US20120218642A1 - Lens assembly and lens assembly array - Google Patents

Lens assembly and lens assembly array Download PDF

Info

Publication number
US20120218642A1
US20120218642A1 US13/466,130 US201213466130A US2012218642A1 US 20120218642 A1 US20120218642 A1 US 20120218642A1 US 201213466130 A US201213466130 A US 201213466130A US 2012218642 A1 US2012218642 A1 US 2012218642A1
Authority
US
United States
Prior art keywords
lens
supporter
lens assembly
array
supporting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/466,130
Inventor
Sei-Ping Louh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hon Hai Precision Industry Co Ltd
Original Assignee
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Precision Industry Co Ltd filed Critical Hon Hai Precision Industry Co Ltd
Priority to US13/466,130 priority Critical patent/US20120218642A1/en
Publication of US20120218642A1 publication Critical patent/US20120218642A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/808Lens mold

Definitions

  • the present disclosure relates to lens assemblies, lens assembly arrays and methods of manufacturing the lens assemblies and lens assembly arrays by press molding.
  • Wafer-level optical lenses are usually manufactured by press-molding a plurality of optical lenses on one or both sides of a transparent substrate.
  • a lens assembly is usually formed by combining a plurality of single lenses with other optical components, such as a filter and a spacer, for example. It is required that the individual lenses be coaxially arranged. However, a coaxial lens assembly is often hard to achieve by assembling the lenses one by one.
  • FIG. 1 is cross-sectional view of a lens assembly in accordance with a first embodiment, showing a central axis thereof as a broken line.
  • FIG. 2 is cross-sectional view of a lens assembly in accordance with a second embodiment, showing a central axis thereof as a broken line.
  • FIG. 3 is cross-sectional view of a lens assembly in accordance with a third embodiment, showing a central axis thereof as a broken line.
  • FIG. 4 is cross-sectional view of a lens assembly array in accordance with a fourth embodiment.
  • FIGS. 5-14 are cross-sectional views showing successive stages in a method of making a lens assembly in accordance with a fifth embodiment.
  • FIGS. 15-18 are cross-sectional views showing successive stages in a method of making a lens assembly array and a corresponding plurality of lens assemblies in accordance with a sixth embodiment.
  • the lens assembly 100 includes a first lens 110 , and a first supporter 120 integrally formed with the first lens 110 .
  • the first lens 110 has a bottom surface 111 and a top surface 112 at opposite sides thereof, and a peripheral first side surface 113 interconnecting the bottom surface 111 and the top surface 112 .
  • the first lens 110 is a biconvex lens.
  • the first lens can be a biconcave lens or a positive meniscus lens.
  • the supporter 120 has a first surface 121 and a second surface 122 at opposite sides thereof, and a peripheral first sidewall 123 interconnecting the first surface 121 and the second surface 122 .
  • the first surface 121 is flat.
  • the second surface 122 is fully in contact with the bottom surface 111 . That is, a shape of the second surface 122 matches a shape of the bottom surface 111 .
  • the first lens 110 is coaxial with the first supporter 120 .
  • the first lens 110 and the first supporter 120 are each substantially circular or disk shaped.
  • a maximum diameter of the first lens 110 is equal to that of the first supporter 120 , in order to ensure that the first side surface 113 of the first lens 110 can be aligned with the first sidewall 123 of the first supporter 120 .
  • the first lens 110 as well as the first supporter 120 can be made of thermosetting material or thermoplastic material, either of which has properties of high transmittance and a low light absorption rate.
  • the refraction index of the first lens 110 is different from that of the first supporter 120 .
  • the refraction index of the first lens 110 can either be higher than that of the first supporter 120 , or lower.
  • the high refraction index range is from 1.55 to 1.60.
  • the low refraction index range is from 1.45 to 1.49.
  • the high refraction index material is polycarbonate, and the low refraction index material is polymethyl methacrylate.
  • the first supporter 120 Due to the refractivity difference between the first lens 110 and the first supporter 120 , the inherent optical properties of the bottom surface 111 and the top surface 112 can be maintained. That is, the first supporter 120 being in intimate contact with the first lens 110 does not adversely impact the performance characteristics of the first lens 110 .
  • a lens assembly 200 according to a second embodiment is shown in FIG. 2 .
  • the lens assembly 200 is essentially similar to the lens assembly 100 of the first embodiment.
  • the lens assembly 200 further has a second supporter 230 in addition to a first lens 210 and a first supporter 220 .
  • the second supporter 230 has a third surface 231 and a fourth surface 232 at opposite sides thereof, and a peripheral second sidewall 233 interconnecting the third surface 232 and the fourth surface 232 .
  • the third surface 231 is fully in contact with the first lens 210 .
  • the fourth surface 232 is flat.
  • the first supporter 220 has a peripheral first sidewall 223 .
  • the refraction index of the first lens 210 is different from that of each of the first supporter 220 and the second supporter 230 .
  • the first lens 210 , the first supporter 220 , and the second supporter 230 are coaxially arranged.
  • the diameters of the first lens 210 , the first supporter 220 , and the second supporter 230 are the same, to ensure that the first side 213 of the first lens 210 , the first sidewall 223 of the first supporter 220 and the second sidewall 233 of the second supporter 230 can be aligned.
  • a lens assembly 300 in accordance with a third embodiment is shown in FIG. 3 .
  • the lens assembly 300 is essentially similar to the lens assembly 100 of the first embodiment.
  • the lens assembly 300 further has a filter 310 , a second supporter 340 , a second lens 350 , and a third supporter 360 , in addition to a first lens 330 and a first supporter 320 .
  • the filter 310 includes a transparent substrate 311 , and a filter film 312 deposited on the transparent substrate 311 .
  • An outer surface 314 of the filter 310 is in contact with a first surface 321 of the first supporter 320 .
  • the substrate 311 is able to transmit visible light, as well as reflect ultraviolet rays or infrared rays or both ultraviolet and infrared rays.
  • the second supporter 340 has a third surface 341 and a fourth surface 342 at opposite sides thereof, and a peripheral sidewall 343 interconnecting the third surface 341 and the fourth surface 342 .
  • the third surface 341 is in intimate contact with a first top surface 332 of the first lens 330 .
  • a first bottom surface (not labeled) of the first lens 330 is in intimate contact with a second surface 322 of the first supporter 320 .
  • the second lens 350 has a second bottom surface 351 and a second top surface 352 at opposite sides thereof, and a peripheral second side surface 353 interconnecting the second bottom surface 351 and the second top surface 352 .
  • the second lens 350 is a biconvex lens.
  • the second lens 350 can be a biconcave lens or a positive meniscus lens.
  • the second bottom surface 351 is in intimate contact with the fourth surface 342 of the second supporter 340 .
  • the third supporter 360 has a fifth surface 361 and a sixth surface 362 at opposite sides thereof, and a third sidewall 363 interconnecting the fifth surface 361 and the sixth surface 362 .
  • the fifth surface 361 is in intimate contact with the second top surface 352 .
  • the sixth surface 362 is flat.
  • the refraction index of the first lens 330 is different from that of each of the first supporter 320 , the second supporter 340 , and the third supporter 360 .
  • the refraction index of the second lens 350 can be the same as that of the first lens 330 .
  • the first lens 330 , the second lens 350 , the first supporter 320 , the second supporter 340 , and the third supporter 360 are coaxially arranged, and have the same diameter to ensure that all of these components can be aligned.
  • a lens assembly array 400 in accordance with a fourth embodiment is shown in FIG. 4 .
  • the lens assembly array 400 is similar in principle to the lens assemblies 100 , 200 , 300 .
  • the lens assembly array 400 comprises a filter 410 , a supporter array 420 , and a lens array 430 arranged in that order from bottom to top.
  • the lens array 430 has a plurality of biconvex lenses 431 .
  • the supporter array 420 is arranged between the filter 410 and the lens array 430 .
  • the filter 410 comprises a transparent substrate 411 , and a filter film 412 formed on the substrate 411 .
  • Each lens of the lens array 430 is coaxially aligned with a corresponding supporter portion of the supporter array 420 .
  • the lens assembly array 400 can be diced into a plurality of lens assemblies by cutting along a plurality of broken lines 450 .
  • the lens assembly array 400 can further include another supporter array on the lens array 430 and another lens array on the additional supporter array.
  • a method of making a lens assembly (such as the lens assembly 300 ) in accordance with a fifth embodiment is described below.
  • a platform 10 and a hollow cylindrical barrel 20 are provided.
  • the platform 10 has a flat supporting surface 11 and an annular side surface 13 .
  • the hollow cylindrical barrel 20 has a cylindrical inner surface 22 .
  • the platform 10 is set inside the hollow cylindrical barrel 20 , with the side surface 13 movably contacting the inner surface 22 .
  • the platform 10 is connected to and controlled by a driving shaft 12 , so that the platform 10 can linearly move up and down inside the hollow cylindrical barrel 20 .
  • the hollow cylindrical barrel 20 has an annular first end surface 201 and an opposite annular second end surface 202 . The distance that the platform 10 ascends or descends can be precisely controlled.
  • the flat supporting surface 11 of the platform 10 and the inner surface 22 of the hollow cylindrical barrel 20 can cooperatively form a molding cavity 21 (see FIG. 6 ).
  • the platform 10 is capable of moving inside the hollow cylindrical barrel 20 under a pushing force or a pulling force provided by the driving shaft 12 , such that the molding cavity 21 can be enlarged or contracted.
  • step 2 the filter 310 is put on the flat supporting surface 11 .
  • At least one first alignment mark 313 is provided on or in the filter 310 .
  • the number and the position(s) of the at least one alignment mark 313 depend on, inter alia, the size and form of the lenses that are to be made. In the illustrated embodiment, there are two first alignment marks 313 .
  • step 3 the first supporter 320 is formed on the top surface 314 of the filter 310 by press molding, as shown in FIGS. 6 through 8 .
  • the position of the platform 10 is adjusted by moving the driving shaft 12 in order that the distance between the top surface 314 of the filter layer 312 and the first end surface 201 is equal to the maximum thickness of the first supporter 320 .
  • a molding material in a liquid, viscous, or plastically deformable state for making the first supporter 320 is provided.
  • the molding material is arranged on the top surface 314 , and is pressed by a first mold 30 to form the first supporter 320 .
  • the first mold 30 is transparent.
  • the first mold 30 has a first pattern surface 31 that is complementary to the second surface 322 of the first supporter 320 .
  • At least one second alignment mark 34 is marked on the first mold 30 . In the illustrated embodiment, there are two first alignment marks 34 .
  • the first mold 30 is placed above the first end surface 201 , and the first alignment marks 313 are aligned with the second alignment marks 34 .
  • the first mold 30 is pressed into the molding material until the first mold 30 contacts the first end surface 201 . Excess molding material flows out from one or more gaps (not shown) between an edge of the first pattern surface 31 and a corresponding edge of the first end surface 201 .
  • the uncured first supporter 320 is cured by thermal treatment or with ultraviolet (UV) rays.
  • UV rays are applied from above the first mold 30 .
  • the first mold 30 and the first supporter 320 are separated from each other.
  • step 4 the first lens 330 is formed on the cured first supporter 320 by press-molding, as shown in FIGS. 9 through 11 .
  • the position of the platform 10 is adjusted in order that the distance between the first end surface 201 and the second surface 322 of the first supporter 320 is equal to a thickness of a peripheral side surface (not labeled) of the first lens 330 .
  • a molding material in a liquid, viscous, or plastically deformable state for making the first lens 330 is provided.
  • the molding material is put onto the second surface 322 .
  • the molding material is pressed by a second mold 40 to form the first lens 330 .
  • the second mold 40 has a second pattern surface 41 that is complementary to the first top surface 332 of the first lens 330 .
  • step 5 the second supporter 340 is formed on the first top surface 332 by press-molding, as shown in FIG. 12 and FIG. 13 .
  • the position of the platform 10 is adjusted in order that the distance between the first top surface 332 of the first lens 330 and the first end surface 201 is equal to a maximum thickness of the second supporter 340 . Then a molding material in a liquid, viscous, or plastically deformable state for making the second supporter 340 is provided.
  • the molding material is put onto the first top surface 332 , and is pressed by a third mold 50 to form the second supporter 340 .
  • the third mold 50 has a third pattern surface 51 that is complementary to the second surface 342 of the second supporter 340 .
  • the third alignment marks 52 are aligned with the first alignment marks 313 .
  • the third mold 50 is pressed into the molding material until the third mold 50 contacts the first end surface 201 .
  • the second supporter 340 is cured by thermal treatment or ultraviolet rays, and then the third mold 50 and the second supporter 340 are separated from each other.
  • step 6 the second lens 350 is formed on the fourth surface 342 of the second supporter 340 in much the same way as the first lens 330 is formed (see above).
  • the third supporter 360 is formed on the second top surface 352 of the second lens 350 , as shown in FIG. 14 .
  • the third supporter 360 is formed in much the same way as the first supporter 320 is formed (see above).
  • the lens assembly 300 can then be separated from the platform 10 and taken out of the hollow cylindrical barrel 20 . Formation of the lens assembly 300 is thus completed.
  • FIGS. 15 to 18 show successive stages in a method of making a lens assembly array and a corresponding plurality of lens assemblies in accordance with a sixth embodiment.
  • the lens assembly array may for example be similar to the lens assembly array 400 , but without the filter 410 .
  • the method employs techniques similar to the method of the fifth embodiment described above. Accordingly, a full description of such techniques is not provided herein, for the sake of brevity.
  • step 1 a platform 60 having a flat supporting surface 61 is provided.
  • step 2 a molding material in a liquid, viscous, or plastically deformable state is provided.
  • the molding material is put onto the supporting surface 61 and is pressed by a mold (not labeled) to form the supporter array 610 .
  • a mold not labeled
  • molding material is put onto the supporter array 610 for making a lens array 620 .
  • the integrally formed supporter array 610 and lens array 620 is finally taken out of a cylindrical barrel (not labeled).
  • a lens assembly array 600 is obtained.
  • the lens assembly array 600 is diced into a plurality of lens assemblies 500 , one of which is shown in FIG. 18 .
  • the lens assembly 500 is comprised of a lens 520 and a supporter 510 , which are coaxially stacked one on the other. A central axis of the lens assembly 500 is shown in a broken line.
  • another supporter array and another lens assembly can be formed on the lens assembly array 600 .
  • the steps and techniques for forming the additional supporter array and lens assembly are similar to corresponding steps and techniques in the above-described method for making the lens assembly 300 . Accordingly, a full description of such steps and techniques is not provided herein, for the sake of brevity.
  • each lens portion (not labeled) of the lens array 620 is coaxial with a corresponding supporter portion (not labeled) of the supporter array 610 .
  • the above-described method obviates the need for, e.g., producing a plurality of individual first optical components and a plurality of individual second optical components and then combining one first optical component with one second optical component to obtain each lens assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Lens Barrels (AREA)
  • Eyeglasses (AREA)

Abstract

A first lens having a first bottom surface and a first top surface at opposite sides thereof; and a first supporter having a first supporting surface and a second supporting surface at opposite sides thereof, the first supporting surface being flat, the second supporting surface being in contact with the first bottom surface, the first supporter being made of transparent material, and a refraction index of the first supporter being different from a refraction index of the first lens. A lens assembly array and method of making the lens assembly array are also provided.

Description

  • This application is a divisional application of a commonly-assigned application entitled “METHOD OF MAKING A LENS ASSEMBLY ARRAY”, filed on Aug. 7, 2009 with application Ser. No. 12/537,355. The disclosure of the above-identified application is incorporated herein by reference.
  • BACKGROUND
  • 1. Technical Field
  • The present disclosure relates to lens assemblies, lens assembly arrays and methods of manufacturing the lens assemblies and lens assembly arrays by press molding.
  • 2. Description of Related Art
  • Wafer-level optical lenses are usually manufactured by press-molding a plurality of optical lenses on one or both sides of a transparent substrate.
  • A lens assembly is usually formed by combining a plurality of single lenses with other optical components, such as a filter and a spacer, for example. It is required that the individual lenses be coaxially arranged. However, a coaxial lens assembly is often hard to achieve by assembling the lenses one by one.
  • What is needed, therefore, is a lens assembly and a method of making the lens assembly which can overcome the above shortcomings
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Many aspects of the present lens assembly, lens assembly array, and methods of making the lens assembly and lens assembly array can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present lens assembly, lens assembly array and methods. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
  • FIG. 1 is cross-sectional view of a lens assembly in accordance with a first embodiment, showing a central axis thereof as a broken line.
  • FIG. 2 is cross-sectional view of a lens assembly in accordance with a second embodiment, showing a central axis thereof as a broken line.
  • FIG. 3 is cross-sectional view of a lens assembly in accordance with a third embodiment, showing a central axis thereof as a broken line.
  • FIG. 4 is cross-sectional view of a lens assembly array in accordance with a fourth embodiment.
  • FIGS. 5-14 are cross-sectional views showing successive stages in a method of making a lens assembly in accordance with a fifth embodiment; and
  • FIGS. 15-18 are cross-sectional views showing successive stages in a method of making a lens assembly array and a corresponding plurality of lens assemblies in accordance with a sixth embodiment.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • A lens assembly 100 in accordance with a first embodiment is shown in FIG. 1. The lens assembly 100 includes a first lens 110, and a first supporter 120 integrally formed with the first lens 110. The first lens 110 has a bottom surface 111 and a top surface 112 at opposite sides thereof, and a peripheral first side surface 113 interconnecting the bottom surface 111 and the top surface 112. In this embodiment, the first lens 110 is a biconvex lens. In other embodiments, the first lens can be a biconcave lens or a positive meniscus lens. The supporter 120 has a first surface 121 and a second surface 122 at opposite sides thereof, and a peripheral first sidewall 123 interconnecting the first surface 121 and the second surface 122. The first surface 121 is flat. The second surface 122 is fully in contact with the bottom surface 111. That is, a shape of the second surface 122 matches a shape of the bottom surface 111.
  • The first lens 110 is coaxial with the first supporter 120. The first lens 110 and the first supporter 120 are each substantially circular or disk shaped. A maximum diameter of the first lens 110 is equal to that of the first supporter 120, in order to ensure that the first side surface 113 of the first lens 110 can be aligned with the first sidewall 123 of the first supporter 120.
  • The first lens 110 as well as the first supporter 120 can be made of thermosetting material or thermoplastic material, either of which has properties of high transmittance and a low light absorption rate. The refraction index of the first lens 110 is different from that of the first supporter 120. For example, the refraction index of the first lens 110 can either be higher than that of the first supporter 120, or lower. The high refraction index range is from 1.55 to 1.60. The low refraction index range is from 1.45 to 1.49. For example, the high refraction index material is polycarbonate, and the low refraction index material is polymethyl methacrylate. Due to the refractivity difference between the first lens 110 and the first supporter 120, the inherent optical properties of the bottom surface 111 and the top surface 112 can be maintained. That is, the first supporter 120 being in intimate contact with the first lens 110 does not adversely impact the performance characteristics of the first lens 110.
  • A lens assembly 200 according to a second embodiment is shown in FIG. 2. The lens assembly 200 is essentially similar to the lens assembly 100 of the first embodiment. However, the lens assembly 200 further has a second supporter 230 in addition to a first lens 210 and a first supporter 220.
  • The second supporter 230 has a third surface 231 and a fourth surface 232 at opposite sides thereof, and a peripheral second sidewall 233 interconnecting the third surface 232 and the fourth surface 232. The third surface 231 is fully in contact with the first lens 210. The fourth surface 232 is flat. The first supporter 220 has a peripheral first sidewall 223.
  • The refraction index of the first lens 210 is different from that of each of the first supporter 220 and the second supporter 230. The first lens 210, the first supporter 220, and the second supporter 230 are coaxially arranged. The diameters of the first lens 210, the first supporter 220, and the second supporter 230 are the same, to ensure that the first side 213 of the first lens 210, the first sidewall 223 of the first supporter 220 and the second sidewall 233 of the second supporter 230 can be aligned.
  • A lens assembly 300 in accordance with a third embodiment is shown in FIG. 3. The lens assembly 300 is essentially similar to the lens assembly 100 of the first embodiment. However, the lens assembly 300 further has a filter 310, a second supporter 340, a second lens 350, and a third supporter 360, in addition to a first lens 330 and a first supporter 320.
  • The filter 310 includes a transparent substrate 311, and a filter film 312 deposited on the transparent substrate 311. An outer surface 314 of the filter 310 is in contact with a first surface 321 of the first supporter 320. The substrate 311 is able to transmit visible light, as well as reflect ultraviolet rays or infrared rays or both ultraviolet and infrared rays.
  • The second supporter 340 has a third surface 341 and a fourth surface 342 at opposite sides thereof, and a peripheral sidewall 343 interconnecting the third surface 341 and the fourth surface 342. The third surface 341 is in intimate contact with a first top surface 332 of the first lens 330. A first bottom surface (not labeled) of the first lens 330 is in intimate contact with a second surface 322 of the first supporter 320.
  • The second lens 350 has a second bottom surface 351 and a second top surface 352 at opposite sides thereof, and a peripheral second side surface 353 interconnecting the second bottom surface 351 and the second top surface 352. In this embodiment, the second lens 350 is a biconvex lens. In other embodiments, the second lens 350 can be a biconcave lens or a positive meniscus lens. The second bottom surface 351 is in intimate contact with the fourth surface 342 of the second supporter 340.
  • The third supporter 360 has a fifth surface 361 and a sixth surface 362 at opposite sides thereof, and a third sidewall 363 interconnecting the fifth surface 361 and the sixth surface 362. The fifth surface 361 is in intimate contact with the second top surface 352. The sixth surface 362 is flat.
  • The refraction index of the first lens 330 is different from that of each of the first supporter 320, the second supporter 340, and the third supporter 360. The refraction index of the second lens 350 can be the same as that of the first lens 330. The first lens 330, the second lens 350, the first supporter 320, the second supporter 340, and the third supporter 360 are coaxially arranged, and have the same diameter to ensure that all of these components can be aligned.
  • A lens assembly array 400 in accordance with a fourth embodiment is shown in FIG. 4. The lens assembly array 400 is similar in principle to the lens assemblies 100, 200, 300. The lens assembly array 400 comprises a filter 410, a supporter array 420, and a lens array 430 arranged in that order from bottom to top. The lens array 430 has a plurality of biconvex lenses 431. The supporter array 420 is arranged between the filter 410 and the lens array 430. The filter 410 comprises a transparent substrate 411, and a filter film 412 formed on the substrate 411. Each lens of the lens array 430 is coaxially aligned with a corresponding supporter portion of the supporter array 420. The lens assembly array 400 can be diced into a plurality of lens assemblies by cutting along a plurality of broken lines 450. In alternative embodiments, the lens assembly array 400 can further include another supporter array on the lens array 430 and another lens array on the additional supporter array.
  • A method of making a lens assembly (such as the lens assembly 300) in accordance with a fifth embodiment is described below.
  • In step 1, as shown in FIG. 5, a platform 10 and a hollow cylindrical barrel 20 are provided. The platform 10 has a flat supporting surface 11 and an annular side surface 13. The hollow cylindrical barrel 20 has a cylindrical inner surface 22. The platform 10 is set inside the hollow cylindrical barrel 20, with the side surface 13 movably contacting the inner surface 22. The platform 10 is connected to and controlled by a driving shaft 12, so that the platform 10 can linearly move up and down inside the hollow cylindrical barrel 20. The hollow cylindrical barrel 20 has an annular first end surface 201 and an opposite annular second end surface 202. The distance that the platform 10 ascends or descends can be precisely controlled. In this way, the flat supporting surface 11 of the platform 10 and the inner surface 22 of the hollow cylindrical barrel 20 can cooperatively form a molding cavity 21 (see FIG. 6). The platform 10 is capable of moving inside the hollow cylindrical barrel 20 under a pushing force or a pulling force provided by the driving shaft 12, such that the molding cavity 21 can be enlarged or contracted.
  • In step 2, as shown in FIG. 6, the filter 310 is put on the flat supporting surface 11. At least one first alignment mark 313 is provided on or in the filter 310. The number and the position(s) of the at least one alignment mark 313 depend on, inter alia, the size and form of the lenses that are to be made. In the illustrated embodiment, there are two first alignment marks 313.
  • In step 3, the first supporter 320 is formed on the top surface 314 of the filter 310 by press molding, as shown in FIGS. 6 through 8.
  • Firstly, the position of the platform 10 is adjusted by moving the driving shaft 12 in order that the distance between the top surface 314 of the filter layer 312 and the first end surface 201 is equal to the maximum thickness of the first supporter 320.
  • Secondly, a molding material in a liquid, viscous, or plastically deformable state for making the first supporter 320 is provided. The molding material is arranged on the top surface 314, and is pressed by a first mold 30 to form the first supporter 320. The first mold 30 is transparent. The first mold 30 has a first pattern surface 31 that is complementary to the second surface 322 of the first supporter 320. At least one second alignment mark 34 is marked on the first mold 30. In the illustrated embodiment, there are two first alignment marks 34. The first mold 30 is placed above the first end surface 201, and the first alignment marks 313 are aligned with the second alignment marks 34. Then, the first mold 30 is pressed into the molding material until the first mold 30 contacts the first end surface 201. Excess molding material flows out from one or more gaps (not shown) between an edge of the first pattern surface 31 and a corresponding edge of the first end surface 201.
  • Thirdly, the uncured first supporter 320 is cured by thermal treatment or with ultraviolet (UV) rays. In the illustrated embodiment, UV rays are applied from above the first mold 30.
  • Fourthly, the first mold 30 and the first supporter 320 are separated from each other.
  • In step 4, the first lens 330 is formed on the cured first supporter 320 by press-molding, as shown in FIGS. 9 through 11.
  • Firstly, the position of the platform 10 is adjusted in order that the distance between the first end surface 201 and the second surface 322 of the first supporter 320 is equal to a thickness of a peripheral side surface (not labeled) of the first lens 330. Secondly, a molding material in a liquid, viscous, or plastically deformable state for making the first lens 330 is provided. The molding material is put onto the second surface 322. Thirdly, the molding material is pressed by a second mold 40 to form the first lens 330. The second mold 40 has a second pattern surface 41 that is complementary to the first top surface 332 of the first lens 330.
  • In step 5, the second supporter 340 is formed on the first top surface 332 by press-molding, as shown in FIG. 12 and FIG. 13.
  • The position of the platform 10 is adjusted in order that the distance between the first top surface 332 of the first lens 330 and the first end surface 201 is equal to a maximum thickness of the second supporter 340. Then a molding material in a liquid, viscous, or plastically deformable state for making the second supporter 340 is provided. The molding material is put onto the first top surface 332, and is pressed by a third mold 50 to form the second supporter 340. The third mold 50 has a third pattern surface 51 that is complementary to the second surface 342 of the second supporter 340. In the illustrated embodiment, there are two third alignment marks 52 on or in the third mold 50. The third alignment marks 52 are aligned with the first alignment marks 313. The third mold 50 is pressed into the molding material until the third mold 50 contacts the first end surface 201. The second supporter 340 is cured by thermal treatment or ultraviolet rays, and then the third mold 50 and the second supporter 340 are separated from each other.
  • In step 6, the second lens 350 is formed on the fourth surface 342 of the second supporter 340 in much the same way as the first lens 330 is formed (see above).
  • In step 7, the third supporter 360 is formed on the second top surface 352 of the second lens 350, as shown in FIG. 14. The third supporter 360 is formed in much the same way as the first supporter 320 is formed (see above). The lens assembly 300 can then be separated from the platform 10 and taken out of the hollow cylindrical barrel 20. Formation of the lens assembly 300 is thus completed.
  • FIGS. 15 to 18 show successive stages in a method of making a lens assembly array and a corresponding plurality of lens assemblies in accordance with a sixth embodiment. The lens assembly array may for example be similar to the lens assembly array 400, but without the filter 410. The method employs techniques similar to the method of the fifth embodiment described above. Accordingly, a full description of such techniques is not provided herein, for the sake of brevity.
  • In step 1, a platform 60 having a flat supporting surface 61 is provided.
  • In step 2, a molding material in a liquid, viscous, or plastically deformable state is provided. The molding material is put onto the supporting surface 61 and is pressed by a mold (not labeled) to form the supporter array 610. After curing the supporter array 610, molding material is put onto the supporter array 610 for making a lens array 620. The integrally formed supporter array 610 and lens array 620 is finally taken out of a cylindrical barrel (not labeled). Thus, a lens assembly array 600 is obtained.
  • In step 3, the lens assembly array 600 is diced into a plurality of lens assemblies 500, one of which is shown in FIG. 18. The lens assembly 500 is comprised of a lens 520 and a supporter 510, which are coaxially stacked one on the other. A central axis of the lens assembly 500 is shown in a broken line.
  • In alternative embodiments, another supporter array and another lens assembly can be formed on the lens assembly array 600. The steps and techniques for forming the additional supporter array and lens assembly are similar to corresponding steps and techniques in the above-described method for making the lens assembly 300. Accordingly, a full description of such steps and techniques is not provided herein, for the sake of brevity.
  • According to the above-described method of making a lens assembly array, each lens portion (not labeled) of the lens array 620 is coaxial with a corresponding supporter portion (not labeled) of the supporter array 610. This is achieved by alignment marks (not shown) provided on the mold (not labeled), at least one of the supporter array 610 and the lens array 620, and the platform (not labeled). Unlike in a conventional method, the above-described method obviates the need for, e.g., producing a plurality of individual first optical components and a plurality of individual second optical components and then combining one first optical component with one second optical component to obtain each lens assembly.
  • It is understood that the above-described embodiments are intended to illustrate rather than limit the invention. Variations may be made to the embodiments without departing from the spirit of the invention. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.

Claims (12)

1. A lens assembly, comprising:
a first lens having a first bottom surface and a first top surface at opposite sides thereof; and
a first supporter having a first supporting surface and a second supporting surface at opposite sides thereof, the first supporting surface being flat, the second supporting surface being in contact with the first bottom surface, the first supporter being made of transparent material, and a refraction index of the first supporter being different from a refraction index of the first lens.
2. The lens assembly according to claim 1, wherein the first lens and the first supporter are coaxially arranged, and a maximum diameter of the first lens is equal to a diameter of the first supporter.
3. The lens assembly according to claim 1, wherein a refraction index of the first lens is in the range from 1.55 to 1.60, and a refraction index of the first supporter is in the range from 1.45 to 1.49.
4. The lens assembly according to claim 1, wherein a refraction index of the first lens is in the range from 1.45 to 1.49, and a refraction index of the first supporter is in the range from 1.55 to 1.60.
5. The lens assembly according to claim 1, further comprising a second supporter, the second supporter having a third supporting surface and a fourth supporting surface at opposite sides thereof, the third supporting surface being in contact with the first top surface, and the fourth supporting surface being flat.
6. The lens assembly according to claim 1, further comprising a filter formed on the first supporting surface of the first supporter.
7. The lens assembly according to claim 1, further comprising a second supporter and a second lens, the second supporter having a third supporting surface and a fourth supporting surface at opposite sides thereof, the second lens having a second bottom surface and a second top surface at opposite sides thereof, the third supporting surface being in contact with the first top surface, and the fourth supporting surface being in contact with the second bottom surface.
8. The lens assembly according to claim 7, further comprising a third supporter, the third supporter having a fifth supporting surface and a six supporting surface at opposite sides thereof, the fifth supporting surface being in contact with the second top surface, and the six supporting surface being flat.
9. A lens assembly array, comprising:
a lens array having a first bottom surface and a first top surface at opposite sides thereof; and
a supporter array having a first supporting surface and a second supporting surface at opposite sides thereof, the first supporting surface being flat, the second supporting surface being in contact with the first bottom surface, a refraction index of the supporter array being different from a refraction index of the lens array.
10. The lens assembly array according to claim 9, wherein the lens array comprises a plurality of lens portions, the supporter array comprises a plurality of supporter portions, and each lens portion is coaxially arranged with a corresponding supporter portion.
11. The lens assembly array according to claim 9, wherein a refraction index of the lens array is in the range from 1.55 to 1.60, and a refraction index of the supporter array is in the range from 1.45 to 1.49.
12. The lens assembly array according to claim 9, wherein a refraction index of the lens array is in the range from 1.45 to 1.49, and a refraction index of the supporter array is in the range from 1.55 to 1.60.
US13/466,130 2008-11-12 2012-05-08 Lens assembly and lens assembly array Abandoned US20120218642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/466,130 US20120218642A1 (en) 2008-11-12 2012-05-08 Lens assembly and lens assembly array

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810305502.X 2008-11-12
CN200810305502A CN101738653A (en) 2008-11-12 2008-11-12 Lens structure, lens array structure and manufacturing method for lens structure
US12/537,355 US8202451B2 (en) 2008-11-12 2009-08-07 Method of making a lens assembly array
US13/466,130 US20120218642A1 (en) 2008-11-12 2012-05-08 Lens assembly and lens assembly array

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/537,355 Division US8202451B2 (en) 2008-11-12 2009-08-07 Method of making a lens assembly array

Publications (1)

Publication Number Publication Date
US20120218642A1 true US20120218642A1 (en) 2012-08-30

Family

ID=42164976

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/537,355 Expired - Fee Related US8202451B2 (en) 2008-11-12 2009-08-07 Method of making a lens assembly array
US13/466,130 Abandoned US20120218642A1 (en) 2008-11-12 2012-05-08 Lens assembly and lens assembly array

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/537,355 Expired - Fee Related US8202451B2 (en) 2008-11-12 2009-08-07 Method of making a lens assembly array

Country Status (2)

Country Link
US (2) US8202451B2 (en)
CN (1) CN101738653A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034020A1 (en) * 2010-08-11 2012-02-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Surface structure and Fresnel lens and tool for producing a surface structure
JP6364912B2 (en) * 2014-04-17 2018-08-01 セイコーエプソン株式会社 Microlens array substrate, electro-optical device, and electronic device
JP6398361B2 (en) * 2014-06-20 2018-10-03 セイコーエプソン株式会社 Microlens array substrate, electro-optical device, and electronic device
JP2016024293A (en) * 2014-07-18 2016-02-08 セイコーエプソン株式会社 Micro lens array substrate, electro-optic device, electronic apparatus, method for manufacturing micro lens array substrate, and method for manufacturing electronic apparatus
US9577327B2 (en) 2015-07-20 2017-02-21 Elwha Llc Electromagnetic beam steering antenna
US9620855B2 (en) 2015-07-20 2017-04-11 Elwha Llc Electromagnetic beam steering antenna
CN209327645U (en) * 2017-06-02 2019-08-30 宁波舜宇光电信息有限公司 Optical lens, molding die and optics module
CN111013947A (en) * 2019-12-26 2020-04-17 江西联益光学有限公司 Lens ink coating equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020135883A1 (en) * 2001-03-23 2002-09-26 Takao Nishikawa Microlens array, manufacturing method thereof and optical instrument
US20050274969A1 (en) * 2004-06-11 2005-12-15 Seiko Epson Corporation Electro-optical device, method of manufacturing the same, and electronic apparatus using electro-optical device
US7525732B2 (en) * 2002-04-11 2009-04-28 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971841A (en) * 1974-06-20 1976-07-27 Polaroid Corporation Molding devices and process for making a molded plastic lens mount
NL8702201A (en) * 1987-09-16 1989-04-17 Philips Nv METHOD FOR MANUFACTURING LENS ELEMENTS.
NL8702679A (en) * 1987-11-10 1989-06-01 Philips Nv METHOD FOR MANUFACTURING BICONVEXE LENS ELEMENTS.
JP4672407B2 (en) * 2005-03-18 2011-04-20 富士フイルム株式会社 Plastic lens and method and apparatus for manufacturing the same
US20060284327A1 (en) * 2005-06-16 2006-12-21 Sony Corporation Optical unit manufacturing method, optical unit, and forming apparatus
JP4923704B2 (en) * 2006-04-28 2012-04-25 ソニー株式会社 Optical element molding apparatus and molding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020135883A1 (en) * 2001-03-23 2002-09-26 Takao Nishikawa Microlens array, manufacturing method thereof and optical instrument
US7525732B2 (en) * 2002-04-11 2009-04-28 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
US20050274969A1 (en) * 2004-06-11 2005-12-15 Seiko Epson Corporation Electro-optical device, method of manufacturing the same, and electronic apparatus using electro-optical device

Also Published As

Publication number Publication date
US8202451B2 (en) 2012-06-19
CN101738653A (en) 2010-06-16
US20100118410A1 (en) 2010-05-13

Similar Documents

Publication Publication Date Title
US20120218642A1 (en) Lens assembly and lens assembly array
KR100638826B1 (en) Method of manufacturing a high sag lens
US9184199B2 (en) Optical assembly including plenoptic microlens array
US8023208B2 (en) Miniature stacked glass lens module
KR100561844B1 (en) Micro-lens array and Manufacturing method thereof
US8077394B2 (en) Glass lens array module with alignment member and manufacturing method thereof
US20110063722A1 (en) Stacked disk-shaped optical lens array, stacked lens module and method of manufacturing the same
CN103219343B (en) Multiple layer polymer lens and manufacture method thereof
JP2012529069A (en) Lens and manufacturing method thereof
US20100284089A1 (en) Stacked optical glass lens array, stacked lens module and manufacturing method thereof
JP2009204752A (en) Composite lens
US8411379B2 (en) Optical device and associated methods
US20110063730A1 (en) Disk-shaped optical lens array and manufacturing method thereof
WO2009069940A1 (en) Device and method for fabricating lens
KR20050081216A (en) Hybrid lens array and manufacturing method thereof
US7736550B2 (en) Method of manufacturing an optical device by means of a replication method
JP2001249208A (en) Diffraction optical device and method of manufacturing the same
CN1896019B (en) Method of manufacturing compound optical element and compound optical element module
RU2005116316A (en) METHOD FOR PRODUCING A HYBRID ASPHERIC LENS
KR102233297B1 (en) Non-dicing type grating structure mold for manufacturing microlens and method of manufacturing microlens using the same
US10712477B2 (en) Lens structure formed by materials in different refractive indexes
US20020094419A1 (en) Method for fabricating microlens in batch and product manufactured the same
WO2004097488A1 (en) Method of manufacturing hybrid aspherical lens
US20140049846A1 (en) Multilayer lens assembly and the method of making the same
KR100519769B1 (en) Manufacturing method of hybrid microlens array

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION