US20120243970A1 - Arrangement and method for closed flow cooling of a gas turbine engine component - Google Patents

Arrangement and method for closed flow cooling of a gas turbine engine component Download PDF

Info

Publication number
US20120243970A1
US20120243970A1 US13/514,621 US200913514621A US2012243970A1 US 20120243970 A1 US20120243970 A1 US 20120243970A1 US 200913514621 A US200913514621 A US 200913514621A US 2012243970 A1 US2012243970 A1 US 2012243970A1
Authority
US
United States
Prior art keywords
cooling
medium
gas turbine
cooling medium
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/514,621
Inventor
Anders Hellgren
Hans Martensson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Aerospace Sweden AB
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to VOLVO AERO CORPORATION reassignment VOLVO AERO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HELLGREN, ANDERS, MARTENSSON, HANS
Publication of US20120243970A1 publication Critical patent/US20120243970A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • This invention relates to an arrangement for cooling a gas turbine engine component.
  • the invention relates to a load-carrying ring-structured component arranged to guide a main engine gas flow in a hot turbine part of a gas turbine engine.
  • the invention also relates to a gas turbine engine provided with such a component and a method for cooling such a component.
  • Turbine components of a gas turbine engine such as turbine casings, vanes and blades, are exposed to very high temperatures. Cooling of turbine components are often required to avoid material fatigue and failure.
  • turbine vanes comprises a load-carrying strut or shaft and an airfoil where the strut connects an inner structure of the gas turbine engine with an outer casing and where the airfoil is arranged around the strut for guiding a general gas flow through the engine.
  • compressed air tapped off from the compressor of the gas turbine engine is guided to the vane and led in a radial direction through a space between the strut and the airfoil.
  • the airfoil and the cooling air protect the load carrying strut from being overheated.
  • U.S. Pat. No. 6,261,054 refers to cooling requirements for vanes/blades of a gas turbine engine and shows an airfoil/vane provided with radially directed cooling channels through which a cooling medium flows.
  • the cooling medium is in the form of air from an off-board source, steam or compressed air from earlier stage of gas turbine engine.
  • the airfoil/vane is arranged between flanges that guide and distribute the cooling medium to and from the airfoil/vane in such a way that the cooling medium flows through the vane in one direction and then back through the vane in an opposite direction before being discharged.
  • the term “closed-circuit” is used to describe that the flow is re-directed and passes through the vane in both directions.
  • the invention concerns an arrangement for cooling a gas turbine engine component, said arrangement comprising: a gas turbine engine component provided with at least one cooling channel through which a cooling medium is intended to flow during operation of the arrangement, a feeding system configured to supply cooling medium to the cooling channel, a cooling channel inlet, and a cooling channel outlet.
  • the invention is characterized in that the feeding system is arranged in flow communication with both the inlet and the outlet of the cooling channel such as to form a closed flow system.
  • the inventive arrangement makes water and other liquid media suitable as cooling medium. Water is a much more effective cooling medium than e.g. air that commonly is used.
  • the invention further provides possibilities to extract useful energy from the arrangement, e.g. by producing useful heat or electricity from the heat extracted when cooling the heated cooling medium.
  • the invention enables the use of a more energy efficient cooling system. This is in turn useful for increasing the overall energy efficiency, i.e.
  • cooling medium e.g. is generated by tapping off air from a compressor and where the cooling medium simply is discharged after use (i.e. after having taken up heat).
  • a more efficient cooling e.g. achieved by using water as cooling medium, is advantageous in that it reduces the need for additional structures (additional heat shields etc.) and reduces the temperature of the cooled part which in turn increases the durability and reduces the need for using high-temperature resistant materials.
  • the feeding system comprises a heat extraction device configured to extract thermal energy from the cooling medium.
  • a suitable device for this purpose is a steam engine, such as a turbine driving a generator that produces electricity.
  • a heat exchanger that transfers heat from the cooling medium to a second medium for the purpose of e.g. pre-heating fuel or producing hot water or steam, which in turn can be used for e.g. heating or for generating electricity.
  • Electricity produced in this way and in connection to a gas turbine engine arranged for aircraft propulsion can be used to eliminate the need for Auxiliary Power Units (APUs) in the aircraft and/or to reduce the power taken-off from the power take-off shaft.
  • APUs Auxiliary Power Units
  • the heat extraction device is a heat exchanger arranged to transfer heat from the cooling medium to a second medium.
  • the second medium is arranged to form a second closed flow system, wherein the second medium is allowed to evaporate in the heat exchanger when the heat is transferred from the cooling medium, wherein the second closed flow system comprises a steam engine arranged to be driven by the evaporated second medium.
  • the second closed flow system preferably comprises, in flow order from an inlet to an outlet of the heat exchanger: a turbine in which second medium that has evaporated during or after its transport through the heat exchanger is allowed to expand and thereby drive the turbine, a condenser in which the second medium is condensed to a liquid form, and a pump for feeding second medium in liquid form to the heat exchanger inlet, wherein the turbine is operatively connected to a generator capable of generating electricity.
  • the heat extraction device is a steam engine configured to be driven by evaporated cooling medium.
  • the feeding system comprises, in flow order from cooling channel outlet to inlet: a cooling medium turbine in which cooling medium that has evaporated during or after its transport through the cooling channel is allowed to expand and thereby drive the cooling medium turbine; a condenser in which the cooling medium is condensed to a liquid form, and a pump for feeding cooling medium in liquid form to the cooling channel inlet, wherein the cooling medium turbine is operatively connected to a generator capable of generating electricity.
  • the gas turbine engine component comprises an inner ring element and an outer ring element connected by a plurality of circumferentially spaced elements extending in a radial direction of the ring elements, wherein the component is arranged to transmit load or thrust from a main shaft to a casing of a gas turbine engine.
  • the outer ring element comprises an outer annular part and an inner annular part which outer and inner parts are connected by, in relation to the gas turbine engine component, radially and axially extending load-carrying wall elements, wherein axially extending cooling channels are formed between the wall elements.
  • the structure of the outer ring element has a multifunction in that it provides both a load carrying function and channels suitable for being used as cooling channels.
  • the cooling arrangement is arranged in association with a gas turbine engine that, during operation of the engine, generates i) a first main gas flow that passes at an inside of an annular inner casing through e.g. a turbine of the engine and ii) a second main gas flow that passes at an outside of said annular casing, such as a turbojet engine, wherein the condenser is arranged in relation to the second main gas flow in such a way that the second main gas flow is allowed to cool and condense the second medium or the cooling medium.
  • Air with high velocity, as in the second main gas stream, provides for efficient heat transfer which makes it possible to make use of a small heat exchanger as condenser. Further, the heat transferred from the heated medium to the second airflow increases the thrust of a turbojet engine since increased temperature gives a greater volume flow.
  • the invention also concerns a gas turbine engine provided with a component of the above type as well as a method for cooling such a component.
  • FIG. 1 shows, in a schematic view, a turbo-jet engine provided with a component according to the invention
  • FIG. 2 shows, in a perspective and partly schematic view, an embodiment of the inventive cooling arrangement
  • FIG. 3 shows, in a partly sectional and partly schematic view, another embodiment of the inventive cooling arrangement
  • FIGS. 4-9 show an alternative design of the cooling channels for the inventive cooling arrangement.
  • FIG. 1 shows a turbojet engine.
  • the turbojet engine comprises a central body 1 , an annular outer casing 2 (fan casing), an annular inner casing 3 (engine casing), a fan or blower 4 , a low pressure compressor 5 , a high pressure compressor 6 , a combustion chamber 7 , a high pressure turbine 8 and a low pressure turbine 9 .
  • It further comprises a set of arms 10 extending in a radial direction from the inner casing 3 to an outer ring element 14 forming part of the outer casing 2 .
  • the arms 10 comprise aerodynamic vanes 11 primarily provided to act as guide vanes for air passing through the annular channel between the inner casing 3 and the outer casing 2 in an axial direction, i.e. a longitudinal direction, of the engine.
  • the arms 10 further comprise structural arms or load carrying vanes 12 primarily provided to guarantee a certain mechanical strength of the construction.
  • a gas turbine engine component 20 associated with a cooling arrangement according to the invention is in this example positioned between the high pressure turbine 8 and the low pressure turbine 9 .
  • said component 20 comprises an inner ring element 22 and an outer ring element 24 connected by a plurality of circumferentially spaced elements 26 (vanes) extending in a radial direction of the ring elements 22 , 24 .
  • the inner ring element 22 forms part of the central body 1 whereas the outer ring element 24 forms part of the annular inner casing 3 .
  • the component 20 is a load carrying structure that transmits load from an engine shaft/bearing housing via the inner ring element 22 and the vanes 26 to the outer ring element 24 .
  • the flow of gas through the turbojet engine is divided into two major streams, a first one of which passes through an annular channel between the central body 1 and the inner casing 3 , and passes the compressors 5 , 6 , the combustion chamber 7 and the turbines 8 , 9 .
  • the first stream passes through the component 20 in an axial direction thereof; through the spaces between the inner and outer ring elements 22 , 24 and between the vanes 26 .
  • the component 20 thus defines a gas channel for a main gas flow through a gas turbine engine.
  • a second stream passes through the annular channel between the inner casing 3 and the outer casing 2 .
  • a temperature of the second stream is in operation lower than a temperature of the first stream, but the second stream substantially increases the thrust of the turbojet engine.
  • An engine mount (not shown in FIG. 1 ) is arranged onto the outer ring element 14 by means of which the turbojet engine is attached to and held in position in relation to an aircraft.
  • FIG. 2 shows in a perspective and partly schematic view, an embodiment of the inventive cooling arrangement.
  • the cooling arrangement comprises the above mentioned gas turbine component 20 that in turn comprises the inner and outer ring elements 22 , 24 connected by the circumferentially spaced elements 26 (vanes) extending in the radial direction of the ring elements 22 , 24 .
  • the component 20 is further provided with a system of cooling channels that can be arranged in different ways inside the component 20 (see FIGS. 3-10 ).
  • a cooling medium in the form of water flows through the cooling channels during operation of the arrangement.
  • the arrangement further comprises a main cooling channel inlet 27 configured to provide an inlet for the cooling medium to the cooling channels arranged in the component 20 , and a main cooling channel outlet 28 configured to provide an outlet for the (heated) cooling medium from the cooling channels arranged in the component 20 .
  • the main inlet 27 is arranged at an annular inlet manifold 30 that extends in a circumferential direction around the component 20 along the outer ring element 24 and that distributes cooling medium from the main inlet 27 to a plurality of cooling channels arranged inside the component 20 (see FIG. 3 ).
  • the main outlet 28 is arranged at an annular outlet manifold 31 that extends in a circumferential direction around the component 20 along the outer ring element 24 and that guides cooling medium from the plurality of cooling channels arranged inside the component 20 to the main outlet 28 (see FIG. 3 ).
  • the annular inlet and outlet manifolds 30 , 31 are arranged at a distance from each other as seen in an axial direction of the component 20 . As shown in FIG. 3 , this allows cooling channels to be arranged in an axial direction in fluid communication with both manifolds 30 , 31 . Also the manifolds 30 , 31 may be regarded as cooling channels.
  • An internal wall section 25 forms a closing end section in each of the manifolds and prevents the cooling medium from taking a short-cut from the inlet 27 to the outlet 28 .
  • the wall section 25 forces the cooling medium to pass almost 360° around the component 20 .
  • the arrangement further comprises a feeding system 40 configured to supply cooling medium to the system of cooling channels.
  • the feeding system 40 is arranged in flow communication with both the main inlet 27 and the main outlet 28 of the cooling channel system such as to form a closed flow system. This means that the cooling medium, in this case the water, that flows out through the main outlet 28 is re-circulated such as to also flow in through the main inlet 27 .
  • the arrangement is designed in such a way that the cooling water evaporates while flowing through the cooling channels.
  • the water is generally in liquid form when passing the main inlet 27 and generally in gas form when passing the main outlet 28 .
  • Various designs may be suitable depending on e.g. the type of component, where the component is positioned in the gas turbine engine and type of engine. For a given component in a given engine, the degree of evaporation can be adjusted by adjusting the mass flow rate of the cooling medium.
  • the feeding system 40 further comprises, in flow order from cooling channel outlet to inlet 28 , 27 ,: a cooling medium turbine 41 in which cooling medium that has evaporated during its transport through the cooling channel and manifolds 30 , 31 is allowed to expand and thereby drive the cooling medium turbine 41 ; a condenser 42 in which the cooling medium is condensed to a liquid form, and a pump 43 for feeding cooling medium in liquid form to the cooling channel inlet 27 .
  • the cooling medium turbine 41 is operatively connected to a generator 44 for generating electricity.
  • the feeding system 40 comprises a heat extraction device in the form of a turbine 41 configured to extract thermal energy from the cooling medium.
  • the turbine 41 converts this thermal energy to kinetic (rotational) energy which in turn is converted to electricity by the generator 44 .
  • This electricity can, for instance, be used in electric systems of an aircraft provided with the inventive arrangement and the associated gas turbine engine as to replace electricity generated by an on-board APU or by the gas turbine engine (via the power take-off shaft).
  • the turbine 41 and the generator 44 together forms an energy conversion device configured to convert cooling medium thermal energy to another (useful) form of energy, in this case electricity.
  • Cooling water can be kept in liquid form during its transport through the cooling channels by keeping the pressure sufficiently high. Evaporation can in such a case be brought about by decreasing the pressure before the water reaches the turbine 41 , e.g. by letting the cooling water pass a release valve arranged between the outlet 28 and the turbine 41 .
  • the condenser 42 is a heat exchanger, and thus also a form of heat extraction device, where a secondary cooling medium is used to cool and condense the primary cooling medium used to cool the component 20 .
  • the condenser 42 is arranged in the annular channel between the inner casing 3 and the outer casing 2 such that the second (colder) gas stream works as the secondary cooling medium. Air with high velocity, as in the second gas stream, provides for efficient heat transfer which makes it possible to make use of a small heat exchanger as condenser. Further, the heat transferred from the (primary) cooling medium to the second airflow increases the thrust of the turbojet engine since increased temperature gives a greater volume flow.
  • the condenser/heat exchanger 42 can form part of or be integrated in the fan outlet guide vanes or other already existing static fan structure.
  • outdoor air can be used as secondary cooling medium for cooling/condensing the primary cooling medium in the condenser 42 .
  • FIG. 3 shows, in a partly sectional and partly schematic view, another embodiment of the inventive cooling arrangement.
  • This embodiment is in principle similar to the embodiment shown in FIG. 2 and therefore the same reference numbers has been used for the majority of parts involved.
  • the gas turbine component has been given reference number 200 as compared to 20 in FIG. 2 as to indicate that the cooling arrangement exemplified in FIG. 3 concerns only a circumferential section of the outer ring element 24 , i.e. the section delimited by wall sections 25 a and 25 b .
  • This section can, in principal, have any length in the circumferential direction of the outer ring element 24 , which means that the section e.g. can extend 360° around the outer ring element 24 such that the wall sections 25 a and 25 b coincide and such that the embodiment in FIG. 3 becomes similar to the embodiment shown in FIG. 2 .
  • the outer ring element 24 of the gas turbine component 200 is provided with a plurality of parallel and, in relation to the component 200 , axially extending cooling channels 50 separated by wall elements 55 .
  • the outer ring element 24 is a load carrying structure comprising an outer annular part and an inner annular part which outer and inner parts are connected by the radially (and axially) extending wall elements 55 .
  • the cooling channels 50 are thus formed between the load carrying wall elements 55 .
  • the structure of the outer ring element 24 thus provides both a load carrying function and channels suitable for being used as cooling channels.
  • an inlet manifold 30 provided with a main inlet 27 is arranged at an inlet side of the cooling channels 50 and an outlet manifold 31 provided with a main outlet 28 is arranged at an outlet side of the cooling channels 50 .
  • Each cooling channel 50 is arranged in fluid communication with the inlet and outlet manifolds 30 , 31 by means of inlet openings 51 and outlet opening 52 , respectively.
  • the closed flow system for the cooling medium is indicated with an arrowed line and can be described in the following way:
  • the cooling medium in this case water
  • a fraction of the flow is distributed to each of the cooling channels 50 via inlet opening 51 .
  • the gas turbine component 200 becomes heated by the hot gases flowing through the component 200 .
  • Heat absorbed by (the section of) the outer ring element 24 is transferred to the cooling water flowing through the cooling channels 50 which in this case results in that the water evaporates.
  • the cooling medium now in the form of steam, enters the outlet manifold 31 via outlet opening 52 .
  • the steam flows inside the inlet manifold 30 along its direction of extension (circumferentially along the outer ring element 24 ) until it reaches the main outlet 28 at the end of the outlet manifold 31 .
  • the steam flows to and drives the turbine 41 that in turn drives the generator 44 that generates electricity.
  • the steam is condensed to water which is forced to the main inlet 27 by means of the pump 43 .
  • FIGS. 4-9 show, for a component similar to what is described above, an alternative design of the cooling channels for the inventive cooling arrangement where cooling channels are provided not only in the outer ring element 24 but also in the vanes 26 and in the inner ring element 22 .
  • FIG. 4 shows a load-carrying vane 260 , the shape of which is only schematic, provided with first and second inlet cooling channels 261 , 262 arranged at a leading edge and a trailing edge, respectively, thereof.
  • First and second outlet cooling channels 263 , 264 are arranged along both sides (i.e. pressure and suction sides) of the vane 260 . All of these cooling channels extend through the vane 260 from one end to the other in a radial direction with reference to the annular component in which the vane 260 is intended to be arranged.
  • the vane 260 is further provided with centrally located channels 265 , in this case three in number, for leading e.g. oil to a bearing of the gas turbine engine.
  • FIG. 5 shows the vane 260 arranged and extending radially between an inner ring element 220 and an outer ring element 240 .
  • the vane 260 and the parts of the inner and outer ring elements 220 , 240 shown in FIG. 5 form a part of a gas turbine engine component similar to the component shown in FIGS. 1-3 .
  • the outer ring element 240 has a flange 241 for attachment to adjacent components in the gas turbine engine and an engine mount 242 for mounting of the engine to e.g. an aircraft.
  • FIG. 5 further shows two main inlets 270 each of which forms a passage for a cooling medium to an inlet manifold 300 .
  • the component also comprises two main outlets 280 in fluid communication with outlet manifolds 310 .
  • the partly separated systems may be combined in different ways if only one inlet and one outlet is desired.
  • a feeding system (not shown), similar to the feeding system 40 described above, is arranged in flow communication with the main inlets 270 and the main outlets 280 of the cooling channel system such as to form a closed flow system.
  • the flows of cooling medium through the two separate cooling channel systems are combined outside of the component so that one combined flow of cooling medium is supplied to and from the feeding system.
  • the cooling medium enters the inlet manifold 300 via the main inlet 270 and flows further through the trailing (or leading) edge of the vane towards the inner ring element 220 .
  • FIG. 6 shows, with arrows, how the cooling medium flows via the inlet manifolds 300 to the first or second inlet cooling channels 261 , 262 arranged at the leading and trailing edge, respectively, of the vane 260 .
  • relatively cool cooling medium is guided to the leading edge of the vane 260 which is an advantage since the leading edge is likely to be the part of the vane 260 that requires the most efficient cooling during operation of the gas turbine engine.
  • FIG. 6 also shows how the cooling medium leaves the first and second outlet cooling channels 263 , 264 of the vane 260 and enters the outlet manifolds 310 .
  • FIG. 7 shows that a first cavity 222 is arranged in the inner ring element 220 below the vane 260 at a position where the second inlet cooling channel 262 ends such that cooling medium flowing through the second inlet channel 262 can enter the first cavity 222 .
  • An opening 224 provides a further fluid communication to inner ring cooling channels 225 arranged in the inner ring element 220 .
  • a further opening 228 provides for fluid communication between the inner ring cooling channels 225 and a second cavity 226 arranged below and in fluid communication with the first outlet cooling channel 263 of the vane 260 .
  • a still further opening 223 can be arranged between the first and second cavities 222 , 226 as to (partly) bypass the inner ring cooling channels 225 .
  • the cooling medium enters the inlet manifold 300 via the inlet 270 and flows in a radial direction through the second inlet cooling channel 262 of the vane 260 and further via the first cavity 222 and opening 224 into the inner ring cooling channels 225 .
  • the cooling medium enters the second cavity 226 and flows further in a radial direction through the second outlet cooling channel 263 of the vane 260 .
  • This channel 263 ends at the outlet manifold 310 which guides the cooling medium to the outlet 280 .
  • the cooling medium is, in this example, in evaporated form.
  • the medium then enters the feeding system where its heat is utilized, in this case for generating electricity as described above. Finally, the cooling medium, in liquid form, is fed back to the inlet 270 .
  • the other partly separated flow of cooling medium through the component is in this example in principal similar to the flow described above but makes instead use of e.g. the first inlet cooling channel 261 , a third cavity 222 ′ corresponding to the first cavity 222 , second inner ring cooling channels 225 ′ and the second outlet cooling channel 264 of the vane 260 .
  • This other partly separated flow also flows through a further cavity corresponding to the second cavity 226 .
  • the two flows are mixed in the two second cavities 226 .
  • FIG. 8 shows part of what is described above and also that the flow that leaves the third cavity 222 ′ is split so that half the flow goes through the second inner ring cooling channels 225 ′and the other half through similar channels arranged on the other (left and nearer) side of the position of the vane 260 .
  • the outlet manifold 310 may be arranged as to combine the flows exiting the first and second outlet cooling channels 263 , 264 of the vane 260 and may be provided with only one outlet 280 . Further, the outlet manifold 310 may extend circumferentially along the outer ring 240 such as to receive flows from several vanes 260 . Also the inlet manifolds 300 may extend along the outer ring 240 and be arranged such as to feed several vanes 26 with a flow of cooling medium.
  • FIG. 9 shows some of the parts described above but in another view.
  • FIG. 9 also shows a load-carrying structure 316 that connects a bearing house 317 to the inner ring element 220 .
  • the bearing house 317 is arranged in association with a main shaft of the gas turbine engine.
  • FIG. 9 visualizes that the gas turbine engine component is arranged to transmit load or thrust from the engine shaft to e.g. an aircraft via the bearing house 317 , the load-carrying structure 316 , the inner ring element 220 , the vane 260 (not shown in FIG. 9 ), the outer ring element 240 and the engine mount 242 .
  • An advantage of the inventive cooling arrangement according to FIGS. 4-9 compared to the traditional solution with a two-part turbine vane structure that includes a first load-carrying part and a second heat-protecting/air-guiding part, is that only one part (with at least one cooling channel) is needed which provides for a more cost-efficient production.
  • the gas turbine component of the present invention is a gas turbine engine housing component located in the turbine region of the engine. Such a component must be configured to withstand a high thermal load from a passing gas flow during operation of the gas turbine engine.
  • the typical component can also be described as a gas turbine component that defines a gas channel for a main gas flow through a gas turbine engine or as a gas turbine component that is configured so that an external surface of the gas turbine component is in direct contact with a passing main gas flow through a gas turbine engine. Since such a main gas flow has its highest temperature in the region of the turbine (downstream of the combustion chamber) said component is typically arranged in the turbine region of a gas turbine engine.
  • the cooling medium can be pressurized so that no evaporation of cooling medium occurs.
  • Heat can in such a case be extracted from the cooling medium by using a heat exchanger that is arranged to transfer heat from the cooling medium to a second medium.
  • a heat exchanger is arranged in association with a flow connection between the between the inlet 27 , 270 and outlet 28 , 280 .
  • This second medium can be air (e.g. by using the second gas stream as the second medium as described above for the condenser 42 or by using another flow of air for the purpose of heating the cabin space) or fuel (for preheating purposes) or another medium.
  • the second medium is arranged to form a second closed flow system wherein the second medium is evaporated in the heat exchanger when the heat is transferred from the cooling medium.
  • the second closed flow system comprises, in flow order from heat exchanger outlet to inlet, the turbine 41 (and the generator 44 ), the condenser 42 and the pump 43 , which work in the same way as described above but where the second medium, instead of the cooling medium, drives the turbine etc.
  • the closed cooling flow system preferably comprises a cooling medium pump for circulating the cooling medium.
  • the second medium is suitably water.
  • the cooling medium that is to flow through the cooling channels of the component, which cooling medium in this variant is not intended to evaporate, can be water but other substances may now be used, such as oil.
  • turbine 41 and generator 44 can be replaced by another form of steam engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

An arrangement for cooling a gas turbine engine component includes a gas turbine engine component provided with at least one cooling channel through which a cooling medium is intended to flow during operation of the arrangement, a feeding system configured to supply cooling medium to the cooling channel, a cooling channel inlet, and a cooling channel outlet. The feeding system is arranged in flow communication with both the inlet and the outlet of the cooling channel such as to form a closed flow system. A gas turbine engine provided with such a component and a method for cooling such a component are also provided.

Description

    BACKGROUND AND SUMMARY
  • This invention relates to an arrangement for cooling a gas turbine engine component. In particular, the invention relates to a load-carrying ring-structured component arranged to guide a main engine gas flow in a hot turbine part of a gas turbine engine. The invention also relates to a gas turbine engine provided with such a component and a method for cooling such a component.
  • Turbine components of a gas turbine engine, such as turbine casings, vanes and blades, are exposed to very high temperatures. Cooling of turbine components are often required to avoid material fatigue and failure.
  • Conventionally, turbine vanes comprises a load-carrying strut or shaft and an airfoil where the strut connects an inner structure of the gas turbine engine with an outer casing and where the airfoil is arranged around the strut for guiding a general gas flow through the engine. To cool such a vane, compressed air tapped off from the compressor of the gas turbine engine is guided to the vane and led in a radial direction through a space between the strut and the airfoil. Thus, the airfoil and the cooling air protect the load carrying strut from being overheated.
  • U.S. Pat. No. 6,261,054 refers to cooling requirements for vanes/blades of a gas turbine engine and shows an airfoil/vane provided with radially directed cooling channels through which a cooling medium flows. The cooling medium is in the form of air from an off-board source, steam or compressed air from earlier stage of gas turbine engine. The airfoil/vane is arranged between flanges that guide and distribute the cooling medium to and from the airfoil/vane in such a way that the cooling medium flows through the vane in one direction and then back through the vane in an opposite direction before being discharged. The term “closed-circuit” is used to describe that the flow is re-directed and passes through the vane in both directions.
  • Although various turbine component cooling systems presented in the past work reasonably well there is still a need for improvements, in particular with regard to the efficiency of the cooling system.
  • It is desirable to provide means for cooling a gas turbine engine component in a more efficient way compared to conventional technique.
  • The invention, according to an aspect thereof, concerns an arrangement for cooling a gas turbine engine component, said arrangement comprising: a gas turbine engine component provided with at least one cooling channel through which a cooling medium is intended to flow during operation of the arrangement, a feeding system configured to supply cooling medium to the cooling channel, a cooling channel inlet, and a cooling channel outlet.
  • The invention, according to an aspect thereof, is characterized in that the feeding system is arranged in flow communication with both the inlet and the outlet of the cooling channel such as to form a closed flow system.
  • With such a design, no separate source for continuous generation of cooling medium is needed, e.g. it makes it possible to avoid tap-off from compressor which is advantageous in that such tap-off results in a loss of power of the gas turbine engine associated with the inventive arrangement. Further, the inventive arrangement makes water and other liquid media suitable as cooling medium. Water is a much more effective cooling medium than e.g. air that commonly is used. The invention further provides possibilities to extract useful energy from the arrangement, e.g. by producing useful heat or electricity from the heat extracted when cooling the heated cooling medium. Thus, the invention enables the use of a more energy efficient cooling system. This is in turn useful for increasing the overall energy efficiency, i.e. for reducing fuel consumption and/or increasing power, of an associated gas turbine engine compared to gas turbine engines with an open cooling system where the cooling medium e.g. is generated by tapping off air from a compressor and where the cooling medium simply is discharged after use (i.e. after having taken up heat).
  • A more efficient cooling, e.g. achieved by using water as cooling medium, is advantageous in that it reduces the need for additional structures (additional heat shields etc.) and reduces the temperature of the cooled part which in turn increases the durability and reduces the need for using high-temperature resistant materials.
  • In an embodiment of the invention the feeding system comprises a heat extraction device configured to extract thermal energy from the cooling medium. An example of a suitable device for this purpose is a steam engine, such as a turbine driving a generator that produces electricity. Another example is a heat exchanger that transfers heat from the cooling medium to a second medium for the purpose of e.g. pre-heating fuel or producing hot water or steam, which in turn can be used for e.g. heating or for generating electricity. Thus, this way the heat absorbed by the cooling medium can be used to produce useful heat or electricity.
  • Electricity produced in this way and in connection to a gas turbine engine arranged for aircraft propulsion can be used to eliminate the need for Auxiliary Power Units (APUs) in the aircraft and/or to reduce the power taken-off from the power take-off shaft.
  • In a further embodiment of the invention the heat extraction device is a heat exchanger arranged to transfer heat from the cooling medium to a second medium. In a variant of this embodiment the second medium is arranged to form a second closed flow system, wherein the second medium is allowed to evaporate in the heat exchanger when the heat is transferred from the cooling medium, wherein the second closed flow system comprises a steam engine arranged to be driven by the evaporated second medium. With such a design the cooling medium can remain in a liquid form which increases the freedom in the selection of compound to use as cooling medium. Moreover, since also the second medium is arranged in a closed system there is no waste of second medium, which typically is water.
  • In this variant the second closed flow system preferably comprises, in flow order from an inlet to an outlet of the heat exchanger: a turbine in which second medium that has evaporated during or after its transport through the heat exchanger is allowed to expand and thereby drive the turbine, a condenser in which the second medium is condensed to a liquid form, and a pump for feeding second medium in liquid form to the heat exchanger inlet, wherein the turbine is operatively connected to a generator capable of generating electricity.
  • In a further embodiment of the invention the heat extraction device is a steam engine configured to be driven by evaporated cooling medium. In a variant of this embodiment the feeding system comprises, in flow order from cooling channel outlet to inlet: a cooling medium turbine in which cooling medium that has evaporated during or after its transport through the cooling channel is allowed to expand and thereby drive the cooling medium turbine; a condenser in which the cooling medium is condensed to a liquid form, and a pump for feeding cooling medium in liquid form to the cooling channel inlet, wherein the cooling medium turbine is operatively connected to a generator capable of generating electricity.
  • In a further embodiment of the invention the gas turbine engine component comprises an inner ring element and an outer ring element connected by a plurality of circumferentially spaced elements extending in a radial direction of the ring elements, wherein the component is arranged to transmit load or thrust from a main shaft to a casing of a gas turbine engine. Further, the outer ring element comprises an outer annular part and an inner annular part which outer and inner parts are connected by, in relation to the gas turbine engine component, radially and axially extending load-carrying wall elements, wherein axially extending cooling channels are formed between the wall elements. In this design the structure of the outer ring element has a multifunction in that it provides both a load carrying function and channels suitable for being used as cooling channels.
  • In a further embodiment of the invention the cooling arrangement is arranged in association with a gas turbine engine that, during operation of the engine, generates i) a first main gas flow that passes at an inside of an annular inner casing through e.g. a turbine of the engine and ii) a second main gas flow that passes at an outside of said annular casing, such as a turbojet engine, wherein the condenser is arranged in relation to the second main gas flow in such a way that the second main gas flow is allowed to cool and condense the second medium or the cooling medium.
  • Air with high velocity, as in the second main gas stream, provides for efficient heat transfer which makes it possible to make use of a small heat exchanger as condenser. Further, the heat transferred from the heated medium to the second airflow increases the thrust of a turbojet engine since increased temperature gives a greater volume flow.
  • The invention also concerns a gas turbine engine provided with a component of the above type as well as a method for cooling such a component.
  • BRIEF DESCRIPTION OF DRAWINGS
  • In the description of the invention given below reference is made to the following figure, in which:
  • FIG. 1 shows, in a schematic view, a turbo-jet engine provided with a component according to the invention,
  • FIG. 2 shows, in a perspective and partly schematic view, an embodiment of the inventive cooling arrangement,
  • FIG. 3 shows, in a partly sectional and partly schematic view, another embodiment of the inventive cooling arrangement, and FIGS. 4-9 show an alternative design of the cooling channels for the inventive cooling arrangement.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a turbojet engine. The turbojet engine comprises a central body 1, an annular outer casing 2 (fan casing), an annular inner casing 3 (engine casing), a fan or blower 4, a low pressure compressor 5, a high pressure compressor 6, a combustion chamber 7, a high pressure turbine 8 and a low pressure turbine 9. It further comprises a set of arms 10 extending in a radial direction from the inner casing 3 to an outer ring element 14 forming part of the outer casing 2. The arms 10 comprise aerodynamic vanes 11 primarily provided to act as guide vanes for air passing through the annular channel between the inner casing 3 and the outer casing 2 in an axial direction, i.e. a longitudinal direction, of the engine. The arms 10 further comprise structural arms or load carrying vanes 12 primarily provided to guarantee a certain mechanical strength of the construction.
  • A gas turbine engine component 20 associated with a cooling arrangement according to the invention is in this example positioned between the high pressure turbine 8 and the low pressure turbine 9. As shown in FIG. 2, said component 20 comprises an inner ring element 22 and an outer ring element 24 connected by a plurality of circumferentially spaced elements 26 (vanes) extending in a radial direction of the ring elements 22, 24. In this example the inner ring element 22 forms part of the central body 1 whereas the outer ring element 24 forms part of the annular inner casing 3. The component 20 is a load carrying structure that transmits load from an engine shaft/bearing housing via the inner ring element 22 and the vanes 26 to the outer ring element 24.
  • The flow of gas through the turbojet engine is divided into two major streams, a first one of which passes through an annular channel between the central body 1 and the inner casing 3, and passes the compressors 5, 6, the combustion chamber 7 and the turbines 8, 9. Thus, the first stream passes through the component 20 in an axial direction thereof; through the spaces between the inner and outer ring elements 22, 24 and between the vanes 26. The component 20 thus defines a gas channel for a main gas flow through a gas turbine engine.
  • A second stream passes through the annular channel between the inner casing 3 and the outer casing 2. A temperature of the second stream is in operation lower than a temperature of the first stream, but the second stream substantially increases the thrust of the turbojet engine. An engine mount (not shown in FIG. 1) is arranged onto the outer ring element 14 by means of which the turbojet engine is attached to and held in position in relation to an aircraft.
  • FIG. 2 shows in a perspective and partly schematic view, an embodiment of the inventive cooling arrangement. The cooling arrangement comprises the above mentioned gas turbine component 20 that in turn comprises the inner and outer ring elements 22, 24 connected by the circumferentially spaced elements 26 (vanes) extending in the radial direction of the ring elements 22, 24. The component 20 is further provided with a system of cooling channels that can be arranged in different ways inside the component 20 (see FIGS. 3-10). A cooling medium in the form of water flows through the cooling channels during operation of the arrangement.
  • The arrangement further comprises a main cooling channel inlet 27 configured to provide an inlet for the cooling medium to the cooling channels arranged in the component 20, and a main cooling channel outlet 28 configured to provide an outlet for the (heated) cooling medium from the cooling channels arranged in the component 20. In this example the main inlet 27 is arranged at an annular inlet manifold 30 that extends in a circumferential direction around the component 20 along the outer ring element 24 and that distributes cooling medium from the main inlet 27 to a plurality of cooling channels arranged inside the component 20 (see FIG. 3). Similarly, the main outlet 28 is arranged at an annular outlet manifold 31 that extends in a circumferential direction around the component 20 along the outer ring element 24 and that guides cooling medium from the plurality of cooling channels arranged inside the component 20 to the main outlet 28 (see FIG. 3).
  • The annular inlet and outlet manifolds 30, 31 are arranged at a distance from each other as seen in an axial direction of the component 20. As shown in FIG. 3, this allows cooling channels to be arranged in an axial direction in fluid communication with both manifolds 30, 31. Also the manifolds 30, 31 may be regarded as cooling channels.
  • An internal wall section 25 forms a closing end section in each of the manifolds and prevents the cooling medium from taking a short-cut from the inlet 27 to the outlet 28. The wall section 25 forces the cooling medium to pass almost 360° around the component 20.
  • The arrangement further comprises a feeding system 40 configured to supply cooling medium to the system of cooling channels. In particular, the feeding system 40 is arranged in flow communication with both the main inlet 27 and the main outlet 28 of the cooling channel system such as to form a closed flow system. This means that the cooling medium, in this case the water, that flows out through the main outlet 28 is re-circulated such as to also flow in through the main inlet 27.
  • The arrangement is designed in such a way that the cooling water evaporates while flowing through the cooling channels. Thus, the water is generally in liquid form when passing the main inlet 27 and generally in gas form when passing the main outlet 28. Various designs may be suitable depending on e.g. the type of component, where the component is positioned in the gas turbine engine and type of engine. For a given component in a given engine, the degree of evaporation can be adjusted by adjusting the mass flow rate of the cooling medium.
  • As shown in FIG. 2, the feeding system 40 further comprises, in flow order from cooling channel outlet to inlet 28, 27,: a cooling medium turbine 41 in which cooling medium that has evaporated during its transport through the cooling channel and manifolds 30, 31 is allowed to expand and thereby drive the cooling medium turbine 41; a condenser 42 in which the cooling medium is condensed to a liquid form, and a pump 43 for feeding cooling medium in liquid form to the cooling channel inlet 27. The cooling medium turbine 41 is operatively connected to a generator 44 for generating electricity.
  • Accordingly, the feeding system 40 comprises a heat extraction device in the form of a turbine 41 configured to extract thermal energy from the cooling medium. The turbine 41 converts this thermal energy to kinetic (rotational) energy which in turn is converted to electricity by the generator 44. This electricity can, for instance, be used in electric systems of an aircraft provided with the inventive arrangement and the associated gas turbine engine as to replace electricity generated by an on-board APU or by the gas turbine engine (via the power take-off shaft). The turbine 41 and the generator 44 together forms an energy conversion device configured to convert cooling medium thermal energy to another (useful) form of energy, in this case electricity.
  • Cooling water can be kept in liquid form during its transport through the cooling channels by keeping the pressure sufficiently high. Evaporation can in such a case be brought about by decreasing the pressure before the water reaches the turbine 41, e.g. by letting the cooling water pass a release valve arranged between the outlet 28 and the turbine 41.
  • The condenser 42 is a heat exchanger, and thus also a form of heat extraction device, where a secondary cooling medium is used to cool and condense the primary cooling medium used to cool the component 20. In the embodiment shown here the condenser 42 is arranged in the annular channel between the inner casing 3 and the outer casing 2 such that the second (colder) gas stream works as the secondary cooling medium. Air with high velocity, as in the second gas stream, provides for efficient heat transfer which makes it possible to make use of a small heat exchanger as condenser. Further, the heat transferred from the (primary) cooling medium to the second airflow increases the thrust of the turbojet engine since increased temperature gives a greater volume flow. The condenser/heat exchanger 42 can form part of or be integrated in the fan outlet guide vanes or other already existing static fan structure.
  • Alternatively, outdoor air can be used as secondary cooling medium for cooling/condensing the primary cooling medium in the condenser 42.
  • FIG. 3 shows, in a partly sectional and partly schematic view, another embodiment of the inventive cooling arrangement. This embodiment is in principle similar to the embodiment shown in FIG. 2 and therefore the same reference numbers has been used for the majority of parts involved. The gas turbine component has been given reference number 200 as compared to 20 in FIG. 2 as to indicate that the cooling arrangement exemplified in FIG. 3 concerns only a circumferential section of the outer ring element 24, i.e. the section delimited by wall sections 25 a and 25 b. This section can, in principal, have any length in the circumferential direction of the outer ring element 24, which means that the section e.g. can extend 360° around the outer ring element 24 such that the wall sections 25 a and 25 b coincide and such that the embodiment in FIG. 3 becomes similar to the embodiment shown in FIG. 2.
  • As shown in FIG. 3 the outer ring element 24 of the gas turbine component 200 is provided with a plurality of parallel and, in relation to the component 200, axially extending cooling channels 50 separated by wall elements 55. The outer ring element 24 is a load carrying structure comprising an outer annular part and an inner annular part which outer and inner parts are connected by the radially (and axially) extending wall elements 55. The cooling channels 50 are thus formed between the load carrying wall elements 55. The structure of the outer ring element 24 thus provides both a load carrying function and channels suitable for being used as cooling channels.
  • In similarity to what is described in relation to FIG. 2, an inlet manifold 30 provided with a main inlet 27 is arranged at an inlet side of the cooling channels 50 and an outlet manifold 31 provided with a main outlet 28 is arranged at an outlet side of the cooling channels 50. Each cooling channel 50 is arranged in fluid communication with the inlet and outlet manifolds 30, 31 by means of inlet openings 51 and outlet opening 52, respectively.
  • The closed flow system for the cooling medium is indicated with an arrowed line and can be described in the following way: The cooling medium, in this case water, flows through the main inlet 27 and enters the inlet manifold 30. While flowing inside the inlet manifold 30 along its direction of extension (circumferentially along the outer ring element 24) a fraction of the flow is distributed to each of the cooling channels 50 via inlet opening 51. During operation of the gas turbine engine associated with the cooling arrangement the gas turbine component 200 becomes heated by the hot gases flowing through the component 200. Heat absorbed by (the section of) the outer ring element 24 is transferred to the cooling water flowing through the cooling channels 50 which in this case results in that the water evaporates. The cooling medium, now in the form of steam, enters the outlet manifold 31 via outlet opening 52. The steam flows inside the inlet manifold 30 along its direction of extension (circumferentially along the outer ring element 24) until it reaches the main outlet 28 at the end of the outlet manifold 31.
  • From the main outlet 31 the steam flows to and drives the turbine 41 that in turn drives the generator 44 that generates electricity. In the condenser 42 the steam is condensed to water which is forced to the main inlet 27 by means of the pump 43.
  • FIGS. 4-9 show, for a component similar to what is described above, an alternative design of the cooling channels for the inventive cooling arrangement where cooling channels are provided not only in the outer ring element 24 but also in the vanes 26 and in the inner ring element 22.
  • FIG. 4 shows a load-carrying vane 260, the shape of which is only schematic, provided with first and second inlet cooling channels 261, 262 arranged at a leading edge and a trailing edge, respectively, thereof. First and second outlet cooling channels 263, 264 are arranged along both sides (i.e. pressure and suction sides) of the vane 260. All of these cooling channels extend through the vane 260 from one end to the other in a radial direction with reference to the annular component in which the vane 260 is intended to be arranged. The vane 260 is further provided with centrally located channels 265, in this case three in number, for leading e.g. oil to a bearing of the gas turbine engine.
  • FIG. 5 shows the vane 260 arranged and extending radially between an inner ring element 220 and an outer ring element 240. The vane 260 and the parts of the inner and outer ring elements 220, 240 shown in FIG. 5 form a part of a gas turbine engine component similar to the component shown in FIGS. 1-3. The outer ring element 240 has a flange 241 for attachment to adjacent components in the gas turbine engine and an engine mount 242 for mounting of the engine to e.g. an aircraft.
  • FIG. 5 further shows two main inlets 270 each of which forms a passage for a cooling medium to an inlet manifold 300. The component also comprises two main outlets 280 in fluid communication with outlet manifolds 310. As will be described below, there are in this example two partly separated cooling channel systems arranged inside the component, and therefore there are two main inlets 270 and two main outlets 280. The partly separated systems may be combined in different ways if only one inlet and one outlet is desired.
  • A feeding system (not shown), similar to the feeding system 40 described above, is arranged in flow communication with the main inlets 270 and the main outlets 280 of the cooling channel system such as to form a closed flow system. The flows of cooling medium through the two separate cooling channel systems are combined outside of the component so that one combined flow of cooling medium is supplied to and from the feeding system. Alternatively it is possible to combine the two flows inside the component or to make use of two feeding systems, one for each inlet-outlet pair.
  • As indicated with the arrowed line in FIG. 5 the cooling medium enters the inlet manifold 300 via the main inlet 270 and flows further through the trailing (or leading) edge of the vane towards the inner ring element 220.
  • FIG. 6 shows, with arrows, how the cooling medium flows via the inlet manifolds 300 to the first or second inlet cooling channels 261, 262 arranged at the leading and trailing edge, respectively, of the vane 260. Thus, relatively cool cooling medium is guided to the leading edge of the vane 260 which is an advantage since the leading edge is likely to be the part of the vane 260 that requires the most efficient cooling during operation of the gas turbine engine. FIG. 6 also shows how the cooling medium leaves the first and second outlet cooling channels 263, 264 of the vane 260 and enters the outlet manifolds 310.
  • FIG. 7 shows that a first cavity 222 is arranged in the inner ring element 220 below the vane 260 at a position where the second inlet cooling channel 262 ends such that cooling medium flowing through the second inlet channel 262 can enter the first cavity 222. An opening 224 provides a further fluid communication to inner ring cooling channels 225 arranged in the inner ring element 220. A further opening 228 provides for fluid communication between the inner ring cooling channels 225 and a second cavity 226 arranged below and in fluid communication with the first outlet cooling channel 263 of the vane 260.
  • A still further opening 223 can be arranged between the first and second cavities 222, 226 as to (partly) bypass the inner ring cooling channels 225.
  • According to FIG. 7 one of the two partly separated flows of cooling medium through the annular component can be described like this: The cooling medium enters the inlet manifold 300 via the inlet 270 and flows in a radial direction through the second inlet cooling channel 262 of the vane 260 and further via the first cavity 222 and opening 224 into the inner ring cooling channels 225. Via the further opening 228 the cooling medium enters the second cavity 226 and flows further in a radial direction through the second outlet cooling channel 263 of the vane 260. This channel 263 ends at the outlet manifold 310 which guides the cooling medium to the outlet 280. At this stage the cooling medium is, in this example, in evaporated form. The medium then enters the feeding system where its heat is utilized, in this case for generating electricity as described above. Finally, the cooling medium, in liquid form, is fed back to the inlet 270.
  • The other partly separated flow of cooling medium through the component is in this example in principal similar to the flow described above but makes instead use of e.g. the first inlet cooling channel 261, a third cavity 222′ corresponding to the first cavity 222, second inner ring cooling channels 225′ and the second outlet cooling channel 264 of the vane 260. This other partly separated flow also flows through a further cavity corresponding to the second cavity 226. The two flows are mixed in the two second cavities 226.
  • FIG. 8 shows part of what is described above and also that the flow that leaves the third cavity 222′ is split so that half the flow goes through the second inner ring cooling channels 225′and the other half through similar channels arranged on the other (left and nearer) side of the position of the vane 260.
  • The outlet manifold 310 may be arranged as to combine the flows exiting the first and second outlet cooling channels 263, 264 of the vane 260 and may be provided with only one outlet 280. Further, the outlet manifold 310 may extend circumferentially along the outer ring 240 such as to receive flows from several vanes 260. Also the inlet manifolds 300 may extend along the outer ring 240 and be arranged such as to feed several vanes 26 with a flow of cooling medium.
  • FIG. 9 shows some of the parts described above but in another view. FIG. 9 also shows a load-carrying structure 316 that connects a bearing house 317 to the inner ring element 220. The bearing house 317 is arranged in association with a main shaft of the gas turbine engine. Thus, FIG. 9 visualizes that the gas turbine engine component is arranged to transmit load or thrust from the engine shaft to e.g. an aircraft via the bearing house 317, the load-carrying structure 316, the inner ring element 220, the vane 260 (not shown in FIG. 9), the outer ring element 240 and the engine mount 242.
  • An advantage of the inventive cooling arrangement according to FIGS. 4-9 compared to the traditional solution with a two-part turbine vane structure that includes a first load-carrying part and a second heat-protecting/air-guiding part, is that only one part (with at least one cooling channel) is needed which provides for a more cost-efficient production.
  • Typically, the gas turbine component of the present invention is a gas turbine engine housing component located in the turbine region of the engine. Such a component must be configured to withstand a high thermal load from a passing gas flow during operation of the gas turbine engine. The typical component can also be described as a gas turbine component that defines a gas channel for a main gas flow through a gas turbine engine or as a gas turbine component that is configured so that an external surface of the gas turbine component is in direct contact with a passing main gas flow through a gas turbine engine. Since such a main gas flow has its highest temperature in the region of the turbine (downstream of the combustion chamber) said component is typically arranged in the turbine region of a gas turbine engine.
  • By controlling the temperature of the cooling medium in the cooling channels arranged in the outer ring element 24, 240, it is possible to control the diameter of the outer ring element 24, 240.
  • The invention is not limited by the embodiments described above but can be modified in various ways within the scope of the claims. For instance, in an alternative arrangement the cooling medium can be pressurized so that no evaporation of cooling medium occurs. Heat can in such a case be extracted from the cooling medium by using a heat exchanger that is arranged to transfer heat from the cooling medium to a second medium. Preferably, such a heat exchanger is arranged in association with a flow connection between the between the inlet 27, 270 and outlet 28, 280.
  • This second medium can be air (e.g. by using the second gas stream as the second medium as described above for the condenser 42 or by using another flow of air for the purpose of heating the cabin space) or fuel (for preheating purposes) or another medium.
  • In a variant of this alternative arrangement the second medium is arranged to form a second closed flow system wherein the second medium is evaporated in the heat exchanger when the heat is transferred from the cooling medium. Further, in this variant the second closed flow system comprises, in flow order from heat exchanger outlet to inlet, the turbine 41 (and the generator 44), the condenser 42 and the pump 43, which work in the same way as described above but where the second medium, instead of the cooling medium, drives the turbine etc. The closed cooling flow system preferably comprises a cooling medium pump for circulating the cooling medium.
  • In said variant the second medium is suitably water. The cooling medium that is to flow through the cooling channels of the component, which cooling medium in this variant is not intended to evaporate, can be water but other substances may now be used, such as oil.
  • In the embodiments and variants described above the turbine 41 and generator 44 can be replaced by another form of steam engine.

Claims (24)

1. Arrangement for cooling a gas turbine engine component, the arrangement comprising:
a gas turbine engine component provided with at least one cooling channel through which a cooling medium is intended to flow during operation of the arrangement,
a feeding system configured to supply cooling medium to the cooling channel,
a cooling channel inlet, and
a cooling channel outlet,
wherein the feeding system is arranged in flow communication with both the inlet and the outlet of the cooling channel such as to form a closed flow system.
2. Arrangement according to claim 1, the comprising a heat extraction device configured to extract thermal energy from the cooling medium.
3. Arrangement according to claim 2, wherein the heat extraction device is a heat exchanger arranged to transfer heat from the cooling medium to a second medium.
4. Arrangement according to claim 3, wherein the second medium is arranged to form a second closed flow system, wherein the second medium is allowed to evaporate in the heat exchanger when the heat is transferred from the cooling medium, wherein the second closed flow system comprises a steam engine arranged to be driven by the evaporated second medium.
5. Arrangement according to claim 4, wherein the second closed flow system comprises, in flow order from an inlet to an outlet of the heat exchanger:
a turbine in which second medium that has evaporated during or after its transport through the heat exchanger is allowed to expand and thereby drive the turbine,
a condenser in which the second medium is condensed to a liquid form, and
a pump for feeding second medium in liquid form to the heat exchanger inlet, wherein the turbine is operatively connected to a generator capable of generating electricity.
6. Arrangement according to claim 2, wherein the heat extraction device is a steam engine configured to be driven by evaporated cooling medium.
7. Arrangement according to claim 1, characterized in that the feeding system comprises, in flow order from cooling channel outlet to inlet:
a cooling medium turbine in which cooling medium that has evaporated during or after its transport through the cooling channel is allowed to expand and thereby drive the cooling medium turbine,
a condenser in which the cooling medium is condensed to a liquid form, and
a pump for feeding cooling medium in liquid form to the cooling channel inlet,
wherein the cooling medium turbine is operatively connected to a generator capable of generating electricity.
8. Arrangement according to claim 1, wherein the gas turbine engine component is provided with a plurality of cooling channels and that the arrangement comprises an inlet manifold provided with the cooling channel inlet wherein the inlet manifold is arranged to provide a fluid communication between the cooling channel inlet and the plurality of cooling channels.
9. Arrangement according to claim 1, wherein the gas turbine engine component is provided with a plurality of cooling channels and that the arrangement comprises an outlet manifold provided with the cooling channel outlet, wherein the outlet manifold is arranged to provide a fluid communication between the cooling channel outlet and the plurality of cooling channels.
10. Arrangement according to claim 1, wherein the gas turbine engine component comprises an inner ring element and an outer ring element connected by a plurality of circumferentially spaced elements extending in a radial direction of the ring elements.
11. Arrangement according to claim 10, wherein the at least one cooling channel is arranged in at least one of the inner or outer ring element and/or in at least one of the circumferentially spaced elements.
12. Arrangement according to claim 10, wherein the outer ring element comprises an outer annular part and an inner annular part which outer and inner parts are connected by, in relation to the gas turbine engine component, radially and axially extending load-carrying wall elements, wherein axially extending cooling channels are formed between the wall elements.
13. Arrangement according to claim 1, wherein the gas turbine engine component is arranged to transmit load or thrust from a main shaft to a casing of a gas turbine engine.
14. Arrangement according to claim 1, wherein the gas turbine component defines a gas channel for a main gas flow through a gas turbine engine.
15. Arrangement according to claim 1, wherein the gas turbine component is arranged an a turbine region of a gas turbine engine.
16. Arrangement according to claim 5, wherein the cooling arrangement is arranged in association with a gas turbine engine that, during operation of the engine, generates i) a first main gas flow that passes at an inside of an annular inner casing through e.g. a turbine of the engine and ii) a second main gas flow that passes at an outside of the annular casing, such as a turbojet engine, wherein the condenser is arranged in relation to the second main gas flow in such a way that the second main gas flow is allowed to cool and condense the second medium or the cooling medium.
17. Gas turbine engine, comprising a cooling arrangement according to claim 1.
18. Method for cooling a gas turbine engine component, comprising the step of:
supplying cooling medium to an inlet of a cooling channel arranged in the gas turbine engine component,
characterized in that the method further comprises the steps of:
re-circulating the cooling medium from an outlet of the cooling channel to the inlet such as to form a closed flow system, and
cooling the cooling medium by extracting thermal energy from the cooling medium.
19. Method according to claim 18, comprising:
using the extracted thermal energy for driving a steam machine.
20. Method according to claim 18, comprising:
using the extracted thermal energy for producing electricity.
21. Method according to claim 20, comprising:
evaporating a medium using heat absorbed by the cooling medium,
expanding the evaporated medium in a turbine, and
generating electricity by a generator operatively connected to the turbine.
22. Method according to claim 21, comprising:
condensing evaporated medium in a condenser, and
feeding medium in liquid form from the condenser.
23. Method according to claim 22, wherein the medium evaporated is the cooling medium.
24. Method according to claim 22, comprising:
evaporating a second medium by transferring thermal energy from the cooling medium to the second medium using a heat exchanger, wherein the second medium is arranged to form a second closed flow system.
US13/514,621 2009-12-17 2009-12-17 Arrangement and method for closed flow cooling of a gas turbine engine component Abandoned US20120243970A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SE2009/000526 WO2011075013A1 (en) 2009-12-17 2009-12-17 Arrangement and method for closed flow cooling of a gas turbine engine component

Publications (1)

Publication Number Publication Date
US20120243970A1 true US20120243970A1 (en) 2012-09-27

Family

ID=44167536

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/514,621 Abandoned US20120243970A1 (en) 2009-12-17 2009-12-17 Arrangement and method for closed flow cooling of a gas turbine engine component

Country Status (3)

Country Link
US (1) US20120243970A1 (en)
EP (1) EP2513431A1 (en)
WO (1) WO2011075013A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943711A (en) * 2012-11-12 2013-02-27 湖南航翔燃气轮机有限公司 Device for cooling guiding device group of turbine
WO2014099482A1 (en) * 2012-12-18 2014-06-26 United Technologies Corporation Oscillating heat pipe for thermal management of gas turbine engines
WO2014120324A3 (en) * 2012-11-16 2014-10-23 United Technologies Corporation Turbine engine cooling system with an open loop circuit
US20150107249A1 (en) * 2013-10-22 2015-04-23 Access Energy Llc Extracting Heat From A Compressor System
US20160102566A1 (en) * 2014-10-13 2016-04-14 Pw Power Systems, Inc. Power turbine air strut
US9422063B2 (en) * 2013-05-31 2016-08-23 General Electric Company Cooled cooling air system for a gas turbine
US20170003080A1 (en) * 2014-03-13 2017-01-05 Bae Systems Plc Heat exchanger
CN106661958A (en) * 2014-08-21 2017-05-10 西门子股份公司 Gas turbine having a ring channel divided into ring sectors
US20170184024A1 (en) * 2015-12-28 2017-06-29 General Electric Company Method and system for combination heat exchanger
CN107438707A (en) * 2015-04-01 2017-12-05 赛峰航空器发动机 It is provided with the turbogenerator of vane sector and cooling circuit
WO2018005886A1 (en) * 2016-07-01 2018-01-04 General Electric Company Modular annular heat exchanger
US10036258B2 (en) 2012-12-28 2018-07-31 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US10077664B2 (en) 2015-12-07 2018-09-18 United Technologies Corporation Gas turbine engine component having engineered vascular structure
US20180266325A1 (en) * 2017-03-20 2018-09-20 General Electric Company Extraction cooling system using evaporative media for stack cooling
US10094287B2 (en) 2015-02-10 2018-10-09 United Technologies Corporation Gas turbine engine component with vascular cooling scheme
US20190003315A1 (en) * 2017-02-03 2019-01-03 General Electric Company Fluid cooling systems for a gas turbine engine
US10221694B2 (en) 2016-02-17 2019-03-05 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US10247106B2 (en) * 2016-06-15 2019-04-02 General Electric Company Method and system for rotating air seal with integral flexible heat shield
US10260523B2 (en) 2016-04-06 2019-04-16 Rolls-Royce North American Technologies Inc. Fluid cooling system integrated with outlet guide vane
CN110388271A (en) * 2018-04-23 2019-10-29 云南靖创液态金属热控技术研发有限公司 A kind of the liquid metal heat radiation system and aero-engine of aero-engine
CN111350549A (en) * 2019-12-30 2020-06-30 中国科学院工程热物理研究所 Cooling structure suitable for be rich in and fire working medium turbine high temperature quiet leaf
US10731473B2 (en) 2012-12-28 2020-08-04 Raytheon Technologies Corporation Gas turbine engine component having engineered vascular structure
CN111594285A (en) * 2020-05-27 2020-08-28 中国航空发动机研究院 Parallel cooling circulation system for high-pressure turbine guide vane of aircraft engine
CN111594286A (en) * 2020-06-01 2020-08-28 中国航空发动机研究院 Series cooling circulation system for aeroengine high-pressure turbine guide vane
US10774653B2 (en) 2018-12-11 2020-09-15 Raytheon Technologies Corporation Composite gas turbine engine component with lattice structure
US10815830B2 (en) 2017-12-21 2020-10-27 Raytheon Technologies Corporation Lightweight tierod
US11143045B2 (en) * 2016-07-20 2021-10-12 Safran Aircraft Engines Intermediate case for an aircraft turbomachine made from a single casting with a lubricant duct
US11242767B2 (en) * 2017-05-01 2022-02-08 General Electric Company Additively manufactured component including an impingement structure
US20220112840A1 (en) * 2020-10-09 2022-04-14 Rolls-Royce Plc Heat exchanger
US20220307418A1 (en) * 2021-03-24 2022-09-29 General Electric Company Gas turbine engines with heat recovery systems
US20220349656A1 (en) * 2020-01-03 2022-11-03 Raytheon Technologies Corporation Gas Turbine Engine Heat Exchanger for Annular Flowpaths
US11649730B2 (en) * 2020-10-09 2023-05-16 Rolls-Royce Plc Heat exchanger
DE102022121794A1 (en) 2022-04-11 2023-10-12 Beihang University INTEGRAL COOLING SYSTEM FOR TURBINE HOUSINGS AND GUIDE VANES IN AIRCRAFT ENGINES
US20240084733A1 (en) * 2022-09-08 2024-03-14 General Electric Company Closed-loop cooling system for a gas turbine engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617917B2 (en) 2013-07-31 2017-04-11 General Electric Company Flow control assembly and methods of assembling the same
FR3028576B1 (en) * 2014-11-19 2016-12-23 Snecma TURBOMACHINE STATOR AUBING SECTOR COMPRISING HOT FLUID CIRCULATION CHANNELS

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756020A (en) * 1972-06-26 1973-09-04 Curtiss Wright Corp Gas turbine engine and cooling system therefor
US4431371A (en) * 1982-06-14 1984-02-14 Rockwell International Corporation Gas turbine with blade temperature control
US5685693A (en) * 1995-03-31 1997-11-11 General Electric Co. Removable inner turbine shell with bucket tip clearance control
US5967743A (en) * 1996-10-23 1999-10-19 Asea Brown Boveri Ag Blade carrier for a compressor
US6422807B1 (en) * 1999-04-23 2002-07-23 General Electric Company Turbine inner shell heating and cooling flow circuit
US20070137206A1 (en) * 2005-12-19 2007-06-21 Ralf Sebastian Von Der Bank Gas turbine combustion chamber
US20070140845A1 (en) * 2004-05-27 2007-06-21 Volvo Aero Corporation Support structure in a turbine or compressor device and a method for assembling the structure
US20080245054A1 (en) * 2005-09-20 2008-10-09 Volvo Aero Corporation Cooling System for an Aircraft, Aircraft Comprising the Cooling System and Cooling Method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140502A (en) * 1981-02-23 1982-08-31 Hitachi Ltd Cooling device of rotary blade of gas turbine
KR100389990B1 (en) * 1995-04-06 2003-11-17 가부시끼가이샤 히다치 세이사꾸쇼 Gas turbine
US6565312B1 (en) * 2001-12-19 2003-05-20 The Boeing Company Fluid-cooled turbine blades

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756020A (en) * 1972-06-26 1973-09-04 Curtiss Wright Corp Gas turbine engine and cooling system therefor
US4431371A (en) * 1982-06-14 1984-02-14 Rockwell International Corporation Gas turbine with blade temperature control
US5685693A (en) * 1995-03-31 1997-11-11 General Electric Co. Removable inner turbine shell with bucket tip clearance control
US5967743A (en) * 1996-10-23 1999-10-19 Asea Brown Boveri Ag Blade carrier for a compressor
US6422807B1 (en) * 1999-04-23 2002-07-23 General Electric Company Turbine inner shell heating and cooling flow circuit
US20070140845A1 (en) * 2004-05-27 2007-06-21 Volvo Aero Corporation Support structure in a turbine or compressor device and a method for assembling the structure
US20080245054A1 (en) * 2005-09-20 2008-10-09 Volvo Aero Corporation Cooling System for an Aircraft, Aircraft Comprising the Cooling System and Cooling Method
US20070137206A1 (en) * 2005-12-19 2007-06-21 Ralf Sebastian Von Der Bank Gas turbine combustion chamber

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943711A (en) * 2012-11-12 2013-02-27 湖南航翔燃气轮机有限公司 Device for cooling guiding device group of turbine
US10047631B2 (en) 2012-11-16 2018-08-14 United Technologies Corporation Turbine engine cooling system with an open loop circuit
WO2014120324A3 (en) * 2012-11-16 2014-10-23 United Technologies Corporation Turbine engine cooling system with an open loop circuit
US11085325B2 (en) 2012-11-16 2021-08-10 Raytheon Technologies Corporation Turbine engine cooling system with an open loop circuit
US9739171B2 (en) 2012-11-16 2017-08-22 United Technologies Corporation Turbine engine cooling system with an open loop circuit
WO2014099482A1 (en) * 2012-12-18 2014-06-26 United Technologies Corporation Oscillating heat pipe for thermal management of gas turbine engines
US10036258B2 (en) 2012-12-28 2018-07-31 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US10662781B2 (en) 2012-12-28 2020-05-26 Raytheon Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US10731473B2 (en) 2012-12-28 2020-08-04 Raytheon Technologies Corporation Gas turbine engine component having engineered vascular structure
US10156359B2 (en) 2012-12-28 2018-12-18 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US10570746B2 (en) 2012-12-28 2020-02-25 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US9422063B2 (en) * 2013-05-31 2016-08-23 General Electric Company Cooled cooling air system for a gas turbine
US20150107249A1 (en) * 2013-10-22 2015-04-23 Access Energy Llc Extracting Heat From A Compressor System
US20170003080A1 (en) * 2014-03-13 2017-01-05 Bae Systems Plc Heat exchanger
US9702630B2 (en) * 2014-03-13 2017-07-11 Bae Systems Plc Heat exchanger
CN106661958A (en) * 2014-08-21 2017-05-10 西门子股份公司 Gas turbine having a ring channel divided into ring sectors
US10294818B2 (en) 2014-08-21 2019-05-21 Siemens Aktiengesellschaft Gas turbine having an annular passage subdivided into annulus sectors
US20160102566A1 (en) * 2014-10-13 2016-04-14 Pw Power Systems, Inc. Power turbine air strut
US10094287B2 (en) 2015-02-10 2018-10-09 United Technologies Corporation Gas turbine engine component with vascular cooling scheme
US20180087392A1 (en) * 2015-04-01 2018-03-29 Safran Aircraft Engines Turbomachine provided with a vane sector and a cooling circuit
US11156114B2 (en) * 2015-04-01 2021-10-26 Safran Aircraft Engines Turbomachine provided with a vane sector and a cooling circuit
CN107438707A (en) * 2015-04-01 2017-12-05 赛峰航空器发动机 It is provided with the turbogenerator of vane sector and cooling circuit
US10077664B2 (en) 2015-12-07 2018-09-18 United Technologies Corporation Gas turbine engine component having engineered vascular structure
US11125160B2 (en) * 2015-12-28 2021-09-21 General Electric Company Method and system for combination heat exchanger
US20170184024A1 (en) * 2015-12-28 2017-06-29 General Electric Company Method and system for combination heat exchanger
US10221694B2 (en) 2016-02-17 2019-03-05 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US10260523B2 (en) 2016-04-06 2019-04-16 Rolls-Royce North American Technologies Inc. Fluid cooling system integrated with outlet guide vane
US10247106B2 (en) * 2016-06-15 2019-04-02 General Electric Company Method and system for rotating air seal with integral flexible heat shield
US10443436B2 (en) 2016-07-01 2019-10-15 General Electric Company Modular annular heat exchanger
WO2018005886A1 (en) * 2016-07-01 2018-01-04 General Electric Company Modular annular heat exchanger
US11143045B2 (en) * 2016-07-20 2021-10-12 Safran Aircraft Engines Intermediate case for an aircraft turbomachine made from a single casting with a lubricant duct
US20190003315A1 (en) * 2017-02-03 2019-01-03 General Electric Company Fluid cooling systems for a gas turbine engine
US10830056B2 (en) * 2017-02-03 2020-11-10 General Electric Company Fluid cooling systems for a gas turbine engine
US20180266325A1 (en) * 2017-03-20 2018-09-20 General Electric Company Extraction cooling system using evaporative media for stack cooling
US20220162963A1 (en) * 2017-05-01 2022-05-26 General Electric Company Additively Manufactured Component Including an Impingement Structure
US11242767B2 (en) * 2017-05-01 2022-02-08 General Electric Company Additively manufactured component including an impingement structure
US10815830B2 (en) 2017-12-21 2020-10-27 Raytheon Technologies Corporation Lightweight tierod
CN110388271A (en) * 2018-04-23 2019-10-29 云南靖创液态金属热控技术研发有限公司 A kind of the liquid metal heat radiation system and aero-engine of aero-engine
US11168568B2 (en) 2018-12-11 2021-11-09 Raytheon Technologies Corporation Composite gas turbine engine component with lattice
US10774653B2 (en) 2018-12-11 2020-09-15 Raytheon Technologies Corporation Composite gas turbine engine component with lattice structure
CN111350549A (en) * 2019-12-30 2020-06-30 中国科学院工程热物理研究所 Cooling structure suitable for be rich in and fire working medium turbine high temperature quiet leaf
US20220349656A1 (en) * 2020-01-03 2022-11-03 Raytheon Technologies Corporation Gas Turbine Engine Heat Exchanger for Annular Flowpaths
US11920872B2 (en) * 2020-01-03 2024-03-05 Rtx Corporation Gas turbine engine heat exchanger for annular flowpaths
CN111594285A (en) * 2020-05-27 2020-08-28 中国航空发动机研究院 Parallel cooling circulation system for high-pressure turbine guide vane of aircraft engine
CN111594286A (en) * 2020-06-01 2020-08-28 中国航空发动机研究院 Series cooling circulation system for aeroengine high-pressure turbine guide vane
US20220112840A1 (en) * 2020-10-09 2022-04-14 Rolls-Royce Plc Heat exchanger
US11549438B2 (en) * 2020-10-09 2023-01-10 Rolls-Royce Plc Heat exchanger
US11649730B2 (en) * 2020-10-09 2023-05-16 Rolls-Royce Plc Heat exchanger
US11867121B2 (en) * 2021-03-24 2024-01-09 General Electric Company Gas turbine engines with heat recovery systems
US20220307418A1 (en) * 2021-03-24 2022-09-29 General Electric Company Gas turbine engines with heat recovery systems
DE102022121794A1 (en) 2022-04-11 2023-10-12 Beihang University INTEGRAL COOLING SYSTEM FOR TURBINE HOUSINGS AND GUIDE VANES IN AIRCRAFT ENGINES
US20240084733A1 (en) * 2022-09-08 2024-03-14 General Electric Company Closed-loop cooling system for a gas turbine engine

Also Published As

Publication number Publication date
EP2513431A1 (en) 2012-10-24
WO2011075013A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
US20120243970A1 (en) Arrangement and method for closed flow cooling of a gas turbine engine component
CN110529256B (en) Air cycle assembly for a gas turbine engine assembly
US10941706B2 (en) Closed cycle heat engine for a gas turbine engine
US11143106B2 (en) Combustion section heat transfer system for a propulsion system
US10082081B2 (en) Heat exchanger arrangement for turbine engine
EP2834498B1 (en) Cooling system for a turbine vane
US10358976B2 (en) Heat recuperation system for the family of shaft powered aircraft gas turbine engines
US4333309A (en) Steam assisted gas turbine engine
US20090301078A1 (en) System for recovering the waste heat generated by an auxiliary system of a turbomachine
EP3121417B1 (en) Integral oiltank heat exchanger
US10494999B2 (en) Thermally efficient gas turbine engine for an aircraft
US20190203644A1 (en) Thermal Management System
US11306658B2 (en) Cooling system for a turbine engine
US10815789B2 (en) Impingement holes for a turbine engine component
US6374613B1 (en) Miniaturized waste heat engine
JP2011516780A (en) Turbine equipment
CN108691655B (en) Turbine engine pipe interface
CN104975885B (en) Thrust plate sub-assembly
US10900370B2 (en) Gas turbine engine offtake
US11815015B2 (en) Gas turbine system and moving body including the same
US20230323815A1 (en) Thermal management system for a gas turbine engine
EP3312383B1 (en) Air mixing systems having mixing chambers for gas turbine engines

Legal Events

Date Code Title Description
AS Assignment

Owner name: VOLVO AERO CORPORATION, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HELLGREN, ANDERS;MARTENSSON, HANS;SIGNING DATES FROM 20120601 TO 20120604;REEL/FRAME:028339/0948

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION