US20130181160A1 - Stabilized, pure lithium metal powder and method for producing the same - Google Patents

Stabilized, pure lithium metal powder and method for producing the same Download PDF

Info

Publication number
US20130181160A1
US20130181160A1 US13/825,446 US201113825446A US2013181160A1 US 20130181160 A1 US20130181160 A1 US 20130181160A1 US 201113825446 A US201113825446 A US 201113825446A US 2013181160 A1 US2013181160 A1 US 2013181160A1
Authority
US
United States
Prior art keywords
acid
stabilized
lithium metal
metal powder
powder according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/825,446
Inventor
Ulrich Wietelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albemarle Germany GmbH
Original Assignee
Chemetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemetall GmbH filed Critical Chemetall GmbH
Publication of US20130181160A1 publication Critical patent/US20130181160A1/en
Assigned to CHEMETALL GMBH reassignment CHEMETALL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WIETELMANN, ULRICH
Assigned to Rockwood Lithium GmbH reassignment Rockwood Lithium GmbH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEMETALL GMBH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • Lithium is an alkali metal. As with the heavy element homologues of the first main group, it is characterized by strong reactivity relative to a plurality of materials. It reacts violently, often igniting, with water, alcohols and other materials containing protic hydrogen. Exposed to air, it is unstable reacting with oxygen, nitrogen and carbon dioxide. This is why it is usually handled under an inert gas (noble gases, such as argon) and stored under a protective layer of paraffin oil.
  • inert gas noble gases, such as argon
  • a further method for stabilizing lithium metal provides for heating the same in excess of the melting point thereof, stirring the melted lithium and bringing it into contact with a fluorinating agent, for example perfluoropentylamine (WO 2007/005983A2).
  • a fluorinating agent for example perfluoropentylamine (WO 2007/005983A2).
  • fluorinating agents are often toxic or caustic, which is why they are used with great caution in industrial practice.
  • a further method for a protective surface treatment of lithium metal envisions providing the same with a wax layer, for example a polyethylene wax layer (WO 2008/045557A1). It is disadvantageous, however, that this method requires the use of quite a large quantity of coating agent.
  • the examples that are listed in the mentioned patent application specify approximately 1%.
  • US 200810283155A1 discloses a method for stabilizing lithium metal that is characterized by the following steps: a) heating lithium metal powder in excess of the melting point thereof in order to produce melted lithium metal; b) dispersing the melted lithium metal; and c) bringing the melted lithium metal in contact with a phosphor-containing substance in order to generate a substantially continuous protective layer of lithium phosphate on the lithium metal powder.
  • Handling acidic, caustic materials phosphoric acid
  • phosphoric acid is generally disadvantageous, but particularly in the presence of lithium metal: upon being brought in contact with each other, both materials react violently releasing an enormous amount of heat.
  • explosive hydrogen gas is generated when reacting lithium metal with phosphoric acid.
  • US US2009/0061321 proposes the preparation of a stabilized lithium metal powder with a substantially continuous polymer coating.
  • the polymer can be selected from the group comprising polyurethanes, PTFE, PVC, polystyrol, etc.
  • this method provides the protected lithium metal with an undefined surface coating of organic substances that could interfere during any subsequent use thereof, for example the prelithiation of electrode materials.
  • the object of the invention seeks to provide a method for preparing lithium metal powder with a passivating cover layer
  • a lithium powder of this kind should be stable for days up to approximately 50° C. and in the presence of polar, reactive solvents, such as are used in the preparation of electrode coatings (for example, NMP).
  • the object is achieved by using saturated and/or unsaturated fatty acids and/or fatty acid esters according to the general formula I
  • R denotes C 10 -C 29 moieties
  • R′ stands for H or C 1 -C 8 moieties.
  • a pure lithium meaning particularly a lithium quality poor in sodium, is used as lithium source. Surprisingly, it was found that using a lithium metal that is poor in sodium, it is possible to obtain especially stable products that are safe to handle.
  • the lithium is heated under an inert gas (noble gas, for example dry argon) in an organic, inert solvent or solvent mixture (typically hydrocarbon-based) in excess of the temperature when melting occurs (180.5° C.).
  • an inert gas typically dry argon
  • organic, inert solvent or solvent mixture typically hydrocarbon-based
  • solvents typically hydrocarbon-based
  • the melting process occurs in an enclosed vessel and under pressurized conditions.
  • the passivation agent is added when melting is complete, and operation of the agitator system that is used for preparing the dispersion (typically a dispersion disc) is started.
  • the precise dispersion parameters (meaning mainly the rotation speed and the dispersion time) depend on the desired particle size. They further depend on the viscosity of the dispersion solvent as well as the individual geometric parameters of the agitation element (for example, diameter, precise position and toothing size). The person skilled in the art is easily able to conduct the corresponding experiments for delivering the desired particle size.
  • the agitator frequency is generally between 1,000 and 25,000 upm, preferably 2,000 to 20,000 upm.
  • the dispersion time meaning the time period during which the dispersion tool operates at full power, is between 1 and 30 minutes, preferably between 2 and 15 minutes.
  • the passivation agent therein can be added already together with the metal and solvent prior to the beginning of the heating phase. Preferably, however, it is only added after the metal has melted, meaning at temperatures >180° C. The addition can be in an uncontrolled fashion (meaning in one portion) during the dispersion process. Preferably, the passivation agent is added over a time period of approximately 5 s to 1000 s, especially preferred 30 s to 500 s.
  • Fatty acids or fatty acid esters are used as passivation agents. These auxiliary agents have the advantage that they are commercially available and non-toxic, without remarkable steam pressure, and they do not generate a disturbing film made up of the elements oxygen, carbon and hydrogen on the metal surface.
  • auxiliary agents have the advantage that they are commercially available and non-toxic, without remarkable steam pressure, and they do not generate a disturbing film made up of the elements oxygen, carbon and hydrogen on the metal surface.
  • Examples of preferred passivation agents are: olein (oleic acid), stearic acid, palmitinic acid, lauric acid, myristinic acid, margaric acid, palmitoleinic acid, linolic acid, linolenic acid, either in pure form or as mixtures thereof.
  • the esters thereof can be used, for example fatty acid glycerides or the esters with monovalent alcohols, for example ethylates, propanolates or butylates.
  • Natural products such as rapeseed oil, olive oil, sunflower oil or linseed oil can especially preferably be used.
  • passivation agents generally 0.1 to 50 g are used per kg lithium metal.
  • the use of 1 to 10 g passivation agent per kg lithium metal is preferred.
  • the specific quantity depends on the concentration of the functional groups (these are, for example, carboxylic acid groups or carboxylate groups) inside the passivation agent, as well as on the degree of fineness of the metal powder that is to be generated: the higher the degree of fineness, the greater is the specific surface, and consequently the higher the need for passivation agent.
  • the lithium metal is used in the pure form thereof, meaning the metallic contaminations must be below 500 ppm in total.
  • the sodium content is limited to a maximum of 200 ppm.
  • the Na content is preferably ⁇ 100 ppm, especially preferred ⁇ 50 ppm.
  • the mean particle size of the metal powder according to the invention is max. 200 ⁇ m, preferably max. 100 ⁇ m, and especially preferred max. 50 ⁇ m.
  • Expedient coating agents are, for example, phosphor-containing compounds (such as phosphoric acid, lithium tris(oxalato)phosphate), fluorinating agents (for example perfluoropentylamine), waxes (for example, polyethylene wax) or polymer coatings (for example, with PU, PTFE, PVC or polystyrol).
  • Said additional passivation is done in a hydrocarbon solvent at temperatures below the melting point of lithium (meaning ⁇ 180.5° C.).
  • the lithium metal powder according to the invention demonstrates in the differential scanning calorimetry test (DSC test), when in suspension with N-methyl-2-pyrrolidone (water content ⁇ ca. 200 ppm) at a minimum of 15 hours storage at 50° C., and especially preferred at 100° C., no significant exothermal effect, particularly no “run-away phenomenon.” This behavior is explained in further detail in the following examples.
  • FIG. 1 the thermal behavior during storage of the metal powder according to Example 1 in NMP at 80° C. and 100° C. furnace temperature ( ⁇ ) and sample temperature (+, ⁇ );
  • FIG. 2 the thermal behavior during storage of the metal powder according to comparison example 1 in NMP at 50° C. furnace temperature ( ⁇ ) and sample temperature (+);
  • FIG. 3 the thermal behavior during storage of a metal powder (Na content 17 ppm) obtained according to Example 1 in NMP with a water content of 1%, furnace temperature ( ⁇ ) and sample temperature (+, ⁇ );
  • FIG. 4 the thermal behavior during storage of a metal powder having an Na content of 55 ppm obtain according to Example 1 at 50° C. and 100° C. furnace temperature ( ⁇ ) and sample temperature (+, x) in NMP (148 ppm water content);
  • FIG. 5 the thermal behavior during storage of a metal powder having an Na content of 55 ppm obtained according to Example 1 at 80° C. furnace temperature ( ⁇ ) and sample temperature (+) in NMP (200 ppm water content).
  • the suspension is drained onto a vacuum filter, the filter residue is washed multiple times with hexane until it is fee of oil, then vacuum-dried.
  • the suspension is drained onto a vacuum filter, the filter residue is washed multiple times with hexane until it is fee of oil, then vacuum-dried.
  • Example 2 and Comparison Example 2 demonstrate the substantially improved stability of the lithium metal powder according to the invention in contact with NMP: while the product according to the invention did not cause any significant exothermal effects at storage at 80° C., nor at 100° C. (the sample temperature remains visibly below the furnace temperature throughout the entire observation period), the metal powder that is not according to the invention shows already at storage at 50° C. a visible exothermal reaction. This can be recognized in that the sample temperature clearly exceeds the furnace temperature.
  • the especially preferred Li metal powder having an Na content of 17 ppm proves kinetically stable even in water-rich NMP.
  • the metal powder having a sodium content of 55 ppm is stable at storage temperatures of 50° C. and 80° C.; at 100° C., however, it shows an exothermal, but not a run-away effect. According to the DSC experiment at 100° C., 73% of the used lithium is still present in metallic form.

Abstract

The invention relates to a stabilized lithium metal powder and to a method for producing the same, the stabilized, pure lithium metal powder having been passivated in an organic inert solvent under dispersal conditions with fatty acids or fatty acid esters according to the general formula (I) R—COOR′, in which R stands for C10-C29 groups and R′ for H or C1-C8 groups.

Description

  • Described are a stabilized lithium metal powder and a method for producing stabilized, pure lithium metal powder by dispersion in an organic, inert solvent in the presence of fatty acids or fatty acid esters.
  • Lithium is an alkali metal. As with the heavy element homologues of the first main group, it is characterized by strong reactivity relative to a plurality of materials. It reacts violently, often igniting, with water, alcohols and other materials containing protic hydrogen. Exposed to air, it is unstable reacting with oxygen, nitrogen and carbon dioxide. This is why it is usually handled under an inert gas (noble gases, such as argon) and stored under a protective layer of paraffin oil.
  • Furthermore, it reacts with many functionalized solvents, even if these do not contain any protic hydrogen. For example, cyclic ethers such as THF are opened by ring cleaving, ester and carbonyl compounds are generally lithiated and/or reduced. The reaction of the named chemicals and/or environmental materials is often catalyzed by water. Correspondingly, lithium metal can be stored and processed over longer periods of time in dry air, because it generates a somewhat stable passivation layer that prevents any further corrosion from occurring. Similar comments apply for functionalized solvents, for example N-methyl-2-pyrrolidone, that are substantially less reactive relative to lithium in a water-free form than, for example, with water contents of>several 100 ppm.
  • A number of corrosion-reducing coating methods was developed to improve the storage life of lithium metal and security during processing. Correspondingly, U.S. Pat. No. 5,567,474 and U.S. Pat. No. 5,776,369, for example, disclose treating lithium metal with CO2. For the coating, liquid lithium in an inert hydrocarbon is typically brought in contact with at least 0.3% CO2 for at least 1 minute. However, the protection that is thus achieved is insufficient for many applications, especially for the prelithiation of battery electrode materials in a N-methyl-2-pyrrolidone (NMP) suspension.
  • A further method for stabilizing lithium metal provides for heating the same in excess of the melting point thereof, stirring the melted lithium and bringing it into contact with a fluorinating agent, for example perfluoropentylamine (WO 2007/005983A2). Disadvantageously, however, fluorinating agents are often toxic or caustic, which is why they are used with great caution in industrial practice.
  • A further method for a protective surface treatment of lithium metal envisions providing the same with a wax layer, for example a polyethylene wax layer (WO 2008/045557A1). It is disadvantageous, however, that this method requires the use of quite a large quantity of coating agent. The examples that are listed in the mentioned patent application specify approximately 1%.
  • US 200810283155A1 discloses a method for stabilizing lithium metal that is characterized by the following steps: a) heating lithium metal powder in excess of the melting point thereof in order to produce melted lithium metal; b) dispersing the melted lithium metal; and c) bringing the melted lithium metal in contact with a phosphor-containing substance in order to generate a substantially continuous protective layer of lithium phosphate on the lithium metal powder. Handling acidic, caustic materials (phosphoric acid) is generally disadvantageous, but particularly in the presence of lithium metal: upon being brought in contact with each other, both materials react violently releasing an enormous amount of heat. Furthermore, explosive hydrogen gas is generated when reacting lithium metal with phosphoric acid.
  • Finally, US US2009/0061321 proposes the preparation of a stabilized lithium metal powder with a substantially continuous polymer coating. The polymer can be selected from the group comprising polyurethanes, PTFE, PVC, polystyrol, etc. Disadvantageously, this method provides the protected lithium metal with an undefined surface coating of organic substances that could interfere during any subsequent use thereof, for example the prelithiation of electrode materials.
  • Therefore, the object of the invention seeks to provide a method for preparing lithium metal powder with a passivating cover layer
      • that does not require the use of gaseous or acidic, caustic or toxic passivation agents;
      • that does not result in the formation of undefined organics, especially not in organic polymers; and
      • that causes the formation of a passivating protective layer made of an inorganic, poorly soluble salt film on the lithium surface; and
      • the surface coating of which does not interfere with any use, for example, as prelithiation agent for anode materials.
  • A lithium powder of this kind should be stable for days up to approximately 50° C. and in the presence of polar, reactive solvents, such as are used in the preparation of electrode coatings (for example, NMP).
  • According to the invention, the object is achieved by using saturated and/or unsaturated fatty acids and/or fatty acid esters according to the general formula I

  • R—COOR′  (I)
  • as passivation agent, wherein R denotes C10-C29 moieties, while R′ stands for H or C1-C8 moieties. A pure lithium, meaning particularly a lithium quality poor in sodium, is used as lithium source. Surprisingly, it was found that using a lithium metal that is poor in sodium, it is possible to obtain especially stable products that are safe to handle.
  • First, the lithium is heated under an inert gas (noble gas, for example dry argon) in an organic, inert solvent or solvent mixture (typically hydrocarbon-based) in excess of the temperature when melting occurs (180.5° C.). This process is possible at standard pressure with the use of solvents having boiling temperatures >180° C. (for example, undecane, dodecane or the corresponding commercially available mineral oil mixtures, for example Shellsols). If, on the other hand, more volatile hydrocarbons are used such as, for example, hexane, heptane, octane, decane, toluene, ethylbenzene or cumene, the melting process occurs in an enclosed vessel and under pressurized conditions.
  • The passivation agent is added when melting is complete, and operation of the agitator system that is used for preparing the dispersion (typically a dispersion disc) is started. The precise dispersion parameters (meaning mainly the rotation speed and the dispersion time) depend on the desired particle size. They further depend on the viscosity of the dispersion solvent as well as the individual geometric parameters of the agitation element (for example, diameter, precise position and toothing size). The person skilled in the art is easily able to conduct the corresponding experiments for delivering the desired particle size.
  • If lithium particles are to be prepared having a grain size in the range of between 5 and 100 μm, the agitator frequency is generally between 1,000 and 25,000 upm, preferably 2,000 to 20,000 upm. The dispersion time, meaning the time period during which the dispersion tool operates at full power, is between 1 and 30 minutes, preferably between 2 and 15 minutes.
  • The passivation agent therein can be added already together with the metal and solvent prior to the beginning of the heating phase. Preferably, however, it is only added after the metal has melted, meaning at temperatures >180° C. The addition can be in an uncontrolled fashion (meaning in one portion) during the dispersion process. Preferably, the passivation agent is added over a time period of approximately 5 s to 1000 s, especially preferred 30 s to 500 s.
  • Fatty acids or fatty acid esters are used as passivation agents. These auxiliary agents have the advantage that they are commercially available and non-toxic, without remarkable steam pressure, and they do not generate a disturbing film made up of the elements oxygen, carbon and hydrogen on the metal surface. Examples of preferred passivation agents are: olein (oleic acid), stearic acid, palmitinic acid, lauric acid, myristinic acid, margaric acid, palmitoleinic acid, linolic acid, linolenic acid, either in pure form or as mixtures thereof. Furthermore, the esters thereof can be used, for example fatty acid glycerides or the esters with monovalent alcohols, for example ethylates, propanolates or butylates. Natural products, such as rapeseed oil, olive oil, sunflower oil or linseed oil can especially preferably be used. Of the named passivation agents, generally 0.1 to 50 g are used per kg lithium metal. The use of 1 to 10 g passivation agent per kg lithium metal is preferred. The specific quantity depends on the concentration of the functional groups (these are, for example, carboxylic acid groups or carboxylate groups) inside the passivation agent, as well as on the degree of fineness of the metal powder that is to be generated: the higher the degree of fineness, the greater is the specific surface, and consequently the higher the need for passivation agent.
  • The lithium metal is used in the pure form thereof, meaning the metallic contaminations must be below 500 ppm in total. In particular, the sodium content is limited to a maximum of 200 ppm. The Na content is preferably <100 ppm, especially preferred <50 ppm. Lithium metal powders correspondingly poor in sodium that have been passivated according to the above-described method by means of fatty acid or fatty acid esters surprisingly prove especially stable when they come in contact with reactive, polar solvents, for example N-methyl-2-pyrrolidone.
  • The mean particle size of the metal powder according to the invention is max. 200 μm, preferably max. 100 μm, and especially preferred max. 50 μm.
  • Within the meaning of the invention, it is also possible to stabilize metal powders, which have been passivated with fatty acids or fatty acid esters, even more strongly by the application of an additional coating. Expedient coating agents are, for example, phosphor-containing compounds (such as phosphoric acid, lithium tris(oxalato)phosphate), fluorinating agents (for example perfluoropentylamine), waxes (for example, polyethylene wax) or polymer coatings (for example, with PU, PTFE, PVC or polystyrol). Said additional passivation is done in a hydrocarbon solvent at temperatures below the melting point of lithium (meaning <180.5° C.).
  • The lithium metal powder according to the invention demonstrates in the differential scanning calorimetry test (DSC test), when in suspension with N-methyl-2-pyrrolidone (water content <ca. 200 ppm) at a minimum of 15 hours storage at 50° C., and especially preferred at 100° C., no significant exothermal effect, particularly no “run-away phenomenon.” This behavior is explained in further detail in the following examples.
  • Subsequently, the invention will be illustrated in further detail using an example, a comparison example and five figures without the claimed scope of protection intended to be limited in any way.
  • Shown are in:
  • FIG. 1: the thermal behavior during storage of the metal powder according to Example 1 in NMP at 80° C. and 100° C. furnace temperature (−) and sample temperature (+, Δ);
  • FIG. 2: the thermal behavior during storage of the metal powder according to comparison example 1 in NMP at 50° C. furnace temperature (−) and sample temperature (+);
  • FIG. 3: the thermal behavior during storage of a metal powder (Na content 17 ppm) obtained according to Example 1 in NMP with a water content of 1%, furnace temperature (−) and sample temperature (+, Δ);
  • FIG. 4: the thermal behavior during storage of a metal powder having an Na content of 55 ppm obtain according to Example 1 at 50° C. and 100° C. furnace temperature (−) and sample temperature (+, x) in NMP (148 ppm water content);
  • FIG. 5: the thermal behavior during storage of a metal powder having an Na content of 55 ppm obtained according to Example 1 at 80° C. furnace temperature (−) and sample temperature (+) in NMP (200 ppm water content).
  • EXAMPLE 1
  • Preparation of a lithium metal powder poor in sodium and passivated with linseed oil 399 g Shellsol D 100 and 19.4 g lithium metal bar sections are filled into a dry 2 L noble metal double-jacket reactor that was rendered inert. The lithium has a sodium content of 17 ppm. Stirring very slowly (ca. 50 rpm), the jacket heater raises the inside temperature to 205° C. Using a syringe, 0.05 g linseed oil is then added. The agitation frequency is raised to 3600 rpm and maintained for 6 minutes. The agitator is then brought to a halt and the suspension cooled to room temperature.
  • The suspension is drained onto a vacuum filter, the filter residue is washed multiple times with hexane until it is fee of oil, then vacuum-dried.
  • Yield: 15.6 g (80% of the theory)
  • Mean particle size: ca. 50 μm (image evaluation under SEM)
  • COMPARISON EXAMPLE 1
  • Preparation of lithium metal powder passivated with linseed oil 525 g Shellsol D 100 and 32.3 g lithium metal bar sections and 0.11 g sodium are filled into a dry 2 L noble metal double-jacket reactor that was rendered inert and is equipped with a dispersion agitation system. The lithium has a sodium content of 17 ppm. Stirring very slowly (ca. 50 rpm), the jacket heater raises the inside temperature to 205° C. Using a syringe, 0.09 g linseed oil is then added. The agitation frequency is raised to 3600 rpm and maintained for 6 minutes. The agitator is then brought to a halt and the suspension cooled to room temperature.
  • The suspension is drained onto a vacuum filter, the filter residue is washed multiple times with hexane until it is fee of oil, then vacuum-dried.
  • Yield: 27.3 g (84% of the theory)
  • Mean particle size: ca. 50 μm (image evaluation under SEM)
  • Na content (FES): 0.3%
  • EXAMPLE 2
  • Storage of a metal powder according to the invention from Example 1 in NMP at 80° C. and 100° C. (DSC test) Instrumentation by the company Systag, Switzerland (the Redex system) was used for the differential scanning calorimetry (DSC) testing. Under a protective gas atmosphere, approximately 2 g NMP and 0.1 g lithium metal powder were weighed into the sample vessels. Samples were stored at certain temperatures for 15 hours.
  • COMPARISON EXAMPLE 2
  • Storage of the metal powder that is not according to the invention from Comparison Example 1 in NMP at 50° C. (DSC test) Example 2 and Comparison Example 2 demonstrate the substantially improved stability of the lithium metal powder according to the invention in contact with NMP: while the product according to the invention did not cause any significant exothermal effects at storage at 80° C., nor at 100° C. (the sample temperature remains visibly below the furnace temperature throughout the entire observation period), the metal powder that is not according to the invention shows already at storage at 50° C. a visible exothermal reaction. This can be recognized in that the sample temperature clearly exceeds the furnace temperature.
  • EXAMPLE 3
  • Storage of the metal powder according to the invention (Na content 17 ppm) from Example 1 in NMP having a water content of 1% (DSC test).
  • The especially preferred Li metal powder having an Na content of 17 ppm proves kinetically stable even in water-rich NMP.
  • EXAMPLE 4
  • Storage of a lithium metal power prepared according to the invention having an Na content of 55 ppm at 50° C. and 100° C. in NMP (148 ppm water content) (DSC test)
  • EXAMPLE 5
  • Storage of a lithium metal power prepared according to the invention having an Na content of 55 ppm at 80° C. in NMP (200 ppm water content) (DSC test).
  • The metal powder having a sodium content of 55 ppm is stable at storage temperatures of 50° C. and 80° C.; at 100° C., however, it shows an exothermal, but not a run-away effect. According to the DSC experiment at 100° C., 73% of the used lithium is still present in metallic form.

Claims (23)

1.-12. (canceled)
13. A stabilized, pure lithium metal powder, wherein the same was passivated in an organic, inert solvent under dispersal conditions with a fatty acid or fatty acid ester according to formula I

R—COOR′  (I),
wherein R denotes C10-C29 moieties and R′ stands for H or C1-C8 moieties.
14. The stabilized, pure lithium metal powder according to claim 13, wherein it has a sodium content <200 ppm.
15. The stabilized, pure lithium metal powder according to claim 13, wherein it has a sodium content <100 ppm.
16. The stabilized, pure lithium metal powder according to claim 13, wherein it has a sodium content <50 ppm.
17. The stabilized, pure lithium metal powder according to claim 13, wherein the same has a mean particle size of a maximum of 200 μm.
18. The stabilized, pure lithium metal powder according to claim 13, wherein the stabilized, pure lithium metal powder does not show any run-away phenomenon when in contact with N-methyl-2-pyrrolidone having a water content of max. 200 ppm and a minimum of 15 hours storage at 50° C., preferably storage at 100° C.
19. A method for preparing a stabilized lithium metal powder comprising:
reacting pure lithium metal above 180° C. in an organic, inert solvent under dispersal conditions with a passivation agent containing one or a plurality of fatty acids and/or one or a plurality of fatty acid esters according to formula I

R—COOR′  (I),
wherein R denotes C10-C29 moieties and R′ stands for H or C1-C8 moieties.
20. The method for preparing a stabilized lithium metal powder according to claim 19, wherein the passivation agent is an unsaturated fatty acid selected from the group consisting of oleic acid, stearic acid, palmitic acid, lauric acid, myristinic acid, margaric acid, palmitoleic acid, linolic acid and linolenic acid.
21. The method for preparing a stabilized lithium metal powder according to claim 19, wherein the passivation agent is an ester of an unsaturated fatty acid selected from the group consisting of oleic acid, stearic acid, palmitic acid, lauric acid, myristinic acid, margaric acid, palmitoleic acid, linolic acid and linolenic acid.
22. The method for preparing a stabilized lithium powder according to claim 19, wherein the passivation agent comprises at least two unsaturated fatty acids selected from the group consisting of oleic acid, stearic acid, palmitic acid, lauric acid, myristinic acid, margaric acid, palmitoleic acid, linolic acid and linolenic acid.
23. The method for preparing a stabilized lithium powder according to claim 19, wherein the passivation agent comprises an ester of at least one unsaturated fatty acid selected from the group consisting of oleic acid, stearic acid, palmitic acid, lauric acid, myristinic acid, margaric acid, palmitoleic acid, linolic acid and linolenic acid.
24. The method for preparing a stabilized lithium powder according to claim 19, wherein the passivation agent comprises an ethylate.
25. The method for preparing a stabilized lithium powder according to claim 19, wherein the passivation agent comprises a triglyceride.
26. The method for preparing a stabilized lithium powder according to claim 19, wherein the passivation agent comprises a propanolate.
27. The method for preparing a stabilized lithium powder according to claim 19, wherein the passivation agent comprises a butylate.
28. The method for preparing a stabilized lithium powder according to claim 19, wherein the passivation agent comprises a natural oil.
29. The method for preparing a stabilized lithium powder according to claim 19, wherein the passivation agent comprises a natural oil selected from the group consisting of rapeseed oil, olive oil, sunflower oil and linseed oil.
30. The method according to claim 19, wherein the passivation agent is used in quantities of 0.1 g to 50 g per kg lithium metal.
31. The method according to claim 19, wherein hydrocarbons, selected from the group consisting of hexane, heptane, octane, decane, undecane, dodecane, toluene, ethylbenzene, cumene, either in the pure form thereof of as a mixture as commercially available boiling fractions, are used as inert, organic solvent.
32. The method according to claim 19, wherein an additional coating occurs at temperatures <180.5° C.
33. A method comprising prelithiating an electrochemically active material with the pure lithium metal that was passivated according to claim 13.
34. A method according to claim 33, wherein the electro-chemically active material is selected from the group consisting of graphite, alloy and a conversion anode for a lithium battery.
US13/825,446 2010-09-28 2011-09-28 Stabilized, pure lithium metal powder and method for producing the same Abandoned US20130181160A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010046699 2010-09-28
DE102010046699.9 2010-09-28
PCT/EP2011/066858 WO2012052265A2 (en) 2010-09-28 2011-09-28 Stabilized, pure lithium metal powder and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/066858 A-371-Of-International WO2012052265A2 (en) 2010-09-28 2011-09-28 Stabilized, pure lithium metal powder and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/595,152 Division US10655229B2 (en) 2010-09-28 2017-05-15 Stabilized, pure lithium metal powder and method for producing the same

Publications (1)

Publication Number Publication Date
US20130181160A1 true US20130181160A1 (en) 2013-07-18

Family

ID=44789440

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/825,446 Abandoned US20130181160A1 (en) 2010-09-28 2011-09-28 Stabilized, pure lithium metal powder and method for producing the same
US15/595,152 Active 2031-11-27 US10655229B2 (en) 2010-09-28 2017-05-15 Stabilized, pure lithium metal powder and method for producing the same
US16/848,384 Active US11021797B2 (en) 2010-09-28 2020-04-14 Stabilized, pure lithium metal powder and method for producing the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/595,152 Active 2031-11-27 US10655229B2 (en) 2010-09-28 2017-05-15 Stabilized, pure lithium metal powder and method for producing the same
US16/848,384 Active US11021797B2 (en) 2010-09-28 2020-04-14 Stabilized, pure lithium metal powder and method for producing the same

Country Status (9)

Country Link
US (3) US20130181160A1 (en)
EP (1) EP2621650B1 (en)
JP (1) JP5882335B2 (en)
KR (1) KR101919329B1 (en)
CN (1) CN103379972B (en)
BR (1) BR112013007687A2 (en)
CA (1) CA2811941C (en)
DE (1) DE112011103269A5 (en)
WO (1) WO2012052265A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157463A (en) * 2014-08-15 2014-11-19 万星光电子(东莞)有限公司 Negative electrode plate, manufacturing method thereof and lithium ion super capacitor
US9649688B2 (en) 2012-12-19 2017-05-16 Rockwood Lithium GmbH Lithium powder anode
EP3171433A4 (en) * 2014-07-14 2017-12-20 Sumitomo Metal Mining Co., Ltd. Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles
US10160036B2 (en) * 2013-04-19 2018-12-25 Albemarle Germany Gmbh Stabilized lithium metal formations coasted with a shell containing nitrogen, and a method for the production of same
US10431818B2 (en) 2013-05-16 2019-10-01 Albemarle Germany Gmbh Active lithium reservoir for lithium-ion batteries
US10522819B2 (en) 2014-02-13 2019-12-31 Albemarle Germany Gmbh Stabilised (partially) lithiated graphite materials, methods for the production thereof and use for lithium batteries
US11848448B2 (en) 2018-03-09 2023-12-19 Lg Energy Solution, Ltd. Lithium secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102411555B1 (en) 2014-02-13 2022-06-20 알베마를 저머니 게엠베하 Galvanic cells and (partially) lithiated lithium battery anodes with increased capacity, and method for producing synthetic graphite intercalation connections
CN105762328B (en) * 2014-12-15 2019-03-29 比亚迪股份有限公司 A kind of passivation of lithium powder and preparation method thereof adds the positive electrode and battery of the passivation of lithium powder
DE102015202612A1 (en) 2015-02-13 2016-08-18 Rockwood Lithium GmbH Stabilized (partially) lithiated graphite materials, process for their preparation and use for lithium batteries
CN104835652A (en) * 2015-03-24 2015-08-12 中航锂电(洛阳)有限公司 Lithium-intercalation negative pole piece used for lithium super-capacitor battery, method for preparing same, and lithium super-capacitor battery
CN106001585A (en) * 2015-03-31 2016-10-12 Tdk株式会社 Stable lithium powder and lithium ion secondary battery using same
CN107058761B (en) * 2016-12-19 2019-06-11 天齐锂业股份有限公司 The method that drop removes nitride in lithium metal or lithium alloy
CN106756105B (en) * 2016-12-19 2018-10-30 天齐锂业股份有限公司 The drop of nitride removes method in lithium metal or lithium alloy
CN108923046B (en) * 2018-07-03 2021-08-31 江苏乐能电池股份有限公司 Preparation method of nano porous lithium-rich lithium iron phosphate material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070006680A1 (en) * 2005-07-05 2007-01-11 Fmc Corporation Stabilized lithium metal powder for li-ion application, composition and process
US20080283155A1 (en) * 2007-05-16 2008-11-20 Fmc Corporation, Lithium Division Stabilized lithium metal powder for Li-ion application, composition and process
US20090035663A1 (en) * 2006-10-13 2009-02-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
US20090061321A1 (en) * 2007-08-31 2009-03-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
CN101418406A (en) * 2008-11-18 2009-04-29 天津中能锂业有限公司 Purification lithium and purification method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4491020B4 (en) * 1993-02-18 2005-12-01 Fmc Corp. Process for the preparation of alkali metal dispersions
US5776369A (en) 1993-02-18 1998-07-07 Fmc Corporation Alkali metal dispersions
JPH0811694B2 (en) * 1994-01-27 1996-02-07 リチウム コーポレーション オブ アメリカ Production method of crystalline antimonic acid
DE19681528B4 (en) * 1995-08-15 2006-10-05 Fmc Corp. Alkali metal dispersions
US20050130043A1 (en) * 2003-07-29 2005-06-16 Yuan Gao Lithium metal dispersion in electrodes
JP4317571B2 (en) * 2007-04-27 2009-08-19 Tdk株式会社 Active material, electrode, battery, and method for producing active material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070006680A1 (en) * 2005-07-05 2007-01-11 Fmc Corporation Stabilized lithium metal powder for li-ion application, composition and process
US20090035663A1 (en) * 2006-10-13 2009-02-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
US20080283155A1 (en) * 2007-05-16 2008-11-20 Fmc Corporation, Lithium Division Stabilized lithium metal powder for Li-ion application, composition and process
US20090061321A1 (en) * 2007-08-31 2009-03-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
CN101418406A (en) * 2008-11-18 2009-04-29 天津中能锂业有限公司 Purification lithium and purification method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Translation of CN101418406 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9649688B2 (en) 2012-12-19 2017-05-16 Rockwood Lithium GmbH Lithium powder anode
US10160036B2 (en) * 2013-04-19 2018-12-25 Albemarle Germany Gmbh Stabilized lithium metal formations coasted with a shell containing nitrogen, and a method for the production of same
US10431818B2 (en) 2013-05-16 2019-10-01 Albemarle Germany Gmbh Active lithium reservoir for lithium-ion batteries
US10522819B2 (en) 2014-02-13 2019-12-31 Albemarle Germany Gmbh Stabilised (partially) lithiated graphite materials, methods for the production thereof and use for lithium batteries
EP3171433A4 (en) * 2014-07-14 2017-12-20 Sumitomo Metal Mining Co., Ltd. Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles
US10439214B2 (en) 2014-07-14 2019-10-08 Sumitomo Metal Mining Co., Ltd. Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles
EP3641033A1 (en) * 2014-07-14 2020-04-22 Sumitomo Metal Mining Co., Ltd. Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles
CN104157463A (en) * 2014-08-15 2014-11-19 万星光电子(东莞)有限公司 Negative electrode plate, manufacturing method thereof and lithium ion super capacitor
US11848448B2 (en) 2018-03-09 2023-12-19 Lg Energy Solution, Ltd. Lithium secondary battery

Also Published As

Publication number Publication date
EP2621650A2 (en) 2013-08-07
CA2811941C (en) 2020-10-20
KR20130128389A (en) 2013-11-26
US11021797B2 (en) 2021-06-01
CN103379972B (en) 2016-03-09
DE112011103269A5 (en) 2013-09-12
US20200240020A1 (en) 2020-07-30
BR112013007687A2 (en) 2016-08-09
EP2621650B1 (en) 2020-12-09
KR101919329B1 (en) 2018-11-19
WO2012052265A2 (en) 2012-04-26
JP5882335B2 (en) 2016-03-09
JP2013545886A (en) 2013-12-26
US20170268110A1 (en) 2017-09-21
CN103379972A (en) 2013-10-30
CA2811941A1 (en) 2012-04-26
US10655229B2 (en) 2020-05-19
WO2012052265A3 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
US11021797B2 (en) Stabilized, pure lithium metal powder and method for producing the same
US11018334B2 (en) Stabilized lithium metal impressions coated with alloy-forming elements and method for production thereof
US10141568B2 (en) Stabilized lithium metal powder for Li-ion application, composition and process
JP5980121B2 (en) Surface passivated lithium metal and method for producing the same
EP2144723B1 (en) Stabilized lithium metal powder for li-ion application and process
CA2909681C (en) Stabilized lithium metal formations coated with a shell containing nitrogen, and method for producing same
KR102059397B1 (en) Phosphorous-coated lithium metal products, method for production and use thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEMETALL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WIETELMANN, ULRICH;REEL/FRAME:032443/0112

Effective date: 20131025

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ROCKWOOD LITHIUM GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEMETALL GMBH;REEL/FRAME:044019/0095

Effective date: 20170427