US20120199393A1 - Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part - Google Patents

Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part Download PDF

Info

Publication number
US20120199393A1
US20120199393A1 US13/261,199 US201013261199A US2012199393A1 US 20120199393 A1 US20120199393 A1 US 20120199393A1 US 201013261199 A US201013261199 A US 201013261199A US 2012199393 A1 US2012199393 A1 US 2012199393A1
Authority
US
United States
Prior art keywords
lead
solder alloy
free solder
connecting member
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/261,199
Inventor
Shunsaku Yoshikawa
Yoshie Yamanaka
Tsukasa Ohnishi
Seiko Ishibashi
Koji Watanabe
Hiroki Ishikawa
Yutaka Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
Original Assignee
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co Ltd filed Critical Senju Metal Industry Co Ltd
Assigned to SENJU METAL INDUSTRY CO., LTD. reassignment SENJU METAL INDUSTRY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOSHIKAWA, SHUNSAKU, CHIBA, YUTAKA, ISHIKAWA, HIROKI, ISHIBASHI, Seiko, OHNISHI, TSUKASA, WATANABE, KOJI, YAMANAKA, YOSHIE
Publication of US20120199393A1 publication Critical patent/US20120199393A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/007Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of copper or another noble metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0235Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections for applying solder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • This invention relates to a lead-free solder alloy, a connecting member and a method for its manufacture, and an electronic part. Specifically, it relates to a lead-free solder alloy which can decrease the occurrence of voids in solder joints, a connecting member using the lead-free solder alloy and a method for its manufacture, and an electronic part using the connecting member.
  • Heat dissipating members which transmit heat to the exterior of packages such as heat sinks or radiation fins made of Al are widely used in order to improve the heat dissipating ability of packages.
  • a heat dissipating member and a package are joined to each other by applying grease between them or by attaching the heat dissipating member to the package through a heat dissipating sheet or seal or the like. Joining by these means is inferior to metallic joining with respect to heat resistance, bonding strength, and adhesion.
  • a heat dissipating member and a package are preferably metallically joined to each other with solder or the like.
  • Patent Documents 1-3 disclose joining of two members to each other using indium.
  • a lead-free solder alloy made of indium (having an In content of substantially 100 mass %) has excellent ductility. If a small piece of a lead-free solder alloy made of indium is disposed between a heat dissipating member and a package in order to perform soldering, it is expected that the resulting solder joint can easily conform to surface irregularities formed in the joining surface by a thermal load, thereby making it possible to avoid peeling of the joined member which unavoidably occurs when joining with a resin or the like.
  • a lead-free solder alloy made of In has the problems that (a) it is so flexible that it is difficult to form it into a desired shape by punching to form a small piece or by rolling, and (b) in order to guarantee impact resistance, it is necessary for a small piece to have a thickness of 1.5-2.5 min. This thickness makes it difficult to decrease the size and thickness of electronic parts, and at the time of soldering, the molten lead-free solder alloy oozes to outside of the joint, thereby adversely affecting the insulating properties of the package and causing a short circuit.
  • soldering with this lead-free solder alloy by, for example, (i) applying a flux to the surface of a metal substrate of a material such as Cu, Ni, or Au having good thermal conductivity, (ii) forming a lead-free solder layer on the surface of the metal substrate by the molten solder plating method (the hot dip plating method) in which the substrate is dipped in molten solder to obtain a connecting member, and (iii) disposing the connecting member between a heat dissipating member and a package and performing reflow heating in the presence of a flux.
  • a flux to the surface of a metal substrate of a material such as Cu, Ni, or Au having good thermal conductivity
  • the present inventors found that if the above-described connecting member having a lead-free solder alloy layer made of In on its surface is disposed between a heat dissipating member and a package and is then subjected to reflow heating, a large amount of voids develops inside the resulting joints between the connecting member and the heat dissipating member or the package. Therefore, the strength of the joints and the adhesion between the heat dissipating member and the package are inadequate.
  • a flux is normally used in the manufacture of the above-described connecting member. It was also found that flux residue which unavoidably remains in the solder layer further induces the occurrence of voids inside the joints.
  • a lead-free solder alloy having In as a main component to which a small amount of Sn or Bi is added singly or in combination exhibits good wettability at the time of soldering due to the effect of Sn or Bi without adversely affecting the characteristic ductility of In.
  • the above-described lead-free solder alloy can increase the ability of voids to escape from a solder joint and can decrease the amount of voids remaining inside the joint.
  • the present invention is a lead-free solder alloy characterized by having a chemical composition consisting essentially of Sn: 0.1-3% (in this description, unless otherwise specified, % with respect to chemical composition means mass %), and/or Bi: 0.1-2%, and a remainder of In and unavoidable impurities.
  • the present invention is a connecting member comprising a metal substrate which preferably has a chemical composition containing at least 95% of Cu, and a lead-free solder alloy layer formed on at least connection regions of the metal substrate, characterized in that the lead-free solder alloy layer has the above-described chemical composition for a lead-free solder alloy.
  • this connecting member has a lead-free solder alloy layer on the surface of a metal substrate, its thickness can be decreased. Furthermore, it has good shape retention when it is subjected to punching so as to form small pieces or when it is subjected to rolling, so it has excellent mass producibility and workability.
  • the present invention is a method of manufacturing a connecting member, characterized by immersing a metal substrate in a lead-free solder alloy which has the above-described chemical composition and is in a molten state, and preferably applying ultrasonic vibrations to the metal substrate and the molten lead-free solder alloy after immersing the metal substrate in the lead-free solder alloy, thereby forming a lead-free solder alloy layer at least on connection regions of the metal substrate.
  • This method can form a lead-free solder alloy layer having improved thermal conductivity on the surface of a metal substrate without using flux while maintaining adequate adhesion. As a result, the occurrence of voids caused by flux residue remaining in the solder layer can be decreased, and the need to take anti-pollution measures and measures for dealing with waste water caused by halides contained in flux is eliminated.
  • the present invention is an electronic part characterized by comprising the above-described connecting member according to the present invention, and a first member (for example, a package such as a BGA mounted on a printed circuit board) and a second member (such as a heat dissipating member) both disposed so as to contact the connecting member in a connection region, wherein the first member and the second member are connected to each other through the connecting member by reflow heating of the first member and the second member in the presence of a flux.
  • a first member for example, a package such as a BGA mounted on a printed circuit board
  • a second member such as a heat dissipating member
  • the first member and the second member are connected to each other through a metal connecting member according to the present invention, and as described above, the connecting member can suppress the occurrence of voids in the resulting joints. Therefore, it is possible to perform connection with improved adhesion and bonding strength.
  • the suppressed occurrence of voids is exemplified by the fact that the below-described voids rate in the joints between the connecting member and the first member and between the connecting member and the second member can be suppressed to at most 33.0%.
  • Voids rate A solder alloy sheet to be tested having a thickness of 100 ⁇ m and measuring 5 mm ⁇ 5 mm which is sandwiched between electroless nickel and gold plated lands each measuring 5 mm ⁇ 5 mm after flux is applied to the lands is subjected to reflow heating with a reflow profile having a peak temperature of 160° C., and then the proportion of the area of voids with respect to the area of the lands is measured 3 times using an X-ray inspection apparatus (TOSMICRON 6090 FP made by Toshiba IT & Control Systems Corporation), the average of 3 measurements being made the voids rate.
  • TOSMICRON 6090 FP made by Toshiba IT & Control Systems Corporation
  • a lead-free solder alloy according to the present invention allows voids to easily escape from a solder joint of a connecting member to a first member or a second member, so the amount of voids remaining inside the joint can be decreased, and the adhesion and bonding strength of the first member and the second member are increased.
  • a connecting member according to the present invention can achieve a decrease in thickness, and it has good shape retention when it is punched to form small members or is subjected to rolling, so it has excellent mass producibility and workability.
  • a method of manufacturing a connecting member according to the present invention can decrease the occurrence of voids caused by flux residue remaining in a solder layer, and it can eliminate the necessity for environmental countermeasures and measures for waste water treatment caused by halides contained in flux.
  • a first member for example, a package such as a BGA mounted on a printed circuit board
  • a second member such as a heat dissipating member
  • a connecting member with good adhesion and a good bonding strength while markedly suppressing the occurrence of voids in the joints.
  • FIG. 1 is a front cross-sectional view of an electronic part according to the present invention.
  • FIG. 2 is a graph showing an example of a reflow profile.
  • FIG. 3 shows X-ray photographs of the state of occurrence of voids in examples of the present invention.
  • FIG. 4 shows X-ray photographs of the state of occurrence of voids in comparative examples of the present invention.
  • a lead-free solder alloy, a connecting member and a method for its manufacture, and an electronic part according to the present invention will be sequentially explained.
  • Having the chemical composition of a lead-free solder alloy satisfy the above-described ranges improves the wettability of a lead-free solder alloy at the time of soldering. As a result, the ability of voids to escape from a solder joint to a first member or a second member is increased, and the amount of voids remaining inside the joint is markedly decreased. Accordingly, the adhesion and bonding strength of a first member and a second member which are connected by soldering are increased.
  • the solder alloy will have a decreased reactivity with Cu, Ni, or Au which forms a substrate, thereby forming a connecting member which cannot exhibit the functions required of a connecting member. If the Sn content exceeds 3%, the voids rate in a joint is no longer suppressed to a desired level. Therefore, the Sn content is limited to 0.1-3%.
  • the Bi content is less than 0.1%, the solder alloy will have decreased wettability, leading to poor solderability. If the Bi content exceeds 2%, brittleness occurs in the alloy to such an extent that a joint becomes brittle, and it is no longer possible to form a connecting member. Therefore, the Bi content is limited to 0.1-2%.
  • the chemical composition of the lead-free solder alloy is also made to satisfy the above-described ranges so that the lead-free solder alloy will melt at a temperature in the range of 130-160° C.
  • the reason for this temperature range is as follows.
  • Lead-free solders which are commonly used for bumps for packages include binary alloys such as Sn-3.5Ag (melting point of 221° C.; the temperatures given below in parentheses are all melting points), Sn-5Sb (235-240° C.), Sn-0.75Cu (227° C.), Sn-2In (224-229° C.), Sn-58Bi (139° C.), and Sn-9Zn (199° C.), as well as ternary or higher alloys in which one or more additional elements are added to the above binary alloys. It is thought that Sn—Pb eutectic solder (melting point of 183° C.) will continue to be used for some bumps employed in packages.
  • binary alloys such as Sn-3.5Ag (melting point of 221° C.; the temperatures given below in parentheses are all melting points), Sn-5Sb (235-240° C.), Sn-0.75Cu (227° C.), Sn-2In (224-229° C.), Sn-
  • the present invention is intended for use in connection of a package having bumps made of the above-described solder to a heat dissipating member by heating them with a reflow profile of a lead-free solder alloy according to the present invention.
  • a lead-free solder according to the present invention preferably has a low melting point.
  • the melting point of a lead-free solder alloy according to the present invention needs to be not lower than 125° C., which is a typical temperature used in the Change of Temperature Test prescribed by JIS C 0025. From the standpoint of practicality, the melting point needs to be at least 130° C.
  • the reflow profile is typically set to a temperature around 20° C. higher than the liquidus temperature of the solder.
  • a lead-free solder alloy according to the present invention is preferably one which melts at a temperature of not lower than 130° C. and not higher than 160° C. Therefore, the chemical composition of a lead-free solder alloy according to the present invention is limited as set forth above.
  • a lead-free so solder alloy according to the present invention may contain one or more of Al: at most 0.01%, Ni: at most 0.1%, and Cu: at most 0.1%.
  • the addition of at most 0.01% of Al to the alloy is expected to improve ductility, and the addition of Ni: at most 0.1% and/or Cu: at most 0.1% to the alloy is expected to improve solderability.
  • a connecting member comprises a metal substrate and a lead-free solder alloy layer. These will be sequentially explained.
  • the metal substrate has connection regions on all or a portion thereof for joining a first member and a second member.
  • the metal substrate may have a first connection region for connection to a first member on all or a portion of one side thereof, and a second connection region for connection to a second member on all or a portion of the other side thereof.
  • the metal substrate is preferably a copper substrate having a chemical composition with a Cu content of at least 95% because such, a substrate has high thermal conductivity, excellent workability, and good reactivity with the above-described lead-free solder alloy.
  • the thickness of the copper substrate is preferably 0.05-0.5 mm from the standpoints of guaranteeing the strength of the connecting member and decreasing its thickness.
  • a metal substrate such as a Ni or Au substrate which reacts with Sn or Bi and In may be used.
  • a lead-free solder alloy layer is formed on at least the connection regions of the metal substrate.
  • This lead-free solder alloy layer has the above-described chemical composition.
  • the thickness of the lead-free solder alloy layer is preferably 15-60 ⁇ m per side in order to guarantee good solderability.
  • the lead-free solder alloy layer may be formed only in portions of one or both sides of a metal substrate where the substrate needs to be connected to the first member or the second member, or it may be formed over the entire surface of one or both sides of the metal substrate.
  • the connecting member has a lead-free solder alloy layer on the surface of a metal substrate, it is possible to achieve a decrease in thickness. Furthermore, because it has good shape retention when it is punched to form a small piece or when it undergoes rolling, it has excellent mass producibility and workability.
  • a connecting member is manufactured by immersing the above-described metal substrate in a lead-free solder alloy which has the above-described chemical composition and is in a molten state.
  • the ultrasonic vibrations applied to the metal substrate and the lead-free solder alloy are at 40 kHz with the distance between the substrate and the horn (resonator) being 2 mm.
  • a lead-free solder alloy layer can be formed on the surface of the metal substrate while maintaining adequate adhesion without using flux. Therefore, the occurrence of voids caused by flux residue remaining in a solder layer is eliminated, and the need to take environmental countermeasures and measures for waste water treatment due to halides contained in flux are eliminated.
  • the properties of a connecting member can be freely varied by suitably varying the materials, the thickness, and the shape of the metal substrate and the composition of the lead-free solder alloy layer which is formed.
  • the speed of reaction between the metal substrate and the lead-free solder alloy varies depending on the chemical compositions of the metal substrate and the lead-free solder alloy layer.
  • the feed speed the length of immersion in a molten solder bath
  • the temperature of the molten solder bath the cooling speed when forming the lead-free solder alloy layer
  • the properties of a connecting member (such as its heat resistance, adhesion, and bonding strength) can be suitably varied in accordance with various properties demanded of a connecting member.
  • FIG. 1 is a front cross-sectional view of an electronic part according to the present invention.
  • a connecting member 5 according to the present invention having a lead-free solder alloy layer 2 formed on both sides of a copper substrate 3 was placed atop a first member 4 (for example, a package such as a BGA mounted on a printed circuit board), and then a second member 1 (for example, a heat dissipating member in the form of an Al heat sink) was placed atop the connecting member 5 .
  • a first member 4 for example, a package such as a BGA mounted on a printed circuit board
  • a second member 1 for example, a heat dissipating member in the form of an Al heat sink
  • the first member 4 , the second member 1 , and the connecting member 5 were together subjected to reflow heating in the presence of a flux, and the first member 4 and the second member 1 were connected to each other through the connecting member 5 .
  • the reflow profile varies depending on the alloy composition of the lead-free solder paste which is supplied by printing to other surface mounted parts on a board.
  • FIG. 2 is a graph showing an example of a reflow profile.
  • the alloy composition of the lead-free solder paste which is supplied is a typical Sn—Ag—Cu based alloy
  • a reflow profile having a peak temperature of around 240° C. and a melting period at 220° C. or above of around 40 seconds is preferred.
  • a low melting point solder alloy such as a Sn—Bi based alloy
  • a reflow profile with a peak temperature of around 160° C. and a melting period at 140° C. or above of around 40 seconds is preferred.
  • the connecting member 5 can suppress the occurrence of voids in the resulting joints, so an electronic part 6 in which the first member 4 and the second member 1 are connected to the connecting member 5 with adequate adhesion and with a high bonding strength is manufactured.
  • the below-described voids rate in the joint between the connecting member 5 and the first member 4 and the joint between the connecting member 5 and the second member 1 is restrained to at most 33.0%.
  • Voids rate A solder alloy sheet to be tested having a thickness of 100 ⁇ m and measuring 5 mm ⁇ 5 mm which is sandwiched between electroless nickel and gold plated lands each measuring 5 mm ⁇ 5 mm after flux is applied to the lands is subjected to reflow heating with a reflow profile having a peak temperature of 160° C., and then the proportion of the area of voids with respect to the area of the lands is measured 3 times using an X-ray inspection apparatus (TOSMICRON 6090 FP made by Toshiba IT & Control Systems Corporation). The average of 3 measurements is made the voids rate.
  • TOSMICRON 6090 FP made by Toshiba IT & Control Systems Corporation
  • the connecting member has a metal substrate coated with solder.
  • the coated solder reacts with a plated coating formed on the heat sink. Therefore, the effects of the present invention can be fully reproduced by the above-described evaluation method using a solder alloy sheet having a thickness of 100 ⁇ m and measuring 5 mm ⁇ 5 mm.
  • a connecting member according to the present invention can be prepared by immersing a metal substrate which has previously been formed so as to have a suitable shape in a molten solder bath containing a molten lead-free solder alloy according to the present invention, and applying ultrasonic vibrations to the molten solder and the metal substrate to form a lead-free solder alloy layer.
  • the metal substrate may undergo forming such as punching.
  • a connecting member into a shape such as a pellet or a washer, and it is possible to form it into a shape matching the periphery of a BGA or the like.
  • the present invention can be used not only for connection of heat dissipating members, but as it can form a lead-free solder alloy layer on the surface of a metal substrate without using flux, it can be used to connect members inside a semiconductor part where it is desirable to avoid the use of flux.
  • the melting temperature of the solder was measured using a differential thermal analyzer.
  • the analyzer was a DSC 6200 manufactured by Seiko Instruments Inc.
  • the rate of temperature increase was 5° C. per minute, and the weight of a measurement sample was 10 ⁇ 1 mg.
  • the solidus temperature was the starting point of the endothermic peak of the heating curve obtained in differential thermal analysis, and the liquidus temperature was the end point of the endothermic peak of the heating curve in differential thermal analysis.
  • the suitability of the melting temperature was evaluated as CIRCLE (O, acceptable) for examples in which the solidus temperature of the solder was not lower than 130° C. and the liquidus temperature was not higher than 160° C., and the suitability was evaluated as X (unacceptable) for other examples.
  • the voids rate was measured by the above-described method. Flux was applied by printing using a metal mask with a thickness of 100 ⁇ m. Therefore, the applied amount of flux was the same for all of the samples.
  • a lead-free solder alloy according to the present invention has a melting point in the range of 130-160° C., and it has adequate melting properties with a reflow profile having a peak of 160° C.
  • a joint Taking into consideration thermal conductivity and the adhesion between a lead-free solder alloy layer and a member to which it is connected, it is preferable for a joint to have decreased voids, and it is also necessary for a lead-free solder alloy to have good wettability with respect to Cu. Since Bi and Sn increase the wettability of a lead-free solder alloy with respect to Cu, the voids rate was decreased by the addition of Bi or Sn.

Abstract

A lead-free solder which can reduce the occurrence of voids and a connecting member which uses the solder and has excellent adhesion, bonding strength, and workability are provided. The lead-free solder alloy has a composition consisting essentially of Sn: 0.1-3% and/or Bi: 0.1-2%, and a remainder of In and unavoidable impurities and has the effect of suppressing the occurrence of voids at the time of soldering. The connecting member is prepared by melting the lead-free solder alloy, immersing a metal substrate in the melt, and applying ultrasonic vibrations to the molten lead-free solder alloy and the metal substrate to form a lead-free solder alloy layer on the surface of the metal substrate.
A heat sink and a package are soldered to each other through this connecting member by reflow heating in the presence of flux.

Description

    TECHNICAL FIELD
  • This invention relates to a lead-free solder alloy, a connecting member and a method for its manufacture, and an electronic part. Specifically, it relates to a lead-free solder alloy which can decrease the occurrence of voids in solder joints, a connecting member using the lead-free solder alloy and a method for its manufacture, and an electronic part using the connecting member.
  • BACKGROUND ART
  • Decreases in the weight, thickness, and size of electronic parts are being promoted. In particular, miniaturization and densification of semiconductor packages (referred to below as packages) are being pushed with the development of multifunctionality of electronic parts. As a result, there is an upward trend in the amount of heat generated by packages such as BGAs. For this reason, there is a desire to further increase the ability of packages to dissipate heat.
  • Heat dissipating members which transmit heat to the exterior of packages such as heat sinks or radiation fins made of Al are widely used in order to improve the heat dissipating ability of packages. A heat dissipating member and a package are joined to each other by applying grease between them or by attaching the heat dissipating member to the package through a heat dissipating sheet or seal or the like. Joining by these means is inferior to metallic joining with respect to heat resistance, bonding strength, and adhesion. A heat dissipating member and a package are preferably metallically joined to each other with solder or the like.
  • In recent years, the use of Pb-containing solders (such as Sn—Pb eutectic solder) has been regulated in order to prevent environmental pollution. As a result, there is a trend for solders used for bumps of packages to be replaced by lead-free solders which do not contain lead. If a package which uses a lead-free solder for bump formation can be joined to the above-described heat dissipating member by reflow heating with a reflow profile for the lead-free solder while using flux, soldering of the heat dissipating member and soldering of the solder bumps of the package can be done simultaneously. As a result, in a mounting process, joining by soldering can be achieved by applying a thermal load only once, and the occurrence of manufacturing problems due to a thermal load such as warping of a package or remelting of bumps is minimized.
  • Indium (In) has a low melting point of 156° C. and good thermal conductivity, and it poses little threat of environmental pollution. Therefore, Patent Documents 1-3 disclose joining of two members to each other using indium.
  • A lead-free solder alloy made of indium (having an In content of substantially 100 mass %) has excellent ductility. If a small piece of a lead-free solder alloy made of indium is disposed between a heat dissipating member and a package in order to perform soldering, it is expected that the resulting solder joint can easily conform to surface irregularities formed in the joining surface by a thermal load, thereby making it possible to avoid peeling of the joined member which unavoidably occurs when joining with a resin or the like.
  • However, a lead-free solder alloy made of In has the problems that (a) it is so flexible that it is difficult to form it into a desired shape by punching to form a small piece or by rolling, and (b) in order to guarantee impact resistance, it is necessary for a small piece to have a thickness of 1.5-2.5 min. This thickness makes it difficult to decrease the size and thickness of electronic parts, and at the time of soldering, the molten lead-free solder alloy oozes to outside of the joint, thereby adversely affecting the insulating properties of the package and causing a short circuit.
  • It is conceivable to perform soldering with this lead-free solder alloy by, for example, (i) applying a flux to the surface of a metal substrate of a material such as Cu, Ni, or Au having good thermal conductivity, (ii) forming a lead-free solder layer on the surface of the metal substrate by the molten solder plating method (the hot dip plating method) in which the substrate is dipped in molten solder to obtain a connecting member, and (iii) disposing the connecting member between a heat dissipating member and a package and performing reflow heating in the presence of a flux.
  • PRIOR ART DOCUMENTS Patent Documents
    • Patent Document 1: JP 2002-020143 A
    • Patent Document 2: JP 2002-542138 A
    • Patent Document 3: JP 2001-230349 A
    DISCLOSURE OF INVENTION
  • As a result of investigations, the present inventors found that if the above-described connecting member having a lead-free solder alloy layer made of In on its surface is disposed between a heat dissipating member and a package and is then subjected to reflow heating, a large amount of voids develops inside the resulting joints between the connecting member and the heat dissipating member or the package. Therefore, the strength of the joints and the adhesion between the heat dissipating member and the package are inadequate.
  • A flux is normally used in the manufacture of the above-described connecting member. It was also found that flux residue which unavoidably remains in the solder layer further induces the occurrence of voids inside the joints.
  • As a result of diligent investigations aimed at solving the above-described problems, the present inventors made the following findings and completed the present invention.
  • (i) A lead-free solder alloy having In as a main component to which a small amount of Sn or Bi is added singly or in combination exhibits good wettability at the time of soldering due to the effect of Sn or Bi without adversely affecting the characteristic ductility of In. As a result, the above-described lead-free solder alloy can increase the ability of voids to escape from a solder joint and can decrease the amount of voids remaining inside the joint.
  • (ii) It is preferable to immerse a metal substrate in the above-described lead-free solder alloy in a molten state and apply ultrasonic vibrations to the molten lead-free solder alloy and the metal substrate, whereby a lead-free solder alloy layer having improved thermal conductivity can be formed on the surface of the metal substrate without using flux while maintaining adequate adhesion.
  • The present invention is a lead-free solder alloy characterized by having a chemical composition consisting essentially of Sn: 0.1-3% (in this description, unless otherwise specified, % with respect to chemical composition means mass %), and/or Bi: 0.1-2%, and a remainder of In and unavoidable impurities.
  • From another standpoint, the present invention is a connecting member comprising a metal substrate which preferably has a chemical composition containing at least 95% of Cu, and a lead-free solder alloy layer formed on at least connection regions of the metal substrate, characterized in that the lead-free solder alloy layer has the above-described chemical composition for a lead-free solder alloy.
  • Because this connecting member has a lead-free solder alloy layer on the surface of a metal substrate, its thickness can be decreased. Furthermore, it has good shape retention when it is subjected to punching so as to form small pieces or when it is subjected to rolling, so it has excellent mass producibility and workability.
  • From another standpoint, the present invention is a method of manufacturing a connecting member, characterized by immersing a metal substrate in a lead-free solder alloy which has the above-described chemical composition and is in a molten state, and preferably applying ultrasonic vibrations to the metal substrate and the molten lead-free solder alloy after immersing the metal substrate in the lead-free solder alloy, thereby forming a lead-free solder alloy layer at least on connection regions of the metal substrate. This method can form a lead-free solder alloy layer having improved thermal conductivity on the surface of a metal substrate without using flux while maintaining adequate adhesion. As a result, the occurrence of voids caused by flux residue remaining in the solder layer can be decreased, and the need to take anti-pollution measures and measures for dealing with waste water caused by halides contained in flux is eliminated.
  • From yet another standpoint, the present invention is an electronic part characterized by comprising the above-described connecting member according to the present invention, and a first member (for example, a package such as a BGA mounted on a printed circuit board) and a second member (such as a heat dissipating member) both disposed so as to contact the connecting member in a connection region, wherein the first member and the second member are connected to each other through the connecting member by reflow heating of the first member and the second member in the presence of a flux.
  • As a result, the first member and the second member are connected to each other through a metal connecting member according to the present invention, and as described above, the connecting member can suppress the occurrence of voids in the resulting joints. Therefore, it is possible to perform connection with improved adhesion and bonding strength. Specifically, the suppressed occurrence of voids is exemplified by the fact that the below-described voids rate in the joints between the connecting member and the first member and between the connecting member and the second member can be suppressed to at most 33.0%.
  • Voids rate: A solder alloy sheet to be tested having a thickness of 100 μm and measuring 5 mm×5 mm which is sandwiched between electroless nickel and gold plated lands each measuring 5 mm×5 mm after flux is applied to the lands is subjected to reflow heating with a reflow profile having a peak temperature of 160° C., and then the proportion of the area of voids with respect to the area of the lands is measured 3 times using an X-ray inspection apparatus (TOSMICRON 6090 FP made by Toshiba IT & Control Systems Corporation), the average of 3 measurements being made the voids rate.
  • A lead-free solder alloy according to the present invention allows voids to easily escape from a solder joint of a connecting member to a first member or a second member, so the amount of voids remaining inside the joint can be decreased, and the adhesion and bonding strength of the first member and the second member are increased.
  • A connecting member according to the present invention can achieve a decrease in thickness, and it has good shape retention when it is punched to form small members or is subjected to rolling, so it has excellent mass producibility and workability.
  • A method of manufacturing a connecting member according to the present invention can decrease the occurrence of voids caused by flux residue remaining in a solder layer, and it can eliminate the necessity for environmental countermeasures and measures for waste water treatment caused by halides contained in flux.
  • In addition, in an electronic part according to the present invention, a first member (for example, a package such as a BGA mounted on a printed circuit board) and a second member (such as a heat dissipating member) can be connected to a connecting member with good adhesion and a good bonding strength while markedly suppressing the occurrence of voids in the joints.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front cross-sectional view of an electronic part according to the present invention.
  • FIG. 2 is a graph showing an example of a reflow profile.
  • FIG. 3 shows X-ray photographs of the state of occurrence of voids in examples of the present invention.
  • FIG. 4 shows X-ray photographs of the state of occurrence of voids in comparative examples of the present invention.
      • 1: second member
      • 2: lead-free solder alloy layer
      • 3: copper substrate
      • 4: first member
      • 5: connecting member
      • 6: electronic part
    MODES FOR CARRYING OUT THE INVENTION
  • A lead-free solder alloy, a connecting member and a method for its manufacture, and an electronic part according to the present invention will be sequentially explained.
  • 1. Lead-Free Solder Alloy
  • The reasons why the chemical composition of a lead-free solder alloy is limited as described above will be explained.
  • Having the chemical composition of a lead-free solder alloy satisfy the above-described ranges improves the wettability of a lead-free solder alloy at the time of soldering. As a result, the ability of voids to escape from a solder joint to a first member or a second member is increased, and the amount of voids remaining inside the joint is markedly decreased. Accordingly, the adhesion and bonding strength of a first member and a second member which are connected by soldering are increased.
  • Specifically, if the Sn content is less than 0.1%, the solder alloy will have a decreased reactivity with Cu, Ni, or Au which forms a substrate, thereby forming a connecting member which cannot exhibit the functions required of a connecting member. If the Sn content exceeds 3%, the voids rate in a joint is no longer suppressed to a desired level. Therefore, the Sn content is limited to 0.1-3%.
  • If the Bi content is less than 0.1%, the solder alloy will have decreased wettability, leading to poor solderability. If the Bi content exceeds 2%, brittleness occurs in the alloy to such an extent that a joint becomes brittle, and it is no longer possible to form a connecting member. Therefore, the Bi content is limited to 0.1-2%.
  • The chemical composition of the lead-free solder alloy is also made to satisfy the above-described ranges so that the lead-free solder alloy will melt at a temperature in the range of 130-160° C. The reason for this temperature range is as follows.
  • Lead-free solders which are commonly used for bumps for packages include binary alloys such as Sn-3.5Ag (melting point of 221° C.; the temperatures given below in parentheses are all melting points), Sn-5Sb (235-240° C.), Sn-0.75Cu (227° C.), Sn-2In (224-229° C.), Sn-58Bi (139° C.), and Sn-9Zn (199° C.), as well as ternary or higher alloys in which one or more additional elements are added to the above binary alloys. It is thought that Sn—Pb eutectic solder (melting point of 183° C.) will continue to be used for some bumps employed in packages.
  • The present invention is intended for use in connection of a package having bumps made of the above-described solder to a heat dissipating member by heating them with a reflow profile of a lead-free solder alloy according to the present invention. As described above, some solders used for the bumps of a package have a low melting point. Therefore, a lead-free solder according to the present invention preferably has a low melting point.
  • On the other hand, in order to guarantee heat resistance, the melting point of a lead-free solder alloy according to the present invention needs to be not lower than 125° C., which is a typical temperature used in the Change of Temperature Test prescribed by JIS C 0025. From the standpoint of practicality, the melting point needs to be at least 130° C. The reflow profile is typically set to a temperature around 20° C. higher than the liquidus temperature of the solder.
  • For the above reasons, a lead-free solder alloy according to the present invention is preferably one which melts at a temperature of not lower than 130° C. and not higher than 160° C. Therefore, the chemical composition of a lead-free solder alloy according to the present invention is limited as set forth above.
  • Furthermore, by having the chemical composition of a lead-free solder alloy satisfy the above-described range, not only is the excellent thermal conductivity and ductility of indium retained, but there is also a low concern of environmental pollution. Good thermal conductivity makes it possible to efficiently transmit heat which is generated in a package to a heat dissipating member. In addition, good ductility increases the ability of the solder to conform to surface irregularities produced in the joining surface by thermal loads, whereby peeling of a package or a heat dissipating member can be avoided.
  • For the above reasons, the chemical composition of a lead-free solder alloy according to the present invention is made the following:
  • (a) Sn: 0.1-3% and a remainder of In and unavoidable impurities,
  • (b) Bi: 0.1-2% and a remainder of In and unavoidable impurities, or
  • (c) Sn: 0.1-3%, Bi: 0.1-2%, and, a remainder of In and unavoidable impurities.
  • As long as the above-described characteristics are not impaired, a lead-free so solder alloy according to the present invention may contain one or more of Al: at most 0.01%, Ni: at most 0.1%, and Cu: at most 0.1%. The addition of at most 0.01% of Al to the alloy is expected to improve ductility, and the addition of Ni: at most 0.1% and/or Cu: at most 0.1% to the alloy is expected to improve solderability.
  • 2. Connecting Member and a Method for its Manufacture
  • A connecting member comprises a metal substrate and a lead-free solder alloy layer. These will be sequentially explained.
  • [Metal Substrate]
  • The metal substrate has connection regions on all or a portion thereof for joining a first member and a second member. For example, the metal substrate may have a first connection region for connection to a first member on all or a portion of one side thereof, and a second connection region for connection to a second member on all or a portion of the other side thereof.
  • The metal substrate is preferably a copper substrate having a chemical composition with a Cu content of at least 95% because such, a substrate has high thermal conductivity, excellent workability, and good reactivity with the above-described lead-free solder alloy. The thickness of the copper substrate is preferably 0.05-0.5 mm from the standpoints of guaranteeing the strength of the connecting member and decreasing its thickness.
  • Instead of the above-described copper substrate, a metal substrate such as a Ni or Au substrate which reacts with Sn or Bi and In may be used.
  • [Lead-Free Solder Alloy Layer]
  • A lead-free solder alloy layer is formed on at least the connection regions of the metal substrate. This lead-free solder alloy layer has the above-described chemical composition.
  • The thickness of the lead-free solder alloy layer is preferably 15-60 μm per side in order to guarantee good solderability. The lead-free solder alloy layer may be formed only in portions of one or both sides of a metal substrate where the substrate needs to be connected to the first member or the second member, or it may be formed over the entire surface of one or both sides of the metal substrate.
  • Because the connecting member has a lead-free solder alloy layer on the surface of a metal substrate, it is possible to achieve a decrease in thickness. Furthermore, because it has good shape retention when it is punched to form a small piece or when it undergoes rolling, it has excellent mass producibility and workability.
  • [Manufacturing Method]
  • A connecting member is manufactured by immersing the above-described metal substrate in a lead-free solder alloy which has the above-described chemical composition and is in a molten state.
  • It is possible to use a flux in a conventional manner before immersion. Instead, in a preferred embodiment, after the metal substrate is immersed in the molten lead-free solder alloy, ultrasonic vibrations are applied to the metal substrate and the lead-free solder alloy, thereby forming a lead-free solder alloy layer at least in the connection regions of the metal substrate.
  • For example, the ultrasonic vibrations applied to the metal substrate and the lead-free solder alloy are at 40 kHz with the distance between the substrate and the horn (resonator) being 2 mm.
  • As a result, a lead-free solder alloy layer can be formed on the surface of the metal substrate while maintaining adequate adhesion without using flux. Therefore, the occurrence of voids caused by flux residue remaining in a solder layer is eliminated, and the need to take environmental countermeasures and measures for waste water treatment due to halides contained in flux are eliminated.
  • In the present invention, the properties of a connecting member can be freely varied by suitably varying the materials, the thickness, and the shape of the metal substrate and the composition of the lead-free solder alloy layer which is formed. The speed of reaction between the metal substrate and the lead-free solder alloy varies depending on the chemical compositions of the metal substrate and the lead-free solder alloy layer. However, by suitably varying the feed speed (the length of immersion in a molten solder bath), the temperature of the molten solder bath, and the cooling speed when forming the lead-free solder alloy layer, it is possible to control the thickness of the lead-free solder alloy layer.
  • By using the above methods, the properties of a connecting member (such as its heat resistance, adhesion, and bonding strength) can be suitably varied in accordance with various properties demanded of a connecting member.
  • 3. Electronic Part
  • FIG. 1 is a front cross-sectional view of an electronic part according to the present invention.
  • A connecting member 5 according to the present invention having a lead-free solder alloy layer 2 formed on both sides of a copper substrate 3 was placed atop a first member 4 (for example, a package such as a BGA mounted on a printed circuit board), and then a second member 1 (for example, a heat dissipating member in the form of an Al heat sink) was placed atop the connecting member 5.
  • Then, while maintaining this state, the first member 4, the second member 1, and the connecting member 5 were together subjected to reflow heating in the presence of a flux, and the first member 4 and the second member 1 were connected to each other through the connecting member 5.
  • The reflow profile varies depending on the alloy composition of the lead-free solder paste which is supplied by printing to other surface mounted parts on a board.
  • FIG. 2 is a graph showing an example of a reflow profile.
  • As shown by the graph in FIG. 2, when the alloy composition of the lead-free solder paste which is supplied is a typical Sn—Ag—Cu based alloy, a reflow profile having a peak temperature of around 240° C. and a melting period at 220° C. or above of around 40 seconds is preferred. When a low melting point solder alloy such as a Sn—Bi based alloy is supplied, a reflow profile with a peak temperature of around 160° C. and a melting period at 140° C. or above of around 40 seconds is preferred.
  • As a result of either profile, the first member 4 and the second member 1 are connected to each other through the metal connecting member 5 according to the present invention. As described above, the connecting member 5 can suppress the occurrence of voids in the resulting joints, so an electronic part 6 in which the first member 4 and the second member 1 are connected to the connecting member 5 with adequate adhesion and with a high bonding strength is manufactured.
  • Specifically, the below-described voids rate in the joint between the connecting member 5 and the first member 4 and the joint between the connecting member 5 and the second member 1 is restrained to at most 33.0%.
  • Voids rate: A solder alloy sheet to be tested having a thickness of 100 μm and measuring 5 mm×5 mm which is sandwiched between electroless nickel and gold plated lands each measuring 5 mm×5 mm after flux is applied to the lands is subjected to reflow heating with a reflow profile having a peak temperature of 160° C., and then the proportion of the area of voids with respect to the area of the lands is measured 3 times using an X-ray inspection apparatus (TOSMICRON 6090 FP made by Toshiba IT & Control Systems Corporation). The average of 3 measurements is made the voids rate.
  • In the present invention, the connecting member has a metal substrate coated with solder. When this member is actually connected to a heat sink, the coated solder reacts with a plated coating formed on the heat sink. Therefore, the effects of the present invention can be fully reproduced by the above-described evaluation method using a solder alloy sheet having a thickness of 100 μm and measuring 5 mm×5 mm.
  • A connecting member according to the present invention can be prepared by immersing a metal substrate which has previously been formed so as to have a suitable shape in a molten solder bath containing a molten lead-free solder alloy according to the present invention, and applying ultrasonic vibrations to the molten solder and the metal substrate to form a lead-free solder alloy layer.
  • Alternatively, after a lead-free solder alloy layer is formed on the metal substrate, the metal substrate may undergo forming such as punching. As a result, it is possible to form a connecting member into a shape such as a pellet or a washer, and it is possible to form it into a shape matching the periphery of a BGA or the like.
  • It may also be used in the form of an electrically conducting connecting tape which is obtained by working.
  • The present invention can be used not only for connection of heat dissipating members, but as it can form a lead-free solder alloy layer on the surface of a metal substrate without using flux, it can be used to connect members inside a semiconductor part where it is desirable to avoid the use of flux.
  • Example 1
  • Examples of the present invention are shown in Table 1 and FIG. 3, and comparative examples are shown in Table 1 and FIG. 4.
  • TABLE 1
    Melting temperature (° C.) Voids
    Composition (mass %) Solidus Liquidus Suit- rate
    In Sn Bi temp. temp. ability (%)
    Example 1 99.8 0.1 0.1 157 157 23.9
    Example 2 96.9 3 0.1 145.7 152.4 25.5
    Example 3 96.5 3 0.5 151.4 153.5 31.3
    Example 4 97.9 0.1 2 149.3 154.8 21.2
    Example 5 95 3 2 144.7 150.9 32.8
    Example 6 99.9 0.1 0 156 156.6 21
    Example 7 97 3 0 152.9 153.7 27.9
    Example 8 99.9 0 0.1 156.1 156.6 25.6
    Example 9 98 0 2 149.5 152.8 21.1
    Comp. 1 100 0 0 157 157 44.6
    Comp. 2 93 6 1 145.6 149 42.1
    Comp. 3 87.9 12 0.1 142.1 144.6 39.1
    Comp. 4 86 12 2 133.4 139.8 59.9
    Comp. 5 74.9 25 0.1 131.3 133 53.7
    Comp. 6 95.9 0.1 4 140.1 150 40.4
    Comp. 7 94.9 0.1 5 129.7 147.2 X ND
    Comp. 8 69.9 30 0.1 127 129 X ND
    Comp. 9 99.96 0.04 0 156 156.8 33.4
    Comp. 10 96.5 3.5 0 152.1 153 44.3
    Comp. 11 99.96 0 0.04 156.1 156.8 33.8
    Comp. 12 97.5 0 3 145.1 151.3 38.5
    ND: not determined
  • The melting temperature of the solder was measured using a differential thermal analyzer. The analyzer was a DSC 6200 manufactured by Seiko Instruments Inc. The rate of temperature increase was 5° C. per minute, and the weight of a measurement sample was 10±1 mg. The solidus temperature was the starting point of the endothermic peak of the heating curve obtained in differential thermal analysis, and the liquidus temperature was the end point of the endothermic peak of the heating curve in differential thermal analysis. Based on the results of this analysis, the suitability of the melting temperature was evaluated as CIRCLE (O, acceptable) for examples in which the solidus temperature of the solder was not lower than 130° C. and the liquidus temperature was not higher than 160° C., and the suitability was evaluated as X (unacceptable) for other examples.
  • The voids rate was measured by the above-described method. Flux was applied by printing using a metal mask with a thickness of 100 μm. Therefore, the applied amount of flux was the same for all of the samples.

  • Rv=Sv/Sl×100
      • Rv: voids rate (%)
      • Sv: sum of area of voids
      • Sl: area of each land (25 mm2)
  • As is clear from Table 1 and FIGS. 3 and 4, a lead-free solder alloy according to the present invention has a melting point in the range of 130-160° C., and it has adequate melting properties with a reflow profile having a peak of 160° C.
  • Taking into consideration thermal conductivity and the adhesion between a lead-free solder alloy layer and a member to which it is connected, it is preferable for a joint to have decreased voids, and it is also necessary for a lead-free solder alloy to have good wettability with respect to Cu. Since Bi and Sn increase the wettability of a lead-free solder alloy with respect to Cu, the voids rate was decreased by the addition of Bi or Sn.
  • Because the melting points of Comparative Examples 7 and 8 did not fall into the range of 130-160° C., the voids rate was not calculated for these comparative examples.

Claims (7)

1-6. (canceled)
7. A lead-free solder alloy consisting essentially of (A) at least one of Sn: 0.1-3 mass % and Bi: 0.1-2 mass %, and (B) a remainder of In and unavoidable impurities.
8. A connecting member comprising a metal substrate and a layer of a lead-free solder alloy as claimed in claim 7 formed on at least connection regions of the metal substrate.
9. A connecting member as claimed in claim 8 wherein the metal substrate has a chemical composition with a Cu content of at least 95 mass %.
10. A manufacturing method for a connecting member comprising immersing a metal substrate in a molten lead-free solder alloy as claimed in claim 7 to form a lead-free solder alloy layer on at least connection regions of the metal substrate.
11. An electronic part comprising a connecting member as claimed in claim 8, and a first member and a second member each contacting a connecting region of the connecting member, wherein the first member and the second member are connected through the connecting member by reflow heating of the connecting member, the first member, and the second member in the presence of a flux.
12. An electronic part as claimed in claim 11 wherein the connecting member is connected to the first member and to the second member by joints having a voids rate as defined below of at most 33.0%.
Voids rate: A solder alloy sheet to be tested having a thickness of 100 μm and measuring 5 mm×5 mm which is sandwiched between electroless nickel and gold plated lands each measuring 5 mm×5 mm after flux is applied to the lands is subjected to reflow heating with a reflow profile having a peak temperature of 160° C. and then the proportion of the area of voids with respect to the area of the lands is measured 3 times using an X-ray inspection apparatus (TOSMICRON 6090 FP made by Toshiba IT & Control Systems Corporation), the average of 3 measurements being made the voids rate.
US13/261,199 2009-09-04 2010-09-02 Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part Abandoned US20120199393A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-204189 2009-09-04
JP2009204189 2009-09-04
PCT/JP2010/065018 WO2011027820A1 (en) 2009-09-04 2010-09-02 Lead-free solder alloy, joining member and manufacturing method thereof, and electronic component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065018 A-371-Of-International WO2011027820A1 (en) 2009-09-04 2010-09-02 Lead-free solder alloy, joining member and manufacturing method thereof, and electronic component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/314,043 Division US9773721B2 (en) 2009-09-04 2014-06-25 Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part

Publications (1)

Publication Number Publication Date
US20120199393A1 true US20120199393A1 (en) 2012-08-09

Family

ID=43649354

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/261,199 Abandoned US20120199393A1 (en) 2009-09-04 2010-09-02 Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part
US14/314,043 Active 2031-01-25 US9773721B2 (en) 2009-09-04 2014-06-25 Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/314,043 Active 2031-01-25 US9773721B2 (en) 2009-09-04 2014-06-25 Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part

Country Status (8)

Country Link
US (2) US20120199393A1 (en)
EP (1) EP2474383B1 (en)
JP (1) JP5041102B2 (en)
KR (1) KR101255491B1 (en)
CN (1) CN102596487B (en)
ES (1) ES2448790T3 (en)
MY (1) MY158834A (en)
WO (1) WO2011027820A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170359902A1 (en) * 2016-06-10 2017-12-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device with electrically conducting track and method for fabricating the device
US10137536B2 (en) 2011-12-27 2018-11-27 Senju Metal Industry Co., Ltd. Sn-Cu-based lead-free solder alloy
JP2020115520A (en) * 2019-01-18 2020-07-30 三菱電機株式会社 Manufacturing method of power semiconductor device, power semiconductor device and power conversion apparatus
US11019729B2 (en) 2017-01-12 2021-05-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device having a substrate configured to be thermoformed coupled to an electrically conductive member

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861559B2 (en) * 2012-05-10 2016-02-16 住友金属鉱山株式会社 Pb-free In solder alloy
CN103732349B (en) * 2012-08-08 2015-11-25 千住金属工业株式会社 high-temperature lead-free solder alloy
KR102328685B1 (en) * 2015-12-23 2021-11-18 엘티정밀(주) Cooling plate producing method for battery stack of electric vehicle and cooling plate by the same
CN110937911A (en) * 2018-09-25 2020-03-31 宁波江丰电子材料股份有限公司 Target assembly forming method
CN114152862B (en) * 2021-11-19 2024-01-12 北京工业大学 Test assembly for avoiding thermal influence of linear welding spot electromigration process and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065600A (en) * 1970-05-20 1977-12-27 Triplex Safety Glass Company Limited Metal oxide films
US4953487A (en) * 1987-03-16 1990-09-04 Olin Corporation Electromagnetic solder tinning system
US4966142A (en) * 1989-06-30 1990-10-30 Trustees Of Boston University Method for electrically joining superconductors to themselves, to normal conductors, and to semi-conductors
US5328813A (en) * 1992-06-30 1994-07-12 The Dow Chemical Company Method for the preparation of optical recording media containing overcoat
US20030194551A1 (en) * 2002-04-08 2003-10-16 Nitto Denko Corporation Transparent conductive laminate and process of producing the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3345219C1 (en) * 1983-12-14 1985-03-21 Daimler-Benz Ag, 7000 Stuttgart Soldering foil for the tension-free connection of ceramic bodies with metal
JPH0257487A (en) * 1988-08-19 1990-02-27 Kobe Steel Ltd Coating line system for car
JPH02217193A (en) * 1989-02-17 1990-08-29 Matsushita Electric Works Ltd Indium series powdery solder
JP3030479B2 (en) * 1992-04-23 2000-04-10 日本特殊陶業株式会社 Ceramic package
JP3238051B2 (en) * 1995-08-25 2001-12-10 京セラ株式会社 Brazing material
JPH0957489A (en) 1995-08-29 1997-03-04 Nippon Steel Weld Prod & Eng Co Ltd Manufacture of welding wire
DE19729545A1 (en) * 1997-07-10 1999-01-14 Euromat Gmbh Solder alloy
ATE388925T1 (en) 1999-04-17 2008-03-15 Uutech Ltd METHOD FOR SEALING GLASS
JP3619734B2 (en) * 2000-02-18 2005-02-16 株式会社東芝 Semiconductor package equipment
JP2001269772A (en) * 2000-03-27 2001-10-02 Showa Denko Kk Method for joining metal and metal and joined product
JP2002020143A (en) * 2000-06-30 2002-01-23 Canon Inc Joining method
JP2002025402A (en) * 2000-07-03 2002-01-25 Sorudaa Kooto Kk Temperature fuse and wire material for temperature fuse element
WO2005122252A1 (en) * 2004-05-04 2005-12-22 S-Bond Technologies, Llc Electronic package formed using low-temperature active solder including indium, bismuth, and/or cadmium
US7239517B2 (en) * 2005-04-11 2007-07-03 Intel Corporation Integrated heat spreader and method for using
CN101267911B (en) * 2005-08-18 2010-12-08 千住金属工业株式会社 Lead-free low-temperature solder
JP2007190603A (en) * 2006-01-23 2007-08-02 Nippon Alum Co Ltd Solder bonding method and solder bonded body
US20080233682A1 (en) * 2007-03-20 2008-09-25 Daewoong Suh Methods of forming a cored metallic thermal interface material and structures formed thereby
US7748116B2 (en) * 2007-04-05 2010-07-06 John Trezza Mobile binding in an electronic connection
JP5294744B2 (en) 2007-08-28 2013-09-18 旭化成ケミカルズ株式会社 Hydrophilic polyolefin sintered body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065600A (en) * 1970-05-20 1977-12-27 Triplex Safety Glass Company Limited Metal oxide films
US4953487A (en) * 1987-03-16 1990-09-04 Olin Corporation Electromagnetic solder tinning system
US4966142A (en) * 1989-06-30 1990-10-30 Trustees Of Boston University Method for electrically joining superconductors to themselves, to normal conductors, and to semi-conductors
US5328813A (en) * 1992-06-30 1994-07-12 The Dow Chemical Company Method for the preparation of optical recording media containing overcoat
US20030194551A1 (en) * 2002-04-08 2003-10-16 Nitto Denko Corporation Transparent conductive laminate and process of producing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Bi (Bismuth) Binary Alloy Phase Diagrams, Alloy Phase Diagrams, vol. 3 ASM Handbook, ASM International, 1992 p2.98-13.98 *
Ivlev, V.I.; Yudin, V.A., Thermoemf. of indium-bismuth alloys in the melting-solidification region, Deposited Doc. (1976), VINITI 3581-76, (provided abstract only). *
Konyukhova, N.P., Kuznetsov, V.A., Dudina, N.A., Electrocapillary phenomena on indium-bismuth alloys, Fiz. Khim. Poverkh. Yavlenii Rasplavakh (1971), 64-7. Editor(s):Eremenko, V.N. Publisher: "Naukova Dumka", Kiev, USSR. (provided abstract only) *
Ohnuma, I., Cui, Y., Liu, X.J., Inohana, Y., Ishihara, S., Ohtani, H., Kainuma, R., Ishida, K., Phase equilibria of Sn-In based micro-soldering alloys, Journal of Electronic Materials (2000), 29(10), 1113-1121. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10137536B2 (en) 2011-12-27 2018-11-27 Senju Metal Industry Co., Ltd. Sn-Cu-based lead-free solder alloy
US20170359902A1 (en) * 2016-06-10 2017-12-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device with electrically conducting track and method for fabricating the device
US10813224B2 (en) * 2016-06-10 2020-10-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device with electrically conducting track and method for fabricating the device
US11019729B2 (en) 2017-01-12 2021-05-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device having a substrate configured to be thermoformed coupled to an electrically conductive member
JP2020115520A (en) * 2019-01-18 2020-07-30 三菱電機株式会社 Manufacturing method of power semiconductor device, power semiconductor device and power conversion apparatus
JP7034105B2 (en) 2019-01-18 2022-03-11 三菱電機株式会社 Manufacturing method of power semiconductor device, power semiconductor device and power conversion device

Also Published As

Publication number Publication date
ES2448790T3 (en) 2014-03-17
MY158834A (en) 2016-11-15
CN102596487A (en) 2012-07-18
US9773721B2 (en) 2017-09-26
KR20120091042A (en) 2012-08-17
CN102596487B (en) 2015-04-08
JP5041102B2 (en) 2012-10-03
US20140326490A1 (en) 2014-11-06
EP2474383B1 (en) 2013-11-27
EP2474383A4 (en) 2013-03-20
JPWO2011027820A1 (en) 2013-02-04
KR101255491B1 (en) 2013-04-16
EP2474383A1 (en) 2012-07-11
WO2011027820A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
US9773721B2 (en) Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part
KR100999331B1 (en) Lead-free solder alloy
US20190088611A1 (en) "Lead-Free Solder Ball"
TWI618798B (en) Lead-free solder alloy
US8887980B2 (en) Method of soldering portions plated by electroless Ni plating
EP2589459B1 (en) Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
KR101345940B1 (en) Solder, soldering method, and semiconductor device
KR20140025406A (en) Lead-free solder ball
US10137536B2 (en) Sn-Cu-based lead-free solder alloy
KR20140098815A (en) Bonding method, bond structure, and manufacturing method for same
WO2006011204A1 (en) Lead-free solder alloy
JP3878978B2 (en) Lead-free solder and lead-free fittings
JP2003290974A (en) Joining structure of electronic circuit device and electronic parts used for the same
KR101590289B1 (en) Solder alloy
JP2022026896A (en) Solder alloy and molding solder
JP2005288478A (en) Lead-free solder weld

Legal Events

Date Code Title Description
AS Assignment

Owner name: SENJU METAL INDUSTRY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSHIKAWA, SHUNSAKU;YAMANAKA, YOSHIE;OHNISHI, TSUKASA;AND OTHERS;SIGNING DATES FROM 20101206 TO 20101225;REEL/FRAME:028101/0175

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION