US20120234868A1 - Cap for squeeze container - Google Patents

Cap for squeeze container Download PDF

Info

Publication number
US20120234868A1
US20120234868A1 US13/501,058 US201013501058A US2012234868A1 US 20120234868 A1 US20120234868 A1 US 20120234868A1 US 201013501058 A US201013501058 A US 201013501058A US 2012234868 A1 US2012234868 A1 US 2012234868A1
Authority
US
United States
Prior art keywords
cap
section
squeeze
flow path
container body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/501,058
Inventor
Shinichi Inaba
Hiroshi Goto
Michiaki Fujita
Mitsugu Iwatsubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Assigned to KAO CORPORATION reassignment KAO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IWATSUBO, MITSUGU, FUJITA, MICHIAKI, GOTO, HIROSHI, INABA, SHINICHI
Publication of US20120234868A1 publication Critical patent/US20120234868A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/06Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3415Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with swirl imparting inserts upstream of the swirl chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/04Deformable containers producing the flow, e.g. squeeze bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/32Containers adapted to be temporarily deformed by external pressure to expel contents
    • B65D1/323Containers adapted to be temporarily deformed by external pressure to expel contents the container comprising internally a dip tube through which the contents pass

Definitions

  • the present invention relates to a cap for a squeeze container, and in particular, relates to a cap for a squeeze container to be used as being attached to a mouth neck section of a plastic-made container body which is squeeze-deformable.
  • a squeeze container discharges a specific amount of content liquid from a discharge opening toward a discharge position owing to deformation of a container body by being squeezed (i.e., compressed) as a barrel section of the container body being held with a hand.
  • the squeeze container is used as having a cap with the discharge opening attached to the mouth neck section of the squeeze-deformable plastic-made container body in a detachably attachable manner so that content liquid can be supplemented or replaced.
  • content liquid is discharged by a specific amount by squeezing the container body in a state that the discharge opening is directed to a discharge position as tilting or inverting the held squeeze container after an outer cover which covers the discharge opening is removed, for example.
  • Patent Literature 1 Japanese Registered Utility Model 2600057
  • Patent Literature 2 Japanese Patent Laid-Open 2006-219181
  • Patent Literature 3 Japanese Patent Laid-Open 2003-226377
  • Patent Literature 1 liquid leaked before squeezing is prevented from being stuck to the vicinity of a container body by arranging a side wall at a cap to which a discharge opening is formed at the center of a top face section as being obliquely extended toward the center side from a peripheral section of the top face section.
  • liquid stopping is worsened owing to insufficient liquid sucking with back suction.
  • Patent Literature 2 content liquid is not discharged unless a container body is squeezed so that occurrence of unnecessary liquid dripping can be effectively avoided by arranging liquid inflow opening at the vicinity of the discharge opening as bending a dip tube which is communicated with the discharge opening of a cap to be a U-shape.
  • the U-shaped bent tube structure causes inconvenience for handling at the time of attaching and detaching of the cap.
  • squeezing is performed in a state that content liquid remains at the inside of the dip tube, there may be a case that liquid is splashed peripherally owing to air mixing.
  • Patent Literature 3 occurrence of liquid dripping is avoided as returning liquid which remains in a trap room by fixedly arranging a closed-end cylindrical trap room at a lower side of a discharge opening section and forming communication holes at a periphery wall section and a bottom section of the closed-end cylindrical body.
  • liquid cannot be discharged until liquid is accumulated to a certain level in the trap room, there may be a problem such that a discharge amount is lessened or cannot be adjusted especially at the first time. Accordingly, discharge amount stabilization, liquid dripping prevention and preferable liquid stopping are not sufficiently satisfied even in any of the above cases. Therefore, further technology development to prevent such problems has been desired.
  • the present invention relates to a cap for a squeeze container with which leaking and dripping of container liquid before squeezing can be effectively prevented, favorable liquid stopping with back suction can be obtained, a compact shape for easy handling during attaching and detaching of the cap can be obtained, and air mixing with content liquid can be effectively prevented as well.
  • the present invention provides a cap for a squeeze container to discharge content liquid from a top discharge opening with squeeze deformation of a barrel section of a container body to be used as being attached to a mouth neck section of the container body made of plastic as being squeeze-deformable.
  • the present invention provides a cap for a squeeze container having a helical flow path at least as a part of a liquid flow path from the mouth neck section of the container body to the discharge opening.
  • FIG. 1 is a sectional view of a squeeze container to which a cap for a squeeze container according to the first embodiment preferable for the present invention is attached.
  • FIGS. 2( a ) and 2 ( b ) are a perspective view and a side view of a helical tube to form a helical flow path which structures the cap for a squeeze container according to the first embodiment preferable for the present invention.
  • FIG. 3 is a sectional view of a cap for a squeeze container according to the second embodiment preferable for the present invention.
  • FIG. 4 is a sectioned perspective view of the cap for a squeeze container according to the second embodiment preferable for the present invention.
  • FIG. 5 is a side view of a helical blade to form a helical flow path which structures the cap for a squeeze container according to the second embodiment preferable for the
  • FIG. 1 illustrates a squeeze container 11 to which a cap 10 for a squeeze container according to the first embodiment preferable for the present invention is attached.
  • the cap 10 for a squeeze container is used as being attached to a mouth neck section 12 a of a plastic-made container body 12 which is squeeze-deformable.
  • the cap 10 for a squeeze container has a discharge opening 13 as being opened at the top end and a specific amount of content liquid can be discharged by feeding the content liquid to the discharge opening 13 of the cap 10 for a squeeze container from a barrel section 12 b via the mouth neck section 12 a with deformation of the container body 12 as squeezing (i.e., compressing) the barrel section 12 b of the container body 12 after the discharge opening 13 is directed to a discharge position while a user tilts or inverts the squeeze container 11 as grasping the barrel section 12 b of the container body 12 .
  • squeezing i.e., compressing
  • the cap 10 for a squeeze container has a function enabling to prevent leaking and dripping of content liquid from the discharge opening 13 owing to internal pressure of the container body 12 and self-weight of the content liquid after the discharge opening of the squeeze container 11 is directed to a discharge position until the barrel section 12 b of the container body 12 is squeezed.
  • the cap 10 for a squeeze container is a cap to discharge content liquid from the top discharge opening 13 with squeeze deformation (i.e., compression deformation) of the barrel section 12 b of the container body 12 to be used as being attached to the mouth neck section 12 a of the plastic-made container body 12 which is deformable when being squeezed.
  • squeeze deformation i.e., compression deformation
  • the cap for a squeeze container at least a part of a liquid flow path from the mouth neck section 12 a of the container body 12 to the discharge opening 13 is formed as a helical flow path 15 .
  • the helical flow path 15 is arranged so that a bottom face section 15 a thereof is formed to have declination toward the barrel section 12 b of the container body 12 in an erected state of the squeeze container 11 .
  • the declination includes a state that the bottom face section 15 a of the helical flow path 15 is formed as being declined as a whole even a horizontal part exists at a midway thereof.
  • the helical flow path 15 is formed by a helical tube 14 which is arranged inside the cap 10 for a squeeze container while the upper end of the helical tube 14 is communicated with the discharge opening 13 via an upper end opening 14 a, and the lower end of the helical tube 14 is placed at the inside of the mouth neck section 12 a of the container body 12 via a lower end opening 14 b.
  • the container body 12 being a bottle-shaped plastic container having squeeze-deformable flexibility includes the barrel section 12 b in which content liquid is accommodated and the mouth neck section 12 a of which upper end is formed as an opened face and which is formed as being protruded upward from the upper end of the barrel section 12 b, as illustrated in FIG. 1 .
  • the cap 10 for a squeeze container is attached to the mouth neck section 12 a with any of a variety of known screwing means and fitting means in a detachably attachable manner.
  • the container body 12 can be easily formed with blow molding, for example, by utilizing a variety of known synthetic resin.
  • the content liquid capable of being accommodated in the container body 12 includes liquid composition to be used as being measured, such as clothing liquid detergent, fabric softener, bleach and liquid bath agent. Further, it is also possible to be used for liquid food such as food oil and seasoning.
  • the cap 10 for a squeeze cap being a plastic-made molded piece for example, includes a circular top face section 10 a and a peripheral wall section 10 b having an annular skirt shape integrally extended downward from a peripheral part of the top face section 10 a.
  • the top face section 10 a is provided with a nozzle section 19 as being protruded upward from a center part thereof.
  • the nozzle section 19 includes a cylindrical intermediate section 19 b formed as rising from the top face section 10 a and a nozzle body 19 a fixed to a top end part of the cylindrical intermediate section 19 b.
  • the discharge opening 13 is formed as vertically penetrating through the cylindrical intermediate section 19 b and the nozzle body 19 a of the nozzle section 19 .
  • a cover body 16 capable of opening and closing the top end opening of the nozzle body 19 a is swingably joined to the nozzle body 19 a via a hinge section 17 . Accordingly, the discharge opening 13 is hermetically closed at the time of storage of the squeeze container 11 .
  • an internal thread is formed, for example, at the inner face of an approximate half part of the annular-shirt-shaped peripheral wall section 10 b.
  • the cap 10 is attached to the mouth neck section 12 a in a detachably attachable manner by fastening the internal thread to an external thread which is formed at an outer peripheral face of the mouth neck section 12 a of the container body 12 , for example.
  • the helical tube 14 which forms the helical flow path 15 as being arranged inside the cap 10 for a squeeze container is a plastic-made molded piece.
  • a cylindrical tube having a hollow circular cross-section is extended as being wound to be a coil-spring-like helical shape and an upper end attaching section 14 c with two undercut lines for engagement is vertically formed as bending the upper end part radially-inward and further bending upward along a center axis part of the helical shape.
  • the helical tube 14 is formed in a state that the upper end opening 14 a is upwardly opened.
  • the helical tube 14 is formed in a state that the lower end opening 14 b is opened obliquely downward along a tangential direction of the helical shape.
  • the upper end attaching section 14 a of the helical tube 14 is attached as being shoehorned into a lower end part of the cylindrical intermediate section 19 b of the nozzle section 19 from the lower side, so that the helical tube 14 is arranged inside the peripheral wall section 10 b of the cap 10 in a state of being hanged from the lower end part of the cylindrical intermediate section 19 b.
  • the upper end of the helical tube 14 is communicated with the discharge opening 13 via the upper end opening 14 a and the lower end opening 14 b at the lower end of the helical tube 14 is opened inside the mouth neck section 12 c of the container body 12 .
  • the bottom face section 15 a of the helical flow path 15 being bent and extended helically with the helical tube 14 forms declination continuously tilted toward the barrel section 12 b of the container body 12 from the upper end of the helical tube 14 in an erected state of the squeeze container 11 .
  • the cap 10 for a squeeze container of the first embodiment having the above structure, leaking and dripping of content liquid before squeezing the squeeze container 11 can be effectively prevented and favorable liquid stopping can be obtained with back suction.
  • air mixing with content liquid can be effectively prevented as well while having a compact shape which can be easily handled at the time of attaching and detaching of the cap 10 .
  • the helical flow path 15 bending and extending at least a part of the liquid flow path from the mouth neck section 12 a of the container body 12 to the discharge opening 13 is formed by the helical tube 14 .
  • the squeeze container 11 is tilted or inverted, content liquid is discharged from the discharge opening 13 after passing through the liquid flow path bended and extended with the helical flow path 15 . Accordingly, a certain amount of time is required for content liquid to pass through the bent and extended helical flow path 15 as well as smoothly discharging content liquid from the discharge opening 13 after passing through the liquid flow path.
  • the entire wall face of the helical flow path 15 is contacted with content liquid while the content liquid is discharged, that is, while the content liquid passes through the liquid flow path. Therefore, the content liquid can be held for a long time as being less likely to be replaced by air from the discharge opening 13 into the flow path. Accordingly, it is possible to effectively prevent leaking and dripping of content liquid from the discharge opening 13 owing to internal pressure of the container body 12 and self-weight of the content liquid after the discharge opening 13 is directed to a discharge position as tilting or inverting the squeeze container 11 until the barrel section 12 b of the container body 12 is squeezed.
  • the liquid stopping with back suction can provide a more favorable liquid stopping effect.
  • the cap 10 for a squeeze container of the first embodiment has a compact shape as the helical tube 14 forming the helical flow path 15 is stored inside the peripheral wall section 10 b, it is possible to be attached to and detached from the mouth neck section 12 a of the container body 12 with the approximately same operation as a traditional cap.
  • the bottom face section 15 a of the helical flow path 15 bent and extended with the helical tube 14 is formed to have declination toward the barrel section 12 b of the container body 12 in an erected state of the squeeze container 11 . Therefore, even when content liquid remains in the helical flow path 15 , the remaining content liquid is smoothly recovered to the barrel section 12 b of the container body 12 as falling owing to self-weight along the declination of the bottom face section 15 a only by placing the squeeze container 11 in an erected state after usage, for example.
  • cross-section area of the discharge opening 13 and the liquid flow path are not required to be lessened, it is possible to effectively prevent squeeze pressure from being heightened at the time when the barrel section 12 b of the container body 12 is squeezed.
  • FIGS. 3 and 4 illustrate a cap 20 for a squeeze container of the second embodiment preferable for the present invention.
  • the helical flow path 15 structuring as at least a part of the liquid flow path from the mouth neck section 12 a of the container body 12 to a discharge opening 13 ′ is formed by a helical blade 21 which is arranged at a cylindrical leading path 18 oriented toward the discharge opening 13 ′ of the cap 20 .
  • the helical blade 21 is a plastic-made molded piece formed integrally with a center axis member 22 .
  • a support rod 23 formed integrally with the center axis member 22 at the lower end thereof is joined to a peripheral part of a lower end opening of the cylindrical leading path 18 , so that the helical blade 21 is arranged as being shoehorned into an upper part of the cylindrical leading path 18 , preferably in a state that a peripheral end face of the helical blade 21 is contacted to an inner face of the cylindrical leading path 18 .
  • the helical blade 21 placed in the cylindrical leading path 18 forms the bent and extended helical flow path 15 at the liquid flow path from the mouth neck section 12 a of the container body 12 to the discharge opening 13 ′ of the cap 25 via the cylindrical leading path 26 . Further, the bottom face section 15 a of the helical flow path 15 formed by the helical blade 21 forms declination continuously tilted toward the barrel section 12 b of the container body 12 from the upper end of the helical blade 21 in an erected state of the squeeze container 11 .
  • the helical flow path 15 bent and extended with the helical blade 21 is formed at at least a part of the liquid flow path from the mouth neck section 12 a of the container body 12 to the discharge opening 13 ′ and the bottom face section 15 a of the helical flow path 15 with the helical blade 21 is formed to have declination in an erected state of the squeeze container 11 . Therefore, similar operational effects to the cap 10 for a squeeze container of the first embodiment can be obtained.
  • the present invention may be modified variously.
  • another member may be utilized variously as the member for forming a helical flow path to be arranged at least at a part of a liquid flow path from a mouth neck section of a container body to a discharge opening.
  • an attaching plate and the like having a helical groove on an upper face thereof capable of being fitted toward the inside of a top face section of a cap.
  • the cap for a squeeze container of the present invention According to the cap for a squeeze container of the present invention, leaking and dripping of content liquid before squeezing the squeeze container can be effectively prevented and favorable liquid stopping can be obtained with back suction. In addition, air mixing with content liquid can be effectively prevented as well while having a compact shape which can be easily handled at the time of attaching and detaching of the cap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Closures For Containers (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

In a cap (10) for a squeeze container to discharge content liquid from a top discharge opening (13) with squeeze deformation of a barrel section (12 b) of a container body (12) to be used as being attached to a mouth neck section (12 a) of the container body (12) made of plastic as being squeeze-deformable, at least a part of a liquid flow path from the mouth neck section (12 a) of the container body (12) to the discharge opening (13) is formed as a helical flow path (15). The helical flow path (15) includes a bottom face section (15 a) which is formed to have declination toward the barrel section (12 b) of the container body (12) in an erected state of the squeeze container (11). The helical flow path (15) is formed by a helical tube (14) which is arranged inside the cap (10) for a squeeze container, for example.

Description

    TECHNICAL FIELD
  • The present invention relates to a cap for a squeeze container, and in particular, relates to a cap for a squeeze container to be used as being attached to a mouth neck section of a plastic-made container body which is squeeze-deformable.
  • BACKGROUND ART
  • A squeeze container discharges a specific amount of content liquid from a discharge opening toward a discharge position owing to deformation of a container body by being squeezed (i.e., compressed) as a barrel section of the container body being held with a hand. In many cases, the squeeze container is used as having a cap with the discharge opening attached to the mouth neck section of the squeeze-deformable plastic-made container body in a detachably attachable manner so that content liquid can be supplemented or replaced. With such a squeeze container, content liquid is discharged by a specific amount by squeezing the container body in a state that the discharge opening is directed to a discharge position as tilting or inverting the held squeeze container after an outer cover which covers the discharge opening is removed, for example.
  • Further, with the squeeze container, when the squeezed state is released, liquid is sucked with a so-called back suction effect generating negative pressure at the inside of the container body of which deformation is to be cancelled. Accordingly, content liquid around the discharge opening can be drawn back to the inside of the container body.
  • Meanwhile, when the squeeze container is tilted or inverted with holding of the barrel section of the container body, there may be a case that leaking and dripping of content liquid occurs from the discharge opening owing to internal pressure of the container body and self-weight of the content liquid. Since such unexpected leaking and dripping of content liquid cause external soiling of the squeeze container, hand soiling in usage and the like, technologies to prevent the above have been developed variously (see Patent Literature 1, Patent Literature 2 and Patent Literature 3, for example).
  • Patent Literature 1: Japanese Registered Utility Model 2600057
  • Patent Literature 2: Japanese Patent Laid-Open 2006-219181
  • Patent Literature 3: Japanese Patent Laid-Open 2003-226377
  • SUMMARY OF INVENTION
  • According to Patent Literature 1, liquid leaked before squeezing is prevented from being stuck to the vicinity of a container body by arranging a side wall at a cap to which a discharge opening is formed at the center of a top face section as being obliquely extended toward the center side from a peripheral section of the top face section. However, since liquid is leaked over wide range of the top face section at the inside of the peripheral section, liquid stopping is worsened owing to insufficient liquid sucking with back suction. Meanwhile, according to Patent Literature 2, content liquid is not discharged unless a container body is squeezed so that occurrence of unnecessary liquid dripping can be effectively avoided by arranging liquid inflow opening at the vicinity of the discharge opening as bending a dip tube which is communicated with the discharge opening of a cap to be a U-shape. However, the U-shaped bent tube structure causes inconvenience for handling at the time of attaching and detaching of the cap. In addition, when squeezing is performed in a state that content liquid remains at the inside of the dip tube, there may be a case that liquid is splashed peripherally owing to air mixing. Meanwhile, according to Patent Literature 3, occurrence of liquid dripping is avoided as returning liquid which remains in a trap room by fixedly arranging a closed-end cylindrical trap room at a lower side of a discharge opening section and forming communication holes at a periphery wall section and a bottom section of the closed-end cylindrical body. However, since liquid cannot be discharged until liquid is accumulated to a certain level in the trap room, there may be a problem such that a discharge amount is lessened or cannot be adjusted especially at the first time. Accordingly, discharge amount stabilization, liquid dripping prevention and preferable liquid stopping are not sufficiently satisfied even in any of the above cases. Therefore, further technology development to prevent such problems has been desired.
  • The present invention relates to a cap for a squeeze container with which leaking and dripping of container liquid before squeezing can be effectively prevented, favorable liquid stopping with back suction can be obtained, a compact shape for easy handling during attaching and detaching of the cap can be obtained, and air mixing with content liquid can be effectively prevented as well.
  • The present invention provides a cap for a squeeze container to discharge content liquid from a top discharge opening with squeeze deformation of a barrel section of a container body to be used as being attached to a mouth neck section of the container body made of plastic as being squeeze-deformable.
  • Further, the present invention provides a cap for a squeeze container having a helical flow path at least as a part of a liquid flow path from the mouth neck section of the container body to the discharge opening.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a sectional view of a squeeze container to which a cap for a squeeze container according to the first embodiment preferable for the present invention is attached.
  • FIGS. 2( a) and 2(b) are a perspective view and a side view of a helical tube to form a helical flow path which structures the cap for a squeeze container according to the first embodiment preferable for the present invention.
  • FIG. 3 is a sectional view of a cap for a squeeze container according to the second embodiment preferable for the present invention.
  • FIG. 4 is a sectioned perspective view of the cap for a squeeze container according to the second embodiment preferable for the present invention.
  • FIG. 5 is a side view of a helical blade to form a helical flow path which structures the cap for a squeeze container according to the second embodiment preferable for the
  • DESCRIPTION OF EMBODIMENTS
  • In the following, the present invention will be described with reference to the drawings based on preferable embodiments. FIG. 1 illustrates a squeeze container 11 to which a cap 10 for a squeeze container according to the first embodiment preferable for the present invention is attached. As illustrated in FIG. 1, the cap 10 for a squeeze container is used as being attached to a mouth neck section 12 a of a plastic-made container body 12 which is squeeze-deformable. The cap 10 for a squeeze container has a discharge opening 13 as being opened at the top end and a specific amount of content liquid can be discharged by feeding the content liquid to the discharge opening 13 of the cap 10 for a squeeze container from a barrel section 12 b via the mouth neck section 12 a with deformation of the container body 12 as squeezing (i.e., compressing) the barrel section 12 b of the container body 12 after the discharge opening 13 is directed to a discharge position while a user tilts or inverts the squeeze container 11 as grasping the barrel section 12 b of the container body 12. Further, the cap 10 for a squeeze container has a function enabling to prevent leaking and dripping of content liquid from the discharge opening 13 owing to internal pressure of the container body 12 and self-weight of the content liquid after the discharge opening of the squeeze container 11 is directed to a discharge position until the barrel section 12 b of the container body 12 is squeezed.
  • That is, the cap 10 for a squeeze container according to the first embodiment is a cap to discharge content liquid from the top discharge opening 13 with squeeze deformation (i.e., compression deformation) of the barrel section 12 b of the container body 12 to be used as being attached to the mouth neck section 12 a of the plastic-made container body 12 which is deformable when being squeezed. In the cap for a squeeze container, at least a part of a liquid flow path from the mouth neck section 12 a of the container body 12 to the discharge opening 13 is formed as a helical flow path 15.
  • Further, in the first embodiment, the helical flow path 15 is arranged so that a bottom face section 15 a thereof is formed to have declination toward the barrel section 12 b of the container body 12 in an erected state of the squeeze container 11. Here, the declination includes a state that the bottom face section 15 a of the helical flow path 15 is formed as being declined as a whole even a horizontal part exists at a midway thereof.
  • Further, in the first embodiment, the helical flow path 15 is formed by a helical tube 14 which is arranged inside the cap 10 for a squeeze container while the upper end of the helical tube 14 is communicated with the discharge opening 13 via an upper end opening 14 a, and the lower end of the helical tube 14 is placed at the inside of the mouth neck section 12 a of the container body 12 via a lower end opening 14 b.
  • In the first embodiment, the container body 12 being a bottle-shaped plastic container having squeeze-deformable flexibility includes the barrel section 12 b in which content liquid is accommodated and the mouth neck section 12 a of which upper end is formed as an opened face and which is formed as being protruded upward from the upper end of the barrel section 12 b, as illustrated in FIG. 1. The cap 10 for a squeeze container is attached to the mouth neck section 12 a with any of a variety of known screwing means and fitting means in a detachably attachable manner. Further, the container body 12 can be easily formed with blow molding, for example, by utilizing a variety of known synthetic resin.
  • Here, the content liquid capable of being accommodated in the container body 12 includes liquid composition to be used as being measured, such as clothing liquid detergent, fabric softener, bleach and liquid bath agent. Further, it is also possible to be used for liquid food such as food oil and seasoning.
  • The cap 10 for a squeeze cap being a plastic-made molded piece, for example, includes a circular top face section 10 a and a peripheral wall section 10 b having an annular skirt shape integrally extended downward from a peripheral part of the top face section 10 a. The top face section 10 a is provided with a nozzle section 19 as being protruded upward from a center part thereof. The nozzle section 19 includes a cylindrical intermediate section 19 b formed as rising from the top face section 10 a and a nozzle body 19 a fixed to a top end part of the cylindrical intermediate section 19 b. The discharge opening 13 is formed as vertically penetrating through the cylindrical intermediate section 19 b and the nozzle body 19 a of the nozzle section 19. Further, at the nozzle section 19, a cover body 16 capable of opening and closing the top end opening of the nozzle body 19 a is swingably joined to the nozzle body 19 a via a hinge section 17. Accordingly, the discharge opening 13 is hermetically closed at the time of storage of the squeeze container 11.
  • Further, an internal thread is formed, for example, at the inner face of an approximate half part of the annular-shirt-shaped peripheral wall section 10 b. The cap 10 is attached to the mouth neck section 12 a in a detachably attachable manner by fastening the internal thread to an external thread which is formed at an outer peripheral face of the mouth neck section 12 a of the container body 12, for example.
  • In the first embodiment, the helical tube 14 which forms the helical flow path 15 as being arranged inside the cap 10 for a squeeze container is a plastic-made molded piece. As illustrated in FIGS. 2( a) and 2(b), a cylindrical tube having a hollow circular cross-section is extended as being wound to be a coil-spring-like helical shape and an upper end attaching section 14 c with two undercut lines for engagement is vertically formed as bending the upper end part radially-inward and further bending upward along a center axis part of the helical shape. In this manner, the helical tube 14 is formed in a state that the upper end opening 14 a is upwardly opened. In addition, the helical tube 14 is formed in a state that the lower end opening 14 b is opened obliquely downward along a tangential direction of the helical shape.
  • Further, in the first embodiment, the upper end attaching section 14 a of the helical tube 14 is attached as being shoehorned into a lower end part of the cylindrical intermediate section 19 b of the nozzle section 19 from the lower side, so that the helical tube 14 is arranged inside the peripheral wall section 10 b of the cap 10 in a state of being hanged from the lower end part of the cylindrical intermediate section 19 b. Further, with the above structure, the upper end of the helical tube 14 is communicated with the discharge opening 13 via the upper end opening 14 a and the lower end opening 14 b at the lower end of the helical tube 14 is opened inside the mouth neck section 12 c of the container body 12. In addition, the bottom face section 15 a of the helical flow path 15 being bent and extended helically with the helical tube 14 forms declination continuously tilted toward the barrel section 12 b of the container body 12 from the upper end of the helical tube 14 in an erected state of the squeeze container 11.
  • According to the cap 10 for a squeeze container of the first embodiment having the above structure, leaking and dripping of content liquid before squeezing the squeeze container 11 can be effectively prevented and favorable liquid stopping can be obtained with back suction. In addition, air mixing with content liquid can be effectively prevented as well while having a compact shape which can be easily handled at the time of attaching and detaching of the cap 10.
  • That is, according to the cap 10 for a squeeze container of the first embodiment, the helical flow path 15 bending and extending at least a part of the liquid flow path from the mouth neck section 12 a of the container body 12 to the discharge opening 13 is formed by the helical tube 14. When the squeeze container 11 is tilted or inverted, content liquid is discharged from the discharge opening 13 after passing through the liquid flow path bended and extended with the helical flow path 15. Accordingly, a certain amount of time is required for content liquid to pass through the bent and extended helical flow path 15 as well as smoothly discharging content liquid from the discharge opening 13 after passing through the liquid flow path. Further, the entire wall face of the helical flow path 15 is contacted with content liquid while the content liquid is discharged, that is, while the content liquid passes through the liquid flow path. Therefore, the content liquid can be held for a long time as being less likely to be replaced by air from the discharge opening 13 into the flow path. Accordingly, it is possible to effectively prevent leaking and dripping of content liquid from the discharge opening 13 owing to internal pressure of the container body 12 and self-weight of the content liquid after the discharge opening 13 is directed to a discharge position as tilting or inverting the squeeze container 11 until the barrel section 12 b of the container body 12 is squeezed.
  • Further, in the first embodiment, since leaking and dripping of content liquid before squeezing the barrel section can be effectively prevented as described above, favorable liquid stopping of content liquid with back suction can be obtained when the squeezed state is released. Here, when volume of the part of the liquid flow path (i.e., the helical flow path 15) bent and extended with the helical tube 14 is set to be smaller than a decreased amount of volume of the barrel section 12 b due to deformation of the container body 12 at the time of squeezing of the squeeze container 11, the liquid stopping with back suction can provide a more favorable liquid stopping effect.
  • Further, since the cap 10 for a squeeze container of the first embodiment has a compact shape as the helical tube 14 forming the helical flow path 15 is stored inside the peripheral wall section 10 b, it is possible to be attached to and detached from the mouth neck section 12 a of the container body 12 with the approximately same operation as a traditional cap.
  • Further, according to the cap 10 for a squeeze container of the first embodiment, the bottom face section 15 a of the helical flow path 15 bent and extended with the helical tube 14 is formed to have declination toward the barrel section 12 b of the container body 12 in an erected state of the squeeze container 11. Therefore, even when content liquid remains in the helical flow path 15, the remaining content liquid is smoothly recovered to the barrel section 12 b of the container body 12 as falling owing to self-weight along the declination of the bottom face section 15 a only by placing the squeeze container 11 in an erected state after usage, for example. Accordingly, since content liquid is not left in the bent and extended helical flow path 15 when the barrel section 12 b is to be squeezed with holding of the container body 12 at the time of the next usage of the squeeze container 11, it is possible to effectively prevent content liquid from being splashed owing to air mixing with the content liquid.
  • Further, in the first embodiment, since cross-section area of the discharge opening 13 and the liquid flow path are not required to be lessened, it is possible to effectively prevent squeeze pressure from being heightened at the time when the barrel section 12 b of the container body 12 is squeezed.
  • FIGS. 3 and 4 illustrate a cap 20 for a squeeze container of the second embodiment preferable for the present invention. In the cap 20 for a squeeze container of the second embodiment, the helical flow path 15 structuring as at least a part of the liquid flow path from the mouth neck section 12 a of the container body 12 to a discharge opening 13′ is formed by a helical blade 21 which is arranged at a cylindrical leading path 18 oriented toward the discharge opening 13′ of the cap 20.
  • That is, as illustrated also in FIG. 5, the helical blade 21 is a plastic-made molded piece formed integrally with a center axis member 22. For example, a support rod 23 formed integrally with the center axis member 22 at the lower end thereof is joined to a peripheral part of a lower end opening of the cylindrical leading path 18, so that the helical blade 21 is arranged as being shoehorned into an upper part of the cylindrical leading path 18, preferably in a state that a peripheral end face of the helical blade 21 is contacted to an inner face of the cylindrical leading path 18. The helical blade 21 placed in the cylindrical leading path 18 forms the bent and extended helical flow path 15 at the liquid flow path from the mouth neck section 12 a of the container body 12 to the discharge opening 13′ of the cap 25 via the cylindrical leading path 26. Further, the bottom face section 15 a of the helical flow path 15 formed by the helical blade 21 forms declination continuously tilted toward the barrel section 12 b of the container body 12 from the upper end of the helical blade 21 in an erected state of the squeeze container 11.
  • According to the cap 20 for a squeeze container of the second embodiment as well, the helical flow path 15 bent and extended with the helical blade 21 is formed at at least a part of the liquid flow path from the mouth neck section 12 a of the container body 12 to the discharge opening 13′ and the bottom face section 15 a of the helical flow path 15 with the helical blade 21 is formed to have declination in an erected state of the squeeze container 11. Therefore, similar operational effects to the cap 10 for a squeeze container of the first embodiment can be obtained.
  • Here, not limited to the above embodiments, the present invention may be modified variously. For example, not limited to the helical tube and the helical blade which are described above, another member may be utilized variously as the member for forming a helical flow path to be arranged at least at a part of a liquid flow path from a mouth neck section of a container body to a discharge opening. For example, it is possible to utilize an attaching plate and the like having a helical groove on an upper face thereof capable of being fitted toward the inside of a top face section of a cap.
  • INDUSTRIAL APPLICABILITY
  • According to the cap for a squeeze container of the present invention, leaking and dripping of content liquid before squeezing the squeeze container can be effectively prevented and favorable liquid stopping can be obtained with back suction. In addition, air mixing with content liquid can be effectively prevented as well while having a compact shape which can be easily handled at the time of attaching and detaching of the cap.

Claims (4)

1: A cap for a squeeze container to discharge content liquid from a top discharge opening with squeeze deformation of a barrel section of a container body to be used as being attached to a mouth neck section of the container body made of plastic as being squeeze-deformable,
wherein at least a part of a liquid flow path from the mouth neck section of the container body to the discharge opening is formed as a helical flow path, and the helical flow path is arranged inside the mouth neck section in a state of being hanged, and includes a bottom face section which is formed to have declination toward the barrel section of the container body in an erected state of the squeeze container.
2. (canceled)
3: The cap for a squeeze container according to claim 1,
wherein the helical flow path is formed by a helical tube which is arranged inside the cap while the upper end of the helical tube is communicated with the discharge opening and the lower end of the helical tube is placed at the inside of the mouth neck section of the container body.
4: The cap for a squeeze container according to claim 1,
wherein the helical flow path is formed by a helical blade which is arranged at a cylindrical leading path oriented toward the discharge opening of the cap.
US13/501,058 2009-10-09 2010-10-08 Cap for squeeze container Abandoned US20120234868A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-235593 2009-10-09
JP2009235593A JP5427542B2 (en) 2009-10-09 2009-10-09 Squeeze container cap
PCT/JP2010/067737 WO2011043460A1 (en) 2009-10-09 2010-10-08 Cap for squeeze container

Publications (1)

Publication Number Publication Date
US20120234868A1 true US20120234868A1 (en) 2012-09-20

Family

ID=43856909

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/501,058 Abandoned US20120234868A1 (en) 2009-10-09 2010-10-08 Cap for squeeze container

Country Status (7)

Country Link
US (1) US20120234868A1 (en)
EP (1) EP2487118B1 (en)
JP (1) JP5427542B2 (en)
CN (1) CN102686490B (en)
AU (1) AU2010304217B2 (en)
TW (1) TWI500566B (en)
WO (1) WO2011043460A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733969B2 (en) * 2010-02-19 2015-06-10 花王株式会社 Squeeze container cap
GB2500686B (en) * 2012-03-29 2018-08-08 Obrist Closures Switzerland A dispensing closure
JP6423663B2 (en) * 2014-09-17 2018-11-14 花王株式会社 Liquid detergent article and liquid detergent metering method
CN109097126B (en) * 2018-10-30 2020-12-04 临沂文衡信息技术有限公司 High efficiency natural gas deacidification system
CN114834771A (en) * 2021-02-02 2022-08-02 塞舌尔商日勤包装科技股份有限公司 Laminated peel container
CN116439221B (en) * 2023-06-16 2023-12-29 东至县东流镇密丰村股份经济合作联合社 A prevent leaking storage device for agricultural is used for medicine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1380834A (en) * 1920-06-03 1921-06-07 Spray Engineering Co Spray-nozzle and method of distributing liquid
DE8604150U1 (en) * 1986-02-17 1986-04-03 Magasi, Josef, 6902 Sandhausen Spout retarder for liquid containers
JPS61125953A (en) * 1984-11-21 1986-06-13 Nissan Motor Co Ltd Automobile wiper
US4684032A (en) * 1985-12-02 1987-08-04 Tsay Shung Der Portable thermos bottle with retractable suction tube
EP0346289A2 (en) * 1988-06-10 1989-12-13 TUBETTIFICIO EUROPEO S.p.A. Aerosol dispenser
US5301845A (en) * 1992-10-29 1994-04-12 Labonte Jean Pierre Liquid measuring and dispensing container
US6554792B2 (en) * 1999-05-21 2003-04-29 Mallinckrodt Inc. Suspension device and method
US20050167455A1 (en) * 2004-02-02 2005-08-04 Yim Bang B. Tamper-proof bottle cap
JP2006219181A (en) * 2005-02-14 2006-08-24 Kao Corp Squeeze container
US20080054026A1 (en) * 2006-09-01 2008-03-06 Polytop Corporation Dispensing cap with center channel and helical flow profile
WO2009055291A2 (en) * 2007-10-26 2009-04-30 3M Innovative Properties Company Liquid storage tank with internal flow control baffle and methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722377U (en) * 1980-07-15 1982-02-05
US4359283A (en) * 1981-04-29 1982-11-16 Sperry Corporation Juice container and stirrer
FR2573408A1 (en) * 1984-08-10 1986-05-23 Denat Jean Pouring corkscrew which never leaves the bottle
JPS61125953U (en) * 1985-01-26 1986-08-07
US5439125A (en) * 1992-10-22 1995-08-08 Bloch; Harry S. Drinking devices
JP2600057Y2 (en) 1993-09-06 1999-09-27 東洋製罐株式会社 Cap with dripping prevention mechanism
FR2794437A1 (en) * 1999-06-01 2000-12-08 Graham Hamilton Millar Mouth guard for drinks bottle has tube fitting over bottle neck and carrying mouthpiece
EP1114778A1 (en) * 2000-01-04 2001-07-11 Sara Lee/DE N.V. Liquid container
JP2003226377A (en) 2001-11-30 2003-08-12 Lion Corp Squeezing container
JP2003221052A (en) * 2002-01-29 2003-08-05 Daipura Kk Liquid container

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1380834A (en) * 1920-06-03 1921-06-07 Spray Engineering Co Spray-nozzle and method of distributing liquid
JPS61125953A (en) * 1984-11-21 1986-06-13 Nissan Motor Co Ltd Automobile wiper
US4684032A (en) * 1985-12-02 1987-08-04 Tsay Shung Der Portable thermos bottle with retractable suction tube
DE8604150U1 (en) * 1986-02-17 1986-04-03 Magasi, Josef, 6902 Sandhausen Spout retarder for liquid containers
EP0346289A2 (en) * 1988-06-10 1989-12-13 TUBETTIFICIO EUROPEO S.p.A. Aerosol dispenser
US5301845A (en) * 1992-10-29 1994-04-12 Labonte Jean Pierre Liquid measuring and dispensing container
US6554792B2 (en) * 1999-05-21 2003-04-29 Mallinckrodt Inc. Suspension device and method
US20050167455A1 (en) * 2004-02-02 2005-08-04 Yim Bang B. Tamper-proof bottle cap
JP2006219181A (en) * 2005-02-14 2006-08-24 Kao Corp Squeeze container
US20080054026A1 (en) * 2006-09-01 2008-03-06 Polytop Corporation Dispensing cap with center channel and helical flow profile
US7637402B2 (en) * 2006-09-01 2009-12-29 Polytop Corporation Dispensing cap with center channel and helical flow profile
WO2009055291A2 (en) * 2007-10-26 2009-04-30 3M Innovative Properties Company Liquid storage tank with internal flow control baffle and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
English translation of DE8604150(U1) *

Also Published As

Publication number Publication date
EP2487118B1 (en) 2016-01-06
CN102686490A (en) 2012-09-19
JP5427542B2 (en) 2014-02-26
TW201118019A (en) 2011-06-01
WO2011043460A1 (en) 2011-04-14
TWI500566B (en) 2015-09-21
EP2487118A4 (en) 2013-03-13
EP2487118A1 (en) 2012-08-15
CN102686490B (en) 2015-03-11
AU2010304217A1 (en) 2012-05-31
JP2011079570A (en) 2011-04-21
AU2010304217B2 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
AU2010304217B2 (en) Cap for squeeze container
US20100102022A1 (en) Discharge cap for bottle-like container body
JP5813580B2 (en) Double container
JP6783114B2 (en) Note cap
KR100856728B1 (en) A liquid economizing case
JP5546945B2 (en) Squeeze container cap
KR102473311B1 (en) cosmetic container
JP5590554B2 (en) Application container
JP6359407B2 (en) Discharge container
KR101134236B1 (en) Container
JP5546944B2 (en) Squeeze container cap
KR20130022148A (en) Inner cap having air inlet
JP3765937B2 (en) Double cylinder container for liquid storage
KR20200001908A (en) Remaining amount removal fluidal courage
JP5736165B2 (en) Squeeze container cap
KR200430258Y1 (en) Container having a shoulder cover
JP6226221B2 (en) Pouring nozzle
WO2002032777A1 (en) Liquid container and method of refilling refill liquid in the liquid container
SG193123A1 (en) Nozzle-cap-equipped container
RU2264955C1 (en) Canister
KR101713048B1 (en) The container controlling the quantity of its content
KR200394934Y1 (en) Advanced shampoo container
KR20120003343U (en) Remaining amount removal fluidal courage
JP2016120938A (en) Composite liquid discharge cap capable of discharging by small amount
JP6359408B2 (en) Discharge container

Legal Events

Date Code Title Description
AS Assignment

Owner name: KAO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:INABA, SHINICHI;GOTO, HIROSHI;FUJITA, MICHIAKI;AND OTHERS;SIGNING DATES FROM 20120416 TO 20120425;REEL/FRAME:028287/0988

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION