US20120191311A1 - Method and apparatus for aiding a driver to park a vehicle - Google Patents

Method and apparatus for aiding a driver to park a vehicle Download PDF

Info

Publication number
US20120191311A1
US20120191311A1 US13/013,940 US201113013940A US2012191311A1 US 20120191311 A1 US20120191311 A1 US 20120191311A1 US 201113013940 A US201113013940 A US 201113013940A US 2012191311 A1 US2012191311 A1 US 2012191311A1
Authority
US
United States
Prior art keywords
vehicle
brake force
brake
parking
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/013,940
Inventor
Ajey Avinash Mohile
Graham Scott Russell
Bo Ye
Scott Meoak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Systems Inc
Original Assignee
Continental Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Systems Inc filed Critical Continental Automotive Systems Inc
Priority to US13/013,940 priority Critical patent/US20120191311A1/en
Assigned to CONTINENTAL AUTOMOTIVE SYSTEMS, INC. reassignment CONTINENTAL AUTOMOTIVE SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YE, Bo, MEOAK, SCOTT, MOHILE, AJEY AVINASH, RUSSELL, GRAHAM SCOTT
Publication of US20120191311A1 publication Critical patent/US20120191311A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/005Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles by locking of wheel or transmission rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18054Propelling the vehicle related to particular drive situations at stand still, e.g. engine in idling state

Definitions

  • the present invention relates to a method and apparatus aiding a driver to park a vehicle having a transmission with a parking pawl.
  • Vehicles with automatic transmissions are typically equipped with a parking pawl.
  • the parking pawl engages a slot on a toothed wheel on the vehicle's transmission output shaft when the transmission mode selector is put into its parking mode for locking the driven wheels.
  • the output shaft may make up to one-eighth of a rotation before the parking pawl engages with the toothed wheel. Consequently, a vehicle parked on a slope may roll six inches or more before the parking pawl locks the transmission.
  • the rolling vehicle may stop with a sudden jerk when the parking pawl engages the slot. Not only may this abrupt stop irritate the vehicle's occupants, the significant force exerted on the parking pawl may damage the toothed wheel or the parking pawl itself.
  • the system can estimate a holding brake force sufficient to keep the vehicle immobilized on the slope.
  • the system can reduce the brake force to the holding brake force when the vehicle driver releases the brake pedal. Because the holding brake force will hold the vehicle on the slope, the slow reduction of brake force can start at the level of the holding brake force.
  • the vehicle can first be allowed to settle, e.g. to lower the chassis or to vent air springs, before the brake force is reduced. That way, there will not be any other interfering operations while the method is performed.
  • the brake force may be reduced continuously, using incremental steps may make the control easier to handle: The brake force remains at a certain level to observe whether the vehicle starts to move before the force is further reduced.
  • the system determines that the vehicle has reached its final position, it terminates the method by reducing the brake force to zero.
  • FIG. 1 shows a schematic drawing of a parking pawl mechanism
  • FIG. 2 shows a diagram of the forces acting on a vehicle on a slope when coming to a stop
  • FIG. 3 shows and example of the brake force and the vehicle speed over time while the method of the present invention is applied.
  • FIG. 1 shows a representative arrangement of a parking pawl mechanism.
  • a toothed wheel 1 is rigidly connected to a transmission output shaft 2 .
  • the toothed wheel has sixteen teeth separated by sixteen slots, but the number varies among vehicle makes and models.
  • a parking pawl 7 comprises a parking pawl lever 3 arranged to swivel around a hinge 4 .
  • a tooth 5 on the parking pawl lever 3 is shaped in a way that, if the parking pawl lever 3 swivels toward the toothed wheel 1 , the tooth 5 engages with a slot 6 on the toothed wheel 1 .
  • the parking pawl 7 is equipped with a bias spring (not shown) that urges the parking pawl lever 3 toward the toothed wheel 1 .
  • the parking pawl 7 While a vehicle is in a driving mode in which the vehicle may move, the parking pawl 7 is held in a position where the tooth 5 is removed from the slot 6 so that the transmission output shaft 2 can move freely.
  • the vehicle's gear selector (not shown) is moved to “P,” the parking mode, and the parking pawl 7 is released.
  • the tooth 5 may not immediately match up with a slot and may come to rest on a tooth instead of a slot of the toothed wheel 1 .
  • the tooth 5 When the vehicle is parked on a level surface, the tooth 5 will remain on the toothed wheel 1 where it came to rest. But when the vehicle is parked on an uphill or downhill slope, it can accelerate in the slope's downward direction until the tooth 5 engages the next slot 6 . Depending on the number of teeth on the toothed wheel 1 and on the initial resting position of the tooth 5 , the distance the vehicle rolls can be six inches or more. On a steep slope, the vehicle can reach a speed that results in a noticeable jerk when the tooth 5 latches into the next slot 6 and abruptly stops the movement. This sudden stop can have a startling effect on the vehicle occupants and might over time cause damage to the tooth 5 or the teeth of the toothed wheel 1 .
  • FIG. 2 shows the forces at work when a vehicle is brought to a stop on a slope before the parking pawl engages. While the schematic vehicle 9 is shown to face downhill, the same considerations apply when a vehicle faces uphill.
  • Vehicle 9 rests on a slope 8 with an inclination angle ⁇ .
  • Gravity acts vertically downward on the vehicle with the gravitational force F G .
  • the gravitational force can be broken down into two vector components: the normal force F N perpendicular to the surface or the slope and the downward force F D parallel to the surface of the slope.
  • the downward force F D is in a linear correlation with the vehicle mass and with the sine of the inclination angle ⁇ —if friction forces are neglected.
  • a holding brake force F H countering the downward force must be applied.
  • the magnitude of the brake force must be equal to the downward force.
  • the type of brake system used determines which physical quantity is manipulated to vary the brake force. In a hydraulic brake system, it is the pressure acting on a brake piston. But in an electrical brake, the quantity is the electrical current generating a magnetic field.
  • FIG. 3 can, for example, be directly translated to a hydraulic brake system by replacing the forces F H and F min with hydraulic wheel brake pressure values that will generate brake forces corresponding to F H and F min .
  • FIG. 3 shows the brake force (F B ) over time (t).
  • the vehicle driver puts the gear selector into the parking mode.
  • an electronic controller (ECU) 10 controls the vehicle's brake system to maintain the brake force prevailing at the time at which the parking mode was selected. This delay allows the vehicle to settle down for parking, which may include venting an air spring system or lowering a different kind of suspension.
  • the electronic controler checks whether the vehicle driver has released the manual brake actuator, usually a brake pedal.
  • the holding brake force F H is a force that, at the current inclination angle ⁇ and vehicle gravitational force F G will keep the vehicle 9 immobilized on the slope.
  • the two required quantities, inclination angle ⁇ and vehicle gravitational force F G may not be precisely known. Therefore, the holding brake force F H may have to be approximated.
  • the brake force F B should be able to compensate the highest possible downward force F D . But even if the estimate is slightly too low, the vehicle 9 would start to move slowly down the slope—at most until the tooth 5 of the parking pawl 7 engages the next available slot 6 .
  • the brake force F B is lowered in small increments until the vehicle 9 starts rolling and the vehicle speed v has a value other than zero at a time t 3 . If the vehicle 9 , after starting to move, slows down to a stop again, the brake force F B can be incrementally lowered further. This is done to make sure that the vehicle 9 has not just stopped because of an uneven road surface or some other unrelated impediment.
  • the process of lowering the brake force until the parking pawl 7 has engaged the toothed wheel 1 can take several seconds, depending on the distance the vehicle 9 travels until the tooth 5 catches in slot 6 .
  • the electronic controller 10 determines that the parking pawl 7 is engaged, it can direct the vehicle's brake system to release the brake force.
  • the vehicle 9 may have an automatic parking brake that can take over before the brake force is released.
  • a parking brake function may be performed by the operating brake.
  • the brake force might not be reduced any further at all after the parking pawl engages the toothed wheel.
  • the above represents only one example of implementing the method to avoid a sudden stop when parking a vehicle on a slope.
  • the method relies on a gradual brake force reduction, which may occur in steps as shown or on a continuous curve.
  • the slope of the continuous curve, just as the height and duration of each incremental step can be optimized for time (steeper curve, greater increments and shorter time intervals) or for comfort (less steep curve, smaller increments, longer time intervals).
  • the parameters for optimizing the method can be empirically determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

In order to avoid a sudden jerk when a vehicle is parked on a slope and its parking pawl engages with a toothed wheel on the transmission output shaft, a method is performed that detects that the vehicle's gear selector has been put into its parking mode and then gradually reduces the brake force until the vehicle starts moving. If the vehicle stops, the brake force will slowly be further reduced until the vehicle has reached its final position.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a method and apparatus aiding a driver to park a vehicle having a transmission with a parking pawl.
  • BACKGROUND OF THE INVENTION
  • Vehicles with automatic transmissions are typically equipped with a parking pawl. The parking pawl engages a slot on a toothed wheel on the vehicle's transmission output shaft when the transmission mode selector is put into its parking mode for locking the driven wheels. Depending on the number of teeth on the toothed wheel, the output shaft may make up to one-eighth of a rotation before the parking pawl engages with the toothed wheel. Consequently, a vehicle parked on a slope may roll six inches or more before the parking pawl locks the transmission. The rolling vehicle may stop with a sudden jerk when the parking pawl engages the slot. Not only may this abrupt stop irritate the vehicle's occupants, the significant force exerted on the parking pawl may damage the toothed wheel or the parking pawl itself.
  • It is the objective of the present invention to reduce the sudden force exerted on the parking pawl when a vehicle is parked on a slope.
  • It is a further objective of the present invention to diminish the jerk perceived by the vehicle occupants when the parking pawl engages the slot on the toothed wheel when the vehicle is parked on a slope.
  • SUMMARY OF THE INVENTION
  • These objectives are achieved by holding the vehicle brakes engaged after the driver releases the brake actuator and slowly reducing the brake force until the vehicle starts moving. Such a gradual release of the brakes allows the vehicle to move until the parking pawl engages, but it prevents the vehicle from freely accelerating pursuant to the downgrade force of the slope. Accordingly, the vehicle will not obtain a high speed that would result in a sudden jerk. Due to the lower speed, the force acting on the parking pawl is also reduced compared to a vehicle allowed to roll freely until the parking pawl engages.
  • According to the invention, the system can estimate a holding brake force sufficient to keep the vehicle immobilized on the slope. When the vehicle has stopped on the slope, the system can reduce the brake force to the holding brake force when the vehicle driver releases the brake pedal. Because the holding brake force will hold the vehicle on the slope, the slow reduction of brake force can start at the level of the holding brake force.
  • If the vehicle has an active suspension, it can first be allowed to settle, e.g. to lower the chassis or to vent air springs, before the brake force is reduced. That way, there will not be any other interfering operations while the method is performed.
  • While the brake force may be reduced continuously, using incremental steps may make the control easier to handle: The brake force remains at a certain level to observe whether the vehicle starts to move before the force is further reduced.
  • Once the system determines that the vehicle has reached its final position, it terminates the method by reducing the brake force to zero.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings,
  • FIG. 1 shows a schematic drawing of a parking pawl mechanism,
  • FIG. 2 shows a diagram of the forces acting on a vehicle on a slope when coming to a stop, and
  • FIG. 3 shows and example of the brake force and the vehicle speed over time while the method of the present invention is applied.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a representative arrangement of a parking pawl mechanism. A toothed wheel 1 is rigidly connected to a transmission output shaft 2. In the present example, the toothed wheel has sixteen teeth separated by sixteen slots, but the number varies among vehicle makes and models. A parking pawl 7 comprises a parking pawl lever 3 arranged to swivel around a hinge 4. A tooth 5 on the parking pawl lever 3 is shaped in a way that, if the parking pawl lever 3 swivels toward the toothed wheel 1, the tooth 5 engages with a slot 6 on the toothed wheel 1. The parking pawl 7 is equipped with a bias spring (not shown) that urges the parking pawl lever 3 toward the toothed wheel 1.
  • While a vehicle is in a driving mode in which the vehicle may move, the parking pawl 7 is held in a position where the tooth 5 is removed from the slot 6 so that the transmission output shaft 2 can move freely.
  • When the vehicle is parked, the vehicle's gear selector (not shown) is moved to “P,” the parking mode, and the parking pawl 7 is released. The tooth 5 may not immediately match up with a slot and may come to rest on a tooth instead of a slot of the toothed wheel 1.
  • When the vehicle is parked on a level surface, the tooth 5 will remain on the toothed wheel 1 where it came to rest. But when the vehicle is parked on an uphill or downhill slope, it can accelerate in the slope's downward direction until the tooth 5 engages the next slot 6. Depending on the number of teeth on the toothed wheel 1 and on the initial resting position of the tooth 5, the distance the vehicle rolls can be six inches or more. On a steep slope, the vehicle can reach a speed that results in a noticeable jerk when the tooth 5 latches into the next slot 6 and abruptly stops the movement. This sudden stop can have a startling effect on the vehicle occupants and might over time cause damage to the tooth 5 or the teeth of the toothed wheel 1.
  • FIG. 2 shows the forces at work when a vehicle is brought to a stop on a slope before the parking pawl engages. While the schematic vehicle 9 is shown to face downhill, the same considerations apply when a vehicle faces uphill.
  • Vehicle 9 rests on a slope 8 with an inclination angle α. Gravity acts vertically downward on the vehicle with the gravitational force FG. The gravitational force can be broken down into two vector components: the normal force FN perpendicular to the surface or the slope and the downward force FD parallel to the surface of the slope. The downward force FD is in a linear correlation with the vehicle mass and with the sine of the inclination angle α—if friction forces are neglected.
  • In order to keep the vehicle from rolling downhill before the parking pawl engages, a holding brake force FH countering the downward force must be applied. The magnitude of the brake force must be equal to the downward force.
  • The type of brake system used determines which physical quantity is manipulated to vary the brake force. In a hydraulic brake system, it is the pressure acting on a brake piston. But in an electrical brake, the quantity is the electrical current generating a magnetic field.
  • The following example of FIG. 3 can, for example, be directly translated to a hydraulic brake system by replacing the forces FH and Fmin with hydraulic wheel brake pressure values that will generate brake forces corresponding to FH and Fmin.
  • FIG. 3 shows the brake force (FB) over time (t). At time t0, the vehicle driver puts the gear selector into the parking mode. Initially, an electronic controller (ECU) 10 controls the vehicle's brake system to maintain the brake force prevailing at the time at which the parking mode was selected. This delay allows the vehicle to settle down for parking, which may include venting an air spring system or lowering a different kind of suspension. Then the electronic controler checks whether the vehicle driver has released the manual brake actuator, usually a brake pedal.
  • Assuming this has occurred by time t1, the brake force is lowered in one step to a holding force FH, which is reached at time t2. This holding brake force FH corresponds to the holding brake force FH of FIG. 2. The holding brake force FH is a force that, at the current inclination angle α and vehicle gravitational force FG will keep the vehicle 9 immobilized on the slope. The two required quantities, inclination angle α and vehicle gravitational force FG, not to mention other forces like wind or friction, may not be precisely known. Therefore, the holding brake force FH may have to be approximated. The brake force FB should be able to compensate the highest possible downward force FD. But even if the estimate is slightly too low, the vehicle 9 would start to move slowly down the slope—at most until the tooth 5 of the parking pawl 7 engages the next available slot 6.
  • Now, assuming that the holding force FH was properly chosen and the vehicle 9 has not started to move, the brake force FB is lowered in small increments until the vehicle 9 starts rolling and the vehicle speed v has a value other than zero at a time t3. If the vehicle 9, after starting to move, slows down to a stop again, the brake force FB can be incrementally lowered further. This is done to make sure that the vehicle 9 has not just stopped because of an uneven road surface or some other unrelated impediment. The process of lowering the brake force until the parking pawl 7 has engaged the toothed wheel 1 can take several seconds, depending on the distance the vehicle 9 travels until the tooth 5 catches in slot 6.
  • But if the vehicle 9, despite lowered brake force, does not start moving again, the system assumes that the parking pawl has engaged with the toothed wheel. This determination can be based on several factors, alternatively or concurrently. Such factors include but need not be limited to:
  • Brake force difference or ratio between the last movement and now;
  • Lapse of time;
  • Absolute present brake force FB; and
  • Distance traveled by vehicle 9 since the gear selector was put in the parking mode.
  • Once the electronic controller 10 determines that the parking pawl 7 is engaged, it can direct the vehicle's brake system to release the brake force. The vehicle 9 may have an automatic parking brake that can take over before the brake force is released.
  • In a vehicle 9 with a non-hydraulic brake system, a parking brake function may be performed by the operating brake. In such vehicles, the brake force might not be reduced any further at all after the parking pawl engages the toothed wheel.
  • The above represents only one example of implementing the method to avoid a sudden stop when parking a vehicle on a slope. The method relies on a gradual brake force reduction, which may occur in steps as shown or on a continuous curve. The slope of the continuous curve, just as the height and duration of each incremental step can be optimized for time (steeper curve, greater increments and shorter time intervals) or for comfort (less steep curve, smaller increments, longer time intervals). The parameters for optimizing the method can be empirically determined.
  • Also, initially lowering the brake force to an estimated holding force (or holding pressure) will accelerate the completion of the process.
  • The broad teachings of the disclosure can be implemented in many ways not specifically pointed out. Accordingly, the true scope of the disclosure is not limited to the particular examples discussed in detail. Further modifications become apparent by studying the drawings, the specification, and the following claims.

Claims (10)

1. A method of aiding a vehicle driver to park a wheeled vehicle on a slope, the vehicle being equipped with a parking pawl and having a brake system configured to apply vehicle brakes without the driver operating a brake actuator, the method comprising the steps of
detecting that a gear selector has been put into a parking mode;
keeping the vehicle brakes applied with an initial brake force,
detecting that the brake actuator has been released, and
reducing the brake force over time until the vehicle starts moving.
2. The method of claim 1, further comprising the steps of
estimating a holding brake force sufficient to keep the vehicle immobilized on the slope, and
reducing the brake force in one step to the holding brake force.
3. The method of claim 1 for a vehicle with an active suspension, wherein the brake force is only reduced after the active suspension has settled for parking.
4. The method of claim 1, wherein the the brake force is reduced in incremental steps.
5. The method of claim 4, wherein the brake force of every incremental step is maintained until the vehicle stops moving.
6. The method of claim 1, further comprising the steps of
determining that the vehicle is not going to move any further while the gear selector remains in the parking mode, and
setting the brake force to a final value.
7. The method of claim 6, wherein the final value equals zero.
8. The method of claim 6, wherein the final value is a brake force calculated to keep the vehicle immobilized on the slope, even without a parking pawl.
9. A vehicle equipped with
a gear selector including a parking mode that cooperates with a parking pawl,
a brake system configured to apply vehicle brakes without an actuation of a driver-operated brake actuator, and
an electronic controller programmed to cooperate with the brake system to perform the following steps:
detecting that the gear selector has been put into a parking mode;
keeping the vehicle brakes applied with an initial brake force,
detecting that a driver has released the brake actuator, and
gradually reducing the brake force until the vehicle starts moving.
10. An electronic controller comprising:
a control program to cooperate with a brake system configured to apply vehicle brakes without actuation of a driver-operated brake actuator, wherein the control program comprises instructions for:
detecting that a gear selector which is connected to a parking pawl for the vehicle is in a parking mode position;
determining an intial brake force to be applied to the vehicle brakes;
instructing the brake system to apply the vehicle brakes with the initial brake force;
detecting that the brake actuator for the vehicle has been released; and
instructing the brake system to gradually reduce the brake force until the vehicle starts moving.
US13/013,940 2011-01-26 2011-01-26 Method and apparatus for aiding a driver to park a vehicle Abandoned US20120191311A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/013,940 US20120191311A1 (en) 2011-01-26 2011-01-26 Method and apparatus for aiding a driver to park a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/013,940 US20120191311A1 (en) 2011-01-26 2011-01-26 Method and apparatus for aiding a driver to park a vehicle

Publications (1)

Publication Number Publication Date
US20120191311A1 true US20120191311A1 (en) 2012-07-26

Family

ID=46544781

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/013,940 Abandoned US20120191311A1 (en) 2011-01-26 2011-01-26 Method and apparatus for aiding a driver to park a vehicle

Country Status (1)

Country Link
US (1) US20120191311A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105650273A (en) * 2016-02-18 2016-06-08 常州工学院 Ratchet wheel type auxiliary device for vehicle hill starting
CN106030164A (en) * 2014-02-26 2016-10-12 奥迪股份公司 Method and control device for actuating a braking mechanism of a drivetrain of a vehicle having an automatic transmission
DE102015206582A1 (en) 2015-04-13 2016-10-13 Bayerische Motoren Werke Aktiengesellschaft Inserting a parking brake on a slope at the end of an automatic parking process
CN106166962A (en) * 2016-07-19 2016-11-30 合肥威博尔汽车技术有限公司 A kind of pure electric automobile half way up the mountain parking braking method
US20180043895A1 (en) * 2016-08-12 2018-02-15 GM Global Technology Operations LLC Vehicle soft-park control system
US10053098B2 (en) * 2015-09-18 2018-08-21 Zf Friedrichshafen Ag Dual-clutch transmission parking brake disengaging method of a vehicle
US11407388B2 (en) 2019-06-11 2022-08-09 Fca Us Llc Electromechanical park brake strategy for transmission park pawl engagement
FR3129341A1 (en) * 2021-11-24 2023-05-26 Hitachi Astemo France Method for electrically controlling a parking brake

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084916A1 (en) * 2000-12-15 2002-07-04 Yasuo Shimizu Parking operation aiding system
US7053794B2 (en) * 2002-01-10 2006-05-30 Aisin Seiki Kabushiki Kaisha Parking assist device and method for assisting parking
DE102005029993A1 (en) * 2005-06-28 2007-01-18 Robert Bosch Gmbh Method of aiding vehicle driver into finding suitable vehicle parking space, uses quality factor which is function of accuracy in length/width of parking space and quality of parking space evaluation based on length/width
JP2007055354A (en) * 2005-08-23 2007-03-08 Toyota Motor Corp Control device of vehicle
US20080035444A1 (en) * 2004-09-08 2008-02-14 Zf Friedrichshafen Ag Vehicle Transmission Comprising A Parking Brake And Method For Controlling The Same
US20090043465A1 (en) * 2007-08-10 2009-02-12 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus and method
US20090259365A1 (en) * 2005-12-23 2009-10-15 Michael Rohlfs Park-steer assist system and method for operating a park-steer assist system
US20090312917A1 (en) * 2006-05-16 2009-12-17 Torsten Zawade Device and method for activating and/or deactivating functions of a vehicle
US20100048352A1 (en) * 2007-02-23 2010-02-25 Toyota Jidosha Kabushiki Kaisha Shift control system and method
US20100235053A1 (en) * 2006-12-12 2010-09-16 Toyota Jidosha Kabushiki Kaisha Parking assist device
US7945368B2 (en) * 2005-10-05 2011-05-17 Robert Bosch Gmbh Method of adjusting an automatic parking brake
US20110121994A1 (en) * 2009-10-29 2011-05-26 Christian Pampus Method For Detecting Objects Having a Low Height
US8035531B2 (en) * 2005-10-31 2011-10-11 Toyota Jidosha Kabushiki Kaisha Parking support device
US20110260887A1 (en) * 2010-04-23 2011-10-27 Ford Global Technologies, Llc Vehicle park assist with steering centering

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084916A1 (en) * 2000-12-15 2002-07-04 Yasuo Shimizu Parking operation aiding system
US7053794B2 (en) * 2002-01-10 2006-05-30 Aisin Seiki Kabushiki Kaisha Parking assist device and method for assisting parking
US20080035444A1 (en) * 2004-09-08 2008-02-14 Zf Friedrichshafen Ag Vehicle Transmission Comprising A Parking Brake And Method For Controlling The Same
DE102005029993A1 (en) * 2005-06-28 2007-01-18 Robert Bosch Gmbh Method of aiding vehicle driver into finding suitable vehicle parking space, uses quality factor which is function of accuracy in length/width of parking space and quality of parking space evaluation based on length/width
JP2007055354A (en) * 2005-08-23 2007-03-08 Toyota Motor Corp Control device of vehicle
US7945368B2 (en) * 2005-10-05 2011-05-17 Robert Bosch Gmbh Method of adjusting an automatic parking brake
US8035531B2 (en) * 2005-10-31 2011-10-11 Toyota Jidosha Kabushiki Kaisha Parking support device
US20090259365A1 (en) * 2005-12-23 2009-10-15 Michael Rohlfs Park-steer assist system and method for operating a park-steer assist system
US20090312917A1 (en) * 2006-05-16 2009-12-17 Torsten Zawade Device and method for activating and/or deactivating functions of a vehicle
US20100235053A1 (en) * 2006-12-12 2010-09-16 Toyota Jidosha Kabushiki Kaisha Parking assist device
US20100048352A1 (en) * 2007-02-23 2010-02-25 Toyota Jidosha Kabushiki Kaisha Shift control system and method
US20090043465A1 (en) * 2007-08-10 2009-02-12 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus and method
US20110121994A1 (en) * 2009-10-29 2011-05-26 Christian Pampus Method For Detecting Objects Having a Low Height
US20110260887A1 (en) * 2010-04-23 2011-10-27 Ford Global Technologies, Llc Vehicle park assist with steering centering

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106030164A (en) * 2014-02-26 2016-10-12 奥迪股份公司 Method and control device for actuating a braking mechanism of a drivetrain of a vehicle having an automatic transmission
US10086807B2 (en) 2014-02-26 2018-10-02 Audi Ag Method and control device for operating a braking device of a drive train with an automatic gearbox of a vehicle
DE102015206582A1 (en) 2015-04-13 2016-10-13 Bayerische Motoren Werke Aktiengesellschaft Inserting a parking brake on a slope at the end of an automatic parking process
US10053098B2 (en) * 2015-09-18 2018-08-21 Zf Friedrichshafen Ag Dual-clutch transmission parking brake disengaging method of a vehicle
CN105650273A (en) * 2016-02-18 2016-06-08 常州工学院 Ratchet wheel type auxiliary device for vehicle hill starting
CN106166962A (en) * 2016-07-19 2016-11-30 合肥威博尔汽车技术有限公司 A kind of pure electric automobile half way up the mountain parking braking method
US20180043895A1 (en) * 2016-08-12 2018-02-15 GM Global Technology Operations LLC Vehicle soft-park control system
CN107719119A (en) * 2016-08-12 2018-02-23 通用汽车环球科技运作有限责任公司 The soft parking control system of vehicle
US11407388B2 (en) 2019-06-11 2022-08-09 Fca Us Llc Electromechanical park brake strategy for transmission park pawl engagement
FR3129341A1 (en) * 2021-11-24 2023-05-26 Hitachi Astemo France Method for electrically controlling a parking brake
WO2023094417A1 (en) * 2021-11-24 2023-06-01 Hitachi Astemo France Method for electrically controlling a parking brake

Similar Documents

Publication Publication Date Title
US20120191311A1 (en) Method and apparatus for aiding a driver to park a vehicle
US8406952B2 (en) Electric parking brake control system and electric parking brake control method
JP5065906B2 (en) Method for preventing rolling of a vehicle equipped with a prime mover
DE102006044884B4 (en) Rollback reduction in a hybrid or conventional powertrain vehicle by means of a vehicle stability enhancement system
KR101364387B1 (en) Method for operation of a braking system for a motor vehicle
CN110758397A (en) Control method of automobile ramp auxiliary system
CN106553632B (en) Method for controlling vehicle to start from rest
CN105459847A (en) Hill starting auxiliary system for electric vehicle and control method thereof
CN109849914B (en) Method for operating a motor vehicle and corresponding motor vehicle
CN110834609A (en) Method for holding a vehicle in a stationary state, control and regulation mechanism for a braking device of a vehicle, and braking device of a vehicle
CN107985312B (en) Electric vehicle starting method and electric vehicle
US9505408B2 (en) Method for adjusting the starting torque in a vehicle
JP2006306300A (en) Control device for electric parking brake
WO2009101331A1 (en) Method of operating a motor vehicle hill start assistance system
JP4832795B2 (en) Control device for electric parking brake
JP6361621B2 (en) Vehicle stop control device
CN116461347A (en) Auxiliary control method and system for preventing electric automobile from sliding and vehicle
CN107738648B (en) Method, device and system for controlling vehicle hill start and gearbox
JP5485581B2 (en) Vehicle control device
JP2012140995A (en) Parking lock device
US20070129873A1 (en) Method and apparatus for influencing a motor torque
US20190023275A1 (en) Controlling the automatic starting of a motor vehicle uphill in a mu split situation
CN103661356A (en) Vehicle control apparatus
KR20170024231A (en) A control method of car brake system in ramp
CN110626348A (en) Pure electric commercial vehicle hill start control method based on real-time quality identification

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTINENTAL AUTOMOTIVE SYSTEMS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOHILE, AJEY AVINASH;RUSSELL, GRAHAM SCOTT;YE, BO;AND OTHERS;SIGNING DATES FROM 20110117 TO 20110124;REEL/FRAME:025698/0509

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION