US20130058158A1 - Method, system, and device for l-shaped memory component - Google Patents

Method, system, and device for l-shaped memory component Download PDF

Info

Publication number
US20130058158A1
US20130058158A1 US13/224,268 US201113224268A US2013058158A1 US 20130058158 A1 US20130058158 A1 US 20130058158A1 US 201113224268 A US201113224268 A US 201113224268A US 2013058158 A1 US2013058158 A1 US 2013058158A1
Authority
US
United States
Prior art keywords
storage component
storage
electrode
trenches
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/224,268
Inventor
Fabio Pellizer
Innocenzo Tortorelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Bank NA
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/224,268 priority Critical patent/US20130058158A1/en
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PELLIZZER, FABIO, TORTORELLI, INNOCENZO
Publication of US20130058158A1 publication Critical patent/US20130058158A1/en
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: MICRON TECHNOLOGY, INC.
Priority to US15/598,051 priority patent/US20170324032A1/en
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: MICRON TECHNOLOGY, INC.
Priority to US15/858,794 priority patent/US10497863B2/en
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON SEMICONDUCTOR PRODUCTS, INC., MICRON TECHNOLOGY, INC.
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC., MICRON SEMICONDUCTOR PRODUCTS, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/068Patterning of the switching material by processes specially adapted for achieving sub-lithographic dimensions, e.g. using spacers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • H10N70/8265Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices on sidewalls of dielectric structures, e.g. mesa or cup type devices

Definitions

  • Subject matter disclosed herein may relate to integrated circuit devices, and may relate, more particularly, to circuitry related to a memory array.
  • Integrated circuit devices such as memory devices, for example, may be found in a wide range of electronic devices.
  • memory devices may be used in computers, digital cameras, cellular telephones, personal digital assistants, etc.
  • Factors related to a memory device may include, physical size, storage density, operating voltages, granularity of read/write operations, throughput, transmission rate, and/or power consumption, for example.
  • Other example factors that may be of interest to system designers include cost of manufacture, and/or ease of manufacture.
  • FIG. 1 is an illustration depicting a cross-sectional view of a phase change memory with a selector (PCMS) device, according to an embodiment.
  • PCMS selector
  • FIG. 2 is an illustration depicting a top view of a portion of a memory device, according to an embodiment.
  • FIG. 3 a is an illustration depicting a cross-sectional view of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 b is an illustration depicting a cross-sectional view of an additional portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 c is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 d is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an, embodiment.
  • FIG. 3 e is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 f is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 g is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 h is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 i is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 j is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 k is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 4 is a schematic block diagram depicting a system, including a cross-point array memory device, according to an embodiment.
  • Non-volatile memory devices may be found in a wide range of electronic devices.
  • Non-volatile memory devices may be used in computers, digital cameras, cellular telephones, and/or personal digital assistants, to name but a few examples.
  • Factors related to a memory device may include physical size, storage density, operating voltages, granularity of read/write operations, throughput, transmission rate, and/or power consumption.
  • Other example factors that may be of interest may include cost of manufacture, and/or ease of manufacture.
  • One example aspect of memory array design that may affect one or more factors may include integrated circuit die size.
  • One or more process technologies utilized to manufacture a memory device may at least in part determine at least some of the factors, such as those mentioned above, including storage density, physical size, and/or cost/ease of manufacture, for example.
  • An example process for forming one or more storage components in a phase change with selector (PCMS) memory array may comprise depositing a storage component material over and/or on an insulation layer having one or more trenches formed therein to affect a first dimension of one or more storage components.
  • An example process may further comprise forming one or more trenches in one or more materials of the memory array to affect a second dimension of the storage components at least in part through a lithographic operation utilizing a reduced pitch mask.
  • relatively high density storage arrays may be accomplished while reducing programming current.
  • individual storage components may comprise an “L” shape, wherein an approximately vertical portion of an “L” shape comprises an aspect ratio at least partially affected by a thickness of a deposition of storage component material on an approximately vertical wall of a trench in one dimension and by an additional trench formed in an approximately orthogonal direction using a reduced pitch photolithographic mask in another dimension.
  • a reduced aspect ratio may allow for a reduction in programming current.
  • a horizontal portion of the “L” shaped storage component, hereafter called lower leg of an “L” shape, for an individual storage component may contact an electrode positioned between a storage component and a selector.
  • a lower leg of an “L” shaped storage component may provide increased contact area with an electrode, providing an improved electrical connection with reduced resistance and further help increase yield during manufacturing.
  • an increased contact area between a storage component and an electrode may be provided while still providing a reduced aspect ratio storage component. In this manner, reduced programming current may be achieved and improved manufacturing yield may also be achieved.
  • claimed subject matter is not limited in scope in these respects.
  • FIG. 1 is an illustration depicting a cross-sectional view of an example embodiment 100 of a memory array.
  • memory array 100 may comprise a phase change memory switch (PCMS) array.
  • PCMS device may also be referred to as a “phase change memory with selector” device.
  • a phase change memory switch device such as PCMS 100
  • PCMS 100 may be implemented as a cross-point memory array.
  • a plurality of approximately orthogonally directed electrically conductive lines referred to as “electrodes” may be formed, with one subset of orthogonally directed electrodes in a material positioned below an array of storage components and another subset of orthogonally directed electrodes in a material positioned above the array of storage components.
  • cross-point memory array refers to a memory array having two or more approximately orthogonally directed sets of electrodes.
  • an example embodiment of a cross-point memory array may comprise one set of electrodes, such as electrodes depicted in electrode material 110 , positioned along a direction approximately orthogonal to a direction of another set of electrodes, such as electrodes depicted in electrode material 140 .
  • An electrically conductive component refers to component that may be utilized to route signals and/or supply voltages within a metal material and/or within a memory array.
  • An electrically conductive component, such as an electrode may comprise a sufficiently electrically conductive material, such as polysilicon, carbon, and/or metallic material, such as tungsten, titanium nitride, and/or titanium aluminum nitride, for example, for use in a memory device.
  • a sufficiently electrically conductive material such as polysilicon, carbon, and/or metallic material, such as tungsten, titanium nitride, and/or titanium aluminum nitride, for example, for use in a memory device.
  • an electrode material such as electrode material 140
  • An electrode material, such as electrode material 110 may be positioned above a selector material, such as material 120 , and/or a storage component material, such as material 130 , in an embodiment.
  • Semiconductor and metal material 150 may, for example, comprise one or more decoder circuits, such as one or more data/sense lines, for example a bit-line, decoder circuits and/or one or more access lines, for example a word-line, decoder circuits, in an embodiment.
  • Semiconductor and metal material 150 may further comprise, in an embodiment, one or more metal materials comprising electrodes utilized to route signals and/or supply voltages to electrode material 140 and/or electrode material 110 , in an embodiment.
  • semiconductor and metal material 150 may comprise electrically conductive interconnect that may electrically couple a decoder circuit to an electrode in electrode material 140 , although claimed subject matter is not limited in this respect.
  • electrically conductive electrodes of electrode material 140 may lie along a direction approximately orthogonal to a direction of electrically conductive electrodes of electrode material 110 .
  • a storage component material 130 , and/or a selector material, such as selector material 120 may be formed and/or positioned between two or more electrode materials, such as electrode material 140 and/or electrode material 110 , in an embodiment.
  • one or more decks of memory may be formed.
  • memory device 100 may comprise a one-deck memory array.
  • Other embodiments may comprise a greater amount of decks.
  • other embodiments may comprise four decks, although claimed subject matter is not limited in this respect.
  • a “deck” of memory may comprise an array of memory cells and a plurality of electrodes.
  • a first deck may comprise a plurality of access line, for example word-line, electrodes, an array of storage components formed over and/or on a plurality of word-line electrodes, and a plurality of bit-line electrodes formed over and/or on a plurality of storage components, for example.
  • a second deck may comprise a plurality of bit-line electrodes shared with a first deck and may further comprise an additional array of storage components positioned over and/or on a plurality of bit-line electrodes, according to an embodiment. Also, for a second deck, an additional plurality of word-line electrodes may be formed over and/or on an additional array of storage components.
  • claimed subject matter is not limited in scope in these respects.
  • a storage component may comprise a chalcogenide glass material, in an embodiment.
  • a PCMS storage component may be configured to retain or store memory in at least two different selectable states.
  • the states are considered either a “0” or a “1,”, where a “set” state, representing a binary value of ‘1’, for example, may correspond to a more crystalline , more conductive state for a material of a storage component and a “reset” state, representing a binary value of ‘0’, for example, corresponding to a more amorphous, more resistive state of a storage component material.
  • at least some individual memory cells may be configured to store more than two levels or states of information.
  • cross-point memory arrays may comprise one or more technologies other than PCMS, such as resistive memory technologies and/or other types of memory, and claimed subject matter is not limited in scope in this respect.
  • FIG. 2 is an illustration depicting a top view of a portion of example PCMS cross-point memory array 100 .
  • an electrode material 110 comprising a plurality of electrically conductive electrodes laying in a direction and an electrode material 140 comprising a plurality of electrically conductive electrodes laying in a direction approximately orthogonal to the direction of electrode material 110 .
  • FIG. 2 additionally shows cross-sectional line segments ‘A’, and ‘B’ that correspond to cross sectional views A and B.
  • a storage component 105 of PCMS array 100 located between electrode materials 110 and/or 140 , may be selected and/or accessed in part by energizing appropriate electrodes in electrode material 140 and/or electrode material 110 .
  • one or more driver circuits may transmit one or more signals, such as one or more word-line select signals and/or one or more bit-line select signals, to one or more electrodes of electrode material 110 and/or electrode material 140 .
  • electrode material 140 may comprise a plurality of word-line electrodes, for example.
  • electrode material 110 may comprise a plurality of bit-line electrodes, although claimed subject matter is not limited in these respects.
  • an example process for forming one or more storage components in a phase change with selector (PCMS) memory array may comprise depositing storage component material over and/or on one or more trenches in a dielectric material to decrease die size.
  • One or more trenches may be formed in an area above a plurality of rows individually comprising an electrode and a selector such that bottom portions a storage component may contact an electrode positioned between a storage component and a selector, in an embodiment.
  • An example process may further comprise forming a trench in a material of the memory array to affect a size of the storage components at least in part through a lithographic operation utilizing a reduced pitch mask.
  • Individual storage components may comprise an “L” shape, wherein an approximately vertical portion of an “L” shape comprises an aspect ratio at least partially affected by a thickness of a deposition of storage component material on an approximately vertical wall of a trench in one dimension and by an additional trench formed in an approximately orthogonal direction using a reduced pitch photolithographic mask in another dimension.
  • a reduced aspect ratio may allow for a reduction in programming current.
  • a horizontal potion of the “L” shaped storage component, hereafter called lower leg of an “L” shape for an individual storage component may contact an electrode positioned between a storage component and a selector.
  • a lower leg of an “L” shaped storage component may provide increased contact area with an electrode, providing an improved electrical connection with reduced resistance and further help increase yield during manufacturing.
  • an increased contact area between a storage component and an electrode may be provided while still providing a reduced aspect ratio storage component.
  • claimed subject matter is not limited in scope in these respects.
  • FIGS. 3 a through 3 k illustrate a process of forming PCMS 100 in accordance with an embodiment of the present technology.
  • Cross Section A depicts a cross-sectional view of a portion of PCMS array 100 looking in an ‘x’ direction
  • Cross Section B depicts a cross-sectional view of a portion of PCMS array 100 looking in a ‘y’ direction that is approximately orthogonal to an ‘x’ direction.
  • FIGS. 3 a through 3 k depict an example technique for forming at least some aspects of PCMS array 100 .
  • claimed subject matter is not limited in scope to the particular examples described herein and as depicted in FIGS. 3 a through 3 k.
  • a dielectric material 302 such as a nitride, may be formed by deposition and/or other known processes over and/or on a semiconductor and metal material 150 , in an embodiment.
  • a material, such as tungsten may be deposited or otherwise formed by known methods over and/or on a dielectric, such as a nitride, to produce an electrode material 140 .
  • Electrode material 140 may further comprise, for example, platinum, carbon, titanium nitride, and/or titanium aluminum nitride, among others, in an embodiment.
  • Dielectric material 302 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment. Embodiments are not limited to a particular type of dielectric material or electrode material. Note that at this point in an example process, electrode material 140 may comprise a deposited sheet of material, and so may not yet comprise individual electrodes. In an implementation, electrode material 140 may eventually comprise one or more electrodes approximately in parallel and approximately along an ‘x’ direction. Also, in an embodiment, an additional dielectric material 306 may be formed by deposition and/or other known processes over and/or on electrode material 140 , for example. Dielectric material 306 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment.
  • FIG. 3 b shows a subsequent stage of the process following the process described in FIG. 3 a .
  • a trench 301 may be formed by etching and/or other known processes in a dielectric material 306 , for example.
  • an etching process may stop approximately at electrode material 140 , for example.
  • a photoresist etch mask may be formed utilizing a lithographic technique, for example, to substantially protect PCMS array 100 outside of an area designated for trench 301 during an etching process, although the scope of claimed subject matter is not limited in this respect.
  • a storage component material 340 may be formed by deposition and/or other known processes over and/or on a surface of PCMS array 100 , including within trench 301 .
  • storage component material 340 may be deposited in a conformal manner.
  • storage component material 340 may comprise a chalcogenide glass material, for example.
  • An additional dielectric material 307 may be formed by deposition and/or other known processes over and/or on storage component material 340 , in an embodiment.
  • Dielectric material 307 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment. Again, other materials are also possible in other embodiments.
  • FIG. 3 c shows a subsequent stage of the process following the process described in FIG. 3 b .
  • a dielectric material 308 such as an oxide, may be formed by deposition and/or other known processes over and/or on PCMS array 100 , including filling trench 301 .
  • dielectric material 308 may comprise silicon oxide, for example.
  • FIG. 3 d shows a subsequent stage of the process following the process described in FIG. 3 c .
  • PCMS array 100 may be substantially planarized to remove portions of dielectric material 308 not within trench 301 and/or storage component material 340 not within trench 301 .
  • Planarization in an embodiment, may further expose portions of storage component material 340 at a top surface of PCMS 100 .
  • an example planarization process may comprise a chemical/mechanical polish (CMP) technique, although claimed subject matter is not limited in scope in this respect.
  • CMP chemical/mechanical polish
  • the term “wall” as it relates to a trench refers to an approximately vertical boundary of a trench formed, for example, by an etching process.
  • FIG. 3 e shows a subsequent stage of the process following the process described in FIG. 3 d .
  • an electrode material such as middle electrode 360
  • middle electrode 360 may comprise carbon, titanium nitride, and/or titanium aluminum nitride, for example, although claimed subject matter is not limited in this respect.
  • a selector material 120 may be formed by deposition and/or other known processes over and/or on middle electrode 360 .
  • selector material 120 may comprise a chalcogenide glass material.
  • selector material 120 may comprise a different chalcogenide material than that utilized for storage component material 340 .
  • FIG. 3 f shows a subsequent stage of the process following the process described in FIG. 3 e .
  • FIG. 3 f illustrates a plurality of trenches, such as trenches 303 , formed by etching and/or other known processes in PCMS array 100 to provide a plurality of rows along a ‘y’ direction.
  • an example etching process may etch upper electrode 370 , selector material 120 , and/or middle electrode 360 , as illustrated by trenches 303 in FIG. 3 f .
  • An example etching process may further etch dielectric material 308 previously deposited in trench 301 and/or a portion of an approximately horizontal section of storage component material 340 previously positioned at a bottom of trench 301 , as also illustrated by trenches 303 . Additionally, in an embodiment, an example etching process may etch through sections of dielectric material 306 and further may partially etch sections of dielectric material 302 , as additionally illustrated by trenches 303 .
  • components of storage component material 340 located within filled trench 301 may be partially and/or substantially protected by portions of dielectric material 308 and/or by portions of dielectric material 307 located within filled trench 301 , except for portions of storage component material 340 at the bottom of trench 301 .
  • An example etching process may form a plurality of individual electrodes in electrode material 140 , in an embodiment.
  • a plurality of electrodes of electrode material 140 may comprise a plurality of word-line electrodes for PCMS array 100 , although claimed subject matter is not limited in this respect.
  • Storage components 305 may, in an example embodiment, comprise an “L”-shaped storage component.
  • storage components 305 may be formed in one dimension in accordance with a deposition of storage component material over and/or on approximately vertical walls of a trench, such as trench 301 .
  • a width of a storage component in a dimension formed by deposition of storage component material may comprise a width that is smaller than would otherwise be available through conventional lithographic techniques. In this manner, a reduced-size storage component relative to standard pitch, for example, for a PCMS array, such as PCMS array 100 , may be realized.
  • FIG. 3 g shows a subsequent stage of the process following the process described in FIG. 3 f .
  • trenches 303 may be filled by deposition of additional dielectric material, such as nitride 320 , to provide some additional stability and/or electrical isolation, for example.
  • Nitride 306 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment, although claimed subject matter is not limited in scope in this respect.
  • FIG. 3 h shows a subsequent stage of the process following the process described in FIG. 3 g .
  • dielectric material such as nitride 320
  • an example planarization process may comprise a CMP technique, although claimed subject matter is not limited in scope in this respect.
  • FIG. 3 i shows a subsequent stage of the process following the process described in FIG. 3 h .
  • a metallic material such as tungsten
  • Electrode material 110 may further comprise, for example, platinum, carbon, titanium nitride, and/or titanium aluminum nitride, among others, in an embodiment.
  • FIG. 3 j shows a subsequent stage of the process following the process described in FIG. 3 i .
  • a plurality of trenches 313 may be formed by etching and/or other known processes into PCMS array 100 .
  • trenches 313 may be positioned along a direction approximately orthogonal to trenches 303 .
  • an example etching process may etch sections of electrode material 110 , upper electrode 370 , selector material 120 , middle electrode 360 , and/or dielectric material 306 .
  • an example etching process in accordance with an embodiment may etch electrode material 140 , at least partially.
  • an anisotropic etch may be used.
  • an etching process may be accomplished utilizing a photolithographic operation. During the etch process, portions of PCMS array 100 not intended to be etched may be protected by a mask. Additionally, it may be noted that trenches, such as trenches 313 , may define an additional dimension of an aspect ratio, also referred to as a cross-section, of approximately vertical portions of one or more storage components, such as storage components 305 .
  • one dimension of an aspect ratio, or cross section, of approximately vertical portions of storage components 305 may be at least partially affected by a thickness of a deposition of storage component material on a wall of trench 301
  • another dimension of an aspect ratio, or cross-section, of approximately vertical portions of storage components 305 may at least partially be affected by an example etching process utilizing a lithographic operation.
  • claimed subject matter is not limited in scope in these respects.
  • FIG. 3 k shows a subsequent stage of the process following the process described in FIG. 3 j .
  • additional dielectric material such as nitride 320
  • Deposition of additional dielectric material 320 may provide structural stability, as well as electrical isolation for individual aspects of PCMS array 100 .
  • claimed subject matter is not limited in scope in these respects.
  • FIG. 4 is a schematic block diagram depicting an example system 400 including an example PCMS 420 .
  • PCMS 420 may comprise a storage area 422 including a PCMS cross-point memory array, such as in accordance with one or more of examples.
  • PCMS 420 may, in an example embodiment, be coupled to a processor 410 by way of an interconnect 415 .
  • PCMS 420 in an embodiment may comprise a control unit 426 .
  • storage area 422 may store instructions 424 that may include one or more applications that may be executed by processor 410 , according with an embodiment.
  • Processor 410 may transmit a memory access command to PCMS 420 , for example.
  • Control unit 426 may access one or more memory cells of storage area 422 at least in part in response to receiving the memory access command from processor 410 , according to an embodiment.
  • computing platform 400 is merely one example of a system implemented in accordance with claimed subject matter, and the scope of claimed subject matter is not limited in these respects.
  • computing platform refers to a system and/or a device that includes the ability to process and/or store data in the form of signals or states.
  • a computing platform in this context, may comprise hardware, software, firmware or any combination thereof (other than software per se).
  • Computing platform 400 as depicted in FIG. 4 , is merely one such example, and the scope of claimed subject matter is not limited in these respects.
  • a computing platform may comprise any of a wide range of digital electronic devices, including, but not limited to, personal desktop or notebook computers, high-definition televisions, digital versatile disc (DVD) players or recorders, game consoles, satellite television receivers, cellular telephones, personal digital assistants, mobile audio or video playback or recording devices, or any combination of the above.
  • digital electronic devices including, but not limited to, personal desktop or notebook computers, high-definition televisions, digital versatile disc (DVD) players or recorders, game consoles, satellite television receivers, cellular telephones, personal digital assistants, mobile audio or video playback or recording devices, or any combination of the above.
  • DVD digital versatile disc
  • a process as described herein, with reference to flow diagrams or otherwise may also be executed and/or controlled, in whole or in part, by a computing platform.
  • a processing unit may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other devices units designed to perform the functions described herein, or combinations thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, micro-controllers, microprocessors, electronic devices, other devices units designed to perform the functions described herein, or combinations thereof.
  • such quantities may take the form of electrical and/or magnetic signals capable of being stored, transferred, combined, compared or otherwise manipulated as electronic signals representing information. It has proven convenient at times, principally for reasons of common usage, to refer to such signals as bits, data, values, elements, symbols, characters, terms, numbers, numerals, information, or the like. It should be understood, however, that all of these or similar terms are to be associated with appropriate physical quantities and are merely convenient labels.
  • a special purpose computer and/or a similar special purpose electronic computing device is capable of manipulating and/or transforming signals, typically represented as physical electronic and/or magnetic quantities within memories, registers, and/or other information storage devices, transmission devices, or display devices of the special purpose computer and/or similar special purpose electronic computing device.
  • the term “specific apparatus” may include a general purpose computer once it is programmed to perform particular functions pursuant to instructions from program software.
  • operation of a memory device may comprise a transformation, such as a physical transformation.
  • a physical transformation may comprise a physical transformation of an article to a different state or thing.
  • a change in state may involve an accumulation and/or storage of charge or a release of stored charge.
  • a change of state may comprise a physical change and/or transformation in magnetic orientation or a physical change and/or transformation in molecular structure, such as from crystalline to amorphous or vice-versa.
  • a change in physical state may involve quantum mechanical phenomena, such as, superposition, entanglement, or the like, which may involve quantum bits (qubits), for example.
  • quantum mechanical phenomena such as, superposition, entanglement, or the like
  • quantum bits quantum bits
  • a computer-readable (storage) medium typically may be non-transitory and/or comprise a non-transitory device.
  • a non-transitory storage medium may include a device that is tangible, meaning that the device has a concrete physical form, although the device may change its physical state.
  • non-transitory refers to a device remaining tangible despite this change in state.

Abstract

Embodiments disclosed herein may relate to forming reduced size storage components in a cross-point memory array. In an embodiment, a storage cell comprising an L-shaped storage component having an approximately vertical portion extending from a first electrode positioned below the storage material to a second electrode positioned above and/or on the storage component. A storage cell may further comprise a selector material positioned above and/or on the second electrode and a third electrode positioned above and/or on the selector material, wherein the approximately vertical portion of the L-shaped storage component comprises a reduced size storage component in a first dimension.

Description

    BACKGROUND
  • 1. Field
  • Subject matter disclosed herein may relate to integrated circuit devices, and may relate, more particularly, to circuitry related to a memory array.
  • 2. Information
  • Integrated circuit devices, such as memory devices, for example, may be found in a wide range of electronic devices. For example, memory devices may be used in computers, digital cameras, cellular telephones, personal digital assistants, etc. Factors related to a memory device that may be of interest to a system designer in considering a memory device's suitability for any particular application may include, physical size, storage density, operating voltages, granularity of read/write operations, throughput, transmission rate, and/or power consumption, for example. Other example factors that may be of interest to system designers include cost of manufacture, and/or ease of manufacture.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Claimed subject matter is particularly pointed out and distinctly claimed in the concluding portion of the specification. However, both as to organization and/or method of operation, together with objects, features, and/or advantages thereof, it may best be understood by reference to the following detailed description if read with the accompanying drawings in which:
  • FIG. 1 is an illustration depicting a cross-sectional view of a phase change memory with a selector (PCMS) device, according to an embodiment.
  • FIG. 2 is an illustration depicting a top view of a portion of a memory device, according to an embodiment.
  • FIG. 3 a is an illustration depicting a cross-sectional view of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 b is an illustration depicting a cross-sectional view of an additional portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 c is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 d is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an, embodiment.
  • FIG. 3 e is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 f is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 g is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 h is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 i is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 j is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 3 k is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
  • FIG. 4 is a schematic block diagram depicting a system, including a cross-point array memory device, according to an embodiment.
  • Reference is made in the following detailed description to the accompanying drawings, which form a part hereof, wherein like numerals may designate like parts throughout to indicate corresponding and/or analogous elements. It will be appreciated that elements illustrated in the figures have not necessarily been drawn to scale, such as for simplicity and/or clarity of illustration. For example, dimensions of some elements may be exaggerated relative to other elements for clarity. Further, it is to be understood that other embodiments may be utilized. Furthermore, structural and/or logical changes may be made without departing from the scope of claimed subject matter. It should also be noted that directions and/or references, for example, up, down, top, bottom, and so on, may be used to facilitate discussion of drawings and/or are not intended to restrict application of claimed subject matter. Therefore, the following detailed description is not to be taken to limit the scope of claimed subject matter and/or equivalents.
  • DETAILED DESCRIPTION
  • Integrated circuit devices, such as non-volatile memory devices, may be found in a wide range of electronic devices. Non-volatile memory devices may be used in computers, digital cameras, cellular telephones, and/or personal digital assistants, to name but a few examples. Factors related to a memory device that may be of interest in considering a memory device's suitability for a particular application may include physical size, storage density, operating voltages, granularity of read/write operations, throughput, transmission rate, and/or power consumption. Other example factors that may be of interest may include cost of manufacture, and/or ease of manufacture. One example aspect of memory array design that may affect one or more factors may include integrated circuit die size. One or more process technologies utilized to manufacture a memory device may at least in part determine at least some of the factors, such as those mentioned above, including storage density, physical size, and/or cost/ease of manufacture, for example.
  • An example process for forming one or more storage components in a phase change with selector (PCMS) memory array may comprise depositing a storage component material over and/or on an insulation layer having one or more trenches formed therein to affect a first dimension of one or more storage components. An example process may further comprise forming one or more trenches in one or more materials of the memory array to affect a second dimension of the storage components at least in part through a lithographic operation utilizing a reduced pitch mask. In an embodiment, for example, relatively high density storage arrays may be accomplished while reducing programming current.
  • In an example embodiment, individual storage components may comprise an “L” shape, wherein an approximately vertical portion of an “L” shape comprises an aspect ratio at least partially affected by a thickness of a deposition of storage component material on an approximately vertical wall of a trench in one dimension and by an additional trench formed in an approximately orthogonal direction using a reduced pitch photolithographic mask in another dimension. A reduced aspect ratio, for example, may allow for a reduction in programming current. Also in an example embodiment, a horizontal portion of the “L” shaped storage component, hereafter called lower leg of an “L” shape, for an individual storage component may contact an electrode positioned between a storage component and a selector. A lower leg of an “L” shaped storage component may provide increased contact area with an electrode, providing an improved electrical connection with reduced resistance and further help increase yield during manufacturing. In one or more example embodiments, an increased contact area between a storage component and an electrode may be provided while still providing a reduced aspect ratio storage component. In this manner, reduced programming current may be achieved and improved manufacturing yield may also be achieved. However, claimed subject matter is not limited in scope in these respects.
  • FIG. 1 is an illustration depicting a cross-sectional view of an example embodiment 100 of a memory array. In an embodiment, memory array 100 may comprise a phase change memory switch (PCMS) array. A PCMS device may also be referred to as a “phase change memory with selector” device. For an embodiment, a phase change memory switch device, such as PCMS 100, may be implemented as a cross-point memory array. In an embodiment of a PCMS cross-point array, a plurality of approximately orthogonally directed electrically conductive lines, referred to as “electrodes”, may be formed, with one subset of orthogonally directed electrodes in a material positioned below an array of storage components and another subset of orthogonally directed electrodes in a material positioned above the array of storage components. As used herein, the term “cross-point memory array” refers to a memory array having two or more approximately orthogonally directed sets of electrodes. For example, as depicted in FIG. 1, an example embodiment of a cross-point memory array may comprise one set of electrodes, such as electrodes depicted in electrode material 110, positioned along a direction approximately orthogonal to a direction of another set of electrodes, such as electrodes depicted in electrode material 140.
  • An electrically conductive component, such as an “electrode”, refers to component that may be utilized to route signals and/or supply voltages within a metal material and/or within a memory array. An electrically conductive component, such as an electrode, may comprise a sufficiently electrically conductive material, such as polysilicon, carbon, and/or metallic material, such as tungsten, titanium nitride, and/or titanium aluminum nitride, for example, for use in a memory device. Of course, claimed subject matter is not limited in scope in these respects. Other materials may, of course, also be used in an embodiment.
  • In an embodiment, an electrode material, such as electrode material 140, may be formed above one or more materials, such as material 150, comprising one or more semiconductor materials and/or one or more metal materials. An electrode material, such as electrode material 110, may be positioned above a selector material, such as material 120, and/or a storage component material, such as material 130, in an embodiment. Semiconductor and metal material 150 may, for example, comprise one or more decoder circuits, such as one or more data/sense lines, for example a bit-line, decoder circuits and/or one or more access lines, for example a word-line, decoder circuits, in an embodiment. Semiconductor and metal material 150 may further comprise, in an embodiment, one or more metal materials comprising electrodes utilized to route signals and/or supply voltages to electrode material 140 and/or electrode material 110, in an embodiment. For example, semiconductor and metal material 150 may comprise electrically conductive interconnect that may electrically couple a decoder circuit to an electrode in electrode material 140, although claimed subject matter is not limited in this respect.
  • In an embodiment, electrically conductive electrodes of electrode material 140 may lie along a direction approximately orthogonal to a direction of electrically conductive electrodes of electrode material 110. Also, in an embodiment, a storage component material 130, and/or a selector material, such as selector material 120, may be formed and/or positioned between two or more electrode materials, such as electrode material 140 and/or electrode material 110, in an embodiment.
  • Also, in an example embodiment, one or more decks of memory may be formed. For example, memory device 100 may comprise a one-deck memory array. Other embodiments may comprise a greater amount of decks. For example, other embodiments may comprise four decks, although claimed subject matter is not limited in this respect. As used herein, a “deck” of memory may comprise an array of memory cells and a plurality of electrodes. For example, a first deck may comprise a plurality of access line, for example word-line, electrodes, an array of storage components formed over and/or on a plurality of word-line electrodes, and a plurality of bit-line electrodes formed over and/or on a plurality of storage components, for example. A second deck may comprise a plurality of bit-line electrodes shared with a first deck and may further comprise an additional array of storage components positioned over and/or on a plurality of bit-line electrodes, according to an embodiment. Also, for a second deck, an additional plurality of word-line electrodes may be formed over and/or on an additional array of storage components. Of course, claimed subject matter is not limited in scope in these respects.
  • For a memory array, such as PCMS array 100, a storage component may comprise a chalcogenide glass material, in an embodiment. A PCMS storage component may be configured to retain or store memory in at least two different selectable states. For example in a binary system, the states are considered either a “0” or a “1,”, where a “set” state, representing a binary value of ‘1’, for example, may correspond to a more crystalline , more conductive state for a material of a storage component and a “reset” state, representing a binary value of ‘0’, for example, corresponding to a more amorphous, more resistive state of a storage component material. In other systems, at least some individual memory cells may be configured to store more than two levels or states of information. In a PCMS memory array, heat sufficient to change a phase of a storage component may be achieved by application of a current and/or voltage pulse to the storage component, in an embodiment. Further, in one or more example embodiments, cross-point memory arrays may comprise one or more technologies other than PCMS, such as resistive memory technologies and/or other types of memory, and claimed subject matter is not limited in scope in this respect.
  • FIG. 2 is an illustration depicting a top view of a portion of example PCMS cross-point memory array 100. Depicted in FIG. 2 is an electrode material 110 comprising a plurality of electrically conductive electrodes laying in a direction and an electrode material 140 comprising a plurality of electrically conductive electrodes laying in a direction approximately orthogonal to the direction of electrode material 110. FIG. 2 additionally shows cross-sectional line segments ‘A’, and ‘B’ that correspond to cross sectional views A and B. In an embodiment, a storage component 105 of PCMS array 100, located between electrode materials 110 and/or 140, may be selected and/or accessed in part by energizing appropriate electrodes in electrode material 140 and/or electrode material 110. For an example, PCMS cross-point memory array, such as array 100, one or more driver circuits, such as one or more word-line driver circuits and/or one or more bit-line driver circuits, may transmit one or more signals, such as one or more word-line select signals and/or one or more bit-line select signals, to one or more electrodes of electrode material 110 and/or electrode material 140. In an embodiment, electrode material 140 may comprise a plurality of word-line electrodes, for example. Also, in an embodiment, electrode material 110 may comprise a plurality of bit-line electrodes, although claimed subject matter is not limited in these respects. By transmitting a word-line select signal to a word-line electrode of electrode material 140 and/or by transmitting a bit-select signal to a bit-line electrode of electrode material 110 a particular storage component within array 100 may be selected, for example.
  • In one or more embodiments, it may be advantageous to provide higher density storage arrays, for example, while also providing reduced storage component programming current. It may further be advantageous to provide higher density storage arrays and/or reduced storage component programming current without significantly increasing cost and/or difficulty of manufacture, for example. Of course, claimed subject matter is not limited in these respects. These are merely non-limiting examples.
  • As mentioned previously, an example process for forming one or more storage components in a phase change with selector (PCMS) memory array may comprise depositing storage component material over and/or on one or more trenches in a dielectric material to decrease die size. One or more trenches may be formed in an area above a plurality of rows individually comprising an electrode and a selector such that bottom portions a storage component may contact an electrode positioned between a storage component and a selector, in an embodiment. An example process may further comprise forming a trench in a material of the memory array to affect a size of the storage components at least in part through a lithographic operation utilizing a reduced pitch mask. Individual storage components may comprise an “L” shape, wherein an approximately vertical portion of an “L” shape comprises an aspect ratio at least partially affected by a thickness of a deposition of storage component material on an approximately vertical wall of a trench in one dimension and by an additional trench formed in an approximately orthogonal direction using a reduced pitch photolithographic mask in another dimension. A reduced aspect ratio, for example, may allow for a reduction in programming current. Also in an example embodiment, a horizontal potion of the “L” shaped storage component, hereafter called lower leg of an “L” shape, for an individual storage component may contact an electrode positioned between a storage component and a selector. A lower leg of an “L” shaped storage component may provide increased contact area with an electrode, providing an improved electrical connection with reduced resistance and further help increase yield during manufacturing. In one or more example embodiments, an increased contact area between a storage component and an electrode may be provided while still providing a reduced aspect ratio storage component. However, claimed subject matter is not limited in scope in these respects.
  • FIGS. 3 a through 3 k illustrate a process of forming PCMS 100 in accordance with an embodiment of the present technology. Referring to FIG. 3 a, Cross Section A depicts a cross-sectional view of a portion of PCMS array 100 looking in an ‘x’ direction, and Cross Section B depicts a cross-sectional view of a portion of PCMS array 100 looking in a ‘y’ direction that is approximately orthogonal to an ‘x’ direction. FIGS. 3 a through 3 k depict an example technique for forming at least some aspects of PCMS array 100. Of course, claimed subject matter is not limited in scope to the particular examples described herein and as depicted in FIGS. 3 a through 3 k.
  • As illustrated in FIG. 3 a, As illustrated in FIG. 3 a, a dielectric material 302, such as a nitride, may be formed by deposition and/or other known processes over and/or on a semiconductor and metal material 150, in an embodiment. Also in an embodiment, a material, such as tungsten, may be deposited or otherwise formed by known methods over and/or on a dielectric, such as a nitride, to produce an electrode material 140. Electrode material 140 may further comprise, for example, platinum, carbon, titanium nitride, and/or titanium aluminum nitride, among others, in an embodiment. Dielectric material 302 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment. Embodiments are not limited to a particular type of dielectric material or electrode material. Note that at this point in an example process, electrode material 140 may comprise a deposited sheet of material, and so may not yet comprise individual electrodes. In an implementation, electrode material 140 may eventually comprise one or more electrodes approximately in parallel and approximately along an ‘x’ direction. Also, in an embodiment, an additional dielectric material 306 may be formed by deposition and/or other known processes over and/or on electrode material 140, for example. Dielectric material 306 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment.
  • FIG. 3 b shows a subsequent stage of the process following the process described in FIG. 3 a. As illustrated in FIG. 3 b, a trench 301 may be formed by etching and/or other known processes in a dielectric material 306, for example. In an embodiment, an etching process may stop approximately at electrode material 140, for example. In an embodiment, a photoresist etch mask may be formed utilizing a lithographic technique, for example, to substantially protect PCMS array 100 outside of an area designated for trench 301 during an etching process, although the scope of claimed subject matter is not limited in this respect. A storage component material 340 may be formed by deposition and/or other known processes over and/or on a surface of PCMS array 100, including within trench 301. In an embodiment, storage component material 340 may be deposited in a conformal manner. In an embodiment, storage component material 340 may comprise a chalcogenide glass material, for example. An additional dielectric material 307 may be formed by deposition and/or other known processes over and/or on storage component material 340, in an embodiment. Dielectric material 307 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment. Again, other materials are also possible in other embodiments.
  • FIG. 3 c shows a subsequent stage of the process following the process described in FIG. 3 b. As illustrated in FIG. 3 c, a dielectric material 308, such as an oxide, may be formed by deposition and/or other known processes over and/or on PCMS array 100, including filling trench 301. In an embodiment, dielectric material 308 may comprise silicon oxide, for example.
  • FIG. 3 d shows a subsequent stage of the process following the process described in FIG. 3 c. As illustrated in FIG. 3 d, PCMS array 100 may be substantially planarized to remove portions of dielectric material 308 not within trench 301 and/or storage component material 340 not within trench 301. Planarization, in an embodiment, may further expose portions of storage component material 340 at a top surface of PCMS 100. Also, in an embodiment, an example planarization process may comprise a chemical/mechanical polish (CMP) technique, although claimed subject matter is not limited in scope in this respect. As used herein, the term “wall” as it relates to a trench refers to an approximately vertical boundary of a trench formed, for example, by an etching process.
  • FIG. 3 e shows a subsequent stage of the process following the process described in FIG. 3 d. As depicted in FIG. 3 e, an electrode material, such as middle electrode 360, may be formed by deposition and/or other known processes over and/or on PCMS array 100. In an embodiment, middle electrode 360 may comprise carbon, titanium nitride, and/or titanium aluminum nitride, for example, although claimed subject matter is not limited in this respect. Additionally, a selector material 120 may be formed by deposition and/or other known processes over and/or on middle electrode 360. In an embodiment, selector material 120 may comprise a chalcogenide glass material. However, in an embodiment, selector material 120 may comprise a different chalcogenide material than that utilized for storage component material 340.
  • FIG. 3 f shows a subsequent stage of the process following the process described in FIG. 3 e. FIG. 3 f illustrates a plurality of trenches, such as trenches 303, formed by etching and/or other known processes in PCMS array 100 to provide a plurality of rows along a ‘y’ direction. In an embodiment, an example etching process may etch upper electrode 370, selector material 120, and/or middle electrode 360, as illustrated by trenches 303 in FIG. 3 f. An example etching process may further etch dielectric material 308 previously deposited in trench 301 and/or a portion of an approximately horizontal section of storage component material 340 previously positioned at a bottom of trench 301, as also illustrated by trenches 303. Additionally, in an embodiment, an example etching process may etch through sections of dielectric material 306 and further may partially etch sections of dielectric material 302, as additionally illustrated by trenches 303.
  • During etching, in an example embodiment, components of storage component material 340 located within filled trench 301 may be partially and/or substantially protected by portions of dielectric material 308 and/or by portions of dielectric material 307 located within filled trench 301, except for portions of storage component material 340 at the bottom of trench 301. An example etching process may form a plurality of individual electrodes in electrode material 140, in an embodiment. In an embodiment, a plurality of electrodes of electrode material 140 may comprise a plurality of word-line electrodes for PCMS array 100, although claimed subject matter is not limited in this respect.
  • An example etching process may further partially and/or substantially result in forming storage components 305, in an embodiment. Storage components 305 may, in an example embodiment, comprise an “L”-shaped storage component. In an embodiment, storage components 305 may be formed in one dimension in accordance with a deposition of storage component material over and/or on approximately vertical walls of a trench, such as trench 301. In an embodiment, a width of a storage component in a dimension formed by deposition of storage component material may comprise a width that is smaller than would otherwise be available through conventional lithographic techniques. In this manner, a reduced-size storage component relative to standard pitch, for example, for a PCMS array, such as PCMS array 100, may be realized.
  • FIG. 3 g shows a subsequent stage of the process following the process described in FIG. 3 f. As illustrated in FIG. 3 g, trenches 303 may be filled by deposition of additional dielectric material, such as nitride 320, to provide some additional stability and/or electrical isolation, for example. Nitride 306 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment, although claimed subject matter is not limited in scope in this respect.
  • FIG. 3 h shows a subsequent stage of the process following the process described in FIG. 3 g. As depicted in FIG. 3 h, dielectric material, such as nitride 320, may be planarized until upper electrode 370 is substantially exposed. Also, in an embodiment, an example planarization process may comprise a CMP technique, although claimed subject matter is not limited in scope in this respect.
  • FIG. 3 i shows a subsequent stage of the process following the process described in FIG. 3 h. As illustrated at FIG. 3 i, a metallic material, such as tungsten, may be formed by deposition and/or other known processes over and/or on PCMS array 100 to form electrode material 110. Electrode material 110 may further comprise, for example, platinum, carbon, titanium nitride, and/or titanium aluminum nitride, among others, in an embodiment.
  • FIG. 3 j shows a subsequent stage of the process following the process described in FIG. 3 i. As depicted in FIG. 3 j, a plurality of trenches 313 may be formed by etching and/or other known processes into PCMS array 100. In an embodiment, trenches 313 may be positioned along a direction approximately orthogonal to trenches 303. In an embodiment, an example etching process may etch sections of electrode material 110, upper electrode 370, selector material 120, middle electrode 360, and/or dielectric material 306. Also, an example etching process in accordance with an embodiment may etch electrode material 140, at least partially. In an example embodiment, an anisotropic etch may be used.
  • In an embodiment, an etching process may be accomplished utilizing a photolithographic operation. During the etch process, portions of PCMS array 100 not intended to be etched may be protected by a mask. Additionally, it may be noted that trenches, such as trenches 313, may define an additional dimension of an aspect ratio, also referred to as a cross-section, of approximately vertical portions of one or more storage components, such as storage components 305. In this manner, one dimension of an aspect ratio, or cross section, of approximately vertical portions of storage components 305 may be at least partially affected by a thickness of a deposition of storage component material on a wall of trench 301, and another dimension of an aspect ratio, or cross-section, of approximately vertical portions of storage components 305 may at least partially be affected by an example etching process utilizing a lithographic operation. However, claimed subject matter is not limited in scope in these respects.
  • FIG. 3 k shows a subsequent stage of the process following the process described in FIG. 3 j. As illustrated in FIG. 3 k, additional dielectric material, such as nitride 320, may be deposited over and/or on PCMS 100 and within trenches 313 to encapsulate storage components 305, in an embodiment, for example. Deposition of additional dielectric material 320 may provide structural stability, as well as electrical isolation for individual aspects of PCMS array 100. However, claimed subject matter is not limited in scope in these respects.
  • FIG. 4 is a schematic block diagram depicting an example system 400 including an example PCMS 420. In an embodiment, PCMS 420 may comprise a storage area 422 including a PCMS cross-point memory array, such as in accordance with one or more of examples. PCMS 420 may, in an example embodiment, be coupled to a processor 410 by way of an interconnect 415.
  • PCMS 420 in an embodiment may comprise a control unit 426. Additionally, storage area 422 may store instructions 424 that may include one or more applications that may be executed by processor 410, according with an embodiment. Processor 410 may transmit a memory access command to PCMS 420, for example. Control unit 426 may access one or more memory cells of storage area 422 at least in part in response to receiving the memory access command from processor 410, according to an embodiment. Of course, computing platform 400 is merely one example of a system implemented in accordance with claimed subject matter, and the scope of claimed subject matter is not limited in these respects.
  • The term “computing platform” as used herein refers to a system and/or a device that includes the ability to process and/or store data in the form of signals or states. Thus, a computing platform, in this context, may comprise hardware, software, firmware or any combination thereof (other than software per se). Computing platform 400, as depicted in FIG. 4, is merely one such example, and the scope of claimed subject matter is not limited in these respects. For one or more embodiments, a computing platform may comprise any of a wide range of digital electronic devices, including, but not limited to, personal desktop or notebook computers, high-definition televisions, digital versatile disc (DVD) players or recorders, game consoles, satellite television receivers, cellular telephones, personal digital assistants, mobile audio or video playback or recording devices, or any combination of the above. Further, unless specifically stated otherwise, a process as described herein, with reference to flow diagrams or otherwise, may also be executed and/or controlled, in whole or in part, by a computing platform.
  • The terms, “and”, “or”, and “and/or” as used herein may include a variety of meanings that also are expected to depend at least in part upon the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the exclusive sense. In addition, the term “one or more” as used herein may be used to describe any feature, structure, or characteristic in the singular or may be used to describe a plurality or some other combination of features, structures or characteristics. Though, it should be noted that this is merely an illustrative example and claimed subject matter is not limited to this example.
  • Methodologies described herein may be implemented by various techniques depending, at least in part, on applications according to particular features or examples. For example, methodologies may be implemented in hardware, firmware, or combinations thereof, along with software (other than software per se). In a hardware embodiment, for example, a processing unit may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other devices units designed to perform the functions described herein, or combinations thereof.
  • In the preceding detailed description, numerous specific details have been set forth to provide a thorough understanding of claimed subject matter. However, it will be understood by those skilled in the art that claimed subject matter may be practiced without these specific details. In other instances, methods and/or apparatuses that would be known by one of ordinary skill have not been described in detail so as not to obscure claimed subject matter.
  • Some portions of the preceding detailed description have been presented in terms of logic, algorithms and/or symbolic representations of operations on binary states stored within a memory of a specific apparatus or special purpose computing device or platform. In the context of this particular specification, the term specific apparatus or the like includes a general purpose computer once it is programmed to perform particular functions pursuant to instructions from program software. Algorithmic descriptions and/or symbolic representations are examples of techniques used by those of ordinary skill in the signal processing and/or related arts to convey the substance of their work to others skilled in the art. An algorithm is here, and generally, is considered to be a self-consistent sequence of operations and/or similar signal processing leading to a desired result. In this context, operations and/or processing involve physical manipulation of physical quantities. Typically, although not necessarily, such quantities may take the form of electrical and/or magnetic signals capable of being stored, transferred, combined, compared or otherwise manipulated as electronic signals representing information. It has proven convenient at times, principally for reasons of common usage, to refer to such signals as bits, data, values, elements, symbols, characters, terms, numbers, numerals, information, or the like. It should be understood, however, that all of these or similar terms are to be associated with appropriate physical quantities and are merely convenient labels. Unless specifically stated otherwise, as apparent from the following discussion, it is appreciated that throughout this specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining”, “establishing”, “obtaining”, “identifying”, “selecting”, “generating”, or the like may refer to actions and/or processes of a specific apparatus, such as a special purpose computer or a similar special purpose electronic computing device. In the context of this specification, therefore, a special purpose computer and/or a similar special purpose electronic computing device is capable of manipulating and/or transforming signals, typically represented as physical electronic and/or magnetic quantities within memories, registers, and/or other information storage devices, transmission devices, or display devices of the special purpose computer and/or similar special purpose electronic computing device. In the context of this particular patent application, the term “specific apparatus” may include a general purpose computer once it is programmed to perform particular functions pursuant to instructions from program software.
  • In some circumstances, operation of a memory device, such as a change in state from a binary one to a binary zero or vice-versa, for example, may comprise a transformation, such as a physical transformation. With particular types of memory devices, such a physical transformation may comprise a physical transformation of an article to a different state or thing. For example, but without limitation, for some types of memory devices, a change in state may involve an accumulation and/or storage of charge or a release of stored charge. Likewise, in other memory devices, a change of state may comprise a physical change and/or transformation in magnetic orientation or a physical change and/or transformation in molecular structure, such as from crystalline to amorphous or vice-versa. In still other memory devices, a change in physical state may involve quantum mechanical phenomena, such as, superposition, entanglement, or the like, which may involve quantum bits (qubits), for example. The foregoing is not intended to be an exhaustive list of all examples in which a change in state for a binary one to a binary zero or vice-versa in a memory device may comprise a transformation, such as a physical transformation. Rather, the foregoing are intended as illustrative examples.
  • A computer-readable (storage) medium typically may be non-transitory and/or comprise a non-transitory device. In this context, a non-transitory storage medium may include a device that is tangible, meaning that the device has a concrete physical form, although the device may change its physical state. Thus, for example, non-transitory refers to a device remaining tangible despite this change in state.
  • While there has been illustrated and/or described what are presently considered to be example features, it will be understood by those skilled in the art that various other modifications may be made, and/or equivalents may be substituted, without departing from claimed subject matter. Additionally, many modifications may be made to adapt a particular situation to the teachings of claimed subject matter without departing from the central concept described herein.
  • Therefore, it is intended that claimed subject matter not be limited to the particular examples disclosed, but that such claimed subject matter may also include all aspects falling within the scope of appended claims, and/or equivalents thereof.

Claims (24)

1. A method, comprising:
forming a size of a first dimension and a second dimension of one or more storage components for a first trench and a second trench; the first trench positioned along a first direction in a dielectric material and the second trench positioned along a second direction in the dielectric material approximately orthogonal to the first direction; wherein the size of the first dimension is partially and/or substantially formed by deposition of storage component material over and/or on the dielectric material and the size of the second dimension is partially and/or substantially formed by a lithographic operation.
2. The method of claim 1, wherein the depositing the storage component material comprises depositing phase change material over and/or on the dielectric material.
3. The method of claim 2, wherein the phase change material comprises a chalcogenide glass material.
4. The method of claim 1, wherein the depositing the storage component material over and/or on the dielectric material comprises depositing the storage component material over and/or on a nitride material.
5. The method of claim 1, wherein the depositing the storage component material over and/or on the dielectric material comprises depositing the storage component material on one or more approximately vertical walls of one or more of the first and second trenches.
6. The method of claim 5, wherein the one or more storage components comprise a memory array; and further comprising: depositing an additional dielectric material over and/or on the memory array, including filling the one or more of the first and second trenches.
7. The method of claim 6, wherein the depositing the additional dielectric material over and/or on the memory array comprises depositing an oxide material over and/or on the memory array, including filling the one or more of the first and second trenches.
8. The method of claim 5, further comprising planarizing a top surface of the memory array to remove a portion of the additional dielectric material and portions of the storage component material not located within the one or more of the first and second trenches, and to expose one or more top edges of approximately vertical portions of storage component material deposited on the one or more approximately vertical walls of the one or more trenches.
9. The method of claim 8, further comprising:
depositing an electrode material over and/or on the planarized surface of the memory array;
depositing a selector material over and/or on the electrode material; and
depositing an additional selector material over and/or on the selector material.
10. The method of claim 9, further comprising etching one or more additional trenches positioned approximately along the first direction to at least partially isolate individual storage components of the memory array.
11. The method of claim 9, wherein the etching the one or more additional trenches positioned approximately along the first direction comprises etching the one or more additional trenches positioned approximately along the first direction through the electrode material, the selector material, the additional electrode material, the dielectric material within the one or more trenches, and through a bottom electrode material.
12. The method of claim 11, further comprising filling the memory array with additional dielectric material and planarizing the top surface of the memory array to expose the additional electrode material deposited on the selector material.
13. The method of claim 1, wherein the forming the one or more additional trenches positioned approximately along the direction approximately orthogonal to the first direction in the one or more materials of the memory array comprises etching one or more sections of the one or more materials of the memory array utilizing a reduced pitch mask.
14. A memory device, comprising:
a storage cell comprising an L-shaped storage component having an approximately vertical portion extending from a first electrode positioned below the storage material to a second electrode positioned above and/or on the storage component, the storage cell further comprising a selector material positioned above and/or on the second electrode and a third electrode positioned above and/or on the selector material, wherein the approximately vertical portion of the L-shaped storage component comprises a reduced size storage component in a first dimension.
15. The memory device of claim 14, wherein the storage cells comprises a phase change memory with selector (PCMS) storage cell.
16. The memory device of claim 15, wherein the storage cell further comprises an integrated self-heating structure.
17. The memory device of claim 13, wherein the reduced size of the storage component in the first dimension is partially and/or substantially affected by a deposition of storage component material on an approximately vertical wall of a trench located in a dielectric material.
18. The memory device of claim 17, wherein the reduced size of the storage component in the first dimension is partially and/or substantially affected by a thickness of the storage component material deposition.
19. The memory device of claim 18, wherein a size of the storage component in a second dimension is partially and/or substantially affected by an additional trench.
20. The apparatus of claim 19, wherein the additional trench is positioned in a direction approximately orthogonal to the trench located in the dielectric material.
21. A method, comprising:
receiving one or more signals indicative of a memory access command from a processor of a computing platform; and
accessing a phase change memory with selector (PCMS) array of “L” shaped storage components in response to receiving the memory access command, wherein the accessing includes changing a state of one or more of the “L” shaped storage components of the PCMS array, wherein the one or more of the PCMS array of the “L” shaped storage components individually comprise an L-shaped storage material having an approximately vertical portion extending from a first electrode positioned below the storage component material to a second electrode positioned above and/or on the storage component material, the array of storage components further individually comprising a selector material positioned above and/or on the second electrode and a third electrode positioned above and/or on the selector material, wherein the approximately vertical portions of the L-shaped storage material of the individual storage components comprise a reduced size storage component in a first dimension.
22. The method of claim 21, wherein the size of the storage component in the first dimension is partially and/or substantially affected by a deposition of storage component material to one or more approximately vertical walls of one or more trenches located in a dielectric material.
23. The method of claim 22, wherein the size of the storage component in a second dimension is partially and/or substantially affected by one or more additional trenches formed in one or more materials of the array of storage components.
24. The method of claim 23, wherein the one or more additional trenches are positioned along a direction approximately orthogonal to the one or more trenches located in the dielectric material.
US13/224,268 2011-09-01 2011-09-01 Method, system, and device for l-shaped memory component Abandoned US20130058158A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/224,268 US20130058158A1 (en) 2011-09-01 2011-09-01 Method, system, and device for l-shaped memory component
US15/598,051 US20170324032A1 (en) 2011-09-01 2017-05-17 Method, system, and device for l-shaped memory component
US15/858,794 US10497863B2 (en) 2011-09-01 2017-12-29 Method, system, and device for L-shaped memory component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/224,268 US20130058158A1 (en) 2011-09-01 2011-09-01 Method, system, and device for l-shaped memory component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/598,051 Division US20170324032A1 (en) 2011-09-01 2017-05-17 Method, system, and device for l-shaped memory component

Publications (1)

Publication Number Publication Date
US20130058158A1 true US20130058158A1 (en) 2013-03-07

Family

ID=47753096

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/224,268 Abandoned US20130058158A1 (en) 2011-09-01 2011-09-01 Method, system, and device for l-shaped memory component
US15/598,051 Abandoned US20170324032A1 (en) 2011-09-01 2017-05-17 Method, system, and device for l-shaped memory component
US15/858,794 Active US10497863B2 (en) 2011-09-01 2017-12-29 Method, system, and device for L-shaped memory component

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/598,051 Abandoned US20170324032A1 (en) 2011-09-01 2017-05-17 Method, system, and device for l-shaped memory component
US15/858,794 Active US10497863B2 (en) 2011-09-01 2017-12-29 Method, system, and device for L-shaped memory component

Country Status (1)

Country Link
US (3) US20130058158A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520555B2 (en) 2011-09-01 2016-12-13 Ovonyx Memory Technology, Llc Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact
US20190157554A1 (en) * 2017-11-13 2019-05-23 Taiwan Semiconductor Manufacturing Co., Ltd. Novel resistive random access memory device
US10424619B2 (en) 2016-01-13 2019-09-24 Samsung Electronics Co., Ltd. Variable resistance memory devices and methods of manufacturing the same
US10923654B2 (en) 2018-08-28 2021-02-16 Samsung Electronics Co., Ltd. Variable resistance memory device
US10991880B2 (en) 2018-08-24 2021-04-27 Samsung Electronics Co., Ltd. Variable resistance memory device and method of fabricating the same
CN113437212A (en) * 2021-06-01 2021-09-24 长江先进存储产业创新中心有限责任公司 Three-dimensional phase change memory and preparation method thereof
US11450711B2 (en) 2019-06-26 2022-09-20 SK Hynix Inc. Electronic device and method of manufacturing electronic device
WO2024037524A1 (en) * 2022-08-18 2024-02-22 International Business Machines Corporation Vertical phase change memory device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569847B2 (en) * 2001-03-30 2009-08-04 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US7569845B2 (en) * 2006-08-14 2009-08-04 Industrial Technology Research Institute Phase-change memory and fabrication method thereof
US7655938B2 (en) * 2005-07-20 2010-02-02 Kuo Charles C Phase change memory with U-shaped chalcogenide cell
US20100038617A1 (en) * 2008-08-13 2010-02-18 Kabushiki Kaisha Toshiba Semiconductor memory device
US20100176368A1 (en) * 2009-01-14 2010-07-15 Ko Nikka Method of manufacturing semiconductor memory device, and semiconductor memory device
US20100176365A1 (en) * 2009-01-09 2010-07-15 Samsung Electronics Co., Ltd. Resistance variable memory devices and methods of fabricating the same
US20110155989A1 (en) * 2009-12-29 2011-06-30 Doo-Hwan Park Variable resistance memory device and methods of forming the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800933B2 (en) 2005-09-28 2010-09-21 Sandisk 3D Llc Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance
US7400522B2 (en) * 2003-03-18 2008-07-15 Kabushiki Kaisha Toshiba Resistance change memory device having a variable resistance element formed of a first and second composite compound for storing a cation
DE20321085U1 (en) 2003-10-23 2005-12-29 Commissariat à l'Energie Atomique Phase change memory has switching region along lateral extent of memory between contacts; current passes through switching region along lateral extent; switching region lies in memory material layer if there is constriction between contacts
US7265050B2 (en) 2003-12-12 2007-09-04 Samsung Electronics Co., Ltd. Methods for fabricating memory devices using sacrificial layers
JP5175526B2 (en) * 2007-11-22 2013-04-03 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof
US7466584B1 (en) 2008-01-02 2008-12-16 Ovonyx, Inc. Method and apparatus for driving an electronic load
US8377741B2 (en) 2008-12-30 2013-02-19 Stmicroelectronics S.R.L. Self-heating phase change memory cell architecture
US8729521B2 (en) * 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US8569734B2 (en) 2010-08-04 2013-10-29 Micron Technology, Inc. Forming resistive random access memories together with fuse arrays

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569847B2 (en) * 2001-03-30 2009-08-04 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US7655938B2 (en) * 2005-07-20 2010-02-02 Kuo Charles C Phase change memory with U-shaped chalcogenide cell
US7569845B2 (en) * 2006-08-14 2009-08-04 Industrial Technology Research Institute Phase-change memory and fabrication method thereof
US20100038617A1 (en) * 2008-08-13 2010-02-18 Kabushiki Kaisha Toshiba Semiconductor memory device
US20100176365A1 (en) * 2009-01-09 2010-07-15 Samsung Electronics Co., Ltd. Resistance variable memory devices and methods of fabricating the same
US20100176368A1 (en) * 2009-01-14 2010-07-15 Ko Nikka Method of manufacturing semiconductor memory device, and semiconductor memory device
US20110155989A1 (en) * 2009-12-29 2011-06-30 Doo-Hwan Park Variable resistance memory device and methods of forming the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580980B2 (en) 2011-09-01 2020-03-03 Ovonyx Memory Technology, Llc Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references
US9698345B2 (en) 2011-09-01 2017-07-04 Ovonyx Memory Technology, Llc Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references
US9876168B2 (en) 2011-09-01 2018-01-23 Ovonyx Memory Technology, Llc Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references
US10186659B2 (en) 2011-09-01 2019-01-22 Ovonyx Memory Technology, Llc Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references
US9520555B2 (en) 2011-09-01 2016-12-13 Ovonyx Memory Technology, Llc Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact
US11031553B2 (en) 2011-09-01 2021-06-08 Ovonyx Memory Technology, Llc Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references
US10424619B2 (en) 2016-01-13 2019-09-24 Samsung Electronics Co., Ltd. Variable resistance memory devices and methods of manufacturing the same
US20190157554A1 (en) * 2017-11-13 2019-05-23 Taiwan Semiconductor Manufacturing Co., Ltd. Novel resistive random access memory device
US11527714B2 (en) 2017-11-13 2022-12-13 Taiwan Semiconductor Manufacturing Co., Ltd. Resistive random access memory device
US10680172B2 (en) * 2017-11-13 2020-06-09 Taiwan Semiconductor Manufacturing Co., Ltd. Resistive random access memory device
US11038105B2 (en) 2017-11-13 2021-06-15 Taiwan Semiconductor Manufacturing Co., Ltd. Resistive random access memory device
US11968914B2 (en) 2017-11-13 2024-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Resistive random access memory device
US10991880B2 (en) 2018-08-24 2021-04-27 Samsung Electronics Co., Ltd. Variable resistance memory device and method of fabricating the same
US10923654B2 (en) 2018-08-28 2021-02-16 Samsung Electronics Co., Ltd. Variable resistance memory device
US11450711B2 (en) 2019-06-26 2022-09-20 SK Hynix Inc. Electronic device and method of manufacturing electronic device
CN113437212A (en) * 2021-06-01 2021-09-24 长江先进存储产业创新中心有限责任公司 Three-dimensional phase change memory and preparation method thereof
WO2024037524A1 (en) * 2022-08-18 2024-02-22 International Business Machines Corporation Vertical phase change memory device

Also Published As

Publication number Publication date
US20170324032A1 (en) 2017-11-09
US20180145250A1 (en) 2018-05-24
US10497863B2 (en) 2019-12-03

Similar Documents

Publication Publication Date Title
US10497863B2 (en) Method, system, and device for L-shaped memory component
US11031553B2 (en) Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references
US9444043B2 (en) Method, system and device for phase change memory with shunt
US8283186B2 (en) Magnetic memory device and method for manufacturing the same
EP2342752B1 (en) Damascene process for carbon memory element with miim diode
KR101004506B1 (en) Spin Transfer Torque memory device having common source line and method of the same
JP4945592B2 (en) Semiconductor memory device
US11081173B2 (en) Via formation for cross-point memory
US9755141B2 (en) Method for fabricating MRAM bits on a tight pitch
US9437287B2 (en) Methods, devices and processes for multi-state phase change devices
JP2005175461A (en) Asymmetrical area memory cell
US20060228853A1 (en) Memory devices including spacers on sidewalls of memory storage elements and related methods
CN104518087A (en) Resistive memory apparatus and manufacturing method thereof
US10854673B2 (en) Elementary cell comprising a resistive random-access memory and a selector, stage and matrix of stages comprising a plurality of said cells and associated manufacturing method
TW202137594A (en) Low resistance crosspoint architecture

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PELLIZZER, FABIO;TORTORELLI, INNOCENZO;REEL/FRAME:026847/0831

Effective date: 20110901

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001

Effective date: 20180629

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001

Effective date: 20190731

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731

Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731