cleavage may include mechanisms involving benzylium intermediates, benzyne intermediates, lactone cyclization, oxonium intermediates, beta-elimination, and the like. It is further appreciated that, in addition to fragmentation subsequent to cleavage of the releasable linker, the initial cleavage of the releasable linker may be facilitated by an anchimerically assisted mechanism.
  • the hydroxyalkanoic acid which may cyclize, facilitates cleavage of the methylene bridge, by for example an oxonium ion, and facilitates bond cleavage or subsequent fragmentation after bond cleavage of the releasable linker.
  • acid catalyzed oxonium ion-assisted cleavage of the methylene bridge may begin a cascade of fragmentation of this illustrative polyvalent linker, or fragment thereof.
  • acid-catalyzed hydrolysis of the carbamate may facilitate the beta elimination of the hydroxyalkanoic acid, which may cyclize, and facilitate cleavage of methylene bridge, by for example an oxonium ion. It is appreciated that other chemical mechanisms of bond breakage or cleavage under the metabolic, physiological, or cellular conditions described herein may initiate such a cascade of fragmentation. It is appreciated that other chemical mechanisms of bond breakage or cleavage under the metabolic, physiological, or cellular conditions described herein may initiate such a cascade of fragmentation.
  • polyvalent linkers described herein are compounds of the following formulae
  • n is an integer selected from 1 to about 4;
  • R a and R b are each independently selected from the group consisting of hydrogen and alkyl, including lower alkyl such as C 1 -C 4 alkyl that are optionally branched; or R a and R b are taken together with the attached carbon atom to form a carbocyclic ring;
  • R is an optionally substituted alkyl group, an optionally substituted acyl group, or a suitably selected nitrogen protecting group; and (*) indicates points of attachment for the drug, vitamin, imaging agent, diagnostic agent, other polyvalent linkers, or other parts of the conjugate.
  • polyvalent linkers described herein include compounds of the following formulae
  • R is an optionally substituted alkyl group, an optionally substituted acyl group, or a suitably selected nitrogen protecting group; and (*) indicates points of attachment for the drug, vitamin, imaging agent, diagnostic agent, other polyvalent linkers, or other parts of the conjugate.
  • polyvalent linkers described herein include compounds of the following formulae
  • R is an optionally substituted alkyl group, an optionally substituted acyl group, or a suitably selected nitrogen protecting group; and (*) indicates points of attachment for the drug, vitamin, imaging agent, diagnostic agent, other polyvalent linkers, or other parts of the conjugate.
  • the releasable, spacer, and heteroatom linkers may be arranged in such a way that subsequent to the cleavage of a bond in the polyvalent linker, released functional groups chemically assist the breakage or cleavage of additional bonds, also termed anchimeric assisted cleavage or breakage.
  • An illustrative embodiment of such a polyvalent linker or portion thereof includes compounds having the formula:
  • X is an heteroatom, such as nitrogen, oxygen, or sulfur
  • n is an integer selected from 0, 1, 2, and 3
  • R is hydrogen, or a substituent, including a substituent capable of stabilizing a positive charge inductively or by resonance on the aryl ring, such as alkoxy, and the like, and the symbol (*) indicates points of attachment for additional spacer, heteroatom, or releasable linkers fowling the polyvalent linker, or alternatively for attachment of the drug, or analog or derivative thereof, or the vitamin, or analog or derivative thereof.
  • Assisted cleavage may include mechanisms involving benzylium intermediates, benzyne intermediates, lactone cyclization, oxonium intermediates, beta-elimination, and the like. It is further appreciated that, in addition to fragmentation subsequent to cleavage of the releasable linker, the initial cleavage of the releasable linker may be facilitated by an anchimerically assisted mechanism.
  • the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-thiosuccinimid-1-ylalkyloxymethyloxy group, illustrated by the following formula
  • n is an integer from 1 to 6, the alkyl group is optionally substituted, and the methyl is optionally substituted with an additional alkyl or optionally substituted aryl group, each of which is represented by an independently selected group R.
  • the (*) symbols indicate points of attachment of the polyvalent linker fragment to other parts of the conjugates described herein.
  • the polyvalent linker includes hetero atom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-thiosuccinimid-1-ylalkylcarbonyl group, illustrated by the following formula
  • the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-thioalkylsulfonylalkyl(disubstituted silyl)oxy group, where the disubstituted silyl is substituted with alkyl and/or optionally substituted aryl groups.
  • the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent dithioalkylcarbonylhydrazide group, or a polyvalent 3-thiosuccinimid-1-ylalkylcarbonylhydrazide, illustrated by the following formulae
  • n is an integer from 1 to 6, the alkyl group is optionally substituted, and the hydrazide forms an hydrazone with (B), (D), or another part of the polyvalent linker (L).
  • the (*) symbols indicate points of attachment of the polyvalent linker fragment to other parts of the conjugates described herein.
  • the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-thiosuccinimid-1-ylalkyloxyalkyloxyalkylidene group, illustrated by the following formula
  • each n is an independently selected integer from 1 to 6, each alkyl group independently selected and is optionally substituted, such as with alkyl or optionally substituted aryl, and where the alkylidene forms an hydrazone with (B), (D), or another part of the polyvalent linker (L).
  • the (*) symbols indicate points of attachment of the polyvalent linker fragment to other parts of the conjugates described herein.
  • the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-thio or 3-dithioarylalkyloxycarbonyl group, 3-thio or 3-dithioarylalkylaminocarbonyl group, a polyvalent 3-thio or 3-dithioalkyloxycarbonyl, or a polyvalent 3-thio or 3-dithioalkylaminocarbonyl, where the alkyl carbonyl forms a carbonate, a carbamate, or urea with (B), (D), or another part of the polyvalent linker (L).
  • the alkyl group is ethyl.
  • the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-dithioalkylamino group, where the amino forms a vinylogous amide with (B), (D), or another part of the polyvalent linker (L).
  • the alkyl group is ethyl.
  • the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 1-alkoxycycloalkylenoxy group, a polyvalent alkyleneaminocarbonyl(dicarboxylarylene)carboxylate group, a polyvalent 3-dithioalkyloxycarbonyl group, a polyvalent 3-dithioalkyloxycarbonylhydrazide group, a polyvalent.
  • the polyvalent linker includes at least one spacer linker that is a peptide formed from amino acids.
  • the peptide includes naturally occurring amino acids, and stereoisomers thereof.
  • the peptide is formed only from naturally occurring amino acids, and stereoisomers thereof.
  • spacer and releasable linkers are shown in Table 1 and 2, where the (*) indicates the point of attachment to another linker, to the vinca alkaloid, or analog or derivative thereof, or to the receptor binding moiety.
  • drugs may be included in the drug delivery conjugates described herein.
  • the drugs are selected based on activity against one or more populations of pathogenic cells.
  • those pathogenic cells are cancer cells, including solid tumors.
  • the drugs are selected based on activity against one or more populations of pathogenic cells with a particular mechanism of action.
  • Illustrative mechanisms of action include alkylating agents, microtubule inhibitors, including those that stabilize and/or destabilize microtubule formation, including beta-tubulin agents, cyclin dependent kinase (CDK) inhibitors, topoisomerase inhibitors, protein synthesis inhibitors, protein kinase inhibitors, including Ras, Raf, PKC, PI3K, and like inhibitors, transcription inhibitor, antifolates, heat shock protein blockers, and the like.
  • alkylating agents include alkylating agents, microtubule inhibitors, including those that stabilize and/or destabilize microtubule formation, including beta-tubulin agents, cyclin dependent kinase (CDK) inhibitors, topoisomerase inhibitors, protein synthesis inhibitors, protein kinase inhibitors, including Ras, Raf, PKC, PI3K, and like inhibitors, transcription inhibitor
  • Illustrative alkylating agents include, but are not limited to, mitomycins CBI, and the like.
  • Illustrative cyclin dependent kinase (CDK) inhibitors include, but are not limited to, CYC202, seliciclib, R-roscovitine, AGM-1470, and the like.
  • Illustrative topoisomerase inhibitors include, but are not limited to, doxorubicin, other anthracyclines, and the like.
  • Illustrative protein synthesis inhibitors include, but are not limited to, bruceantin, and the like.
  • Illustrative protein kinase inhibitors including Ras, Raf, PKC, PI3K, and like inhibitors, include but are not limited to L-779,450, R115777, and the like.
  • Illustrative transcription inhibitors include, but are not limited to, ⁇ -amanatin, actinomycin, and the like.
  • Illustrative antifolates include, but are not limited to, methotrexate, and the like.
  • Illustrative heat shock protein blockers include, but are not limited to, geldanamycin, and the like.
  • Illustrative microtubule inhibitors including those that stabilize and/or destabilize microtubule formation, including ⁇ -tubulin agents, microtubule poisons, and the like.
  • Illustrative microtubule poisons that bind to selected receptors include, but are not limited to, inhibitors biding to the vinca binding site such as arenastatin, dolastatin, halichondrin B, maytansine, phomopsin A, rhizoxin, ustiloxin, vinblastine, vincristine, and the like, stabilizers binding to the taxol binding site such as discodermalide, epothilone, taxol, paclitaxol, and the like, inhibitors binding to the colchicine binding site such as, colchicine, combretastatin, curacin A, podophyllotoxin, steganacine, and the like, and others binding to undefined sites such as cryptophycin, tubulysins, and the like.
  • At least one of the drugs is a microtubule inhibitor, or an analog or derivative thereof. In another embodiment, at least one of the drugs is a DNA alkylation agent. In another embodiment, at least one of the drugs is a DNA alkylation agent, and at least one other of the drugs is a microtubule inhibitor.
  • alklaloids described herein include all members of the vinca indole-dihydroindole family of alkaloids, such as but not limited to vindesine, vinblastine, vincristine, catharanthine, vindoline, leurosine, vinorelbine, imidocarb, sibutramine, toltrazuril, vinblastinoic acid, and the like, and analogs and derivatives thereof.
  • At least one of the drugs is a P-glycoprotein (PGP) inhibitor.
  • PGP P-glycoprotein
  • at least one of the drugs included on the drug delivery conjugates described herein is a PGP inhibitor
  • at least one other of the drugs included on the drug delivery conjugates is a PGP substrate.
  • the PGP substrate is a DNA alkylating agent.
  • the PGP inhibitor drug and the PGP substrate drug are both released in the cell after endocytosis.
  • the PGP inhibitor drug may improve the overall efficacy and/or potency of the PGP substrate drug.
  • the PGP inhibitor may reduces PGP expression, which in turn will decrease efflux of one or more of the drugs included on the multidrug conjugates described herein from the pathogenic cell.
  • the mitomycins, or analogs or derivatives thereof such as mitomycin C may operate as a PGP inhibitor, or down-regulator of PGP.
  • the vinca alkaloid, or analog or derivative thereof, such as vinblastine analogs and derivatives may be a PGP substrate that is protected from efflux from the pathogenic cell by the PGP inhibitor or down-regulator.
  • At least one of the drugs is a vinca alkaloid, or an analog or derivative thereof.
  • Vinca alklaloids described herein include all members of the vinca indole-dihydroindole family of alkaloids, such as but not limited to vindesine, vinblastine, vincristine, catharanthine, vindoline, leurosine, vinorelbine, imidocarb, sibutramine, toltrazuril, vinblastinoic acid, and the like, and analogs and derivatives thereof.
  • the vinca drugs useable in the conjugates described herein include all members of the vinca indole-dihydroindole family of alkaloids, such as vindesine, vinblastine, vincristine, catharanthine, vindoline, leurosine, vinorelbine, imidocarb, sibutramine, toltrazuril, vinblastinoic acid, and the like, and analogs and derivatives thereof.
  • such analogs and derivatives include the 3-carboxazides described in U.S. Pat. No. 4,203,898; the N 2 -alkyl and other derivatives of 4-desacetylvinblastine-3-carboxhydrazide described in U.S. Pat.
  • the vinca drugs are compounds of the formula
  • R 1 and R 2 are H, and the other is ethyl, and R 3 is H, or R 1 is ethyl R 2 , and R 3 are taken together to form —O—;
  • R 4 , R 7 , and R 8 are each independently selected from H, alkyl, and acyl
  • R 5 and R 6 are each independently selected alkyl
  • R 9 is a group —NHNHR, where R is H, alkyl, or acyl;
  • R 10 is H or acyl
  • R 11 is ethyl
  • the vinca drugs are compounds of the above formula wherein R 4 and R 8 are each H; and R 5 , R 6 , R 9 , and R 10 are each methyl.
  • a receptor binding drug delivery conjugate comprising a receptor binding moiety, a polyvalent linker (L), a vinca alkaloid drug, or analog or derivative thereof, and another drug, or analog or derivative thereof, wherein the receptor binding moiety, the vinca alkaloid, and the other drug are each bound to the polyvalent linker (L), through an heteroatom linker (I H ).
  • the polyvalent linker (L) comprises one or more spacer linkers, heteroatom linkers, and releasable linkers, and combinations thereof, in any order.
  • At least one of the drugs included on the drug delivery conjugates described herein is an aclamycin, or an analog or derivative thereof. It may be that the aclamycins and analogs and derivatives thereof are PGP efflux pump substrates. In one aspect, at least one other of the drugs included on the drug delivery conjugates described herein is an DNA alkylating agent, such as a mitomycin or an analog or derivative thereof.
  • At least one of the drugs included on the drug delivery conjugates described herein is a DNA synthesis inhibitor, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a spindle formation inhibitor, or an analog or derivative thereof. In one aspect, at least one of the drugs included on the drug delivery conjugates described herein is a DNA synthesis inhibitor, or an analog or derivative thereof, and at least one other of the drugs included on the drug delivery conjugates described herein is a spindle formation inhibitor, or an analog or derivative thereof.
  • At least one of the drugs included on the drug delivery conjugates described herein is a microtubule stabilizing agent, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a microtubule synthesis inhibitor, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a microtubule destabilizing agent, or an analog or derivative thereof.
  • At least one of the drugs included on the drug delivery conjugates described herein is a apoptosis inducing agent, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a taxol, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is an antifolate, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a methotrexate, or an analog or derivative thereof.
  • At least one of the drugs included on the drug delivery conjugates described herein is an antifolate, or an analog or derivative thereof, such as methotrexate, and at least one other of the drugs included on the drug delivery conjugates described herein is a taxol, or an analog or derivative thereof.
  • At least one of the drugs included on the drug delivery conjugates described herein is a folate, or an analog or derivative thereof.
  • at least one of the drugs included on the drug delivery conjugates described herein is a human epidermal growth factor receptor-2 (HER-2) inhibitor, or an analog or derivative thereof.
  • at least one of the drugs included on the drug delivery conjugates described herein is a radiolabeled chemotherapy agent, such as cisplatin, and the like.
  • at least one of the drugs included on the drug delivery conjugates described herein is an antifolate, or an analog or derivative thereof, such as methotrexate, and at least one other of the drugs included on the drug delivery conjugates described herein is a folate, or an analog or derivative thereof.
  • At least one of the drugs included on the drug delivery conjugates described herein is a taxol, or an analog or derivative thereof; and at least one other of the drugs included on the drug delivery conjugates described herein is a HER-2 inhibitor, or an analog or derivative thereof.
  • at least one of the drugs included on the drug delivery conjugates described herein is a taxol, or an analog or derivative thereof
  • at least one other of the drugs included on the drug delivery conjugates described herein is a radiolabeled chemotherapy agent, such as cisplatin
  • at least one other of the drugs included on the drug delivery conjugates described herein is a HER-2 inhibitor, or an analog or derivative thereof.
  • the drug delivery conjugates described herein can be prepared by conventional synthetic methods.
  • the synthetic methods are chosen depending upon the selection of the heteroatom linkers, and the functional groups present on the spacer linkers and the releasable linkers.
  • the relevant bond forming reactions are described in Richard C. Larock, “Comprehensive Organic Transformations, a guide to functional group preparations,” VCH Publishers, Inc. New York (1989), and in Theodora E. Greene & Peter G. M. Wuts, “Protective Groups ion Organic Synthesis,” 2d edition, John Wiley & Sons, Inc. New York (1991), the disclosures of which in their entirety are incorporated herein by reference. Additional synthetic routes and reaction conditions are described in U.S. patent application publication no. US 2005/0002942 A1.
  • the drug delivery conjugates described herein may be prepared using both linear and convergent synthetic routes.
  • Illustrative intermediates useable in such routes include intermediates comprising a polyvalent linker that includes a coupling group at each end suitable for covalent attachment to the receptor binding moiety, or analog or derivative thereof, and the vinca alkaloid, or analog or derivative thereof.
  • Other illustrative intermediates useable in such routes include intermediates comprising a receptor binding moiety, or analog or derivative thereof, attached to a polyvalent linker, which includes a coupling group.
  • Other illustrative intermediates useable in such routes include intermediates comprising a vinca alkaloid, or analog or derivative thereof, attached to a polyvalent linker, which includes a coupling group.
  • the coupling group may be a nucleophile, an electrophile, or a precursor thereof.
  • the coupling group is a Michael acceptor
  • the polyvalent linker includes a releasable linker having the formula —C(O)NHN ⁇ , —NHC(O)NHN ⁇ , or —CH 2 C(O)NHN ⁇ .
  • the coupling group and the polyvalent linker are taken together to form a compound having the formula:
  • n is an integer such as 1, 2, 3, or 4.
  • a second linker is covalently attached to the above formula through an alkylthiol nucleophile included on the second linker.
  • the receptor binding moiety, or analog or derivative thereof is covalently attached to the above formula through an alkylthiol nucleophile included on that moiety.
  • the coupling group is a heteroatom, such as nitrogen, oxygen, or sulfur
  • the polyvalent linker includes one or more heteroatom linkers and one or more spacer linkers covalently connecting the receptor binding moiety to the coupling group.
  • the intermediate described herein includes a compound having the formula:
  • X oxygen, nitrogen, or sulfur, and in is an integer such as 1, 2, or 3, and where (B), l s , and l H are as defined herein.
  • l H is —NH—, and m is 1.
  • l H is —NH—, in is 1, and X is —S—.
  • the intermediate described herein includes a compound having the formula:
  • Y is H or a substituent, illustratively an electron withdrawing substituent, including but not limited to nitro, cyano, halo, alkylsulfonyl, a carboxylic acid derivative, and the like, and where (B) and l s are as defined herein.
  • the coupling group is a Michael acceptor
  • the polyvalent linker includes one or more heteroatom linkers and one or more spacer linkers covalently connecting the receptor binding moiety to the coupling group.
  • the coupling group and the polyvalent linker are taken together to form a compound having the formula:
  • the vinca alkaloid, or analog or derivative thereof is covalently attached to the above formula through an alkylthiol nucleophile included on the vinca alkaloid.
  • the intermediate includes compounds having the formulae:
  • AA is one or more amino acids, illustratively selected from the naturally occurring amino acids, or stereoisomers thereof
  • X is nitrogen, oxygen, or sulfur
  • Y is hydrogen or a substituent, illustratively an electron withdrawing substituent, including but not limited to nitro, cyano, halo, alkylsulfonyl, a carboxylic acid derivative, and the like
  • n and m are independently selected integers, such as 1, 2, or 3
  • p is an integer such as 1, 2, 3, 4, or 5.
  • AA can also be any other amino acid, such as any amino acid having the general formula:
  • R is hydrogen, alkyl, acyl, or a suitable nitrogen protecting group
  • R′ and R′′ are hydrogen or a substituent, each of which is independently selected in each occurrence, and t is an integer such as 1, 2, 3, 4, or 5.
  • R′ and/or R′′ independently correspond to, but are not limited to, hydrogen or the side chains present on naturally occurring amino acids, such as methyl, benzyl, hydroxymethyl, thiomethyl, carboxyl, carboxylmethyl, guanidinopropyl, and the like, and derivatives and protected derivatives thereof.
  • the above described formula includes all stereoisomeric variations.
  • the amino acid may be selected from asparagine, aspartic acid, cysteine, glutamic acid, lysine, glutamine, arginine, serine, ornitine, threonine, and the like.
  • the drug, or an analog or a derivative thereof includes an alkylthiol nucleophile.
  • Each of the above intermediates may be prepared using conventional synthetic routes. Additional synthetic routes and reaction conditions are described in U.S. patent application publication no. US 2005/0002942 A1 and PCT international publication no. WO 2006/012527.
  • R 1 and R 2 are each independently hydrogen or alkyl, such as methyl; and l H is a heteroatom, such as oxygen, sulfur, optionally substituted nitrogen, or optionally protected nitrogen, and the like.
  • Two or more drugs, and optionally additional receptor-binding ligands, such as folates and analogs and derivatives thereof, may be covalently attached to this illustrative intermediate at (l H ), or at other functional groups present, such as the amide nitrogen or carbonyl, the acid carboxylate, or the guanidine amino group.
  • a folate ligand intermediate having the following formula
  • m, n, and q are integers that are independently selected from the range of 0 to about 8; AA is an amino acid, R 1 is hydrogen, alkyl, or a nitrogen protecting group, and drugs are optionally attached at the (*) atoms.
  • AA is a naturally occurring amino acid of either the natural or unnatural configuration.
  • one or more of AA in the fragment (—NH-AA-C(O)—) n is a hydrophilic amino acid.
  • one or more of AA in the fragment (—NH-AA-C(O)—) n is Asp and/or Arg.
  • the integer o is 1 or greater.
  • the integer m is 2 or greater.
  • the drugs, or analogs or derivatives thereof, and optionally additional linkers and additional receptor-binding ligands may be connected to the above formula at the free NH side chains of the 2, ⁇ -diaminoalkanoic acid fragments, or at the terminal carboxylate as indicated by the free valences therein.
  • a folate ligand intermediate having the following formula
  • m, n, q, and p are integers that are independently selected from the range of 0 to about 8; AA is an amino acid, R 1 is hydrogen, alkyl, or a nitrogen protecting group, and drugs are optionally attached at the (*) atoms.
  • AA is as a naturally occurring amino acid of either the natural or unnatural configuration.
  • one or more of AA in the fragment (—NH-AA-C(O)—) n is a hydrophilic amino acid.
  • one or more of AA in the fragment (—NH-AA-C(O)—) n is Asp and/or Arg.
  • the integers o and p are 1 or greater.
  • the integer m is 2 or greater.
  • the drugs, or analogs or derivatives thereof, and optionally additional linkers and additional receptor-binding ligands may be connected to the above formula at the free NH side chains of the 2, ⁇ -diaminoalkanoic acid fragments, at the cyteinyl thiol groups, or at the terminal carboxylate, as indicated by the free valences therein.
  • a folate ligand intermediate having the following formula
  • m, n, q, p, and r are integers that are independently selected from the range of 0 to about 8;
  • AA is an amino acid, R 1 is hydrogen, alkyl, or a nitrogen protecting group, and drugs are optionally attached at the (*) atoms.
  • AA is as a naturally occurring amino acid of either the natural or unnatural configuration.
  • one or more of AA in the fragment (—NH-AA-C(O)—) n is a hydrophilic amino acid.
  • one or more of AA in the fragment (—NH-AA-C(O)—) n is Asp and/or Arg.
  • the integers o, p, and r are 1 or greater.
  • the integer m is 2 or greater.
  • the drugs, or analogs or derivatives thereof, and optionally additional linkers and additional receptor-binding ligands may be connected to the above formula at the free NH side chains of the 2, ⁇ -diaminoalkanoic acid fragments, at the cyteinyl thiol groups, at the serinyl hydroxy groups, or at the terminal carboxylate, as indicated by the free valences therein.
  • a folate ligand intermediate that includes mitomycin as one of the drugs is described and having the following formula
  • m, n, and q are integers that are independently selected from the range of 0 to about 8; and AA is an amino acid.
  • AA is as a naturally occurring amino acid of either the natural or unnatural configuration.
  • one or more of AA in the fragment (—NH-AA-C(O)—) n is a hydrophilic amino acid.
  • one or more of AA in the fragment (—NH-AA-C(O)—) n is Asp and/or Arg.
  • the integer o is 1 or greater.
  • the integer m is 2 or greater.
  • the drugs, or analogs or derivatives thereof, and optionally additional linkers and additional receptor-binding ligands may be connected to the above formula at the additional free NH side chains of the 2, ⁇ -diaminoalkanoic acid fragments, or at the terminal carboxylate, as indicated by the free valences therein.
  • a folate ligand multidrug conjugate that includes a mitomycin and a vinca alkaloid is described and having the following formula
  • a folate ligand multidrug conjugate that includes a mitomycin, an aclamycin, and a vinca alkaloid is described and having the following formula
  • a pharmaceutical composition in another embodiment, comprises a drug delivery conjugate described herein in combination with a pharmaceutically acceptable carrier, excipient, and/or diluent therefor.
  • a method for eliminating a population of pathogenic cells in a host animal harboring the population of pathogenic cells is described.
  • the members of the pathogenic cell population have an accessible binding site for a receptor binding moiety, or the analog or derivative thereof, and that binding site is uniquely expressed, overexpressed, or preferentially expressed by the pathogenic cells.
  • the method includes the step of administering to the host a drug delivery conjugate described herein, or a pharmaceutical composition thereof, as described herein.
  • Populations of pathogenic cells that may be treated using the methods described herein include, but at not limited to cancers, such as epithelial cancers of the ovary, mammary gland, colon, lung, nose, throat, brain, and other tumor cell types, infectious agents, activated macrophages, activated monocytes, and the like.
  • cancers such as epithelial cancers of the ovary, mammary gland, colon, lung, nose, throat, brain, and other tumor cell types, infectious agents, activated macrophages, activated monocytes, and the like.
  • the drug delivery conjugates described herein can be used for both human clinical medicine and veterinary applications.
  • the host animal harboring the population of pathogenic cells and treated with the drug delivery conjugates can be human or, in the case of veterinary applications, can be a laboratory, agricultural, domestic, or wild animal.
  • the drug delivery conjugates described herein can be administered to host animals including, but not limited to, humans, laboratory animals such rodents (e.g., mice, rats, hamsters, etc.), rabbits, monkeys, chimpanzees, domestic animals such as dogs, cats, and rabbits, agricultural animals such as cows, horses, pigs, sheep, goats, and wild animals in captivity such as bears, pandas, lions, tigers, leopards, elephants, zebras, giraffes, gorillas, dolphins, and whales.
  • rodents e.g., mice, rats, hamsters, etc.
  • rabbits, monkeys, chimpanzees domestic animals
  • domestic animals such as dogs, cats
  • rabbits agricultural animals
  • cows, horses, pigs, sheep, goats and wild animals in captivity
  • pathogenic cells means cancer cells, infectious agents such as bacteria and viruses, bacteria- or virus-infected cells, activated macrophages capable of causing a disease state, and any other type of pathogenic cells that uniquely express, preferentially express, or overexpress ligand receptors, such as vitamin receptors or receptors that bind analogs or derivatives of vitamins.
  • Pathogenic cells can also include any cells causing a disease state for which treatment with the drug delivery conjugates results in reduction of the symptoms of the disease.
  • the pathogenic cells can also be host cells that are pathogenic under some circumstances, such as cells of the immune system that are responsible for graft versus host disease', but not pathogenic under other circumstances.
  • the population of pathogenic cells can be a cancer cell population that is tumorigenic, including benign tumors and malignant tumors, or it can be non-tumorigenic.
  • the cancer cell population can arise spontaneously or by such processes as mutations present in the germline of the host animal or somatic mutations, or it can be chemically-, virally-, or radiation-induced.
  • the invention can be utilized to treat such cancers as carcinomas, sarcomas, lymphomas, Hodgekin's disease, melanomas, mesotheliomas, Burkitt's lymphoma, nasopharyngeal carcinomas, leukemias, and myelomas.
  • the cancer cell population can include, but is not limited to, oral, thyroid, endocrine, skin, gastric, esophageal, laryngeal, pancreatic, colon, bladder, bone, ovarian, cervical, uterine, breast, testicular, prostate, rectal, kidney, liver, and lung cancers.
  • the effect of drug delivery conjugate administration is a therapeutic response measured by reduction or elimination of tumor mass or of inhibition of tumor cell proliferation.
  • the elimination can be an elimination of cells of the primary tumor or of cells that have metastasized or are in the process of dissociating from the primary tumor.
  • a prophylactic treatment with the drug delivery conjugate to prevent return of a tumor after its removal by any therapeutic approach including surgical removal of the tumor, radiation therapy, chemotherapy, or biological therapy is also contemplated.
  • the prophylactic treatment can be an initial treatment with the drug delivery conjugate, such as treatment in a multiple dose daily regimen, and/or can be an additional treatment or series of treatments after an interval of days or months following the initial treatment(s).
  • elimination of any of the pathogenic cell populations described above includes reduction in the number of pathogenic cells, inhibition of proliferation of pathogenic cells, a prophylactic treatment that prevents return of pathogenic cells, or a treatment of pathogenic cells that results in reduction of the symptoms of disease.
  • the method described herein can be used in combination with surgical removal of a tumor, radiation therapy, chemotherapy, or biological therapies such as other immunotherapies including, but not limited to, monoclonal antibody therapy, treatment with immunomodulatory agents, adoptive transfer of immune effector cells, treatment with hematopoietic growth factors, cytokines and vaccination.
  • immunotherapies including, but not limited to, monoclonal antibody therapy, treatment with immunomodulatory agents, adoptive transfer of immune effector cells, treatment with hematopoietic growth factors, cytokines and vaccination.
  • the method described herein is also applicable to populations of pathogenic cells that cause a variety of infectious diseases.
  • the present invention is applicable to such populations of pathogenic cells as bacteria, fungi, including yeasts, viruses, virus-infected cells, mycoplasma, and parasites.
  • Infectious organisms that can be treated with the drug delivery conjugates described herein are any art-recognized infectious organisms that cause pathogenesis in an animal, including such organisms as bacteria that are gram-negative or gram-positive cocci or bacilli.
  • Proteus species Klebsiella species, Providencia species, Yersinia species, Erwinia species, Enterobacter species, Salmonella species, Serratia species, Aerobacter species, Escherichia species, Pseudomonas species, Shigella species, Vibrio species, Aeromonas species, Campylobacter species, Streptococcus species, Staphylococcus species, Lactobacillus species, Micrococcus species, Moraxella species, Bacillus species, Clostridium species, Corynebacterium species, Eberthella species, Micrococcus species, Mycobacterium species, Neisseria species, Haemophilus species, Bacteroides species, Listeria species, Erysipelothrix species, Acinetobacter species, Brucella species, Pasteurella species, Vibrio species, Flavobacterium species, Fusobacterium species, Streptobacillus species, Calymmatobacterium species, Legionella species, Trepon
  • bacteria that are resistant to antibiotics such as antibiotic-resistant Streptococcus species and Staphlococcus species, or bacteria that are susceptible to antibiotics, but cause recurrent infections treated with antibiotics so that resistant organisms eventually develop.
  • Bacteria that are susceptible to antibiotics, but cause recurrent infections treated with antibiotics so that resistant organisms eventually develop can be treated with the drug delivery conjugates described herein in the absence of antibiotics, or in combination with lower doses of antibiotics than would normally be administered to a host animal, to avoid the development of these antibiotic-resistant bacterial strains.
  • viruses such as DNA and RNA viruses
  • viruses include, but are not limited to, DNA viruses such as papilloma viruses, parvoviruses, adenoviruses, herpesviruses and vaccinia viruses, and RNA viruses, such as arenaviruses, coronaviruses, rhinoviruses, respiratory syncytial viruses, influenza viruses, picornaviruses, paramyxoviruses, reoviruses, retroviruses, lentiviruses, and rhabdoviruses.
  • DNA viruses such as papilloma viruses, parvoviruses, adenoviruses, herpesviruses and vaccinia viruses
  • RNA viruses such as arenaviruses, coronaviruses, rhinoviruses, respiratory syncytial viruses, influenza viruses, picornaviruses, paramyxoviruses, reoviruses, retroviruses, lentiviruses, and rhabdoviruse
  • the drug delivery conjugates described herein can also be used to treat diseases caused by any fungi, including yeasts, mycoplasma species, parasites, or other infectious organisms that cause disease in animals.
  • fungi that can be treated with the method and drug delivery conjugates described herein include fungi that grow as molds or are yeastlike, including, for example, fungi that cause diseases such as ringworm, histoplasmosis, blastomycosis, aspergillosis, cryptococcosis, sporotrichosis, coccidioidomycosis, paracoccidio-idomycosis, muconnycosis, chromoblastomycosis, dermatophytosis, protothecosis, fusariosis, pityriasis, mycetoma, paracoccidioidomycosis, phaeohyphomycosis, pseudallescheriasis, sporotrichosis, trichosporos
  • the drug delivery conjugates described herein can also be used to treat parasitic infections including, but not limited to, infections caused by tapeworms, such as Taenia, Hymenolepsis, Diphyllobothrium, and Echinococcus species, flukes, such as Fasciolopsis, Heterophyes, Metagonimus, Clonorchis, Fasciola, Paragonimus , and Schitosoma species, roundworms, such as Enterobius, Trichuris, Ascaris, Ancylostoma, Necator, Strongyloides, Trichinella, Wuchereria, Brugia, Loa Onchocerca , and Dracunculus species, ameba, such as Naegleria and Acanthamoeba species, and protozoans, such as Plasmodium, Trypanosoma, Leishmania, Toxoplasma, Entamoeba, Giardia, Isospora, Cryptosporidium , and Enterocytozoon
  • the pathogenic cells to which the drug delivery conjugates are directed can also be cells harboring endogenous pathogens, such as virus-, mycoplasma-, parasite- or bacteria-infected cells, if these cells preferentially express ligand receptors, such as receptors for vitamins, or analogs or derivatives thereof.
  • endogenous pathogens such as virus-, mycoplasma-, parasite- or bacteria-infected cells, if these cells preferentially express ligand receptors, such as receptors for vitamins, or analogs or derivatives thereof.
  • the drug delivery conjugates can be internalized into the targeted pathogenic cells upon binding of the ligand to a receptor, transporter, or other surface-presented protein that specifically binds the ligand and which is preferentially expressed on the pathogenic cells. Such internalization can occur, for example, through receptor-mediated endocytosis. If the drug delivery conjugate contains a releasable linker, the ligand and the vinca compound can dissociate intracellularly and the vinca can act on its intracellular target.
  • the ligand of the drug delivery conjugate can bind to the pathogenic cell placing the vinca compound in close association with the surface of the pathogenic cell.
  • the vinca compound can then be released by cleavage of the releasable linker.
  • the vinca compound can be released by a protein disulfide isomerase if the releasable linker is a disulfide group.
  • the vinca compound can then be taken up by the pathogenic cell to which the receptor binding drug delivery conjugate is bound, or the vinca compound can be taken up by another pathogenic cell in close proximity thereto.
  • the vinca compound could be released by a protein disulfide isomerase inside the cell where the releasable linker is a disulfide group.
  • the vinca compound may also be released by a hydrolytic mechanism, such as acid-catalyzed hydrolysis, as described above for certain beta elimination mechanisms, or by an anchimerically assisted cleavage through an oxonium ion or lactonium ion producing mechanism.
  • the selection of the releasable linker or linkers will dictate the mechanism by which the vinca compound is released from the conjugate. It is appreciated that such a selection can be pre-defined by the conditions under which the drug delivery conjugate will be used.
  • the linker does not comprise a releasable linker
  • the ligand moiety of the drug delivery conjugate can bind to the pathogenic cell placing the vinca compound on the surface of the pathogenic cell to target the pathogenic cell for attack by other molecules capable of binding to the vinca compound.
  • the drug delivery conjugates can be internalized into the targeted cells upon binding, and the ligand moiety and the vinca compound can remain associated intracellularly with the vinca compound exhibiting its effects without dissociation from the ligand moiety.
  • the drug delivery conjugate binds a vitamin receptor or another ligand receptor
  • the conjugate can bind to soluble vitamin receptors present in the serum or to serum proteins, such as albumin, resulting in prolonged circulation of the conjugates relative to the unconjugated vinca compound, and in increased activity of the conjugates towards the pathogenic cell population relative to the unconjugated vinca compound.
  • the binding site for the ligand can include receptors for the ligand capable of specifically binding to the ligand wherein the receptor or other protein is uniquely expressed, overexpressed, or preferentially expressed by a population of pathogenic cells.
  • a surface-presented protein uniquely expressed, overexpressed, or preferentially expressed by the pathogenic cells is typically a receptor that is either not present or present at lower concentrations on non-pathogenic cells providing a means for selective elimination of the pathogenic cells.
  • the drug delivery conjugates may be capable of high affinity binding to receptors on cancer cells or other types of pathogenic cells. The high affinity binding can be inherent to the ligand or the binding affinity can be enhanced by the use of a chemically modified ligand.
  • additional drugs include, but are not limited to, peptides, oligopeptides, retro-inverso oligopeptides, proteins, protein analogs in which at least one non-peptide linkage replaces a peptide linkage, apoproteins, glycoproteins, enzymes, coenzymes, enzyme inhibitors, amino acids and their derivatives, receptors and other membrane proteins, antigens and antibodies thereto, haptens and antibodies thereto, hormones, lipids, phospholipids, liposomes, toxins, antibiotics, analgesics, bronchodilators, beta-blockers, antimicrobial agents, antihypertensive agents, cardiovascular agents including antiarrhythmics, cardiac glycosides, antianginals, vasodilators, central nervous system agents including stimulants, psychotropics, antimanics, and depressants, antiviral agents, antih
  • the additional drug can be selected from a compound capable of stimulating an endogenous immune response.
  • Suitable compounds include, but are not limited to, cytokines or immune cell growth factors such as interleukins 1-18, stem cell factor, basic FGF, EGF, G-CSF, GM-CSF, FLK-2 ligand, HILDA, MIP-1 ⁇ , TGF- ⁇ , M-CSF, IFN- ⁇ , IFN- ⁇ , soluble CD23, LIF, and combinations thereof.
  • therapeutically effective combinations of these immunostimulatory factors can be used.
  • therapeutically effective amounts of IL-2 for example, in amounts ranging from about 0.1 MIU/m 2 /dose/day to about 15 MIU/m 2 /dose/day in a multiple dose daily regimen
  • IFN- ⁇ for example, in amounts ranging from about 0.1 MIU/m 2 /dose/day to about 7.5 MIU/m 2 /dose/day in a multiple dose daily regimen
  • MIU million international units
  • m 2 approximate body surface area of an average human
  • IL-12 and IFN- ⁇ can be used in the above-described therapeutically effective amounts for interleukins and interferons
  • IL-15 and IFN- ⁇ can be used in the above described therapeutically effective amounts for interleukins and interferons.
  • IL-2, IFN- ⁇ or IFN- ⁇ , and GM-CSF can be used in combination in the above described therapeutically effective amounts. Any other effective combination of cytokines including combinations of other interleukins and interferons and colony stimulating factors can also be used.
  • the additional drug can be any drug known in the art which is cytotoxic or cytostatic, enhances tumor permeability, inhibits tumor cell proliferation, promotes apoptosis, decreases anti-apoptotic activity in target cells, is used to treat diseases caused by infectious agents, enhances an endogenous immune response directed to the pathogenic cells, or is useful for treating a disease state caused by any type of pathogenic cell.
  • Suitable additional drugs include adrenocorticoids and corticosteroids, alkylating agents, antiandrogens, antiestrogens, androgens, aclamycin and aclamycin derivatives, estrogens, antimetabolites such as cytosine arabinoside, purine analogs, pyrimidine analogs, and methotrexate, busulfan, carboplatin, chlorambucil, cisplatin and other platinum compounds, tamoxiphen, taxol, paclitaxel, paclitaxel derivatives, Taxotere®, cyclophosphamide, daunomycin, rhizoxin, T2 toxin, plant alkaloids, prednisone, hydroxyurea, teniposide, mitomycins, discodennolides, non-vinca microtubule inhibitors, epothilones, tubulysin, cyclopropyl benz[e]indolone, seco-cyclo
  • drugs that can be used in combination therapies include penicillins, cephalosporins, vancomycin, erythromycin, clindamycin, rifampin, chloramphenicol, aminoglycoside antibiotics, gentamicin, amphotericin B, acyclovir, trifluridine, ganciclovir, zidovudine, amantadine, ribavirin, and any other art-recognized antimicrobial compound. Analogs or derivatives of any of the above-described additional drugs can also be used in combination therapies.
  • compositions comprise an amount of a drug delivery conjugate effective to eliminate a population of pathogenic cells in a host animal when administered in one or more doses.
  • the drug delivery conjugate is preferably administered to the host animal parenterally, e.g., intradermally, subcutaneously, intramuscularly, intraperitoneally, intravenously, or intrathecally.
  • the drug delivery conjugate can be administered to the host animal by other medically useful processes, such as orally, and any effective dose and suitable therapeutic dosage form, including prolonged release dosage forms, can be used.
  • Exemplary excipients useful for oral dosage forms include, but are not limited to, corn starch, gelatin, lactose, magnesium stearate, sodium bicarbonate, cellulose derivatives, and sodium starch glycolate.
  • parenteral dosage forms include aqueous solutions of the active agent, in an isotonic saline, 5% glucose or other well-known pharmaceutically acceptable liquid carriers such as liquid alcohols, glycols, esters, and amides.
  • the parenteral dosage form in accordance with this invention can be in the form of a reconstitutable lyophilizate comprising the dose of the drug delivery conjugate.
  • any of a number of prolonged release dosage forms known in the art can be administered such as, for example, the biodegradable carbohydrate matrices described in U.S. Pat. Nos. 4,713,249; 5,266,333; and 5,417,982, the disclosures of which are incorporated herein by reference, or, alternatively, a slow pump (e.g., an osmotic pump) can be used.
  • a slow pump e.g., an osmotic pump
  • the additional drug in the combination therapy can be administered to the host animal prior to, after, or at the same time as the drug delivery conjugates and the additional drug can be administered as part of the same composition containing the drug delivery conjugate or as part of a different composition than the drug delivery conjugate. Any such combination therapy at an effective dose of the additional drug can be used.
  • more than one type of drug delivery conjugate can be used.
  • the host animal can be treated in a co-dosing protocol with conjugates with different ligands such as, for example, folate-vinca and vitamin B 12 -vinca conjugates in combination, and the like.
  • the host animal can be treated with conjugates comprising more than one ligand such as, for example, multiple folates or multiple vitamin B 12 molecules in one conjugate, or combinations of ligands in the same conjugate such as a vinca compound conjugated to both folate and vitamin B 12 ligands.
  • drug delivery conjugates with different types of vinca compounds in separate drug delivery conjugates can be used.
  • the unitary daily dosage of the drug delivery conjugate can vary significantly depending on the host condition, the disease state being treated, the molecular weight of the conjugate, its route of administration and tissue distribution, and the possibility of co-usage of other therapeutic treatments such as radiation therapy or additional drugs in combination therapies.
  • the effective amount to be administered to a host animal is based on body surface area, weight, and physician assessment of patient condition. Effective doses can range, for example, from about 1 ng/kg to about 1 mg/kg, from about 1 ⁇ g/kg to about 500 ⁇ g/kg, and from about 1 ⁇ g/kg to about 100 ⁇ g/kg.
  • any effective regimen for administering the drug delivery conjugates can be used.
  • the drug delivery conjugates can be administered as single doses, or can be divided and administered as a multiple-dose daily regimen.
  • a staggered regimen for example, one to three days per week can be used as an alternative to daily treatment, and for the purpose of defining this invention such intermittent or staggered daily regimen is considered to be equivalent to every day treatment and is comtemplated.
  • the host animal is treated with multiple injections of the drug delivery conjugate to eliminate the population of pathogenic cells.
  • the host is injected multiple times (preferably about 2 up to about 50 times) with the drug delivery conjugate, for example, at 12-72 hour intervals or at 48-72 hour intervals. Additional injections of the drug delivery conjugate can be administered to the host animal at an interval of days or months after the initial injections(s) and the additional injections can prevent recurrence of the disease state caused by the pathogenic cells.
  • vitamins, or analogs or derivatives thereof, that can be used in the drug delivery conjugates include those that bind to receptors expressed specifically on activated macrophages, such as the folate receptor which binds folate, or an analog or derivative thereof.
  • the folate-linked conjugates can be used to kill or suppress the activity of activated macrophages that cause disease states in the host.
  • Such macrophage targeting conjugates when administered to a host animal suffering from an activated macrophage-mediated disease state, work to concentrate and associate the conjugated vinca compounds in the population of activated macrophages to kill the activated macrophages or suppress macrophage function.
  • Elimination, reduction, or deactivation of the activated macrophage population works to stop or reduce the activated macrophage-mediated pathogenesis characteristic of the disease state being treated.
  • diseases known to be mediated by activated macrophages include rheumatoid arthritis, ulcerative colitis, Crohn's disease, psoriasis, osteomyelitis, multiple sclerosis, atherosclerosis, pulmonary fibrosis, sarcoidosis, systemic sclerosis, organ transplant rejection (GVHD) and chronic inflammations.
  • Administration of the drug delivery conjugate is typically continued until symptoms of the disease state are reduced or eliminated.
  • the drug delivery conjugates administered to kill activated macrophages or suppress the function of activated macrophages can be administered parenterally to the host animal, for example, intradermally, subcutaneously, intramuscularly, intraperitoneally, or intravenously in combination with a pharmaceutically acceptable carrier.
  • the drug delivery conjugates can be administered to the host animal by other medically useful procedures and effective doses can be administered in standard or prolonged release dosage forms.
  • the therapeutic method can be used alone or in combination with other therapeutic methods recognized for treatment of disease states mediated by activated macrophages.
  • the stereochemistry of amino acids used in forming the linker may b optionally selected from the natural L configuration, or the unnatural D configuration.
  • Each Example was characterized by NMR, MS, and/or UV spectroscopy, and/or HPLC as indicated; selected characteristic signals are noted as appropriate.
  • mice bearing subcutaneous M109 tumors.
  • mice bearing subcutaneous KB tumors.
  • mice 5/group were injected i.v. three times a week (TIW), for 3 weeks with 5 mmol/kg of the drug delivery conjugate or with an equivalent dose volume of PBS (control).
  • the compounds described herein were evaluated using an in vitro cytotoxicity assay that predicts the ability of the drug to inhibit the growth of folate receptor-positive KB cells.
  • the compounds were comprised of folate linked to a respective chemotherapeutic drug, as prepared according to the protocols described herein.
  • the KB cells were exposed for up to 7 h at 37° C. to the indicated concentrations of folate-drug conjugate in the absence or presence of at least a 100-fold excess of folic acid.
  • the cells were then rinsed once with fresh culture medium and incubated in fresh culture medium for 72 hours at 37° C. Cell viability was assessed using a 3 H-thymidine incorporation assay.
  • FR-positive KB cells were heavily seeded into 24-well cell culture plates and allowed to adhere to the plastic for 18 h. Spent incubation media was replaced in designated wells with folate-free RPMI (FFRPMI) supplemented with 100 nM 3 H-folic acid in the absence and presence of increasing concentrations of test article or folic acid. Cells were incubated for 60 min at 37° C. and then rinsed 3 times with PBS, pH 7.4.
  • mice The percentage weight change of the mice was determined in mice (5 mice/group) on the indicated days post-tumor inoculation (PTI) as shown in the graph for the samples described in the related tumor volume assay.
  • PTI days post-tumor inoculation
  • Linkers described herein that include a peptide are prepared by polymer-supported sequential approach using standard methods, such as the Fmoc-strategy on an acid-sensitive Fmoc-AA-Wang resin.
  • the folate-containing peptidyl fragment Pte-Glu-(AA) n -NH(CHR 2 )CO 2 H (3) is prepared by the method shown in Scheme 1 from Wang resin supported amino acids and Fmoc protected amino acid synthesis.
  • R 1 is Fmoc
  • R 2 is the desired appropriately-protected amino acid side chain
  • Wang is a 2-chlorotrityl-Resin
  • DIPEA is diisopropylethylamine.
  • Standard coupling procedures such as PyBOP and others described herein or known in the art are used, where the coupling agent is illustratively applied as the activating reagent to ensure efficient coupling.
  • Fmoc protecting groups are removed after each coupling step under standard conditions, such as upon treatment with piperidine, tetrabutylammonium fluoride (TBAF), and the like.
  • amino acid building blocks such as Fmoc-Glu-OtBu, N 10 -TFA-Pte-OH, and the like, are used, as described in Scheme 1, and represented in step (b) by Fmoc-AA-OH.
  • AA refers to any amino acid starting material, that is appropriatedly protected.
  • amino acid as used herein is intended to refer to any reagent having both an amine and a carboxylic acid functional group separated by one or more carbons, and includes the naturally occurring alpha and beta amino acids, as well as amino acid derivatives and analogs of these amino acids.
  • amino acids having side chains that are protected such as protected serine, threonine, cysteine, aspartate, and the like may also be used in the folate-peptide synthesis described herein.
  • gamma, delta, or longer homologous amino acids may also be included as starting materials in the folate-peptide synthesis described herein.
  • amino acid analogs having homologous side chains, or alternate branching structures, such as norleucine, isovaline, ⁇ -methyl threonine, ⁇ -methyl cysteine, ⁇ , ⁇ -dimethyl cysteine, and the like, may also be included as starting materials in the folate-peptide synthesis described herein.
  • step (a) & (b) The coupling sequence (steps (a) & (b)) involving Fmoc-protected amino acids (AA) of the formula Fmoc-AA-OH is performed “n” times to prepare solid-support peptide (2), where n is an integer and may equal 0 to about 100.
  • step (a) the remaining Fmoc group is removed (step (a)), and the peptide is sequentially coupled to a glutamate derivative (step (c)), deprotected, and coupled to TFA-protected pteroic acid (step (d)).
  • the peptide is cleaved from the polymeric support upon treatment with trifluoroacetic acid, ethanedithiol, and triisopropylsilane (step (e)).
  • trifluoroacetic acid ethanedithiol
  • triisopropylsilane step (e)
  • These reaction conditions result in the simultaneous removal of the t-Bu, t-Boc, and Trt protecting groups that may form part of the appropriately-protected amino acid side chain.
  • the TFA protecting group is removed upon treatment with base (step (f)) to provide the folate-containing peptidyl fragment (3).
  • the coupling step was performed as follows: In a peptide synthesis vessel add the resin, add the amino acid solution, DIPEA, and PyBOP. Bubble argon for 1 hr. and wash 3 ⁇ with DMF and IPA. Use 20% piperidine in DMF for Fmoc deprotection, 3 ⁇ (10 min), before each amino acid coupling. Continue to complete all 6 coupling steps. At the end wash the resin with 2% hydrazine in DMF 3 ⁇ (5 min) to cleave TFA protecting group on Pteroic acid.
  • the cleavage step was performed as follows: Add 25 ml cleavage reagent and bubble for 1.5 hr, drain, and wash 3 ⁇ with remaining reagent. Evaporate to about 5 mL and precipitate in ethyl ether. Centrifuge and dry.
  • the coupling step was performed as follows: In a peptide synthesis vessel add the resin, add the amino acid solution in DMF, DIPEA, and PyBOP. Bubble argon for 1 hr. and wash 3 ⁇ 10 mL with DMF and IPA. Use 20% piperidine in DMF for Fmoc deprotection, 3 ⁇ 10 mL (10 min), before each amino acid coupling. Continue to complete 6 coupling steps. At the end wash the resin with 2% hydrazine in DMF 3 ⁇ 10 mL (5 min) to cleave TFA protecting group on Pteroic acid and IvDde protecting group on ⁇ -aminoalanine.
  • the cleavage step was performed as follows: Add 25 ml cleavage reagent and bubble for 1.5 hr, drain, and wash 3 ⁇ with remaining reagent. Evaporate to about 5 mL and precipitate in ethyl ether. Centrifuge and dry.
  • Mitomycin C-ethyl disulfide propionic acid was prepared according to the following scheme
  • Example 2 In a polypropylene centrifuge bottle, Example 2 (82 mg, 0.084 mmol) was dissolved in 5 mL of water and bubbled with argon for 10 min. In another flask, a 0.1N NaHCO 3 solution was argon bubbled for 10 min. pH of the linker solution was adjusted to about 6.9 using the 0.1N NaHCO 3 solution. The vinblastine hydrazide derivative (Example 6, 91 mg, 0.092 mM) in 5 mL of tetrahydrofuran (THF) was added slowly to the above solution. The resulting clear solution was stirred under argon for 15 min to 1 h.
  • THF tetrahydrofuran
  • FIGS. 21A and 21B show the relative binding affinity for folate versus Example 9, and the effects of Example 9 on 3 H-thymidine incorporation, the IC 50 of the conjugate (58 nM), and that folate competes with the conjugate for binding to the folate receptor demonstrating the specificity of binding of the conjugate.
  • the assays were conducted according to Method Examples 4 and 3, respectively.
  • FIG. 1B shows the activity of Example 9 on 3 H-thymidine incorporation in KB cells with ( ⁇ ) and without ( ⁇ ) excess folic acid; IC 50 of Example 9 is about 58 nM.
  • Example 3 In a polypropylene centrifuge bottle, Example 3 (56 mg) was dissolved in 7.5 mL of water and bubbled with argon for 10 min. In another flask, a 0.1 N NaHCO 3 solution was bubbled with argon for 10 mM. The pH of the Example 3 solution was adjusted to 6.9 using the 0.1 N NaHCO 3 solution.
  • Example 10 was isolated after freeze-drying for 48 h (61 mg, 64%). 1 H HMR spectrum and LCMS data consistent with the assigned structure.
  • Example 11 was prepared according to the following process:
  • Mitomycin C-ethyl disulfide propionic acid (34.4 mg, 0.069 mmol) was dissolved in dry THF (1 mL) under argon. N-hydroxy succinamide (7.9 mg, 0.069 mmol) followed by dicyclohexyl carbodiimide (14.2 mg, 0.069 mmol) was added. Di-isopropylethylamine (0.024 mL, 0.138 mmol) was added and the resulting mixture was stirred for 3 h. In a polypropylene centrifuge bottle, vinblastine folate (Example 9, 26 mg, 0.014 mmol) was dissolved in 3 mL of water.
  • the pH of the solution was slowly adjusted to 8.5 using 0.1 N NaHCO 3 .
  • the activated mitomycin C derivative prepared as described herein was added to the folate solution as a 3 mL THF solution.
  • the THF was removed under reduced pressure and the aqueous solution was filtered and injected onto a prep-HPLC column (X-terra Column, 19 ⁇ 300 mm).
  • Method B Anhydrous DMF (4.5 mL) was syringed into a mixture of Example 10 (103 mg, 48.7 ⁇ mol) and Example 8 (NO 2 —PySSCH 2 CH 2 -MMC, 33.4 mg, 1.25 eq) at room temperature under argon. To the resulting solution were syringed in DIPEA (84.9 ⁇ L, 10 eq) and DBU (72.9 ⁇ L, 10 eq) in tandem. The reaction mixture was stirred at room temperature under argon for 20 minutes, then transferred into a stirring diethyl ether (50 mL).
  • Example 11 was prepared according to the following process in 34% yield:
  • FIG. 2 shows the relative binding affinity for folic acid ( ⁇ , 1.0) versus Example 11 ( ⁇ , 0.21).
  • the data in FIG. 2 shows that the conjugate has high relative binding to the folate receptor.
  • the assay was conducted according to Method Example 4.
  • FIGS. 1B and 3 show the effects of Examples 9 (having a single drug) and 11 (having a pair of drugs), respectively, on 3 H-thymidine incorporation, the IC 50 of the conjugates of Example 9 (58 nM) and of Example 11 (5 nM).
  • the data in FIGS. 1B and 3 also show that folic acid competes with the conjugates for binding to the folate receptor demonstrating the specificity of binding of the conjugate.
  • the assays were conducted according to Method Example 3.
  • Example 11 having two drugs showed more than 10-fold more potency at the folate receptor than Example 9 having only a single drug.
  • FIG. 4 shows the in vitro cytotoxic activity of Example 11 (a) on three different tumor cell lines (KB, 4T-1cl2, and ID8-cl15). In addition, FIG. 4 shows that the cytotoxic activity of Example 11 reduced in the presence of excess folic acid (b), indicating that Example 11 is acting at the folate receptor.
  • FIGS. 5A and 5B show the activity of Example 11 at two different doses (1 ⁇ mol/kg & 2 ⁇ mol/kg) against M109 lung cancer tumors in Balb/c mice and on the weight of Balb/c mice (Balb/c mice were used for the M109 tumor volume assay).
  • the assays were performed according to Method Examples 1 and 6, respectively.
  • Example 11 inhibited the growth of solid tumors, but had little effect on the weight of the mice at both doses.
  • the higher dose (2 ⁇ mol/kg) showed strong inhibition of tumor growth, even after the dosing was terminated on day 20.
  • the vertical line corresponds to the last dosing day (Day 20). Five animals were tested, and at the higher dose of 2 ⁇ mol/kg, all five animals showed a complete response.
  • FIG. 6 shows the activity of Example 11 at 1 ⁇ mol/kg TIW for 2 weeks on FR-positive KB tumors with (b) and without (c) 40 ⁇ mol/kg EC20 (rhenium complex), compared to controls (a).
  • the vertical dashed line indicates the last dosing day.
  • the figures show that Example 11 inhibits the growth of solid tumors, and that inhibitory effect is prevented (competed) by the EC20 rhenium complex. In addition, the figures show that treatment with Example 11 did not affect the weight of the test animal significantly from controls.
  • EC20 (rhenium complex) is the compound of the formula
  • FIG. 8 shows the activity of Example 11 at 1 ⁇ mol/kg TIW on folate receptor positive s.c. implanted human xenograft KB tumors with (b) and without (c) added 40 ⁇ mol/kg EC20 (rhenium complex) in nude mice.
  • the data in FIG. 8 show that Example 11 inhibits the growth of solid tumors, and that the inhibitory effect is prevented (competed against) by the EC20 rhenium complex, (b) versus (c).
  • the data in FIG. 8 show that treatment with Example 11 did not significantly affect the weight of the tested nude mice animal model compared to controls (a).
  • FIG. 10 shows the activity of Example 11 at 2 ⁇ mol/kg TIW (e) on folate receptor positive human tumors in nude mice compared to a mixture of the unconjugated base drugs, mitomycin C and desacetylvinblastine monohydrazide, at 0.5 ⁇ mol/kg TIW (b), 1 pmol/kg TIW (c), and 2 ⁇ mol/kg TIW (d), compared to untreated controls (a).
  • the data in FIG. 10 show that Example 11 inhibits the growth of solid tumors and gives a complete response in five out of five test animals.
  • FIG. 11 shows that Example 11 (e) did not significantly affect the weight of the test animals during treatment from controls (a).
  • the data in FIG. 11 show that prolonged treatment with the lower doses of the mixture of the unconjugated base drugs, mitomycin C and desacetylvinblastine monohydrazide, at (0.5 ⁇ mol/kg TIW (b) and 1 ⁇ mol/kg TIW (c)) caused weight loss in test animals that was significant compared to controls (a).
  • the high dose (2 pmol/kg TIW (d)) of the mixture of the unconjugated base drugs caused the greatest weight loss, leading to the termination of that test.
  • Example 11 is effective on large tumors.
  • FIG. 12 shows the activity of Example 11 at 2 ⁇ mol/kg TIW, 2 weeks on large (250 mm 3 , 500 mm 3 , and 750 mm 3 ) s.c. KB tumors. Treatment with Example 11 was initiated when the tumors reached one of the three target volumes, as indicated by the vertical arrows corresponding to the tumor volume. The data in FIG. 12 show that Example 11 inhibits the growth of large tumors and gives a complete response in test animals.
  • FIG. 13 shows the activity of Example 11 (e) at 1 ⁇ mol/kg TIW for two weeks of treatment on established s.c. KB tumors, compared to controls (a); the conjugates of each single drug alone, mitomycin C conjugate (b) and desacetylvinblastine monohydrazide conjugate (c), or a mixture of those single drug conjugates (d). Each drug conjugate was dosed at the same level of 1 ⁇ mol/kg TIW for two weeks of treatment. The figure shows that Example 11 performs better than either single drug conjugate or a mixture of both single drug conjugates.
  • FIG. 15 shows the activity of Example 12 at 100 nM on 3 H-thymidine incorporation into FR-positive KB cells versus the pulse time.
  • the assay was performed according to Method Example 3.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Described herein are compounds, pharmaceutical compositions and methods for treating pathogenic cell populations in a patient. The compounds described herein include conjugates of a plurality of cytotoxic drugs and vitamin receptor binding ligands. The plurality of drugs may be the same or different. Similarly, the vitamin receptor binding ligands may be the same or different. The conjugates also include a linker that is formed from one or more spacer linkers, heteroatom linkers, and releasable linkers.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit under 35 U.S.C. §119(e) of U.S. provisional patent application Ser. No. 60/709,950, filed Aug. 19, 2005, and U.S. provisional patent application Ser. No. 60/787,558, filed Mar. 30, 2006, the entirety of the disclosures of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to compositions and methods for use in targeted drug delivery. In particular, the invention relates to ligand conjugates including two or more drugs, and analogs and derivatives thereof, such as conjugates of vitamin receptor binding compounds and two or more drugs.
  • BACKGROUND
  • The mammalian immune system provides a means for the recognition and elimination of tumor cells, other pathogenic cells, and invading foreign pathogens. While the immune system normally provides a strong line of defense, there are many instances where cancer cells, other pathogenic cells, or infectious agents evade a host immune response and proliferate or persist with concomitant host pathogenicity. Chemotherapeutic agents and radiation therapies have been developed to eliminate, for example, replicating neoplasms. However, many of the currently available chemotherapeutic agents and radiation therapy regimens have adverse side effects because they work not only to destroy pathogenic cells, but they also affect normal host cells, such as cells of the hematopoietic system. The adverse side effects of these anticancer drugs highlight the need for the development of new therapies selective for pathogenic cell populations and with reduced host toxicity.
  • Researchers have developed therapeutic protocols for destroying pathogenic cells by targeting cytotoxic compounds to such cells. Many of these protocols utilize toxins conjugated to antibodies that bind to antigens unique to or overexpressed by the pathogenic cells in an attempt to minimize delivery of the toxin to normal cells. Using this approach, certain immunotoxins have been developed consisting of antibodies directed to specific antigens on pathogenic cells, the antibodies being linked to toxins such as ricin, Pseudomonas exotoxin, Diptheria toxin, and tumor necrosis factor. These immunotoxins target pathogenic cells, such as tumor cells, bearing the specific antigens recognized by the antibody (Olsnes, S., Immunol. Today, 10, pp. 291-295, 1989; Melby, E L., Cancer Res., 53(8), pp. 1755-1760, 1993; Better, M. D., PCT International Publication no. WO 91/07418, published May 30, 1991).
  • Another approach for targeting populations of pathogenic cells, such as cancer cells or foreign pathogens, in a host is to enhance the host immune response against the pathogenic cells to avoid the need for administration of compounds that may also exhibit independent host toxicity. One reported strategy for immunotherapy is to bind antibodies, for example, genetically engineered multimeric antibodies, to the surface of tumor cells to display the constant region of the antibodies on the cell surface and thereby induce tumor cell killing by various immune-system mediated processes (De Vita, V. T., Biologic Therapy of Cancer, 2d ed. Philadelphia, Lippincott, 1995; Soulillou, L P., U.S. Pat. No. 5,672,486). However, these approaches have been complicated by the difficulties in defining tumor-specific antigens.
  • SUMMARY OF THE INVENTION
  • Ligand conjugates of drugs, and analogs and derivatives thereof, are described herein. The conjugates include cell receptor binding ligands that are covalently attached to two or more drugs that may be targeted to cells. The conjugates described herein may also include a polyvalent linker for attaching the ligands to the drugs.
  • In one embodiment, a receptor binding drug delivery conjugate is described. The drug delivery conjugate comprises a ligand of a cell surface receptor, two or more drugs, or analogs or derivatives thereof, and optionally a polyvalent linker, which may be generally represented by the formula

  • (B)-(L)-(D)n
  • wherein (B) represents a receptor binding moiety; (D) represents a drug, or analog or derivative thereof, to be targeted to a cell by the receptor binding moiety; (L) represents a polyvalent linker, and n is an integer greater than 1. The polyvalent linker (L) can comprise multiple linkers covalently attached to each other. For example, the polyvalent linker (L) can comprise one or more spacer linkers (ls), and/or releasable linkers (lr), each connected to the other, and to the ligand and the drug, by one or more heteroatom linkers (lH). These various linkers may be selected and placed in any order to construct the polyvalent linker (L). Illustratively, the polyvalent linker (L) may be constructed from one or more of the following bivalent linkers:

  • -(L)-

  • -(lr)c-

  • -(ls)a-

  • -(ls)a-(lr)c-

  • -(lr)c-(ls)a-

  • -(lH)b-(lr)c-

  • -(lr)c-(lH)b-

  • -(lH)d-(lr)c-(lH)e-

  • -(ls)a-(lH)b-(lr)c-

  • -(lr)c-(lH)b-(ls)a-

  • -(lH)d-(ls)a-(lr)c-(lH)e-

  • -(lH)d-(lr)c-(ls)a-(lH)e-

  • -(lH)d-(ls)a-(lH)b-(lr)c-(lH)e-

  • -(lH)d-(lr)c-(lH)b-(ls)a-(lH)e-

  • -(ls)a-(lr)c-(lH)b-

  • -[(ls)a-(lH)b]d-(lr)c-(lH)e-
  • wherein a, b, c, d, and e are integers, such as integers in the range from 0 to about 4, and (ls), (lH), and (lr) are the spacer linkers, releasable linkers, heteroatom linkers, respectively. Additional illustrative examples of bivalent linkers that may be used to construct the polyvalent linkers described herein are described in U.S. patent application Ser. No. 10/765,336 (also found as U.S. patent application publication no. US 2005/0002942 A1) and PCT international publication no. WO 2006/012527, the entirety of the disclosures of which are incorporated herein by reference.
  • It is to be understood that the polyvalent linkers may connect the receptor binding moiety to the two or more drugs in a variety of structural configurations, including but not limited to the following illustrative general formulae:
  • Figure US20130184435A1-20130718-C00001
  • where B is the receptor binding ligand, each of (L1), (L2), and (L3) is a polyvalent linker constructed from one or more spacer, releasable, and/or heteroatom linkers, and each of (D1), D2, and D3 is a drug, or an analog or derivative thereof. Other variations, including additional drugs, or analogs or derivatives thereof, additional linkers, and additional configurations of the arrangement of each of (B), (L), and (D), are also contemplated herein.
  • In one variation, more than one receptor binding ligand is included in the drug delivery conjugates described herein, including but not limited to the following illustrative general formulae:
  • Figure US20130184435A1-20130718-C00002
  • where each B is a receptor binding ligand, each of (L1), (L2), and (L3) is a polyvalent linker constructed from one or more spacer, releasable, and/or heteroatom linkers, and each of (D1), D2, and D3 is a drug, or an analog or derivative thereof. Other variations, including additional drugs, or analogs or derivatives thereof, additional linkers, and additional configurations of the arrangement of each of (B), (L), and (D), are also contemplated herein. In one variation, the receptor binding ligands are for the same receptor, and in another variation, the receptor binding ligands are for different receptors.
  • In one illustrative embodiment of the drug delivery conjugates described herein, the polyvalent linker includes at least one releasable linker (Ir). In another illustrative embodiment of the drug delivery conjugates described herein, the polyvalent linker includes at least two releasable linkers (l2)2. In another illustrative aspect, the polyvalent linker (L) includes at least one releasable linkers (lr) that is not a disulfide releasable linker. In another illustrative aspect, the polyvalent linker (L) has at least two releasable linkers (lr)2 where one releasable linker is not a disulfide releasable linker. It is appreciated that when more than one releasable linker is included in the polyvalent linker, those releasable linkers may be adjacent. It is further appreciated that when two releasable linkers are adjacent in the polyvalent linker, the two releasable linkers may cooperate to cause release of the drug.
  • In another embodiment, the polyvalent linker includes at least one spacer linker that is a peptide formed from amino acids. In one aspect, the peptide includes naturally occurring amino acids, and stereoisomers thereof. In another aspect, the peptide is formed only from naturally occurring amino acids, and stereoisomers thereof.
  • The ligands described herein generally include ligands of cell surface receptors. Illustrative ligands useful in the conjugates described herein include, but are not limited to, vitamins, and other moieties that bind to a vitamin receptor, transporter, or other surface-presented protein that specifically binds vitamins, or analogs or derivatives thereof, peptide ligands identified from library screens, tumor cell-specific peptides, tumor cell-specific aptamers, tumor cell-specific carbohydrates, tumor cell-specific monoclonal or polyclonal antibodies, Fab or scFv (i.e., a single chain variable region) fragments of antibodies such as, for example, an Fab fragment of an antibody directed to EphA2 or other proteins specifically expressed or uniquely accessible on metastatic cancer cells, small organic molecules derived from combinatorial libraries, growth factors, such as EGF, FGF, insulin, and insulin-like growth factors, and homologous polypeptides, somatostatin and its analogs, transferrin, lipoprotein complexes, bile salts, selectins, steroid hormones, Arg-Gly-Asp containing peptides, retinoids, various Galectins, δ-opioid receptor ligands, cholecystokinin A receptor ligands, ligands specific for angiotensin AT1 or AT2 receptors, peroxisome proliferator-activated receptor λ ligands, β-lactam antibiotics such as penicillin, small organic molecules including antimicrobial drugs, and other molecules that bind specifically to a receptor preferentially expressed on the surface of tumor cells or on an infectious organism, antimicrobial and other drugs designed to fit into the binding pocket of a particular receptor based on the crystal structure of the receptor or other cell surface protein, ligands of tumor antigens or other molecules preferentially expressed on the surface of tumor cells, or fragments of any of these molecules. Tumor-specific antigens that could function as a binding site for ligand-drug conjugates include extracellular epitopes of members of the Ephrin family of proteins, such as EphA2. EphA2 expression is restricted to cell-cell junctions in normal cells, but EphA2 is distributed over the entire cell surface in metastatic tumor cells. Thus, EphA2 on metastatic cells would be accessible for binding to, for example, an Fab fragment of an antibody conjugated to a drug, or analog or derivative thereof, whereas the protein would not be accessible for binding to the Fab fragment on normal cells, resulting in a ligand-drug conjugate specific for metastatic cancer cells.
  • The drugs, and various analogs and derivatives thereof, described herein are generally drugs for eliminating, killing, interfering with, and/or decreasing the growth of a population of pathogenic cells, including infectious agents, cancers, tumors, and the like. Further, the drugs, and the various analogs and derivatives thereof, useful in the conjugates described herein may have a wide variety of mechanisms of action, including but not limited to alkylating agents, microtubule inhibitors, including those that stabilize and/or destabilize microtubule formation, including beta-tubulin agents, cyclin dependent kinase (CDK) inhibitors such as CDKN1a. CDKN1b, and the like, topoisomerase inhibitors, protein synthesis inhibitors, protein kinase inhibitors, including Ras, Raf, PKC, PI3K, and like inhibitors, transcription inhibitor, antifolates, heat shock protein blockers, and the like.
  • In another embodiment, a pharmaceutical composition is described. The pharmaceutical composition comprises a drug delivery conjugate described herein in combination with a pharmaceutically acceptable carrier, excipient, and/or diluent therefor.
  • In another embodiment, a method for eliminating a population of pathogenic cells in a host animal harboring the population of pathogenic cells is described. In one illustrative aspect, the members of the pathogenic cell population have an accessible binding site for a receptor binding moiety, or the analog or derivative thereof, and that binding site is uniquely expressed, overexpressed, or preferentially expressed by the pathogenic cells. The method includes the step of administering to the host a drug delivery conjugate described herein, or a pharmaceutical composition thereof, as described herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A shows the relative binding affinity of Example 9 (▪, 0.24) versus folic acid (, 1.0) at folic acid receptors.
  • FIG. 1B shows the activity of Example 9 on 3H-thymidine incorporation in KB cells with (∘) and without () excess folic acid; IC50 of Example 9 is about 58 nM.
  • FIG. 2 shows the relative binding affinity of for Example 11 (▪, 0.21) versus folic acid (, 1.0) at folic acid receptors.
  • FIG. 3 shows the activity of Example 11 (multi-drug conjugate) on 3H-thymidine incorporation with (∘) and without () excess folic acid; IC50 of Example 11=5 nM.
  • FIG. 4 shows the in vitro cytotoxic activity of Example 11 (a) on three different tumor cell lines (KB, 4T-1cl2, and ID8-cl15) compared to Example 11+ excess folic acid (b).
  • FIG. 5A shows the activity of Example 11 at 1 μmol/kg TIW (6 doses) (), and 2 μmol/kg TIW (6 doses) (▾) on FR-positive M109 tumors in Balb/c mice versus untreated controls (▪).
  • FIG. 5B shows the absence of an effect by Example 11 at 1 μmol/kg TIW (6 doses) (), and 2 μmol/kg TIW (6 doses) (▾) on the weight of Balb/c mice versus untreated controls (▪).
  • FIG. 6 shows the activity of Example 11 at 1 μmol/kg TIW for 2 weeks (6 doses) on FR-positive KB tumors with (□) and without (▪) 40 μmol/kg EC20 (rhenium complex) versus untreated controls (); Example 11 alone showed 5/5 complete responses; Example 11+EC20 showed 0/5 complete responses.
  • FIG. 7 shows the absence of an effect by Example 11 at 1 μmol/kg TIW for 2 weeks (6 doses) on the weight of nu/nu mice with (□) and without (▪) 40 μmol/kg EC20 (rhenium complex) versus untreated controls ().
  • FIG. 8 shows the activity of Example 11 at 1 μmol/kg TIW for 2 weeks (6 doses) on s.c. human xenograft KB tumors implanted in nude mice with (b) and without (c) 40 μmol/kg EC20 (rhenium complex) versus untreated controls (a); Example 11 alone showed 5/5 complete responses; Example 11+EC20 showed 0/5 complete responses.
  • FIG. 9 shows the absence of an effect by Example 11 at 1 μmol/kg TIW for 2 weeks (6 doses) on the weight of nude mice with (b) and without (c) 40 μmol/kg EC20 (rhenium complex) versus untreated controls (a).
  • FIG. 10 shows the activity of Example 11 at 2 μmol/kg TIW (e) on folate receptor positive human tumors in nude mice as compared to a mixture of the unconjugated base drugs, mitomycin C and desacetylvinblastine monohydrazide, at 0.5 μmol/kg TIW (b), 1 μmol/kg TIW (c), and 2 μmol/kg TIW (d), and compared to untreated controls (a).
  • FIG. 11 shows the absence of an effect by Example 11 at 2 μmol/kg TIW for 2 weeks (e) on the weight of nude mice compared to controls (a). Weight loss occurred at the all three doses of the mixture of the unconjugated base drugs, mitomycin C and desacetylvinblastine monohydrazide (0.5 μmol/kg TIW (b), 1 μmol/kg TIW (c), 2 μmol/kg TIW (d)). The high dose (d) was discontinued prior to day 20.
  • FIG. 12 shows the activity of Example 11 on three sizes of large KB tumors, 250 mm3 (b), 500 mm3 (c), and 750 mm3 (d) in nu/nu mice at 2 μmol/kg TIW for 2 weeks compared to controls (a).
  • FIG. 13 shows the activity of Example 11 (e) compared to conjugates of only the single drug mitomycin C (b), desacetylvinblastine monohydrazide (c), or a mixture of those two single drug conjugates (d), compared to controls (a).
  • FIG. 14 shows the absence of activity of Example 11 (b) at 2 μmol/kg TIW for two weeks of treatment on folate receptor negative 4T1 tumors in Bablb/c mice, compared to controls (a). The data in FIG. 14 show that Example 11 (b) does not have any effect on the tumors compared to controls (a) due to the absence of folate receptors on those tumors.
  • FIG. 15 shows the activity of Example 12 on 3H-thymidine incorporation into FR-positive KB cells
  • DETAILED DESCRIPTION
  • Ligand conjugates of drugs, and analogs and derivatives thereof, are described herein. The conjugates include cell receptor binding ligands, including ligands of cell surface receptors, that are covalently attached to two or more drugs that may be targeted to cells, including pathogenic cells. The conjugates described herein may also include a polyvalent linker for attaching the ligands to the drugs.
  • Receptor binding drug delivery conjugates comprising a receptor binding moiety (B), a polyvalent linker (L), and two or more drugs, or drug analogs or drug derivatives, (D)n are described, where n is greater than or equal to 2. In the delivery conjugates described herein, the receptor binding moiety (B) and the two or more drugs (D)n are each bound to the polyvalent linker (L), through an independently selected heteroatom linker (lH). The polyvalent linker (L) comprises one or more spacer linkers, heteroatom linkers, and releasable linkers, and combinations thereof, in any order.
  • In one embodiment, a receptor binding drug delivery conjugate is described. The drug delivery conjugate comprises a ligand, such as a ligand of a cell surface receptor, two or more drugs, or analogs or derivatives thereof, and optionally a polyvalent linker, which may be generally represented by the formula

  • (B)-(L)-(D)n
  • wherein (B) represents a receptor binding moiety; (D) represents a drug, or analog or derivative thereof, to be targeted to a cell by the receptor binding moiety; (L) represents a polyvalent linker, and n is an integer greater than 1. The polyvalent linker (L) can comprise multiple linkers covalently attached to each other. For example, the polyvalent linker (L) can comprise one or more spacer linkers (ls), and/or releasable linkers (lr), each connected to the other, and to the ligand and the drug, by one or more heteroatom linkers (lH). These various linkers may be selected and placed in any order to construct the polyvalent linker (L).
  • Illustratively, the polyvalent linker (L) may be constructed from one or more of the following bivalent linkers:

  • -(L)-

  • -(lr)c-

  • -(ls)a-

  • -(ls)a-(lr)c-

  • -(lr)c-(ls)a-

  • -(lH)b-(lr)c-

  • -(lr)c-(lH)b-

  • -(lH)d-(lr)c-(lH)e-

  • -(ls)a-(lH)b-(lr)c-

  • -(lr)c-(lH)b-(ls)a-

  • -(lH)d-(ls)a-(lr)c-(lH)e-

  • -(lH)d-(lr)c-(ls)a-(lH)e-

  • -(lH)d-(ls)a-(lH)b-(lr)c-(lH)e-

  • -(lH)d-(lr)c-(lH)b-(ls)a-(lH)e-

  • -(ls)a-(lr)c-(lH)b-

  • -[(ls)a-(lH)b]d-(lr)c-(lH)e-
  • wherein a, b, c, d, and e are integers, such as integers in the range from 0 to about 4, and (ls), (lH), and (lr) are the spacer linkers, releasable linkers, heteroatom linkers, respectively. Additional illustrative examples of bivalent linkers that may be used to construct the polyvalent linkers described herein are described in U.S. patent application Ser. No. 10/765,336 (also found as U.S. patent application publication no. US 2005/0002942 A1) and PCT international publication no. WO2006/012527, the entirety of the disclosures of which are incorporated herein by reference.
  • It is to be understood that the polyvalent linkers may connect the receptor binding moiety to the two or more drugs in a variety of structural configurations, including but not limited to the following illustrative general formulae:
  • Figure US20130184435A1-20130718-C00003
  • where B is the receptor binding ligand, each of (L1), (L2), and (L3) is a polyvalent linker constructed from one or more spacer, releasable, and/or heteroatom linkers, and each of (D1), D2, and D3 is a drug, or an analog or derivative thereof. Other variations, including additional drugs, or analogs or derivatives thereof, additional linkers, and additional configurations of the arrangement of each of (B), (L), and (D), are also contemplated herein.
  • In one variation, more than one receptor binding ligand is included in the drug delivery conjugates described herein, including but not limited to the following illustrative general formulae:
  • Figure US20130184435A1-20130718-C00004
  • where each B is a receptor binding ligand, each of (L1), (L2), and (L3) is a polyvalent linker constructed from one or more spacer, releasable, and/or heteroatom linkers, and each of (D1), D2, and D3 is a drug, or an analog or derivative thereof. Other variations, including additional drugs, or analogs or derivatives thereof, additional linkers, and additional configurations of the arrangement of each of (B), (L), and (D), are also contemplated herein. In one variation, the receptor binding ligands are for the same receptor, and in another variation, the receptor binding ligands are for different receptors. It is appreciated, and as shown in the above formulae, that more than one polyvalent linker may be included in the drug delivery conjugates described herein. It is understood that in one aspect, the number of linkers are selected depending upon the configuration of the receptor binding ligands, and the drugs.
  • For example, in one illustrative embodiment of the manner in which linkers are covalently assembled to form the polyvalent linker, or part of the polyvalent linker, heteroatom linkers, spacer linkers, and releasable linkers are connected to form a polyvalent group of the formula:
  • Figure US20130184435A1-20130718-C00005
  • where the formula may also be represented as
  • Figure US20130184435A1-20130718-C00006
  • wherein (ls)1 is the tripeptide Asp-Asp-Asp, (ls)2 is Cys, (lr)1 is S—S, (ls)3 is CH2CH2, (lH)1 is O, (lr)2 is C(O)NHNH, (ls)4 is w-Lys, (ls)5 is C(O)CH2CH2, (lr)3 is S—S, and (ls)6 is CH2CH2.
  • The ligands of cell surface receptors useful in the conjugates described herein include, but are not limited to, vitamins, and other moieties that bind to a vitamin receptor, transporter, or other surface-presented protein that specifically binds vitamins, or analog or derivative thereof, peptide ligands identified from library screens, tumor cell-specific peptides, tumor cell-specific aptamers, tumor cell-specific carbohydrates, tumor cell-specific monoclonal or polyclonal antibodies, Fab or scFv (i.e., a single chain variable region) fragments of antibodies such as, for example, an Fab fragment of an antibody directed to EphA2 or other proteins specifically expressed or uniquely accessible on metastatic cancer cells, small organic molecules derived from combinatorial libraries, growth factors, such as EGF, FGF, insulin, and insulin-like growth factors, and homologous polypeptides, somatostatin and its analogs, transferrin, lipoprotein complexes, bile salts, selectins, steroid hormones, Arg-Gly-Asp containing peptides, retinoids, various Galectins, δ-opioid receptor ligands, cholecystokinin A receptor ligands, ligands specific for angiotensin AT1 or AT2 receptors, peroxisome proliferator-activated receptor λ ligands, β-lactam antibiotics such as penicillin, small organic molecules including antimicrobial drugs, and other molecules that bind specifically to a receptor preferentially expressed on the surface of tumor cells or on an infectious organism, antimicrobial and other drugs designed to fit into the binding pocket of a particular receptor based on the crystal structure of the receptor or other cell surface protein, ligands of tumor antigens or other molecules preferentially expressed on the surface of tumor cells, or fragments of any of these molecules. An example of a tumor-specific antigen that could function as a binding site for ligand-drug, or analog or derivative thereof, conjugates include extracellular epitopes of a member of the Ephrin family of proteins, such as EphA2. EphA2 expression is restricted to cell-cell junctions in normal cells, but EphA2 is distributed over the entire cell surface in metastatic tumor cells. Thus, EphA2 on metastatic cells would be accessible for binding to, for example, an Fab fragment of an antibody conjugated to a drug, or analog or derivative thereof, whereas the protein would not be accessible for binding to the Fab fragment on normal cells, resulting in a ligand-drug conjugate specific for metastatic cancer cells.
  • In one embodiment, the receptor binding moiety is a vitamin, or a vitamin receptor binding analog or derivative thereof, such as vitamins and analogs and derivatives thereof that are capable of binding vitamin receptors.
  • The vitamins that can be used in accordance with the methods and compounds described herein include carnitine, inositol, lipoic acid, pyridoxal, ascorbic acid, niacin, pantothenic acid, folic acid, riboflavin, thiamine, biotin, vitamin B12, vitamins A, D, E and K, other related vitamin molecules, analogs and derivatives thereof, and combinations thereof. These vitamins, and their receptor-binding analogs and derivatives, constitute illustrative targeting entities that can be coupled with the drug compounds, or their analogs or derivatives, by the polyvalent linkers (L) described herein to make drug delivery conjugates.
  • In one illustrative aspect, the vitamin can be folic acid, a folic acid analog, or another folate receptor-binding molecule. Exemplary of analogs of folate that can be used include folinic acid, pteroylpolyglutamic acid, pteroic acid and other amino acid derivatives thereof, and folate receptor-binding pteridines such as tetrahydropterins, dihydrofolates, tetrahydrofolates, and their deaza and dideaza analogs. The terms “deaza” and “dideaza” analogs refers to the art recognized analogs having a carbon atom substituted for one or two nitrogen atoms in the naturally occurring folic acid structure. For example, the deaza analogs include the 1-deaza, 3-deaza, 5-deaza, 8-deaza, and 10-deaza analogs. The dideaza analogs include, for example, 1,5 dideaza, 5,10-dideaza, 8,10-dideaza, and 5,8-dideaza analogs. The foregoing folic acid analogs are conventionally termed “folates,” reflecting their capacity to bind to folate receptors. Other folate receptor-binding analogs include aminopterin, amethopterin (methotrexate), N10-methylfolate, 2-deamino-hydroxyfolate, deaza analogs such as 1-deazamethopterin or 3-deazamethopterin, and 3′,5′-dichloro-4-amino-4-deoxy-N10-methylpteroylglutamic acid (dichloromethotrexate). Other suitable ligands capable of binding to folate receptors to initiate receptor mediated endocytotic transport of the drug delivery conjugate include antibodies to the folate receptor. Accordingly, in one illustrative aspect, a vinca compound in complex with an antibody to a folate receptor can be used to trigger transmembrane transport of the complex.
  • Illustrative embodiments of vitamin analogs and/or derivatives also include analogs and derivatives of biotin such as biocytin, biotin sulfoxide, oxybiotin and other biotin receptor-binding compounds, and the like. It is appreciated that analogs and derivatives of the other vitamins described herein are also contemplated herein.
  • Any shape of the described conjugates is contemplated herein, and is determined by the manner in which the drugs, receptor-binding moiety, and various polyvalent linkers are connected. In one aspect, the overall three-dimensional shape of the conjugates described herein are linear. In another aspect, the overall three-dimensional shape of the conjugates described herein are “Y” or “T” shaped. In another aspect, the overall three-dimensional shape of the conjugates described herein are “X” shaped or cross-shaped. In another
  • In one illustrative embodiment of the drug delivery conjugates described herein, the polyvalent linker includes at least one releasable linker (lr). In another illustrative embodiment of the drug delivery conjugates described herein, the polyvalent linker includes at least two releasable linkers (lr)2. In another illustrative aspect, the polyvalent linker (L) includes at least one releasable linkers (lr) that is not a disulfide releasable linker. In another illustrative aspect, the polyvalent linker (L) has at least two releasable linkers (lr)2 where one releasable linker is not a disulfide releasable linker. It is appreciated that when more than one releasable linker is included in the polyvalent linker, those releasable linkers may be adjacent. It is further appreciated that when two releasable linkers are adjacent in the polyvalent linker, the two releasable linkers may cooperate to cause release of the drug.
  • The term “releasable linker” as used herein, and also known as cleavable linker, refers to a linker that includes at least one bond that can be broken under physiological conditions (e.g., a pH-labile, acid-labile, oxidatively-labile, or enzyme-labile bond). It should be appreciated that such physiological conditions resulting in bond breaking include standard chemical hydrolysis reactions that occur, for example, at physiological pH, or as a result of compartmentalization into a cellular organelle such as an endosome having a lower pH than cytosolic pH.
  • It is understood that a cleavable bond can connect two adjacent atoms within the releasable linker and/or connect other linkers or (B) and/or (D), as described herein, at either or both ends of the releasable linker. In the case where a cleavable bond connects two adjacent atoms within the releasable linker, following breakage of the bond, the releasable linker is broken into two or more fragments. Alternatively, in the case where a cleavable bond is between the releasable linker and another moiety, such as an heteroatom linker, a spacer linker, another releasable linker, the drug, or analog or derivative thereof, or the vitamin, or analog or derivative thereof, following breakage of the bond, the releasable linker is separated from the other moiety.
  • The lability of the cleavable bond can be adjusted by, for example, substitutional changes at or near the cleavable bond, such as including alpha branching adjacent to a cleavable disulfide bond, increasing the hydrophobicity of substituents on silicon in a moiety having a silicon-oxygen bond that may be hydrolyzed, homologating alkoxy groups that form part of a ketal or acetal that may be hydrolyzed, and the like.
  • Illustrative mechanisms for cleavage of the bivalant linkers described herein include the following 1,4 and 1,6 fragmentation mechanisms
  • Figure US20130184435A1-20130718-C00007
  • where X is an exogenous or endogenous nucleophile, glutathione, or bioreducing agent, and the like, and either of Z or Z′ is the vitamin, or analog or derivative thereof, or the drug, or analog or derivative thereof, or a vitamin or drug moiety in conjunction with other portions of the polyvalent linker. It is to be understood that although the above fragmentation mechanisms are depicted as concerted mechanisms, any number of discrete steps may take place to effect the ultimate fragmentation of the polyvalent linker to the final products shown. For example, it is appreciated that the bond cleavage may also occur by acid-catalyzed elimination of the carbamate moiety, which may be anchimerically assisted by the stabilization provided by either the aryl group of the beta sulfur or disulfide illustrated in the above examples. In those variations of this embodiment, the releasable linker is the carbamate moiety. Alternatively, the fragmentation may be initiated by a nucleophilic attack on the disulfide group, causing cleavage to form a thiolate. The thiolate may intermolecularly displace a carbonic acid or carbamic acid moiety and form the corresponding thiacyclopropane. In the case of the benzyl-containing polyvalent linkers, following an illustrative breaking of the disulfide bond, the resulting phenyl thiolate may further fragment to release a carbonic acid or carbamic acid moiety by forming a resonance stabilized intermediate. In any of these cases, the releasable nature of the illustrative polyvalent linkers described herein may be realized by whatever mechanism may be relevant to the chemical, metabolic, physiological, or biological conditions present.
  • Other illustrative mechanisms for bond cleavage of the releasable linker include oxonium-assisted cleavage as follows:
  • Figure US20130184435A1-20130718-C00008
  • where Z is the vitamin, or analog or derivative thereof, or the drug, or analog or derivative thereof, or each is a vitamin or drug moiety in conjunction with other portions of the polyvalent linker, such as a drug or vitamin moiety including one or more spacer linkers, heteroatom linkers, and/or other releasable linkers. In this embodiment, acid-catalyzed elimination of the carbamate leads to the release of CO2 and the nitrogen-containing moiety attached to Z, and the formation of a benzyl cation, which may be trapped by water, or any other Lewis base.
  • Another illustrative mechanism involves an arrangement of the releasable, spacer, and heteroatom linkers in such a way that subsequent to the cleavage of a bond in the polyvalent linker, released functional groups chemically assist the breakage or cleavage of additional bonds, also termed anchimeric assisted cleavage or breakage. An illustrative embodiment of such a polyvalent linker or portion thereof includes compounds having the formula:
  • Figure US20130184435A1-20130718-C00009
  • where X is an heteroatom, such as nitrogen, oxygen, or sulfur, n is an integer selected from 0, 1, 2, and 3, R is hydrogen, or a substituent, including a substituent capable of stabilizing a positive charge inductively or by resonance on the aryl ring, such as alkoxy, and the like, and either of Z or Z′ is the vitamin, or analog or, derivative thereof, or the drug, or analog or derivative thereof, or a vitamin or drug moiety in conjunction with other portions of the polyvalent linker. It is appreciated that other substituents may be present on the aryl ring, the benzyl carbon, the carbamate nitrogen, the alkanoic acid, or the methylene bridge, including but not limited to hydroxy, alkyl, alkoxy, alkylthio, halo, and the like. Assisted cleavage may include mechanisms involving benzylium intermediates, benzyne intermediates, lactone cyclization, oxonium intermediates, beta-elimination, and the like. It is further appreciated that, in addition to fragmentation subsequent to cleavage of the releasable linker, the initial cleavage of the releasable linker may be facilitated by an anchimerically assisted mechanism.
  • In this embodiment, the hydroxyalkanoic acid, which may cyclize, facilitates cleavage of the methylene bridge, by for example an oxonium ion, and facilitates bond cleavage or subsequent fragmentation after bond cleavage of the releasable linker. Alternatively, acid catalyzed oxonium ion-assisted cleavage of the methylene bridge may begin a cascade of fragmentation of this illustrative polyvalent linker, or fragment thereof. Alternatively, acid-catalyzed hydrolysis of the carbamate may facilitate the beta elimination of the hydroxyalkanoic acid, which may cyclize, and facilitate cleavage of methylene bridge, by for example an oxonium ion. It is appreciated that other chemical mechanisms of bond breakage or cleavage under the metabolic, physiological, or cellular conditions described herein may initiate such a cascade of fragmentation. It is appreciated that other chemical mechanisms of bond breakage or cleavage under the metabolic, physiological, or cellular conditions described herein may initiate such a cascade of fragmentation.
  • In one embodiment, the polyvalent linkers described herein are compounds of the following formulae
  • Figure US20130184435A1-20130718-C00010
  • where n is an integer selected from 1 to about 4; Ra and Rb are each independently selected from the group consisting of hydrogen and alkyl, including lower alkyl such as C1-C4 alkyl that are optionally branched; or Ra and Rb are taken together with the attached carbon atom to form a carbocyclic ring; R is an optionally substituted alkyl group, an optionally substituted acyl group, or a suitably selected nitrogen protecting group; and (*) indicates points of attachment for the drug, vitamin, imaging agent, diagnostic agent, other polyvalent linkers, or other parts of the conjugate.
  • In another embodiment, the polyvalent linkers described herein include compounds of the following formulae
  • Figure US20130184435A1-20130718-C00011
  • where m is an integer selected from 1 to about 4; R is an optionally substituted alkyl group, an optionally substituted acyl group, or a suitably selected nitrogen protecting group; and (*) indicates points of attachment for the drug, vitamin, imaging agent, diagnostic agent, other polyvalent linkers, or other parts of the conjugate.
  • In another embodiment, the polyvalent linkers described herein include compounds of the following formulae
  • Figure US20130184435A1-20130718-C00012
  • where m is an integer selected from 1 to about 4; R is an optionally substituted alkyl group, an optionally substituted acyl group, or a suitably selected nitrogen protecting group; and (*) indicates points of attachment for the drug, vitamin, imaging agent, diagnostic agent, other polyvalent linkers, or other parts of the conjugate.
  • In another embodiment, the releasable, spacer, and heteroatom linkers may be arranged in such a way that subsequent to the cleavage of a bond in the polyvalent linker, released functional groups chemically assist the breakage or cleavage of additional bonds, also termed anchimeric assisted cleavage or breakage. An illustrative embodiment of such a polyvalent linker or portion thereof includes compounds having the formula:
  • Figure US20130184435A1-20130718-C00013
  • where X is an heteroatom, such as nitrogen, oxygen, or sulfur, n is an integer selected from 0, 1, 2, and 3, R is hydrogen, or a substituent, including a substituent capable of stabilizing a positive charge inductively or by resonance on the aryl ring, such as alkoxy, and the like, and the symbol (*) indicates points of attachment for additional spacer, heteroatom, or releasable linkers fowling the polyvalent linker, or alternatively for attachment of the drug, or analog or derivative thereof, or the vitamin, or analog or derivative thereof. It is appreciated that other substituents may be present on the aryl ring, the benzyl carbon, the alkanoic acid, or the methylene bridge, including but not limited to hydroxy, alkyl, alkoxy, alkylthio, halo, and the like. Assisted cleavage may include mechanisms involving benzylium intermediates, benzyne intermediates, lactone cyclization, oxonium intermediates, beta-elimination, and the like. It is further appreciated that, in addition to fragmentation subsequent to cleavage of the releasable linker, the initial cleavage of the releasable linker may be facilitated by an anchimerically assisted mechanism.
  • In another embodiment, the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-thiosuccinimid-1-ylalkyloxymethyloxy group, illustrated by the following formula
  • Figure US20130184435A1-20130718-C00014
  • where n is an integer from 1 to 6, the alkyl group is optionally substituted, and the methyl is optionally substituted with an additional alkyl or optionally substituted aryl group, each of which is represented by an independently selected group R. The (*) symbols indicate points of attachment of the polyvalent linker fragment to other parts of the conjugates described herein.
  • In another embodiment, the polyvalent linker includes hetero atom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-thiosuccinimid-1-ylalkylcarbonyl group, illustrated by the following formula
  • Figure US20130184435A1-20130718-C00015
  • where n is an integer from 1 to 6, and the alkyl group is optionally substituted. The (*) symbols indicate points of attachment of the polyvalent linker fragment to other parts of the conjugates described herein. In another embodiment, the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-thioalkylsulfonylalkyl(disubstituted silyl)oxy group, where the disubstituted silyl is substituted with alkyl and/or optionally substituted aryl groups.
  • In another embodiment, the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent dithioalkylcarbonylhydrazide group, or a polyvalent 3-thiosuccinimid-1-ylalkylcarbonylhydrazide, illustrated by the following formulae
  • Figure US20130184435A1-20130718-C00016
  • where n is an integer from 1 to 6, the alkyl group is optionally substituted, and the hydrazide forms an hydrazone with (B), (D), or another part of the polyvalent linker (L). The (*) symbols indicate points of attachment of the polyvalent linker fragment to other parts of the conjugates described herein.
  • In another embodiment, the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-thiosuccinimid-1-ylalkyloxyalkyloxyalkylidene group, illustrated by the following formula
  • Figure US20130184435A1-20130718-C00017
  • where each n is an independently selected integer from 1 to 6, each alkyl group independently selected and is optionally substituted, such as with alkyl or optionally substituted aryl, and where the alkylidene forms an hydrazone with (B), (D), or another part of the polyvalent linker (L). The (*) symbols indicate points of attachment of the polyvalent linker fragment to other parts of the conjugates described herein.
  • In another embodiment, the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-thio or 3-dithioarylalkyloxycarbonyl group, 3-thio or 3-dithioarylalkylaminocarbonyl group, a polyvalent 3-thio or 3-dithioalkyloxycarbonyl, or a polyvalent 3-thio or 3-dithioalkylaminocarbonyl, where the alkyl carbonyl forms a carbonate, a carbamate, or urea with (B), (D), or another part of the polyvalent linker (L). Illustratively, the alkyl group is ethyl.
  • In another embodiment, the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 3-dithioalkylamino group, where the amino forms a vinylogous amide with (B), (D), or another part of the polyvalent linker (L). Illustratively, the alkyl group is ethyl.
  • In another embodiment, the polyvalent linker includes heteroatom linkers, spacer linkers, and releasable linkers connected to form a polyvalent 1-alkoxycycloalkylenoxy group, a polyvalent alkyleneaminocarbonyl(dicarboxylarylene)carboxylate group, a polyvalent 3-dithioalkyloxycarbonyl group, a polyvalent 3-dithioalkyloxycarbonylhydrazide group, a polyvalent.
  • In another embodiment, the polyvalent linker includes at least one spacer linker that is a peptide formed from amino acids. In one aspect, the peptide includes naturally occurring amino acids, and stereoisomers thereof. In another aspect, the peptide is formed only from naturally occurring amino acids, and stereoisomers thereof.
  • Additional illustrative examples of spacer and releasable linkers are shown in Table 1 and 2, where the (*) indicates the point of attachment to another linker, to the vinca alkaloid, or analog or derivative thereof, or to the receptor binding moiety.
  • TABLE 1
    Contemplated spacer and heteroatom linkers, and combinations thereof.
    Figure US20130184435A1-20130718-C00018
    Figure US20130184435A1-20130718-C00019
    Figure US20130184435A1-20130718-C00020
    Figure US20130184435A1-20130718-C00021
    Figure US20130184435A1-20130718-C00022
    Figure US20130184435A1-20130718-C00023
    Figure US20130184435A1-20130718-C00024
    Figure US20130184435A1-20130718-C00025
    Figure US20130184435A1-20130718-C00026
    Figure US20130184435A1-20130718-C00027
    Figure US20130184435A1-20130718-C00028
    Figure US20130184435A1-20130718-C00029
    Figure US20130184435A1-20130718-C00030
    Figure US20130184435A1-20130718-C00031
    Figure US20130184435A1-20130718-C00032
    Figure US20130184435A1-20130718-C00033
    Figure US20130184435A1-20130718-C00034
    Figure US20130184435A1-20130718-C00035
    Figure US20130184435A1-20130718-C00036
    Figure US20130184435A1-20130718-C00037
    Figure US20130184435A1-20130718-C00038
    Figure US20130184435A1-20130718-C00039
    Figure US20130184435A1-20130718-C00040
    Figure US20130184435A1-20130718-C00041
    Figure US20130184435A1-20130718-C00042
    Figure US20130184435A1-20130718-C00043
    Figure US20130184435A1-20130718-C00044
    Figure US20130184435A1-20130718-C00045
    Figure US20130184435A1-20130718-C00046
    Figure US20130184435A1-20130718-C00047
    Figure US20130184435A1-20130718-C00048
    Figure US20130184435A1-20130718-C00049
    Figure US20130184435A1-20130718-C00050
    Figure US20130184435A1-20130718-C00051
    Figure US20130184435A1-20130718-C00052
    Figure US20130184435A1-20130718-C00053
    Figure US20130184435A1-20130718-C00054
    Figure US20130184435A1-20130718-C00055
    Figure US20130184435A1-20130718-C00056
    Figure US20130184435A1-20130718-C00057
    Figure US20130184435A1-20130718-C00058
    Figure US20130184435A1-20130718-C00059
    Figure US20130184435A1-20130718-C00060
    Figure US20130184435A1-20130718-C00061
    Figure US20130184435A1-20130718-C00062
    Figure US20130184435A1-20130718-C00063
    Figure US20130184435A1-20130718-C00064
    Figure US20130184435A1-20130718-C00065
  • TABLE 2
    Contemplated releasable and heteroatom linkers, and combinations thereof.
    Figure US20130184435A1-20130718-C00066
    Figure US20130184435A1-20130718-C00067
    Figure US20130184435A1-20130718-C00068
    Figure US20130184435A1-20130718-C00069
    Figure US20130184435A1-20130718-C00070
    Figure US20130184435A1-20130718-C00071
    Figure US20130184435A1-20130718-C00072
    Figure US20130184435A1-20130718-C00073
    Figure US20130184435A1-20130718-C00074
    Figure US20130184435A1-20130718-C00075
    Figure US20130184435A1-20130718-C00076
    Figure US20130184435A1-20130718-C00077
    Figure US20130184435A1-20130718-C00078
    Figure US20130184435A1-20130718-C00079
    Figure US20130184435A1-20130718-C00080
    Figure US20130184435A1-20130718-C00081
    Figure US20130184435A1-20130718-C00082
    Figure US20130184435A1-20130718-C00083
    Figure US20130184435A1-20130718-C00084
    Figure US20130184435A1-20130718-C00085
    Figure US20130184435A1-20130718-C00086
    Figure US20130184435A1-20130718-C00087
    Figure US20130184435A1-20130718-C00088
    Figure US20130184435A1-20130718-C00089
    Figure US20130184435A1-20130718-C00090
    Figure US20130184435A1-20130718-C00091
    Figure US20130184435A1-20130718-C00092
    Figure US20130184435A1-20130718-C00093
    Figure US20130184435A1-20130718-C00094
    Figure US20130184435A1-20130718-C00095
    Figure US20130184435A1-20130718-C00096
    Figure US20130184435A1-20130718-C00097
    Figure US20130184435A1-20130718-C00098
    Figure US20130184435A1-20130718-C00099
    Figure US20130184435A1-20130718-C00100
  • Any variety of drugs may be included in the drug delivery conjugates described herein. In one illustrative embodiment, the drugs are selected based on activity against one or more populations of pathogenic cells. In one aspect, those pathogenic cells are cancer cells, including solid tumors.
  • In another illustrative embodiment, the drugs are selected based on activity against one or more populations of pathogenic cells with a particular mechanism of action. Illustrative mechanisms of action include alkylating agents, microtubule inhibitors, including those that stabilize and/or destabilize microtubule formation, including beta-tubulin agents, cyclin dependent kinase (CDK) inhibitors, topoisomerase inhibitors, protein synthesis inhibitors, protein kinase inhibitors, including Ras, Raf, PKC, PI3K, and like inhibitors, transcription inhibitor, antifolates, heat shock protein blockers, and the like.
  • Illustrative alkylating agents include, but are not limited to, mitomycins CBI, and the like. Illustrative cyclin dependent kinase (CDK) inhibitors include, but are not limited to, CYC202, seliciclib, R-roscovitine, AGM-1470, and the like. Illustrative topoisomerase inhibitors include, but are not limited to, doxorubicin, other anthracyclines, and the like. Illustrative protein synthesis inhibitors include, but are not limited to, bruceantin, and the like. Illustrative protein kinase inhibitors, including Ras, Raf, PKC, PI3K, and like inhibitors, include but are not limited to L-779,450, R115777, and the like. Illustrative transcription inhibitors include, but are not limited to, α-amanatin, actinomycin, and the like. Illustrative antifolates include, but are not limited to, methotrexate, and the like. Illustrative heat shock protein blockers include, but are not limited to, geldanamycin, and the like.
  • Illustrative microtubule inhibitors, including those that stabilize and/or destabilize microtubule formation, including β-tubulin agents, microtubule poisons, and the like. Illustrative microtubule poisons that bind to selected receptors include, but are not limited to, inhibitors biding to the vinca binding site such as arenastatin, dolastatin, halichondrin B, maytansine, phomopsin A, rhizoxin, ustiloxin, vinblastine, vincristine, and the like, stabilizers binding to the taxol binding site such as discodermalide, epothilone, taxol, paclitaxol, and the like, inhibitors binding to the colchicine binding site such as, colchicine, combretastatin, curacin A, podophyllotoxin, steganacine, and the like, and others binding to undefined sites such as cryptophycin, tubulysins, and the like.
  • In one embodiment of the drug delivery conjugates described herein, at least one of the drugs is a microtubule inhibitor, or an analog or derivative thereof. In another embodiment, at least one of the drugs is a DNA alkylation agent. In another embodiment, at least one of the drugs is a DNA alkylation agent, and at least one other of the drugs is a microtubule inhibitor. alklaloids described herein include all members of the vinca indole-dihydroindole family of alkaloids, such as but not limited to vindesine, vinblastine, vincristine, catharanthine, vindoline, leurosine, vinorelbine, imidocarb, sibutramine, toltrazuril, vinblastinoic acid, and the like, and analogs and derivatives thereof.
  • In another embodiment of the drug delivery conjugates described herein, at least one of the drugs is a P-glycoprotein (PGP) inhibitor. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a PGP inhibitor, and at least one other of the drugs included on the drug delivery conjugates is a PGP substrate. Illustratively in this latter embodiment, the PGP substrate is a DNA alkylating agent. Referring to this embodiment, it is appreciated that pairing a PGP inhibitor with a PGP substrate, such as a DNA alkylating agent including, but not limited to, any of the mitomycins like mitomycin C, mitomycin A, and the like may improve the overall performance of the drug that is otherwise a PGP substrate. In the releasable conjugates described herein, the PGP inhibitor drug and the PGP substrate drug are both released in the cell after endocytosis. In that manner, the PGP inhibitor drug may improve the overall efficacy and/or potency of the PGP substrate drug. In addition, the PGP inhibitor may reduces PGP expression, which in turn will decrease efflux of one or more of the drugs included on the multidrug conjugates described herein from the pathogenic cell. It is appreciated that the mitomycins, or analogs or derivatives thereof, such as mitomycin C may operate as a PGP inhibitor, or down-regulator of PGP. It is further appreciated that the vinca alkaloid, or analog or derivative thereof, such as vinblastine analogs and derivatives, may be a PGP substrate that is protected from efflux from the pathogenic cell by the PGP inhibitor or down-regulator.
  • In another embodiment of the drug delivery conjugates described herein, at least one of the drugs is a vinca alkaloid, or an analog or derivative thereof. Vinca alklaloids described herein include all members of the vinca indole-dihydroindole family of alkaloids, such as but not limited to vindesine, vinblastine, vincristine, catharanthine, vindoline, leurosine, vinorelbine, imidocarb, sibutramine, toltrazuril, vinblastinoic acid, and the like, and analogs and derivatives thereof.
  • As referred to herein, the vinca drugs useable in the conjugates described herein include all members of the vinca indole-dihydroindole family of alkaloids, such as vindesine, vinblastine, vincristine, catharanthine, vindoline, leurosine, vinorelbine, imidocarb, sibutramine, toltrazuril, vinblastinoic acid, and the like, and analogs and derivatives thereof. Illustratively, such analogs and derivatives include the 3-carboxazides described in U.S. Pat. No. 4,203,898; the N2-alkyl and other derivatives of 4-desacetylvinblastine-3-carboxhydrazide described in U.S. Pat. No. 4,166,810; leurosine hydrazide described in Neuss et al. Tetrahedron Lett. 783 (1968); the hydrazide derivatives described in Barnett et al. J. Med. Chem. 21:88 (1978); the C-4 ester derivatives described in U.S. Pat. Nos. 3,392,173 and 3,387,001; the dicarboxylic acid derivatives resulting from oxidation described in Langone et al. Anal. Biochem. 95:214 (1979); and the vinca hydrazides described in EP 0 247 792 A2. Each of the foregoing patents and publications is incorporated herein by reference for all that it discloses regarding synthetic routes, and reaction conditions for preparing vinca compounds.
  • In one illustrative embodiment, the vinca drugs are compounds of the formula
  • Figure US20130184435A1-20130718-C00101
  • wherein:
  • one of R1 and R2 is H, and the other is ethyl, and R3 is H, or R1 is ethyl R2, and R3 are taken together to form —O—;
  • R4, R7, and R8 are each independently selected from H, alkyl, and acyl
  • R5 and R6 are each independently selected alkyl;
  • R9 is a group —NHNHR, where R is H, alkyl, or acyl;
  • R10 is H or acyl; and
  • R11 is ethyl.
  • In one aspect, the vinca drugs are compounds of the above formula wherein R4 and R8 are each H; and R5, R6, R9, and R10 are each methyl.
  • In another embodiment, a receptor binding drug delivery conjugate is described comprising a receptor binding moiety, a polyvalent linker (L), a vinca alkaloid drug, or analog or derivative thereof, and another drug, or analog or derivative thereof, wherein the receptor binding moiety, the vinca alkaloid, and the other drug are each bound to the polyvalent linker (L), through an heteroatom linker (IH). The polyvalent linker (L) comprises one or more spacer linkers, heteroatom linkers, and releasable linkers, and combinations thereof, in any order.
  • In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is an aclamycin, or an analog or derivative thereof. It may be that the aclamycins and analogs and derivatives thereof are PGP efflux pump substrates. In one aspect, at least one other of the drugs included on the drug delivery conjugates described herein is an DNA alkylating agent, such as a mitomycin or an analog or derivative thereof.
  • In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a DNA synthesis inhibitor, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a spindle formation inhibitor, or an analog or derivative thereof. In one aspect, at least one of the drugs included on the drug delivery conjugates described herein is a DNA synthesis inhibitor, or an analog or derivative thereof, and at least one other of the drugs included on the drug delivery conjugates described herein is a spindle formation inhibitor, or an analog or derivative thereof.
  • In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a microtubule stabilizing agent, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a microtubule synthesis inhibitor, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a microtubule destabilizing agent, or an analog or derivative thereof.
  • In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a apoptosis inducing agent, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a taxol, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is an antifolate, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a methotrexate, or an analog or derivative thereof. In one aspect, at least one of the drugs included on the drug delivery conjugates described herein is an antifolate, or an analog or derivative thereof, such as methotrexate, and at least one other of the drugs included on the drug delivery conjugates described herein is a taxol, or an analog or derivative thereof.
  • In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a folate, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a human epidermal growth factor receptor-2 (HER-2) inhibitor, or an analog or derivative thereof. In another embodiment, at least one of the drugs included on the drug delivery conjugates described herein is a radiolabeled chemotherapy agent, such as cisplatin, and the like. In one aspect, at least one of the drugs included on the drug delivery conjugates described herein is an antifolate, or an analog or derivative thereof, such as methotrexate, and at least one other of the drugs included on the drug delivery conjugates described herein is a folate, or an analog or derivative thereof. In another aspect, at least one of the drugs included on the drug delivery conjugates described herein is a taxol, or an analog or derivative thereof; and at least one other of the drugs included on the drug delivery conjugates described herein is a HER-2 inhibitor, or an analog or derivative thereof. In another aspect, at least one of the drugs included on the drug delivery conjugates described herein is a taxol, or an analog or derivative thereof, at least one other of the drugs included on the drug delivery conjugates described herein is a radiolabeled chemotherapy agent, such as cisplatin, and at least one other of the drugs included on the drug delivery conjugates described herein is a HER-2 inhibitor, or an analog or derivative thereof.
  • The drug delivery conjugates described herein can be prepared by conventional synthetic methods. The synthetic methods are chosen depending upon the selection of the heteroatom linkers, and the functional groups present on the spacer linkers and the releasable linkers. In general, the relevant bond forming reactions are described in Richard C. Larock, “Comprehensive Organic Transformations, a guide to functional group preparations,” VCH Publishers, Inc. New York (1989), and in Theodora E. Greene & Peter G. M. Wuts, “Protective Groups ion Organic Synthesis,” 2d edition, John Wiley & Sons, Inc. New York (1991), the disclosures of which in their entirety are incorporated herein by reference. Additional synthetic routes and reaction conditions are described in U.S. patent application publication no. US 2005/0002942 A1.
  • Illustratively, the drug delivery conjugates described herein may be prepared using both linear and convergent synthetic routes. Illustrative intermediates useable in such routes include intermediates comprising a polyvalent linker that includes a coupling group at each end suitable for covalent attachment to the receptor binding moiety, or analog or derivative thereof, and the vinca alkaloid, or analog or derivative thereof. Other illustrative intermediates useable in such routes include intermediates comprising a receptor binding moiety, or analog or derivative thereof, attached to a polyvalent linker, which includes a coupling group. Other illustrative intermediates useable in such routes include intermediates comprising a vinca alkaloid, or analog or derivative thereof, attached to a polyvalent linker, which includes a coupling group. In either case, the coupling group may be a nucleophile, an electrophile, or a precursor thereof.
  • In one illustrative embodiment synthetic intermediates, the coupling group is a Michael acceptor, and the polyvalent linker includes a releasable linker having the formula —C(O)NHN═, —NHC(O)NHN═, or —CH2C(O)NHN═. In one illustrative aspect, the coupling group and the polyvalent linker are taken together to form a compound having the formula:
  • Figure US20130184435A1-20130718-C00102
  • or a protected derivative thereof, where (D) is the vinca alkaloid, or an analog or a derivative thereof, capable of forming a hydrazone as illustrated herein; and n is an integer such as 1, 2, 3, or 4. In another illustrative aspect of the receptor binding drug delivery conjugate intermediate described herein, a second linker is covalently attached to the above formula through an alkylthiol nucleophile included on the second linker. In another illustrative aspect, the receptor binding moiety, or analog or derivative thereof, is covalently attached to the above formula through an alkylthiol nucleophile included on that moiety.
  • In another illustrative embodiment, the coupling group is a heteroatom, such as nitrogen, oxygen, or sulfur, and the polyvalent linker includes one or more heteroatom linkers and one or more spacer linkers covalently connecting the receptor binding moiety to the coupling group. In one illustrative aspect, the intermediate described herein includes a compound having the formula:
  • Figure US20130184435A1-20130718-C00103
  • or a protected derivative thereof, where X is oxygen, nitrogen, or sulfur, and in is an integer such as 1, 2, or 3, and where (B), ls, and lH are as defined herein. In one illustrative aspect, lH is —NH—, and m is 1. In another illustrative aspect, lH is —NH—, in is 1, and X is —S—.
  • In another illustrative embodiment, the intermediate described herein includes a compound having the formula:
  • Figure US20130184435A1-20130718-C00104
  • or a protected derivative thereof, where Y is H or a substituent, illustratively an electron withdrawing substituent, including but not limited to nitro, cyano, halo, alkylsulfonyl, a carboxylic acid derivative, and the like, and where (B) and ls are as defined herein.
  • In another illustrative embodiment of the intermediate described herein, the coupling group is a Michael acceptor, and the polyvalent linker includes one or more heteroatom linkers and one or more spacer linkers covalently connecting the receptor binding moiety to the coupling group. In one illustrative aspect, the coupling group and the polyvalent linker are taken together to form a compound having the formula:
  • Figure US20130184435A1-20130718-C00105
  • or a protected derivative thereof, where X is oxygen, nitrogen, or sulfur, and m and n are independently selected integers, such as 1, 2, or 3, and where (B), ls, and lH are as defined herein. In another illustrative aspect, the vinca alkaloid, or analog or derivative thereof, is covalently attached to the above formula through an alkylthiol nucleophile included on the vinca alkaloid.
  • In another illustrative aspect, the intermediate includes compounds having the formulae:
  • Figure US20130184435A1-20130718-C00106
  • or protected derivatives thereof, where AA is one or more amino acids, illustratively selected from the naturally occurring amino acids, or stereoisomers thereof, X is nitrogen, oxygen, or sulfur, Y is hydrogen or a substituent, illustratively an electron withdrawing substituent, including but not limited to nitro, cyano, halo, alkylsulfonyl, a carboxylic acid derivative, and the like, n and m are independently selected integers, such as 1, 2, or 3, and p is an integer such as 1, 2, 3, 4, or 5.
  • AA can also be any other amino acid, such as any amino acid having the general formula:

  • —N(R)—(CR′R″)t—C(O)—
  • where R is hydrogen, alkyl, acyl, or a suitable nitrogen protecting group, R′ and R″ are hydrogen or a substituent, each of which is independently selected in each occurrence, and t is an integer such as 1, 2, 3, 4, or 5. Illustratively, R′ and/or R″ independently correspond to, but are not limited to, hydrogen or the side chains present on naturally occurring amino acids, such as methyl, benzyl, hydroxymethyl, thiomethyl, carboxyl, carboxylmethyl, guanidinopropyl, and the like, and derivatives and protected derivatives thereof. The above described formula includes all stereoisomeric variations. For example, the amino acid may be selected from asparagine, aspartic acid, cysteine, glutamic acid, lysine, glutamine, arginine, serine, ornitine, threonine, and the like. In another illustrative aspect of the vitamin receptor binding drug delivery conjugate intermediate described herein, the drug, or an analog or a derivative thereof, includes an alkylthiol nucleophile.
  • Each of the above intermediates may be prepared using conventional synthetic routes. Additional synthetic routes and reaction conditions are described in U.S. patent application publication no. US 2005/0002942 A1 and PCT international publication no. WO 2006/012527.
  • The foregoing illustrative embodiments are intended to be illustrative of the invention described herein, and should not be interpreted or construed as limiting in any way the invention as described herein. For example, compounds generally represented by the following illustrative vitamin-drug conjugate intermediate are to be included in the invention as described herein
  • Figure US20130184435A1-20130718-C00107
  • where R1 and R2 are each independently hydrogen or alkyl, such as methyl; and lH is a heteroatom, such as oxygen, sulfur, optionally substituted nitrogen, or optionally protected nitrogen, and the like. Two or more drugs, and optionally additional receptor-binding ligands, such as folates and analogs and derivatives thereof, may be covalently attached to this illustrative intermediate at (lH), or at other functional groups present, such as the amide nitrogen or carbonyl, the acid carboxylate, or the guanidine amino group.
  • In another embodiment, a folate ligand intermediate is described having the following formula
  • Figure US20130184435A1-20130718-C00108
  • wherein m, n, and q are integers that are independently selected from the range of 0 to about 8; AA is an amino acid, R1 is hydrogen, alkyl, or a nitrogen protecting group, and drugs are optionally attached at the (*) atoms. In one aspect, AA is a naturally occurring amino acid of either the natural or unnatural configuration. In another aspect, one or more of AA in the fragment (—NH-AA-C(O)—)n is a hydrophilic amino acid. In another aspect, one or more of AA in the fragment (—NH-AA-C(O)—)n is Asp and/or Arg. In another aspect, the integer o is 1 or greater. In another aspect, the integer m is 2 or greater. The drugs, or analogs or derivatives thereof, and optionally additional linkers and additional receptor-binding ligands may be connected to the above formula at the free NH side chains of the 2,ω-diaminoalkanoic acid fragments, or at the terminal carboxylate as indicated by the free valences therein.
  • In another embodiment, a folate ligand intermediate is described having the following formula
  • Figure US20130184435A1-20130718-C00109
  • wherein m, n, q, and p are integers that are independently selected from the range of 0 to about 8; AA is an amino acid, R1 is hydrogen, alkyl, or a nitrogen protecting group, and drugs are optionally attached at the (*) atoms. In one aspect, AA is as a naturally occurring amino acid of either the natural or unnatural configuration. In another aspect, one or more of AA in the fragment (—NH-AA-C(O)—)n is a hydrophilic amino acid. In another aspect, one or more of AA in the fragment (—NH-AA-C(O)—)n is Asp and/or Arg. In another aspect, the integers o and p are 1 or greater. In another aspect, the integer m is 2 or greater. The drugs, or analogs or derivatives thereof, and optionally additional linkers and additional receptor-binding ligands may be connected to the above formula at the free NH side chains of the 2,ω-diaminoalkanoic acid fragments, at the cyteinyl thiol groups, or at the terminal carboxylate, as indicated by the free valences therein.
  • In another embodiment, a folate ligand intermediate is described having the following formula
  • Figure US20130184435A1-20130718-C00110
  • wherein m, n, q, p, and r are integers that are independently selected from the range of 0 to about 8; AA is an amino acid, R1 is hydrogen, alkyl, or a nitrogen protecting group, and drugs are optionally attached at the (*) atoms. In one aspect, AA is as a naturally occurring amino acid of either the natural or unnatural configuration. In another aspect, one or more of AA in the fragment (—NH-AA-C(O)—)n is a hydrophilic amino acid. In another aspect, one or more of AA in the fragment (—NH-AA-C(O)—)n is Asp and/or Arg. In another aspect, the integers o, p, and r are 1 or greater. In another aspect, the integer m is 2 or greater. The drugs, or analogs or derivatives thereof, and optionally additional linkers and additional receptor-binding ligands may be connected to the above formula at the free NH side chains of the 2,ω-diaminoalkanoic acid fragments, at the cyteinyl thiol groups, at the serinyl hydroxy groups, or at the terminal carboxylate, as indicated by the free valences therein.
  • In another embodiment, a folate ligand intermediate that includes mitomycin as one of the drugs is described and having the following formula
  • Figure US20130184435A1-20130718-C00111
  • wherein m, n, and q are integers that are independently selected from the range of 0 to about 8; and AA is an amino acid. In one aspect, AA is as a naturally occurring amino acid of either the natural or unnatural configuration. In another aspect, one or more of AA in the fragment (—NH-AA-C(O)—)n is a hydrophilic amino acid. In another aspect, one or more of AA in the fragment (—NH-AA-C(O)—)n is Asp and/or Arg. In another aspect, the integer o is 1 or greater. In another aspect, the integer m is 2 or greater. The drugs, or analogs or derivatives thereof, and optionally additional linkers and additional receptor-binding ligands may be connected to the above formula at the additional free NH side chains of the 2,ω-diaminoalkanoic acid fragments, or at the terminal carboxylate, as indicated by the free valences therein.
  • In another embodiment, a folate ligand multidrug conjugate that includes a mitomycin and a vinca alkaloid is described and having the following formula
  • Figure US20130184435A1-20130718-C00112
  • In another embodiment, a folate ligand multidrug conjugate that includes a mitomycin, an aclamycin, and a vinca alkaloid is described and having the following formula
  • Figure US20130184435A1-20130718-C00113
  • In another embodiment, a pharmaceutical composition is described. The pharmaceutical composition comprises a drug delivery conjugate described herein in combination with a pharmaceutically acceptable carrier, excipient, and/or diluent therefor.
  • In another embodiment, a method for eliminating a population of pathogenic cells in a host animal harboring the population of pathogenic cells is described. In one illustrative aspect, the members of the pathogenic cell population have an accessible binding site for a receptor binding moiety, or the analog or derivative thereof, and that binding site is uniquely expressed, overexpressed, or preferentially expressed by the pathogenic cells. The method includes the step of administering to the host a drug delivery conjugate described herein, or a pharmaceutical composition thereof, as described herein.
  • Populations of pathogenic cells that may be treated using the methods described herein include, but at not limited to cancers, such as epithelial cancers of the ovary, mammary gland, colon, lung, nose, throat, brain, and other tumor cell types, infectious agents, activated macrophages, activated monocytes, and the like.
  • The drug delivery conjugates described herein can be used for both human clinical medicine and veterinary applications. Thus, the host animal harboring the population of pathogenic cells and treated with the drug delivery conjugates can be human or, in the case of veterinary applications, can be a laboratory, agricultural, domestic, or wild animal. The drug delivery conjugates described herein can be administered to host animals including, but not limited to, humans, laboratory animals such rodents (e.g., mice, rats, hamsters, etc.), rabbits, monkeys, chimpanzees, domestic animals such as dogs, cats, and rabbits, agricultural animals such as cows, horses, pigs, sheep, goats, and wild animals in captivity such as bears, pandas, lions, tigers, leopards, elephants, zebras, giraffes, gorillas, dolphins, and whales.
  • The drug delivery conjugates described herein can be used to treat a variety of pathologies and pathogenic cells in host animals. As used herein, “pathogenic cells” means cancer cells, infectious agents such as bacteria and viruses, bacteria- or virus-infected cells, activated macrophages capable of causing a disease state, and any other type of pathogenic cells that uniquely express, preferentially express, or overexpress ligand receptors, such as vitamin receptors or receptors that bind analogs or derivatives of vitamins. Pathogenic cells can also include any cells causing a disease state for which treatment with the drug delivery conjugates results in reduction of the symptoms of the disease. The pathogenic cells can also be host cells that are pathogenic under some circumstances, such as cells of the immune system that are responsible for graft versus host disease', but not pathogenic under other circumstances.
  • Thus, the population of pathogenic cells can be a cancer cell population that is tumorigenic, including benign tumors and malignant tumors, or it can be non-tumorigenic. The cancer cell population can arise spontaneously or by such processes as mutations present in the germline of the host animal or somatic mutations, or it can be chemically-, virally-, or radiation-induced. The invention can be utilized to treat such cancers as carcinomas, sarcomas, lymphomas, Hodgekin's disease, melanomas, mesotheliomas, Burkitt's lymphoma, nasopharyngeal carcinomas, leukemias, and myelomas. The cancer cell population can include, but is not limited to, oral, thyroid, endocrine, skin, gastric, esophageal, laryngeal, pancreatic, colon, bladder, bone, ovarian, cervical, uterine, breast, testicular, prostate, rectal, kidney, liver, and lung cancers.
  • In embodiments where the pathogenic cell population is a cancer cell population, the effect of drug delivery conjugate administration is a therapeutic response measured by reduction or elimination of tumor mass or of inhibition of tumor cell proliferation. In the case of a tumor, the elimination can be an elimination of cells of the primary tumor or of cells that have metastasized or are in the process of dissociating from the primary tumor. A prophylactic treatment with the drug delivery conjugate to prevent return of a tumor after its removal by any therapeutic approach including surgical removal of the tumor, radiation therapy, chemotherapy, or biological therapy is also contemplated. The prophylactic treatment can be an initial treatment with the drug delivery conjugate, such as treatment in a multiple dose daily regimen, and/or can be an additional treatment or series of treatments after an interval of days or months following the initial treatment(s). Accordingly, elimination of any of the pathogenic cell populations described above includes reduction in the number of pathogenic cells, inhibition of proliferation of pathogenic cells, a prophylactic treatment that prevents return of pathogenic cells, or a treatment of pathogenic cells that results in reduction of the symptoms of disease.
  • In cases where cancer cells are being eliminated, the method described herein can be used in combination with surgical removal of a tumor, radiation therapy, chemotherapy, or biological therapies such as other immunotherapies including, but not limited to, monoclonal antibody therapy, treatment with immunomodulatory agents, adoptive transfer of immune effector cells, treatment with hematopoietic growth factors, cytokines and vaccination.
  • The method described herein is also applicable to populations of pathogenic cells that cause a variety of infectious diseases. For example, the present invention is applicable to such populations of pathogenic cells as bacteria, fungi, including yeasts, viruses, virus-infected cells, mycoplasma, and parasites. Infectious organisms that can be treated with the drug delivery conjugates described herein are any art-recognized infectious organisms that cause pathogenesis in an animal, including such organisms as bacteria that are gram-negative or gram-positive cocci or bacilli. For example, Proteus species, Klebsiella species, Providencia species, Yersinia species, Erwinia species, Enterobacter species, Salmonella species, Serratia species, Aerobacter species, Escherichia species, Pseudomonas species, Shigella species, Vibrio species, Aeromonas species, Campylobacter species, Streptococcus species, Staphylococcus species, Lactobacillus species, Micrococcus species, Moraxella species, Bacillus species, Clostridium species, Corynebacterium species, Eberthella species, Micrococcus species, Mycobacterium species, Neisseria species, Haemophilus species, Bacteroides species, Listeria species, Erysipelothrix species, Acinetobacter species, Brucella species, Pasteurella species, Vibrio species, Flavobacterium species, Fusobacterium species, Streptobacillus species, Calymmatobacterium species, Legionella species, Treponema species, Borrelia species, Leptospira species, Actinomyces species, Nocardia species, Rickettsia species, and any other bacterial species that causes disease in a host animal can be treated with the drug delivery conjugates described herein.
  • Of particular interest are bacteria that are resistant to antibiotics such as antibiotic-resistant Streptococcus species and Staphlococcus species, or bacteria that are susceptible to antibiotics, but cause recurrent infections treated with antibiotics so that resistant organisms eventually develop. Bacteria that are susceptible to antibiotics, but cause recurrent infections treated with antibiotics so that resistant organisms eventually develop, can be treated with the drug delivery conjugates described herein in the absence of antibiotics, or in combination with lower doses of antibiotics than would normally be administered to a host animal, to avoid the development of these antibiotic-resistant bacterial strains.
  • Diseases caused by viruses, such as DNA and RNA viruses, can also be treated with the drug delivery conjugates described herein. Such viruses include, but are not limited to, DNA viruses such as papilloma viruses, parvoviruses, adenoviruses, herpesviruses and vaccinia viruses, and RNA viruses, such as arenaviruses, coronaviruses, rhinoviruses, respiratory syncytial viruses, influenza viruses, picornaviruses, paramyxoviruses, reoviruses, retroviruses, lentiviruses, and rhabdoviruses.
  • The drug delivery conjugates described herein can also be used to treat diseases caused by any fungi, including yeasts, mycoplasma species, parasites, or other infectious organisms that cause disease in animals. Examples of fungi that can be treated with the method and drug delivery conjugates described herein include fungi that grow as molds or are yeastlike, including, for example, fungi that cause diseases such as ringworm, histoplasmosis, blastomycosis, aspergillosis, cryptococcosis, sporotrichosis, coccidioidomycosis, paracoccidio-idomycosis, muconnycosis, chromoblastomycosis, dermatophytosis, protothecosis, fusariosis, pityriasis, mycetoma, paracoccidioidomycosis, phaeohyphomycosis, pseudallescheriasis, sporotrichosis, trichosporosis, pneumocystis infection, and candidiasis.
  • The drug delivery conjugates described herein can also be used to treat parasitic infections including, but not limited to, infections caused by tapeworms, such as Taenia, Hymenolepsis, Diphyllobothrium, and Echinococcus species, flukes, such as Fasciolopsis, Heterophyes, Metagonimus, Clonorchis, Fasciola, Paragonimus, and Schitosoma species, roundworms, such as Enterobius, Trichuris, Ascaris, Ancylostoma, Necator, Strongyloides, Trichinella, Wuchereria, Brugia, Loa Onchocerca, and Dracunculus species, ameba, such as Naegleria and Acanthamoeba species, and protozoans, such as Plasmodium, Trypanosoma, Leishmania, Toxoplasma, Entamoeba, Giardia, Isospora, Cryptosporidium, and Enterocytozoon species.
  • The pathogenic cells to which the drug delivery conjugates are directed can also be cells harboring endogenous pathogens, such as virus-, mycoplasma-, parasite- or bacteria-infected cells, if these cells preferentially express ligand receptors, such as receptors for vitamins, or analogs or derivatives thereof.
  • In one embodiment, the drug delivery conjugates can be internalized into the targeted pathogenic cells upon binding of the ligand to a receptor, transporter, or other surface-presented protein that specifically binds the ligand and which is preferentially expressed on the pathogenic cells. Such internalization can occur, for example, through receptor-mediated endocytosis. If the drug delivery conjugate contains a releasable linker, the ligand and the vinca compound can dissociate intracellularly and the vinca can act on its intracellular target.
  • In another illustrative embodiment, the ligand of the drug delivery conjugate can bind to the pathogenic cell placing the vinca compound in close association with the surface of the pathogenic cell. The vinca compound can then be released by cleavage of the releasable linker. For example, the vinca compound can be released by a protein disulfide isomerase if the releasable linker is a disulfide group. The vinca compound can then be taken up by the pathogenic cell to which the receptor binding drug delivery conjugate is bound, or the vinca compound can be taken up by another pathogenic cell in close proximity thereto. Alternatively, the vinca compound could be released by a protein disulfide isomerase inside the cell where the releasable linker is a disulfide group. The vinca compound may also be released by a hydrolytic mechanism, such as acid-catalyzed hydrolysis, as described above for certain beta elimination mechanisms, or by an anchimerically assisted cleavage through an oxonium ion or lactonium ion producing mechanism. The selection of the releasable linker or linkers will dictate the mechanism by which the vinca compound is released from the conjugate. It is appreciated that such a selection can be pre-defined by the conditions under which the drug delivery conjugate will be used.
  • In another illustrative embodiment, where the linker does not comprise a releasable linker, the ligand moiety of the drug delivery conjugate can bind to the pathogenic cell placing the vinca compound on the surface of the pathogenic cell to target the pathogenic cell for attack by other molecules capable of binding to the vinca compound. Alternatively, in this embodiment, the drug delivery conjugates can be internalized into the targeted cells upon binding, and the ligand moiety and the vinca compound can remain associated intracellularly with the vinca compound exhibiting its effects without dissociation from the ligand moiety.
  • In still another embodiment, or in combination with the above-described embodiments, where the drug delivery conjugate binds a vitamin receptor or another ligand receptor, the conjugate can bind to soluble vitamin receptors present in the serum or to serum proteins, such as albumin, resulting in prolonged circulation of the conjugates relative to the unconjugated vinca compound, and in increased activity of the conjugates towards the pathogenic cell population relative to the unconjugated vinca compound.
  • The binding site for the ligand, such as a vitamin, can include receptors for the ligand capable of specifically binding to the ligand wherein the receptor or other protein is uniquely expressed, overexpressed, or preferentially expressed by a population of pathogenic cells. A surface-presented protein uniquely expressed, overexpressed, or preferentially expressed by the pathogenic cells is typically a receptor that is either not present or present at lower concentrations on non-pathogenic cells providing a means for selective elimination of the pathogenic cells. The drug delivery conjugates may be capable of high affinity binding to receptors on cancer cells or other types of pathogenic cells. The high affinity binding can be inherent to the ligand or the binding affinity can be enhanced by the use of a chemically modified ligand.
  • The drug delivery conjugates described herein can be administered in a combination therapy with any other known drug whether or not the additional drug is targeted. Illustrative additional drugs include, but are not limited to, peptides, oligopeptides, retro-inverso oligopeptides, proteins, protein analogs in which at least one non-peptide linkage replaces a peptide linkage, apoproteins, glycoproteins, enzymes, coenzymes, enzyme inhibitors, amino acids and their derivatives, receptors and other membrane proteins, antigens and antibodies thereto, haptens and antibodies thereto, hormones, lipids, phospholipids, liposomes, toxins, antibiotics, analgesics, bronchodilators, beta-blockers, antimicrobial agents, antihypertensive agents, cardiovascular agents including antiarrhythmics, cardiac glycosides, antianginals, vasodilators, central nervous system agents including stimulants, psychotropics, antimanics, and depressants, antiviral agents, antihistamines, cancer drugs including chemotherapeutic agents, tranquilizers, anti-depressants, H-2 antagonists, anticonvulsants, antinauseants, prostaglandins and prostaglandin analogs, muscle relaxants, anti-inflammatory substances, stimulants, decongestants, antiemetics, diuretics, antispasmodics, antiasthmatics, anti-Parkinson agents, expectorants, cough suppressants, mucolytics, and mineral and nutritional additives.
  • In another illustrative aspect, the additional drug can be selected from a compound capable of stimulating an endogenous immune response. Suitable compounds include, but are not limited to, cytokines or immune cell growth factors such as interleukins 1-18, stem cell factor, basic FGF, EGF, G-CSF, GM-CSF, FLK-2 ligand, HILDA, MIP-1α, TGF-α, M-CSF, IFN-α, IFN-β, soluble CD23, LIF, and combinations thereof.
  • Therapeutically effective combinations of these immunostimulatory factors can be used. In one embodiment, for example, therapeutically effective amounts of IL-2, for example, in amounts ranging from about 0.1 MIU/m2/dose/day to about 15 MIU/m2/dose/day in a multiple dose daily regimen, and IFN-α, for example, in amounts ranging from about 0.1 MIU/m2/dose/day to about 7.5 MIU/m2/dose/day in a multiple dose daily regimen, can be used along with the drug delivery conjugates to eliminate, reduce, or neutralize pathogenic cells in a host animal harboring the pathogenic cells (MIU=million international units; m2=approximate body surface area of an average human). In another embodiment IL-12 and IFN-α can be used in the above-described therapeutically effective amounts for interleukins and interferons, and in yet another embodiment IL-15 and IFN-α can be used in the above described therapeutically effective amounts for interleukins and interferons. In an alternate embodiment IL-2, IFN-α or IFN-γ, and GM-CSF can be used in combination in the above described therapeutically effective amounts. Any other effective combination of cytokines including combinations of other interleukins and interferons and colony stimulating factors can also be used.
  • Further, the additional drug can be any drug known in the art which is cytotoxic or cytostatic, enhances tumor permeability, inhibits tumor cell proliferation, promotes apoptosis, decreases anti-apoptotic activity in target cells, is used to treat diseases caused by infectious agents, enhances an endogenous immune response directed to the pathogenic cells, or is useful for treating a disease state caused by any type of pathogenic cell. Exemplary suitable additional drugs include adrenocorticoids and corticosteroids, alkylating agents, antiandrogens, antiestrogens, androgens, aclamycin and aclamycin derivatives, estrogens, antimetabolites such as cytosine arabinoside, purine analogs, pyrimidine analogs, and methotrexate, busulfan, carboplatin, chlorambucil, cisplatin and other platinum compounds, tamoxiphen, taxol, paclitaxel, paclitaxel derivatives, Taxotere®, cyclophosphamide, daunomycin, rhizoxin, T2 toxin, plant alkaloids, prednisone, hydroxyurea, teniposide, mitomycins, discodennolides, non-vinca microtubule inhibitors, epothilones, tubulysin, cyclopropyl benz[e]indolone, seco-cyclopropyl benz[e]indolone, O-Ac-seco-cyclopropyl benz[e]indolone, bleomycin and any other antibiotic, nitrogen mustards, nitrosureas, colchicine, colchicine derivatives, allocolchicine, thiocolchicine, trityl cysteine, Halicondrin B, dolastatins such as dolastatin 10, amanitins such as α-amanitin, camptothecin, irinotecan, and other camptothecin derivatives thereof, geldanamycin and geldanamycin derivatives, estramustine, nocodazole, MAP4, colcemid, vindesine, vinblastine, vincristine, catharanthine, vindoline, leurosine, vinorelbine, imidocarb, sibutramine, toltrazuril, vinblastinoic acid, maytansines and analogs and derivatives thereof, gemcitabine, inflammatory and proinflammatory agents, peptide and peptidomimetic signal transduction inhibitors, and any other art-recognized drug or toxin. Other drugs that can be used in combination therapies include penicillins, cephalosporins, vancomycin, erythromycin, clindamycin, rifampin, chloramphenicol, aminoglycoside antibiotics, gentamicin, amphotericin B, acyclovir, trifluridine, ganciclovir, zidovudine, amantadine, ribavirin, and any other art-recognized antimicrobial compound. Analogs or derivatives of any of the above-described additional drugs can also be used in combination therapies.
  • In another illustrative embodiment, pharmaceutical compositions are provided. The pharmaceutical compositions comprise an amount of a drug delivery conjugate effective to eliminate a population of pathogenic cells in a host animal when administered in one or more doses. The drug delivery conjugate is preferably administered to the host animal parenterally, e.g., intradermally, subcutaneously, intramuscularly, intraperitoneally, intravenously, or intrathecally. Alternatively, the drug delivery conjugate can be administered to the host animal by other medically useful processes, such as orally, and any effective dose and suitable therapeutic dosage form, including prolonged release dosage forms, can be used. Exemplary excipients useful for oral dosage forms include, but are not limited to, corn starch, gelatin, lactose, magnesium stearate, sodium bicarbonate, cellulose derivatives, and sodium starch glycolate.
  • Examples of parenteral dosage forms include aqueous solutions of the active agent, in an isotonic saline, 5% glucose or other well-known pharmaceutically acceptable liquid carriers such as liquid alcohols, glycols, esters, and amides. The parenteral dosage form in accordance with this invention can be in the form of a reconstitutable lyophilizate comprising the dose of the drug delivery conjugate. In one aspect of the present embodiment, any of a number of prolonged release dosage forms known in the art can be administered such as, for example, the biodegradable carbohydrate matrices described in U.S. Pat. Nos. 4,713,249; 5,266,333; and 5,417,982, the disclosures of which are incorporated herein by reference, or, alternatively, a slow pump (e.g., an osmotic pump) can be used.
  • The additional drug in the combination therapy can be administered to the host animal prior to, after, or at the same time as the drug delivery conjugates and the additional drug can be administered as part of the same composition containing the drug delivery conjugate or as part of a different composition than the drug delivery conjugate. Any such combination therapy at an effective dose of the additional drug can be used.
  • In another illustrative aspect, more than one type of drug delivery conjugate can be used. For example, the host animal can be treated in a co-dosing protocol with conjugates with different ligands such as, for example, folate-vinca and vitamin B12-vinca conjugates in combination, and the like. In another illustrative embodiment, the host animal can be treated with conjugates comprising more than one ligand such as, for example, multiple folates or multiple vitamin B12 molecules in one conjugate, or combinations of ligands in the same conjugate such as a vinca compound conjugated to both folate and vitamin B12 ligands. Furthermore, drug delivery conjugates with different types of vinca compounds in separate drug delivery conjugates can be used.
  • The unitary daily dosage of the drug delivery conjugate can vary significantly depending on the host condition, the disease state being treated, the molecular weight of the conjugate, its route of administration and tissue distribution, and the possibility of co-usage of other therapeutic treatments such as radiation therapy or additional drugs in combination therapies. The effective amount to be administered to a host animal is based on body surface area, weight, and physician assessment of patient condition. Effective doses can range, for example, from about 1 ng/kg to about 1 mg/kg, from about 1 μg/kg to about 500 μg/kg, and from about 1 μg/kg to about 100 μg/kg.
  • Any effective regimen for administering the drug delivery conjugates can be used. For example, the drug delivery conjugates can be administered as single doses, or can be divided and administered as a multiple-dose daily regimen. Further, a staggered regimen, for example, one to three days per week can be used as an alternative to daily treatment, and for the purpose of defining this invention such intermittent or staggered daily regimen is considered to be equivalent to every day treatment and is comtemplated. In one illustrative embodiment the host animal is treated with multiple injections of the drug delivery conjugate to eliminate the population of pathogenic cells. In one embodiment, the host is injected multiple times (preferably about 2 up to about 50 times) with the drug delivery conjugate, for example, at 12-72 hour intervals or at 48-72 hour intervals. Additional injections of the drug delivery conjugate can be administered to the host animal at an interval of days or months after the initial injections(s) and the additional injections can prevent recurrence of the disease state caused by the pathogenic cells.
  • In one illustrative aspect, vitamins, or analogs or derivatives thereof, that can be used in the drug delivery conjugates include those that bind to receptors expressed specifically on activated macrophages, such as the folate receptor which binds folate, or an analog or derivative thereof. The folate-linked conjugates, for example, can be used to kill or suppress the activity of activated macrophages that cause disease states in the host. Such macrophage targeting conjugates, when administered to a host animal suffering from an activated macrophage-mediated disease state, work to concentrate and associate the conjugated vinca compounds in the population of activated macrophages to kill the activated macrophages or suppress macrophage function. Elimination, reduction, or deactivation of the activated macrophage population works to stop or reduce the activated macrophage-mediated pathogenesis characteristic of the disease state being treated. Exemplary of diseases known to be mediated by activated macrophages include rheumatoid arthritis, ulcerative colitis, Crohn's disease, psoriasis, osteomyelitis, multiple sclerosis, atherosclerosis, pulmonary fibrosis, sarcoidosis, systemic sclerosis, organ transplant rejection (GVHD) and chronic inflammations. Administration of the drug delivery conjugate is typically continued until symptoms of the disease state are reduced or eliminated.
  • The drug delivery conjugates administered to kill activated macrophages or suppress the function of activated macrophages can be administered parenterally to the host animal, for example, intradermally, subcutaneously, intramuscularly, intraperitoneally, or intravenously in combination with a pharmaceutically acceptable carrier. Alternatively, the drug delivery conjugates can be administered to the host animal by other medically useful procedures and effective doses can be administered in standard or prolonged release dosage forms. The therapeutic method can be used alone or in combination with other therapeutic methods recognized for treatment of disease states mediated by activated macrophages.
  • The following illustrative exemplified embodiments are not intended and should not be construed as limiting. For example, in each compound presented herein, the stereochemistry of amino acids used in forming the linker may b optionally selected from the natural L configuration, or the unnatural D configuration. Each Example was characterized by NMR, MS, and/or UV spectroscopy, and/or HPLC as indicated; selected characteristic signals are noted as appropriate.
  • METHOD EXAMPLES Method Example 1 Inhibition of Tumor Growth in Mice
  • The anti-tumor activity of the compounds described herein, when administered intravenously (i.v.) to tumor-bearing animals, was evaluated in Balb/c mice bearing subcutaneous M109 tumors. Approximately 11 days post tumor inoculation in the subcutis of the right axilla with 1×106 M109 cells (average tumor volume at to=60 mm3), mice (5/group) were injected i.v. three times a week (TIW), for 3 weeks with 1500 nmol/kg of the drug delivery conjugate or with an equivalent dose volume of PBS (control). Tumor growth was measured using calipers at 2-day or 3-day intervals in each treatment group. Tumor volumes were calculated using the equation V=a×b2/2, where “a” is the length of the tumor and “b” is the width expressed in millimeters.
  • Method Example 2 Inhibition of Tumor Growth in Mice
  • The anti-tumor activity of the compounds described herein, when administered intravenously (i.v.) to tumor-bearing animals, was evaluated in nu/nu mice bearing subcutaneous KB tumors. Approximately 8 days post tumor inoculation in the subcutis of the right axilla with 1×106 KB cells (average tumor volume at to=50-100 mm3), mice (5/group) were injected i.v. three times a week (TIW), for 3 weeks with 5 mmol/kg of the drug delivery conjugate or with an equivalent dose volume of PBS (control). Tumor growth was measured using calipers at 2-day or 3-day intervals in each treatment group. Tumor volumes were calculated using the equation V=a×b2/2, where “a” is the length of the tumor and “b” is the width expressed in millimeters.
  • Method Example 3 Inhibition of Cellular DNA Synthesis
  • The compounds described herein were evaluated using an in vitro cytotoxicity assay that predicts the ability of the drug to inhibit the growth of folate receptor-positive KB cells. The compounds were comprised of folate linked to a respective chemotherapeutic drug, as prepared according to the protocols described herein. The KB cells were exposed for up to 7 h at 37° C. to the indicated concentrations of folate-drug conjugate in the absence or presence of at least a 100-fold excess of folic acid. The cells were then rinsed once with fresh culture medium and incubated in fresh culture medium for 72 hours at 37° C. Cell viability was assessed using a 3H-thymidine incorporation assay.
  • As shown in the figures herein, dose-dependent cytotoxicity was measurable, and in most cases, the Ic50 values (concentration of drug conjugate required to reduce 3H-thymidine incorporation into newly synthesized DNA by 50%) were in the low nanomolar range. Furthermore, the cytotoxicities of these conjugates were reduced in the presence of excess free folic acid, indicating that the observed cell killing was mediated by binding to the folate receptor.
  • Method Example 4 Relative Affinity Assay
  • The affinity for folate receptors (FRs) relative to folate was determined according to a previously described method (Westerhof, G. R., J. H. Schornagel, et al. (1995) Mol. Pharm. 48: 459-471) with slight modification. Briefly, FR-positive KB cells were heavily seeded into 24-well cell culture plates and allowed to adhere to the plastic for 18 h. Spent incubation media was replaced in designated wells with folate-free RPMI (FFRPMI) supplemented with 100 nM 3H-folic acid in the absence and presence of increasing concentrations of test article or folic acid. Cells were incubated for 60 min at 37° C. and then rinsed 3 times with PBS, pH 7.4. Five hundred microliters of 1% SDS in PBS, pH 7.4, were added per well. Cell lysates were then collected and added to individual vials containing 5 mL of scintillation cocktail, and then counted for radioactivity. Negative control tubes contained only the 3H-folic acid in FFRPMI (no competitor). Positive control tubes contained a final concentration of 1 mM folic acid, and CPMs measured in these samples (representing non-specific binding of label) were subtracted from all samples. Notably, relative affinities were defined as the inverse molar ratio of compound required to displace 50% of 3H-folic acid bound to the FR on KB cells, and the relative affinity of folic acid for the FR was set to 1.
  • Method Example 5 4T-1 Tumor Volume Assay
  • Six to seven week-old mice (female Balb/c strain) were obtained from Harlan, Inc., Indianapolis, Ind. The mice were maintained on Harlan's folate-free chow for a total of three weeks prior to the onset of and during this experiment. Folate receptor-negative 4T-1 tumor cells (1×106 cells per animal) were inoculated in the subcutis of the right axilla. Approximately 5 days post tumor inoculation when the 4T-1 tumor average volume was ˜100 mm3, mice (5/group) were injected i.v. three times a week (TIW), for 3 weeks with 3 μmol/kg of drug delivery conjugate or with an equivalent dose volume of PBS (control). Tumor growth was measured using calipers at 2-day or 3-day intervals in each treatment group. Tumor volumes were calculated using the equation V=a×b2/2, where “a” is the length of the tumor and “b” is the width expressed in millimeters.
  • Method Example 6 Weight Determination
  • The percentage weight change of the mice was determined in mice (5 mice/group) on the indicated days post-tumor inoculation (PTI) as shown in the graph for the samples described in the related tumor volume assay.
  • Method Example 7 General Preparation of Folate-Peptides
  • Linkers described herein that include a peptide are prepared by polymer-supported sequential approach using standard methods, such as the Fmoc-strategy on an acid-sensitive Fmoc-AA-Wang resin. Illustratively, the folate-containing peptidyl fragment Pte-Glu-(AA)n-NH(CHR2)CO2H (3) is prepared by the method shown in Scheme 1 from Wang resin supported amino acids and Fmoc protected amino acid synthesis.
  • Figure US20130184435A1-20130718-C00114
  • In this illustrative embodiment of the processes described herein, R1 is Fmoc, R2 is the desired appropriately-protected amino acid side chain, Wang is a 2-chlorotrityl-Resin, and DIPEA is diisopropylethylamine. Standard coupling procedures, such as PyBOP and others described herein or known in the art are used, where the coupling agent is illustratively applied as the activating reagent to ensure efficient coupling. Fmoc protecting groups are removed after each coupling step under standard conditions, such as upon treatment with piperidine, tetrabutylammonium fluoride (TBAF), and the like. Appropriately protected amino acid building blocks, such as Fmoc-Glu-OtBu, N10-TFA-Pte-OH, and the like, are used, as described in Scheme 1, and represented in step (b) by Fmoc-AA-OH. Thus, AA refers to any amino acid starting material, that is appropriatedly protected. It is to be understood that the term amino acid as used herein is intended to refer to any reagent having both an amine and a carboxylic acid functional group separated by one or more carbons, and includes the naturally occurring alpha and beta amino acids, as well as amino acid derivatives and analogs of these amino acids. In particular, amino acids having side chains that are protected, such as protected serine, threonine, cysteine, aspartate, and the like may also be used in the folate-peptide synthesis described herein. Further, gamma, delta, or longer homologous amino acids may also be included as starting materials in the folate-peptide synthesis described herein. Further, amino acid analogs having homologous side chains, or alternate branching structures, such as norleucine, isovaline, β-methyl threonine, β-methyl cysteine, β,β-dimethyl cysteine, and the like, may also be included as starting materials in the folate-peptide synthesis described herein.
  • The coupling sequence (steps (a) & (b)) involving Fmoc-protected amino acids (AA) of the formula Fmoc-AA-OH is performed “n” times to prepare solid-support peptide (2), where n is an integer and may equal 0 to about 100. Following the last coupling step, the remaining Fmoc group is removed (step (a)), and the peptide is sequentially coupled to a glutamate derivative (step (c)), deprotected, and coupled to TFA-protected pteroic acid (step (d)). Subsequently, the peptide is cleaved from the polymeric support upon treatment with trifluoroacetic acid, ethanedithiol, and triisopropylsilane (step (e)). These reaction conditions result in the simultaneous removal of the t-Bu, t-Boc, and Trt protecting groups that may form part of the appropriately-protected amino acid side chain. The TFA protecting group is removed upon treatment with base (step (f)) to provide the folate-containing peptidyl fragment (3).
  • COMPOUND EXAMPLES Example 1
  • Figure US20130184435A1-20130718-C00115
  • According to the general procedure of Method Example 7 (Scheme 1), Wang resin bound 4-methoxytrityl (MTT)-protected Cys-NH2 was reacted according to the following sequence: 1) a. Fmoc-Asp(OtBu)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 2) a. Fmoc-Asp(OtBu)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 3) a. Fmoc-Arg(Pbf)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 4) a. Fmoc-Asp(OtBu)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 5) a. Fmoc-Glu-OtBu, PyBOP, DIPEA; b. 20% Piperidine/DMF; 6) N10-TFA-pteroic acid, PyBOP, DIPEA. The MTT, tBu, and Pbf protecting groups were removed with TFA/H2O/TIPS/EDT (92.5:2.5:2.5:2.5), and the TFA protecting group was removed with aqueous NH4OH at pH=9.3. Selected 1H NMR. (D2O) δ (ppm) 8.68 (s, 1H, FA H-7), 7.57 (d, 2H, J=8.4 Hz, FA H-12 &16), 6.67 (d, 2H, J=9 Hz, FA H-13 & 15), 4.40-4.75 (m, 5H), 4.35 (m, 2H), 4.16 (m, 1H), 3.02 (m, 2H), 2.55-2.95 (m, 8H), 2.42 (m, 2H), 2.00-2.30 (m, 2H), 1.55-1.90 (m, 2H), 1.48 (m, 2H); MS (ESI, m+H+) 1046.
  • Example 2
  • Figure US20130184435A1-20130718-C00116
  • According to the general procedure of Method Example 7 (Scheme 1), Wang resin bound 4-methoxytrityl (MTT)-protected Cys-NH2 was reacted according to the following sequence: 1) a. Fmoc-β-aminoalanine(NH-MTT)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 2) a. Fmoc-Asp(OtBu)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 3) a. Fmoc-Asp(OtBu)—OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 4) a. Fmoc-Asp(OtBu)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 5) a. Fmoc-Glu-OtBu, PyBOP, DIPEA; b. 20% Piperidine/DMF; 6) N10-TFA-pteroic acid, PyBOP, DIPEA. The MTT, tBu, and TFA protecting groups were removed with a. 2% hydrazine/DMF; b. TFA/H2O/TIPS/EDT (92.5:2.5:2.5:2.5). The reagents shown in the following table were used in the preparation:
  • Reagent (mmol) equivalents Amount
    H-Cys(4-methoxytrityl)-2- 0.56 1  1.0 g
    chlorotrityl-Resin
    (loading 0.56 mmol/g)
    Fmoc-β-aminoalanine(NH- 1.12 2 0.653 g
    MTT)-OH
    Fmoc-Asp(OtBu)—OH 1.12 2 0.461 g
    Fmoc-Asp(OtBu)—OH 1.12 2 0.461 g
    Fmoc-Asp(OtBu)—OH 1.12 2 0.461 g
    Fmoc-Glu-OtBu 1.12 2 0.477 g
    N10TFA-Pteroic Acid 0.70 1.25 0.286 g
    (dissolve in 10 ml DMSO)
    DIPEA 2.24 4  0.390 mL
    PyBOP 1.12 2 0.583 g
  • The coupling step was performed as follows: In a peptide synthesis vessel add the resin, add the amino acid solution, DIPEA, and PyBOP. Bubble argon for 1 hr. and wash 3× with DMF and IPA. Use 20% piperidine in DMF for Fmoc deprotection, 3× (10 min), before each amino acid coupling. Continue to complete all 6 coupling steps. At the end wash the resin with 2% hydrazine in DMF 3× (5 min) to cleave TFA protecting group on Pteroic acid.
  • Cleave the peptide analog from the resin using the following reagent, 92.5% (50 ml) TFA, 2.5% (1.34 ml) H2O, 2.5% (1.34 ml) Triisopropylsilane, 2.5% (1.34 ml) ethanedithiol, the cleavage step was performed as follows: Add 25 ml cleavage reagent and bubble for 1.5 hr, drain, and wash 3× with remaining reagent. Evaporate to about 5 mL and precipitate in ethyl ether. Centrifuge and dry. Purification was performed as follows: Column-Waters NovaPak C18 300×19 mm; Buffer A=10 mM Ammonium Acetate, pH 5; B=CAN; 1% B to 20% B in 40 minutes at 15 ml/min, to 350 mg (64%); HPLC-RT 10.307 min., 100% pure, 1H HMR spectrum consistent with the assigned structure, and MS (ES—): 1624.8, 1463.2, 1462.3, 977.1, 976.2, 975.1, 974.1, 486.8, 477.8.
  • Example 3
  • Figure US20130184435A1-20130718-C00117
  • According to the general procedure of Method Example 7 (Scheme 1), Wang resin bound 4-methoxytrityl (MTT)-protected Cys-NH2 was reacted according to the following sequence: 1) a. Fmoc-β-aminoalanine(NH-IvDde)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 2) a. Fmoc-Asp(OtBu)—OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 3) a. Fmoc-Asp(OtBu)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 4) a. Fmoc-Asp(OtBu)—OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 5) a. Fmoc-Glu-OtBu, PyBOP, DIPEA; b. 20% Piperidine/DMF; 6) N10-TFA-pteroic acid, PyBOP, DIPEA. The MTT, tBu, and TFA protecting groups were removed with a. 2% hydrazine/DMF; b. TFA/H2O/TIPS/EDT (92.5:2.5:2.5:2.5). The reagents shown in the following table were used in the preparation:
  • Reagent (mmol) Equivalents Amount
    H-Cys(4-methoxytrityl)-2- 0.56 1  1.0 g
    chlorotrityl-Resin
    (loading 0.56 mmol/g)
    Fmoc-β-aminoalanine(NH- 1.12 2 0.596 g
    IvDde)-OH
    Fmoc-Asp(OtBu)—OH 1.12 2 0.461 g
    Fmoc-Asp(OtBu)—OH 1.12 2 0.461 g
    Fmoc-Asp(OtBu)—OH 1.12 2 0.461 g
    Fmoc-Glu-OtBu 1.12 2 0.477 g
    N10TFA-Pteroic Acid 0.70 1.25 0.286 g
    (dissolve in 10 ml DMSO)
    Fm-Thiopropionic acid 0.70 1.25 199.08
    DIPEA 2.24 4  0.390 mL
    PyBOP 1.12 2 0.583g
  • The coupling step was performed as follows: In a peptide synthesis vessel add the resin, add the amino acid solution in DMF, DIPEA, and PyBOP. Bubble argon for 1 hr. and wash 3×10 mL with DMF and IPA. Use 20% piperidine in DMF for Fmoc deprotection, 3×10 mL (10 min), before each amino acid coupling. Continue to complete 6 coupling steps. At the end wash the resin with 2% hydrazine in DMF 3×10 mL (5 min) to cleave TFA protecting group on Pteroic acid and IvDde protecting group on β-aminoalanine. Finally, couple the free amine of the β-aminoalanine with the Fmoc-thiopropionic acid in DMF using DIPEA and PyBop. Bubble argon for 1 hr. and wash 3×10 mL with DMF and IPA. Dry the resin under argon for 30 min.
  • Cleave the peptide analog from the resin using the following reagent, 92.5% (50 ml) TFA, 2.5% (1.34 ml) H2O, 2.5% (1.34 ml) Triisopropylsilane, 2.5% (1.34 ml) ethanedithiol, the cleavage step was performed as follows: Add 25 ml cleavage reagent and bubble for 1.5 hr, drain, and wash 3× with remaining reagent. Evaporate to about 5 mL and precipitate in ethyl ether. Centrifuge and dry. Purification was performed as follows: Column-Waters NovaPak C18 300×19 mm; Buffer A=10 mM Ammonium Acetate, pH 5; B=CAN; 1% B to 20% B in 40 minutes at 15 ml/min, to 450 mg (65%); 1H HMR spectrum consistent with the assigned structure.
  • Example 4
  • Figure US20130184435A1-20130718-C00118
  • According to the general procedure of Method Example 7 (Scheme 1), Wang resin bound MTT-protected Cys-NH2 was reacted according to the following sequence: 1) a. Fmoc-Asp(OtBu)—OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 2) a. Fmoc-Asp(OtBu)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 3) a. Fmoc-Arg(Pbf)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 4) a. Fmoc-Asp(OtBu)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 5) a. Fmoc-Glu(γ-OtBu)—OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 6) N10-TFA-pteroic acid, PyBOP, DIPEA. The MTT, tBu, and Pbf protecting groups were removed with TFA/H2O/TIPS/EDT (92.5:2.5:2.5:2.5), and the TFA protecting group was removed with aqueous NH4OH at pH=9.3. The 1H NMR spectrum was consistent with the assigned structure.
  • Example 5
  • Figure US20130184435A1-20130718-C00119
  • According to the general procedure of Method Example 7 (Scheme 1), Wang resin bound MTT-protected D-Cys-NH2 was reacted according to the following sequence: 1) a. Fmoc-D-Asp(OtBu)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 2) a. Fmoc-D-Asp(OtBu)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 3) a. Fmoc-D-Arg(Pbf)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 4) a. Fmoc-D-Asp(OtBu)-OH, PyBOP, DIPEA; b. 20% Piperidine/DMF; 5) a. Fmoc-D-Glu-OtBu, PyBOP, DIPEA; b. 20% Piperidine/DMF; 6) N10-TFA-pteroic acid, PyBOP, DIPEA. The MTT, tBu, and Pbf protecting groups were removed with TFA/H2O/TIPS/EDT (92.5:2.5:2.5:2.5), and the TFA protecting group was removed with aqueous NH4OH at pH=9.3. The 1H NMR spectrum was consistent with the assigned structure.
  • Example 6
  • Figure US20130184435A1-20130718-C00120
  • 2-[(Benzotriazole-1-yl-(oxycarbonyloxy)-ethyldisulfanyl]-pyridine HCl (601 mg) and 378 μL of DIPEA were sequentially added to a solution of desacetyl vinblastine hydrazide (668 mg) in 5 ml of DCM at 0° C. The reaction was allowed to warm to room temperature and stirred for 3 hours. TLC (15% MeOH in DCM) showed complete conversion. The mixture was purified by silica gel chromatography (1:9 MeOH/DCM). The combined fractions were evaporated, redissolved in DCM and washed with 10% Na2CO3, brine, dried (MgSO4), and evaporated to 550 mg (80%); HPLC-RT 12.651 min., 91% pure, 1H HMR spectrum consistent with the assigned structure, and MS (ESI+): 984.3, 983.3, 982.4, 492.4, 491.9, 141.8. Additional details of this procedure are described in U.S. patent application publication no. US 2005/0002942 A1, incorporated herein in its entirety by reference.
  • Example 7
  • Mitomycin C-ethyl disulfide propionic acid was prepared according to the following scheme
  • Figure US20130184435A1-20130718-C00121
  • To a solution of the aminoethyldisulfide propionic acid (81 mg, 0.372 mmol) in 2 mL of methanol (MeOH) was added the DIPEA (0.13 mL, 0.746 mmol). To this solution was slowly added the mitomycin-A (100 mg, 0.286 mmol) in MeOH (3.0 mL). The resulting solution was allowed to stir for 3 h. TLC analysis (20% MeOH in CHCl3) indicated that the reaction was complete. The solvent was removed under reduced pressure and the residue was purified using a silica column. Gradient elution (10% to 20% MeOH in CHCl3/0.5% TEA gave pure fractions of the product (110 mg, 77%). Selected 1H NMR signals (CDCl3) δ (ppm) 3.50 (d, 1H), 3.56 (dd, 1H), 3.90 (t, 2H), 4.15 (d, 1H), 4.25 (t, 1H), 4.68 (dd, 1H).
  • Example 8
  • Figure US20130184435A1-20130718-C00122
  • Prepared according to the process of Example 7.
  • Example 9
  • Figure US20130184435A1-20130718-C00123
  • In a polypropylene centrifuge bottle, Example 2 (82 mg, 0.084 mmol) was dissolved in 5 mL of water and bubbled with argon for 10 min. In another flask, a 0.1N NaHCO3 solution was argon bubbled for 10 min. pH of the linker solution was adjusted to about 6.9 using the 0.1N NaHCO3 solution. The vinblastine hydrazide derivative (Example 6, 91 mg, 0.092 mM) in 5 mL of tetrahydrofuran (THF) was added slowly to the above solution. The resulting clear solution was stirred under argon for 15 min to 1 h. Progress of the reaction was monitored by analytical HPLC (10 mM ammonium acetate, pH=7.0 and acetonitrile). THF was evaporated, and the aqueous solution was filtered and injected on a prep-HPLC column (XTerra Column, 19×300 mM). Elution with 1 mM sodium phosphate pH=7.0 and acetonitrile resulted in pure fractions containing the product, which was isolated after freeze-drying for 48 h (78 mg, 50%); C83H103N19O26S2; exact mass: 1845.68; MW: 1846.95; HPLC-RT 15.113 min., 100% pure, 1H HMR spectrum consistent with the assigned structure, and MS (ES−): 1846.6, 1845.5, 933.3, 924.2, 923.3, 922.5, 615.6, 614.7, 525.0.
  • FIGS. 21A and 21B show the relative binding affinity for folate versus Example 9, and the effects of Example 9 on 3H-thymidine incorporation, the IC50 of the conjugate (58 nM), and that folate competes with the conjugate for binding to the folate receptor demonstrating the specificity of binding of the conjugate. The assays were conducted according to Method Examples 4 and 3, respectively.
  • FIG. 1B shows the activity of Example 9 on 3H-thymidine incorporation in KB cells with (∘) and without () excess folic acid; IC50 of Example 9 is about 58 nM.
  • Example 10
  • Figure US20130184435A1-20130718-C00124
  • In a polypropylene centrifuge bottle, Example 3 (56 mg) was dissolved in 7.5 mL of water and bubbled with argon for 10 min. In another flask, a 0.1 N NaHCO3 solution was bubbled with argon for 10 mM. The pH of the Example 3 solution was adjusted to 6.9 using the 0.1 N NaHCO3 solution. Example 6 (44 mg) in 7.5 mL of tetrahydrofuran (THF) was added slowly to the Example 3 solution. The resulting clear solution was stirred under argon for 15 min to 1 h. Progress of the reaction was monitored by analytical HPLC (10 mM ammonium acetate, pH=7.0 and acetonitrile). THF was evaporated and the aqueous solution was filtered and purified by prep-HPLC. Elution with 1 mM sodium phosphate pH=7.0 and acetonitrile resulted in pure fractions, which were pooled, evaporated at ambient temperature, and the resulting aqueous solution was adjusted to pH 4.0 using 0.1 N HCl. Example 10 was isolated after freeze-drying for 48 h (61 mg, 64%). 1H HMR spectrum and LCMS data consistent with the assigned structure.
  • Example 11
  • Figure US20130184435A1-20130718-C00125
  • Method A. Example 11 was prepared according to the following process:
  • Figure US20130184435A1-20130718-C00126
  • Mitomycin C-ethyl disulfide propionic acid (34.4 mg, 0.069 mmol) was dissolved in dry THF (1 mL) under argon. N-hydroxy succinamide (7.9 mg, 0.069 mmol) followed by dicyclohexyl carbodiimide (14.2 mg, 0.069 mmol) was added. Di-isopropylethylamine (0.024 mL, 0.138 mmol) was added and the resulting mixture was stirred for 3 h. In a polypropylene centrifuge bottle, vinblastine folate (Example 9, 26 mg, 0.014 mmol) was dissolved in 3 mL of water. The pH of the solution was slowly adjusted to 8.5 using 0.1 N NaHCO3. The activated mitomycin C derivative prepared as described herein was added to the folate solution as a 3 mL THF solution. The resulting solution was stirred under argon for 15 min to 1 h, where the progress of the reaction was monitored by analytical HPLC (10 mM ammonium acetate and acetonitrile, pH=7.0). The THF was removed under reduced pressure and the aqueous solution was filtered and injected onto a prep-HPLC column (X-terra Column, 19×300 mm). Elution with 1 mM sodium phosphate (pH=7.0) and acetonitrile resulted in pure fractions, which were evaporated and freeze-dried for 48 h to 12 mg (50%, based on recovered starting material). 1H NMR and mass spectral data supported that assigned structure as shown in FIGS. 9 and 10 respectively. C103H127N23O32S4; Exact Mass 2325.79; MW 2327.51. HPLC-RT 20.054 min., 99% pure, 1H HMR spectrum consistent with the assigned structure, and MS (ES+): 1552.5, 116.0, 1165.3, 1164.3, 1148.4, 744.9, 746.4, 745.6.
  • Method B. Anhydrous DMF (4.5 mL) was syringed into a mixture of Example 10 (103 mg, 48.7 μmol) and Example 8 (NO2—PySSCH2CH2-MMC, 33.4 mg, 1.25 eq) at room temperature under argon. To the resulting solution were syringed in DIPEA (84.9 μL, 10 eq) and DBU (72.9 μL, 10 eq) in tandem. The reaction mixture was stirred at room temperature under argon for 20 minutes, then transferred into a stirring diethyl ether (50 mL). The resulting suspension was centrifuged, the precipitate was washed with diethyl ether (15 mL×2), then dissolved in phosphate buffer (9 mL, 1.25 mM, pH 6.8) and was subject to a preparative HPLC (Column: Waters XTerra RP 18, 7 μm, 19×300 mm; Mobile phases: A=1.25 in M phosphate buffer, pH 6.8, B=acetonitrile; Method: 10% B to 40% B over 25 min at 25 mL/min). Fractions from 11.72-13.88 minutes were collected and freeze-dried to afford 105.8 mg material, containing 99.2 mg and 6.6 mg phosphate salts.
  • Method C. Example 11 was prepared according to the following process in 34% yield:
  • Figure US20130184435A1-20130718-C00127
  • FIG. 2 shows the relative binding affinity for folic acid (, 1.0) versus Example 11 (▪, 0.21). The data in FIG. 2 shows that the conjugate has high relative binding to the folate receptor. The assay was conducted according to Method Example 4.
  • FIGS. 1B and 3 show the effects of Examples 9 (having a single drug) and 11 (having a pair of drugs), respectively, on 3H-thymidine incorporation, the IC50 of the conjugates of Example 9 (58 nM) and of Example 11 (5 nM). The data in FIGS. 1B and 3 also show that folic acid competes with the conjugates for binding to the folate receptor demonstrating the specificity of binding of the conjugate. The assays were conducted according to Method Example 3. In addition, Example 11 having two drugs showed more than 10-fold more potency at the folate receptor than Example 9 having only a single drug.
  • FIG. 4 shows the in vitro cytotoxic activity of Example 11 (a) on three different tumor cell lines (KB, 4T-1cl2, and ID8-cl15). In addition, FIG. 4 shows that the cytotoxic activity of Example 11 reduced in the presence of excess folic acid (b), indicating that Example 11 is acting at the folate receptor.
  • FIGS. 5A and 5B show the activity of Example 11 at two different doses (1 μmol/kg & 2 μmol/kg) against M109 lung cancer tumors in Balb/c mice and on the weight of Balb/c mice (Balb/c mice were used for the M109 tumor volume assay). The assays were performed according to Method Examples 1 and 6, respectively. Example 11 inhibited the growth of solid tumors, but had little effect on the weight of the mice at both doses. In addition, the higher dose (2 μmol/kg) showed strong inhibition of tumor growth, even after the dosing was terminated on day 20. The vertical line corresponds to the last dosing day (Day 20). Five animals were tested, and at the higher dose of 2 μmol/kg, all five animals showed a complete response.
  • FIG. 6 shows the activity of Example 11 at 1 μmol/kg TIW for 2 weeks on FR-positive KB tumors with (b) and without (c) 40 μmol/kg EC20 (rhenium complex), compared to controls (a). The vertical dashed line indicates the last dosing day. The figures show that Example 11 inhibits the growth of solid tumors, and that inhibitory effect is prevented (competed) by the EC20 rhenium complex. In addition, the figures show that treatment with Example 11 did not affect the weight of the test animal significantly from controls. EC20 (rhenium complex) is the compound of the formula
  • Figure US20130184435A1-20130718-C00128
  • chelated to Rhenium. The preparation of EC20 is described in U.S. patent application publication no. US 2004/0033195 A1, the synthetic procedure description of which is incorporated herein by reference. The assay was performed according the Method Example 2. EC20 acts as a competitor of Example 11 at folate receptors, and the results show the specificity of the effects of Example 11.
  • FIG. 8 shows the activity of Example 11 at 1 μmol/kg TIW on folate receptor positive s.c. implanted human xenograft KB tumors with (b) and without (c) added 40 μmol/kg EC20 (rhenium complex) in nude mice. The data in FIG. 8 show that Example 11 inhibits the growth of solid tumors, and that the inhibitory effect is prevented (competed against) by the EC20 rhenium complex, (b) versus (c). In addition, the data in FIG. 8 show that treatment with Example 11 did not significantly affect the weight of the tested nude mice animal model compared to controls (a).
  • FIG. 10 shows the activity of Example 11 at 2 μmol/kg TIW (e) on folate receptor positive human tumors in nude mice compared to a mixture of the unconjugated base drugs, mitomycin C and desacetylvinblastine monohydrazide, at 0.5 μmol/kg TIW (b), 1 pmol/kg TIW (c), and 2 μmol/kg TIW (d), compared to untreated controls (a). The data in FIG. 10 show that Example 11 inhibits the growth of solid tumors and gives a complete response in five out of five test animals. In contrast, treatment with the mixture of base drugs at 0.5 μmol/kg TIW (b), or at 1 μmol/kg TIW (c) did not show a complete response in any of the five test animals. The high dose of the mixture of base drugs at 2 μmol/kg TIW (d) was discontinued before day 20 due to observed toxicity, as shown in FIG. 11 showing the effect of the base drugs and Example 11 on test animal weight.
  • FIG. 11 shows that Example 11 (e) did not significantly affect the weight of the test animals during treatment from controls (a). In contrast to Example 11, the data in FIG. 11 show that prolonged treatment with the lower doses of the mixture of the unconjugated base drugs, mitomycin C and desacetylvinblastine monohydrazide, at (0.5 μmol/kg TIW (b) and 1 μmol/kg TIW (c)) caused weight loss in test animals that was significant compared to controls (a). In addition, the high dose (2 pmol/kg TIW (d)) of the mixture of the unconjugated base drugs caused the greatest weight loss, leading to the termination of that test.
  • The compounds described herein may be useful in treating large or established tumors. Illustratively, Example 11 is effective on large tumors. FIG. 12 shows the activity of Example 11 at 2 μmol/kg TIW, 2 weeks on large (250 mm3, 500 mm3, and 750 mm3) s.c. KB tumors. Treatment with Example 11 was initiated when the tumors reached one of the three target volumes, as indicated by the vertical arrows corresponding to the tumor volume. The data in FIG. 12 show that Example 11 inhibits the growth of large tumors and gives a complete response in test animals.
  • FIG. 13 shows the activity of Example 11 (e) at 1 μmol/kg TIW for two weeks of treatment on established s.c. KB tumors, compared to controls (a); the conjugates of each single drug alone, mitomycin C conjugate (b) and desacetylvinblastine monohydrazide conjugate (c), or a mixture of those single drug conjugates (d). Each drug conjugate was dosed at the same level of 1 μmol/kg TIW for two weeks of treatment. The figure shows that Example 11 performs better than either single drug conjugate or a mixture of both single drug conjugates. Surprisingly, the mixture of single drug conjugates did not perform significantly better than the single drug conjugates dosed individually, and none of the single drug conjugate dosing regimens was statistically significant from the controls. Only the compound of Example 11 was superior to controls. In addition, these data suggest a synergistic effect of having both a vinca drug and a mitomycin drug on the single conjugate.
  • Examples 12 to 14
  • Prepared according to the processes and conditions described herein, including the processes described hereinabove for Example 11. Additional details for the preparation of the required thiosulfonate or pyridyldithio-activated vinblastine, and maleimide-activated vinblastine derivatives are described in U.S. patent application publication no. US 2005/0002942 A1. Additional details for the preparation of the required mitomycin derivatives are described in U.S. patent application publication no. US 2005/0165227 A1, the disclosure of which is incorporated herein by reference.
  • Example 12
  • Figure US20130184435A1-20130718-C00129
  • FIG. 15 shows the activity of Example 12 at 100 nM on 3H-thymidine incorporation into FR-positive KB cells versus the pulse time. The assay was performed according to Method Example 3.
  • Example 13
  • Figure US20130184435A1-20130718-C00130
  • Example 14
  • Figure US20130184435A1-20130718-C00131

Claims (2)

1. A receptor binding drug delivery conjugate comprising:
(a) a receptor binding moiety;
(b) a polyvalent linker; and
(c) two or more drugs, or analogs or derivatives thereof;
wherein the receptor binding moiety is covalently linked to the polyvalent linker;
the two or more drugs, or analogs or derivatives thereof, are covalently linked to the polyvalent linker; and
the polyvalent linker comprises one or more releasable linkers.
2.-52. (canceled)
US13/740,784 2005-08-19 2013-01-14 Multi-drug ligand conjugates Abandoned US20130184435A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/740,784 US20130184435A1 (en) 2005-08-19 2013-01-14 Multi-drug ligand conjugates
US13/785,560 US20140058064A1 (en) 2005-08-19 2013-03-05 Multi-drug ligand conjugates

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US70995005P 2005-08-19 2005-08-19
US78755806P 2006-03-30 2006-03-30
PCT/US2006/032561 WO2007022494A2 (en) 2005-08-19 2006-08-18 Multi-drug ligand conjugates
US6419108A 2008-02-19 2008-02-19
US13/740,784 US20130184435A1 (en) 2005-08-19 2013-01-14 Multi-drug ligand conjugates

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US12/064,191 Continuation US8465724B2 (en) 2005-08-19 2006-08-18 Multi-drug ligand conjugates
PCT/US2006/032561 Continuation WO2007022494A2 (en) 2005-08-19 2006-08-18 Multi-drug ligand conjugates
US6419108A Continuation 2005-08-19 2008-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/785,560 Continuation US20140058064A1 (en) 2005-08-19 2013-03-05 Multi-drug ligand conjugates

Publications (1)

Publication Number Publication Date
US20130184435A1 true US20130184435A1 (en) 2013-07-18

Family

ID=37654952

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/064,191 Expired - Fee Related US8465724B2 (en) 2005-08-19 2006-08-18 Multi-drug ligand conjugates
US13/740,784 Abandoned US20130184435A1 (en) 2005-08-19 2013-01-14 Multi-drug ligand conjugates
US13/785,560 Abandoned US20140058064A1 (en) 2005-08-19 2013-03-05 Multi-drug ligand conjugates

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/064,191 Expired - Fee Related US8465724B2 (en) 2005-08-19 2006-08-18 Multi-drug ligand conjugates

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/785,560 Abandoned US20140058064A1 (en) 2005-08-19 2013-03-05 Multi-drug ligand conjugates

Country Status (11)

Country Link
US (3) US8465724B2 (en)
EP (2) EP1948241B1 (en)
JP (2) JP5475992B2 (en)
KR (2) KR20130113543A (en)
CN (2) CN103893779A (en)
AU (1) AU2006279304A1 (en)
BR (1) BRPI0615354A2 (en)
CA (1) CA2617660C (en)
ES (1) ES2468240T3 (en)
RU (2) RU2470668C2 (en)
WO (1) WO2007022494A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765096B2 (en) 2007-02-16 2014-07-01 Endocyte, Inc Methods and compositions for treating and diagnosing kidney disease
US9505747B2 (en) 2012-03-29 2016-11-29 Endocyte, Inc. Processes for preparing tubulysin derivatives and conjugates thereof
US9550734B2 (en) 2004-07-23 2017-01-24 Endocyte, Inc. Bivalent linkers and conjugates thereof
US9555139B2 (en) 2007-03-14 2017-01-31 Endocyte, Inc. Binding ligand linked drug delivery conjugates of tubulysins
US9662402B2 (en) 2012-10-16 2017-05-30 Endocyte, Inc. Drug delivery conjugates containing unnatural amino acids and methods for using
US9877965B2 (en) 2007-06-25 2018-01-30 Endocyte, Inc. Vitamin receptor drug delivery conjugates for treating inflammation
US10080805B2 (en) 2012-02-24 2018-09-25 Purdue Research Foundation Cholecystokinin B receptor targeting for imaging and therapy
US10738086B2 (en) 2007-06-25 2020-08-11 Endocyte Inc. Conjugates containing hydrophilic spacer linkers

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3831382A1 (en) * 1988-09-15 1990-04-12 Hoechst Ag METHOD FOR PRODUCING 2-ALKOXY-Benzenesulfonamide Compounds
ATE427948T1 (en) * 2001-04-24 2009-04-15 Purdue Research Foundation FOLATE MIMETICS AND THEIR FOLATE RECEPTOR-BINDING CONJUGATES
WO2004069159A2 (en) 2003-01-27 2004-08-19 Endocyte, Inc. Vitamin receptor binding drug delivery conjugates
JP5289935B2 (en) * 2005-03-16 2013-09-11 エンドサイト,インコーポレイテッド Synthesis and purification of pteroic acid and its conjugates
US20080280937A1 (en) * 2005-08-19 2008-11-13 Christopher Paul Leamon Ligand Conjugates of Vinca Alkaloids, Analogs, and Derivatives
ES2468240T3 (en) 2005-08-19 2014-06-16 Endocyte, Inc. Multiple drug ligand conjugates
US7998485B2 (en) 2006-05-11 2011-08-16 Universiteit Gent Sialoadhesin-related compositions and methods
US8664181B2 (en) 2007-02-16 2014-03-04 Ktb Tumorforschungsgesellschaft Mbh Dual acting prodrugs
EP2606911A1 (en) * 2007-02-16 2013-06-26 KTB Tumorforschungsgesellschaft mbH Receptor And Antigen Targeted Prodrug
CN107573347A (en) 2007-04-11 2018-01-12 默克和西伊公司 18The folic acid of F marks
WO2009012109A2 (en) 2007-07-13 2009-01-22 Emory University Cyanine-containing compounds for cancer imaging and treatment
EP3656403B1 (en) 2007-08-17 2022-05-11 Purdue Research Foundation Preparation process of psma binding ligand-linker conjugates
CA2703491C (en) 2007-10-25 2017-06-13 Endocyte, Inc. Tubulysins and processes for preparing
EP2349274A4 (en) 2008-09-17 2014-12-17 Endocyte Inc Folate receptor binding conjugates of antifolates
WO2010045584A1 (en) * 2008-10-17 2010-04-22 Endocyte, Inc. Folate targeting of nucleotides
US8394922B2 (en) 2009-08-03 2013-03-12 Medarex, Inc. Antiproliferative compounds, conjugates thereof, methods therefor, and uses thereof
BR112012003089A2 (en) 2009-08-10 2016-08-16 Ucl Business Plc reversible covalent bonding of functional molecules
JP5780961B2 (en) * 2009-09-07 2015-09-16 ニプロパッチ株式会社 Transdermal preparation
WO2011069116A1 (en) * 2009-12-04 2011-06-09 Endocyte, Inc. Binding ligand linked drug delivery conjugates of tubulysins
US9951324B2 (en) 2010-02-25 2018-04-24 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
WO2012047525A2 (en) * 2010-09-27 2012-04-12 Endocyte, Inc. Folate conjugates for treating inflammation of the eye
AU2011348085B2 (en) * 2010-12-23 2016-12-08 Alkermes Pharma Ireland Limited Multi- API loading prodrugs
US20140243282A1 (en) * 2010-12-31 2014-08-28 Satish Reddy Kallam Methods and compositions for designing novel conjugate therapeutics
JP6892218B2 (en) 2012-11-15 2021-06-23 エンドサイト・インコーポレイテッドEndocyte, Inc. How to treat diseases caused by drug delivery conjugates and PSMA-expressing cells
KR102215954B1 (en) 2013-02-14 2021-02-15 브리스톨-마이어스 스큅 컴퍼니 Tubulysin compounds, methods of making and use
GEP20237496B (en) 2013-10-18 2023-04-10 Deutsches Krebsforsch Labeled inhibitors of prostate specific membrane antigen (psma), their use as imaging agents and pharmaceutical agents for the treatment of prostate cancer
WO2015073678A1 (en) 2013-11-14 2015-05-21 Endocyte, Inc. Compounds for positron emission tomography
US10077287B2 (en) 2014-11-10 2018-09-18 Bristol-Myers Squibb Company Tubulysin analogs and methods of making and use
WO2016089879A1 (en) * 2014-12-01 2016-06-09 Endocyte, Inc. Conjugates of garftase inhibitors
US10188759B2 (en) 2015-01-07 2019-01-29 Endocyte, Inc. Conjugates for imaging
CN104569416B (en) * 2015-01-22 2016-04-13 中国农业大学 Detect method and the special ELISA reagent kit thereof of rice aspergin B
CN107847609A (en) * 2015-03-13 2018-03-27 恩多塞特公司 For treating the conjugate of disease
WO2016183131A1 (en) 2015-05-11 2016-11-17 Purdue Research Foundation Ligand ionophore conjugates
CN108135881B (en) 2015-08-11 2020-11-13 同宜医药(苏州)有限公司 Multi-ligand drug couplet and application thereof
PE20181953A1 (en) 2016-03-02 2018-12-17 Eisai Randd Man Co Ltd ERIBULIN-BASED ANTIBODY AND DRUG CONJUGATES AND METHODS FOR THEIR USE
CA3017214A1 (en) 2016-03-16 2017-09-21 Purdue Research Foundation Carbonic anhydrase ix targeting agents and methods
WO2017161144A1 (en) * 2016-03-16 2017-09-21 Endocyte, Inc. Carbonic anhydrase ix inhibitor conjugates and uses thereof
WO2017184683A1 (en) * 2016-04-21 2017-10-26 The Board Of Regents Of The University Of Taxas System Methods and compositions for detecting aneurysms
US20190216935A1 (en) * 2016-05-25 2019-07-18 Purdue Research Foundation Method of treating cancer by targeting myeloid-derived suppressor cells
WO2018089481A1 (en) * 2016-11-08 2018-05-17 Mallinckrodt Llc Mitomycin c prodrug liposome formulations and uses thereof
JP2021536483A (en) 2018-09-06 2021-12-27 シダラ セラピューティクス インコーポレーテッド Compositions and Methods for the Treatment of Viral Infections
JP2022547538A (en) * 2019-09-09 2022-11-14 シダラ セラピューティクス インコーポレーテッド Compositions and methods for the treatment of respiratory syncytial virus infection
JP2020117509A (en) * 2020-03-12 2020-08-06 エンドサイト・インコーポレイテッドEndocyte, Inc. Conjugates for treating diseases
CN118103388A (en) * 2021-10-14 2024-05-28 西藏海思科制药有限公司 Bicyclic peptide ligands for EphA2 and conjugates thereof

Family Cites Families (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2515483A (en) * 1946-08-10 1950-07-18 Merck & Co Inc Diacylated pteroic acid and process for preparing same
US2816110A (en) 1956-11-23 1957-12-10 Merck & Co Inc Methods for the production of substituted pteridines
US3392173A (en) 1964-03-09 1968-07-09 Lilly Co Eli Novel acyl derivatives of desacetyl-vincaleukoblastine and processes for their preparation
US3387001A (en) * 1964-10-19 1968-06-04 Lilly Co Eli Novel aminoacyl esters of desacetyl vincaleukoblastine
US4203898A (en) 1977-08-29 1980-05-20 Eli Lilly And Company Amide derivatives of VLB, leurosidine, leurocristine and related dimeric alkaloids
US4166810A (en) * 1978-04-20 1979-09-04 Eli Lilly And Company Derivatives of 4-desacetyl VLB C-3 carboxyhydrazide
US4337339A (en) * 1979-04-30 1982-06-29 Baker Instruments Corp. Process for preparation of folic acid derivatives
US4639456A (en) * 1980-06-10 1987-01-27 Omnichem S.A. Vinblastin-23-oyl amino acid derivatives
US4316885A (en) * 1980-08-25 1982-02-23 Ayerst, Mckenna And Harrison, Inc. Acyl derivatives of rapamycin
US4713249A (en) 1981-11-12 1987-12-15 Schroeder Ulf Crystallized carbohydrate matrix for biologically active substances, a process of preparing said matrix, and the use thereof
US5140104A (en) * 1982-03-09 1992-08-18 Cytogen Corporation Amine derivatives of folic acid analogs
US4770994A (en) * 1982-07-30 1988-09-13 Abbott Laboratories Determination of carbohydrate acceptors
EP0116208B1 (en) 1982-12-07 1988-03-30 Kyowa Hakko Kogyo Co., Ltd. Mitomycin analogues
GR81790B (en) * 1983-04-29 1984-12-12 Omnichem Sa
US4866180A (en) * 1984-02-24 1989-09-12 Bristol-Myers Company Amino disulfide thiol exchange products
JPS60255789A (en) 1984-06-01 1985-12-17 Kyowa Hakko Kogyo Co Ltd Mitomycin derivative, its preparation, and antitumor agent
US5266333A (en) 1985-03-06 1993-11-30 American Cyanamid Company Water dispersible and water soluble carbohydrate polymer compositions for parenteral administration of growth hormone
US4650803A (en) * 1985-12-06 1987-03-17 University Of Kansas Prodrugs of rapamycin
IL82579A0 (en) 1986-05-27 1987-11-30 Lilly Co Eli Immunoglobulin conjugates
US4801688A (en) * 1986-05-27 1989-01-31 Eli Lilly And Company Hydrazone immunoglobulin conjugates
DE3750846T2 (en) 1986-08-29 1995-05-11 Kyowa Hakko Kogyo Kk MITOMYCIN DERIVATIVES.
US5094849A (en) * 1988-08-08 1992-03-10 Eli Lilly And Company Cytotoxic antibody conjugates of hydrazide derivatized vinca analogs via simple organic linkers
US5006652A (en) * 1988-08-08 1991-04-09 Eli Lilly And Company Intermediates for antibody-vinca drug conjugates
US5108921A (en) * 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
US5688488A (en) 1989-04-03 1997-11-18 Purdue Research Foundation Composition and method for tumor imaging
JPH03206886A (en) 1989-11-13 1991-09-10 Green Cross Corp:The Mouse-human chimera aio antibody having specificity against human tumor cell antigen
US5627165A (en) * 1990-06-13 1997-05-06 Drug Innovation & Design, Inc. Phosphorous prodrugs and therapeutic delivery systems using same
US5998603A (en) 1994-09-29 1999-12-07 Isis Pharmaceuticals, Inc. 4'-desmethyl nucleoside analogs, and oligomers thereof
ES2171392T3 (en) * 1990-08-29 2002-09-16 Ct Hospitalier Regional De Nan PROTEIN POLYGANDS UNITED TO A STABLE PROTEIN NUCLEUS.
US5221670A (en) * 1990-09-19 1993-06-22 American Home Products Corporation Rapamycin esters
US5378696A (en) * 1990-09-19 1995-01-03 American Home Products Corporation Rapamycin esters
US5130307A (en) * 1990-09-28 1992-07-14 American Home Products Corporation Aminoesters of rapamycin
US5233036A (en) * 1990-10-16 1993-08-03 American Home Products Corporation Rapamycin alkoxyesters
US5120842A (en) * 1991-04-01 1992-06-09 American Home Products Corporation Silyl ethers of rapamycin
US5100883A (en) * 1991-04-08 1992-03-31 American Home Products Corporation Fluorinated esters of rapamycin
US5194447A (en) * 1992-02-18 1993-03-16 American Home Products Corporation Sulfonylcarbamates of rapamycin
US5118678A (en) * 1991-04-17 1992-06-02 American Home Products Corporation Carbamates of rapamycin
US5138051A (en) * 1991-08-07 1992-08-11 American Home Products Corporation Rapamycin analogs as immunosuppressants and antifungals
US5118677A (en) * 1991-05-20 1992-06-02 American Home Products Corporation Amide esters of rapamycin
US5169851A (en) 1991-08-07 1992-12-08 American Home Products Corporation Rapamycin analog as immunosuppressants and antifungals
US6335434B1 (en) * 1998-06-16 2002-01-01 Isis Pharmaceuticals, Inc., Nucleosidic and non-nucleosidic folate conjugates
US5151413A (en) * 1991-11-06 1992-09-29 American Home Products Corporation Rapamycin acetals as immunosuppressant and antifungal agents
US5159079A (en) * 1991-12-20 1992-10-27 Eli Lilly And Company 2-piperidones as intermediates for 5-deaza-10-oxo- and 5-deaza-10-thio-5,6,7,8-tetrahydrofolic acids
US6004555A (en) 1992-03-05 1999-12-21 Board Of Regents, The University Of Texas System Methods for the specific coagulation of vasculature
US5302584A (en) * 1992-10-13 1994-04-12 American Home Products Corporation Carbamates of rapamycin
US5258389A (en) 1992-11-09 1993-11-02 Merck & Co., Inc. O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives
US5260300A (en) 1992-11-19 1993-11-09 American Home Products Corporation Rapamycin carbonate esters as immuno-suppressant agents
AU686629B2 (en) * 1993-04-23 1998-02-12 Wyeth Rapamycin Conjugates and Antibodies
US5391730A (en) * 1993-10-08 1995-02-21 American Home Products Corporation Phosphorylcarbamates of rapamycin and oxime derivatives thereof
US5385909A (en) * 1993-11-22 1995-01-31 American Home Products Corporation Heterocyclic esters of rapamycin
US5385910A (en) * 1993-11-22 1995-01-31 American Home Products Corporation Gem-distributed esters of rapamycin
US5385908A (en) * 1993-11-22 1995-01-31 American Home Products Corporation Hindered esters of rapamycin
US5389639A (en) * 1993-12-29 1995-02-14 American Home Products Company Amino alkanoic esters of rapamycin
US5417982A (en) * 1994-02-17 1995-05-23 Modi; Pankaj Controlled release of drugs or hormones in biodegradable polymer microspheres
IL112873A (en) * 1994-03-08 2005-03-20 Wyeth Corp Rapamycin-fkbp12 binding proteins, their isolation and their use
US6171859B1 (en) * 1994-03-30 2001-01-09 Mitokor Method of targeting conjugate molecules to mitochondria
US5362718A (en) 1994-04-18 1994-11-08 American Home Products Corporation Rapamycin hydroxyesters
US5463048A (en) 1994-06-14 1995-10-31 American Home Products Corporation Rapamycin amidino carbamates
US5491231A (en) * 1994-11-28 1996-02-13 American Home Products Corporation Hindered N-oxide esters of rapamycin
US5547668A (en) * 1995-05-05 1996-08-20 The Board Of Trustees Of The University Of Illinois Conjugates of folate anti-effector cell antibodies
US6207157B1 (en) * 1996-04-23 2001-03-27 The United States Of America As Represented By The Department Of Health And Human Services Conjugate vaccine for nontypeable Haemophilus influenzae
US6030941A (en) * 1996-05-01 2000-02-29 Avi Biopharma, Inc. Polymer composition for delivering substances in living organisms
DE69737867T2 (en) * 1996-05-03 2007-10-18 Immunomedics, Inc. TARGETED COMBINATION IMMUNOTHERAPY FOR CANCER
DE19621133A1 (en) * 1996-05-24 1997-11-27 Boehringer Mannheim Gmbh Determination method with oligomerized receptors
JP2001501596A (en) * 1996-08-27 2001-02-06 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデーション Delivery of bioconjugates and biologically active agents
US6056973A (en) * 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
US6071532A (en) * 1996-10-15 2000-06-06 Emory University Synthesis of glycophospholipid and peptide-phospholipid conjugates and uses thereof
US6177404B1 (en) * 1996-10-15 2001-01-23 Merck & Co., Inc. Conjugates useful in the treatment of benign prostatic hyperplasia
WO1999020626A1 (en) * 1997-10-17 1999-04-29 Purdue Research Foundation Folic acid derivatives
GB9723669D0 (en) 1997-11-07 1998-01-07 Univ Aberdeen Skin penetration enhancing components
US6399638B1 (en) * 1998-04-21 2002-06-04 Bristol-Myers Squibb Company 12,13-modified epothilone derivatives
US6093382A (en) * 1998-05-16 2000-07-25 Bracco Research Usa Inc. Metal complexes derivatized with folate for use in diagnostic and therapeutic applications
US6291684B1 (en) * 1999-03-29 2001-09-18 Bristol-Myers Squibb Company Process for the preparation of aziridinyl epothilones from oxiranyl epothilones
AU769425B2 (en) * 1999-04-23 2004-01-29 Alza Corporation Conjugate having a cleavable linkage for use in a liposome
AUPQ014799A0 (en) 1999-05-04 1999-05-27 Access Pharmaceuticals Australia Pty Limited Amplification of folate-mediated targeting to tumor cells using polymers
AUPQ071299A0 (en) 1999-06-02 1999-06-24 Access Pharmaceuticals Australia Pty Limited Vitamin directed dual targeting therapy
JP2003508501A (en) * 1999-09-07 2003-03-04 コンジュケム,インコーポレーテッド Pulmonary delivery for biological binding
EP1231942A1 (en) * 1999-10-15 2002-08-21 Mayo Foundation For Medical Education And Research Cobalamin conjugates useful as imaging agents and as antitumor agents
US7067111B1 (en) * 1999-10-25 2006-06-27 Board Of Regents, University Of Texas System Ethylenedicysteine (EC)-drug conjugates, compositions and methods for tissue specific disease imaging
NZ517772A (en) * 1999-11-24 2004-03-26 Immunogen Inc Cytotoxic agents comprising taxanes and their therapeutic use
AU5697001A (en) * 2000-03-31 2001-10-15 Purdue Research Foundation Method of treatment using ligand-immunogen conjugates
US6670355B2 (en) 2000-06-16 2003-12-30 Wyeth Method of treating cardiovascular disease
US6290929B1 (en) * 2000-07-28 2001-09-18 The Procter & Gamble Company Cancer treatment
EP1318837B1 (en) * 2000-08-11 2004-10-06 Wyeth Method of treating estrogen receptor positive carcinoma
DE60136200D1 (en) * 2000-09-19 2008-11-27 Wyeth Corp WATER-SOLUBLE RAPAMYCIN ESTERS
US6399625B1 (en) * 2000-09-27 2002-06-04 Wyeth 1-oxorapamycins
US6399626B1 (en) * 2000-10-02 2002-06-04 Wyeth Hydroxyesters of 7-desmethylrapamycin
US6440991B1 (en) * 2000-10-02 2002-08-27 Wyeth Ethers of 7-desmethlrapamycin
US6821731B2 (en) 2000-11-28 2004-11-23 Wyeth Expression analysis of FKBP nucleic acids and polypeptides useful in the diagnosis of prostate cancer
US20020168737A1 (en) * 2001-01-24 2002-11-14 Cornish Virginia W. Binding and catalysis screen for high throughput determination of protein function using chemical inducers of dimerization
JP2004533226A (en) * 2001-04-02 2004-11-04 ワイス PD-1, A receptor for B7-4 and uses thereof
AR036993A1 (en) * 2001-04-02 2004-10-20 Wyeth Corp USE OF AGENTS THAT MODULATE THE INTERACTION BETWEEN PD-1 AND ITS LINKS IN THE SUBMODULATION OF IMMUNOLOGICAL ANSWERS
ATE427948T1 (en) 2001-04-24 2009-04-15 Purdue Research Foundation FOLATE MIMETICS AND THEIR FOLATE RECEPTOR-BINDING CONJUGATES
US7109165B2 (en) 2001-05-18 2006-09-19 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
JP2004532888A (en) 2001-06-01 2004-10-28 ブリストル−マイヤーズ スクイブ カンパニー Epothilone derivative
US20040018203A1 (en) * 2001-06-08 2004-01-29 Ira Pastan Pegylation of linkers improves antitumor activity and reduces toxicity of immunoconjugates
UA77200C2 (en) * 2001-08-07 2006-11-15 Wyeth Corp Antineoplastic combination of cci-779 and bkb-569
DE60206512T2 (en) * 2001-08-22 2006-06-22 Wyeth RAPAMYCIN 29-ENOLE
US6680330B2 (en) * 2001-08-22 2004-01-20 Wyeth Rapamycin dialdehydes
ATE451935T1 (en) * 2001-09-28 2010-01-15 Purdue Research Foundation TREATMENT METHODS USING LIGAND-IMMUNOGEN CONJUGATES
GR1004163B (en) * 2001-11-01 2003-02-21 Polycarbocyclic derivatives for modification of resist, optical and etch resistance properties
US6595757B2 (en) * 2001-11-27 2003-07-22 Kuei-Hsien Shen Air compressor control system
US8043602B2 (en) * 2002-02-07 2011-10-25 Endocyte, Inc. Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology
US7000695B2 (en) * 2002-05-02 2006-02-21 Halliburton Energy Services, Inc. Expanding wellbore junction
EP1501551B1 (en) * 2002-05-06 2009-11-18 Endocyte, Inc. Folate-receptor targeted imaging agents
US6596757B1 (en) 2002-05-14 2003-07-22 Immunogen Inc. Cytotoxic agents comprising polyethylene glycol-containing taxanes and their therapeutic use
CA2484640C (en) * 2002-05-15 2012-01-17 Endocyte, Inc. Vitamin-mitomycin conjugates
AU2003266233A1 (en) 2002-07-09 2004-01-23 Morphochem Aktiengesellschaft Fur Kombinatorische Chemie Novel tubulysin analogues
US20040047917A1 (en) * 2002-09-06 2004-03-11 Stephen Wilson Drug delivery and targeting with vitamin B12 conjugates
CA2501752A1 (en) 2002-10-10 2004-04-22 Wyeth Compositions, organisms and methodologies employing a novel human kinase
MXPA05005385A (en) * 2002-11-21 2005-08-03 Wyeth Corp Composition and method for treating lupus nephritis.
DE10254439A1 (en) * 2002-11-21 2004-06-03 GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) Tubulysins, manufacturing processes and tubulysin agents
WO2004069159A2 (en) * 2003-01-27 2004-08-19 Endocyte, Inc. Vitamin receptor binding drug delivery conjugates
AR042938A1 (en) * 2003-02-06 2005-07-06 Wyeth Corp USE OF CCI-779 IN THE TREATMENT OF HEPATIC FIBROSIS
EP2664672A1 (en) * 2003-04-17 2013-11-20 Alnylam Pharmaceuticals Inc. Modified iRNA agents
WO2004101803A2 (en) * 2003-05-12 2004-11-25 Wyeth Holdings Corporation Process for producing anticancer agent ll-d45042
WO2005010010A1 (en) * 2003-07-16 2005-02-03 Wyeth Cci-779 isomer c
KR20060057605A (en) 2003-08-07 2006-05-26 와이어쓰 Regioselective synthesis of cci-779
WO2005111238A2 (en) * 2004-04-19 2005-11-24 Archemix Corporation Aptamer-mediated intracellular delivery of therapeutic oligonucleotides
WO2006012527A1 (en) 2004-07-23 2006-02-02 Endocyte, Inc. Bivalent linkers and conjugates thereof
WO2006020768A2 (en) * 2004-08-10 2006-02-23 Alnylam Pharmaceuticals, Inc. Chemically modified oligonucleotides
JP5289935B2 (en) * 2005-03-16 2013-09-11 エンドサイト,インコーポレイテッド Synthesis and purification of pteroic acid and its conjugates
CN101203759A (en) 2005-03-30 2008-06-18 普渡研究基金会 Method for cancer prognosis using cellular folate vitamin receptor quantification
WO2007006041A2 (en) * 2005-07-05 2007-01-11 Purdue Research Foundation Imaging and therapeutic method using monocytes
ES2468240T3 (en) 2005-08-19 2014-06-16 Endocyte, Inc. Multiple drug ligand conjugates
US20080280937A1 (en) 2005-08-19 2008-11-13 Christopher Paul Leamon Ligand Conjugates of Vinca Alkaloids, Analogs, and Derivatives
EP1957113A4 (en) * 2005-11-21 2011-11-09 Medivas Llc Polymer particles for delivery of macromolecules and methods of use
PE20080102A1 (en) 2006-05-25 2008-02-11 Bristol Myers Squibb Co AZIRIDINYL-EPOTILONE CONJUGATES AND PHARMACEUTICAL COMPOSITIONS INCLUDING THE SAME
WO2008101231A2 (en) 2007-02-16 2008-08-21 Endocyte, Inc. Methods and compositions for treating and diagnosing kidney disease
CN101678124A (en) * 2007-03-14 2010-03-24 恩多塞特公司 Binding ligand linked drug delivery conjugates of tubulysins
US20110288152A1 (en) 2008-10-17 2011-11-24 Purdue Research Foundation Psma binding ligand-linker conjugates and methods for using
EP2515651A4 (en) 2009-12-23 2016-01-13 Endocyte Inc Vitamin receptor drug delivery conjugates for treating inflammation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Gabizon et al. Clin. Cancer Res. 2003; 9:6551-6559. *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550734B2 (en) 2004-07-23 2017-01-24 Endocyte, Inc. Bivalent linkers and conjugates thereof
US10647676B2 (en) 2004-07-23 2020-05-12 Endocyte, Inc. Bivalent linkers and conjugates thereof
US8765096B2 (en) 2007-02-16 2014-07-01 Endocyte, Inc Methods and compositions for treating and diagnosing kidney disease
US9555139B2 (en) 2007-03-14 2017-01-31 Endocyte, Inc. Binding ligand linked drug delivery conjugates of tubulysins
US9877965B2 (en) 2007-06-25 2018-01-30 Endocyte, Inc. Vitamin receptor drug delivery conjugates for treating inflammation
US10500204B2 (en) 2007-06-25 2019-12-10 Endocyte, Inc. Vitamin receptor drug delivery conjugates for treating inflammation
US10738086B2 (en) 2007-06-25 2020-08-11 Endocyte Inc. Conjugates containing hydrophilic spacer linkers
US10080805B2 (en) 2012-02-24 2018-09-25 Purdue Research Foundation Cholecystokinin B receptor targeting for imaging and therapy
US10765756B2 (en) 2012-02-24 2020-09-08 Purdue Research Foundation Cholecystokinin B receptor targeting for imaging and therapy
US11344623B2 (en) 2012-02-24 2022-05-31 Purdue Research Foundation Cholecystokinin B receptor targeting for imaging and therapy
US9505747B2 (en) 2012-03-29 2016-11-29 Endocyte, Inc. Processes for preparing tubulysin derivatives and conjugates thereof
US9662402B2 (en) 2012-10-16 2017-05-30 Endocyte, Inc. Drug delivery conjugates containing unnatural amino acids and methods for using

Also Published As

Publication number Publication date
AU2006279304A1 (en) 2007-02-22
EP1948241B1 (en) 2014-03-05
WO2007022494A3 (en) 2007-09-07
RU2008110495A (en) 2009-09-27
JP2013079248A (en) 2013-05-02
CA2617660C (en) 2014-03-25
CA2617660A1 (en) 2007-02-22
EP2374480A2 (en) 2011-10-12
US20080248052A1 (en) 2008-10-09
KR101364912B1 (en) 2014-02-21
US20140058064A1 (en) 2014-02-27
ES2468240T3 (en) 2014-06-16
KR20080041223A (en) 2008-05-09
US8465724B2 (en) 2013-06-18
BRPI0615354A2 (en) 2011-05-17
JP2009504784A (en) 2009-02-05
RU2012136587A (en) 2014-03-10
EP1948241A2 (en) 2008-07-30
CN103893779A (en) 2014-07-02
WO2007022494A2 (en) 2007-02-22
EP2374480A3 (en) 2013-05-01
KR20130113543A (en) 2013-10-15
RU2470668C2 (en) 2012-12-27
JP5475992B2 (en) 2014-04-16
CN103893778A (en) 2014-07-02

Similar Documents

Publication Publication Date Title
US8465724B2 (en) Multi-drug ligand conjugates
US20210024581A1 (en) Conjugates containing hydrophilic spacer linkers
US20080280937A1 (en) Ligand Conjugates of Vinca Alkaloids, Analogs, and Derivatives
US20170327537A1 (en) Binding ligand linked drug delivery conjugates of tubulysins
US20190216934A9 (en) Vitamin-Receptor Binding Drug Delivery Conjugates
AU2013204293A1 (en) Multi-drug ligand conjugates

Legal Events

Date Code Title Description
STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION