US20120183422A1 - Retainer for a stator of an electric compressor - Google Patents

Retainer for a stator of an electric compressor Download PDF

Info

Publication number
US20120183422A1
US20120183422A1 US13/005,762 US201113005762A US2012183422A1 US 20120183422 A1 US20120183422 A1 US 20120183422A1 US 201113005762 A US201113005762 A US 201113005762A US 2012183422 A1 US2012183422 A1 US 2012183422A1
Authority
US
United States
Prior art keywords
housing
retainer
stator
electric motor
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/005,762
Inventor
Aurelian Bahmata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanon Systems Corp
Original Assignee
Visteon Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visteon Global Technologies Inc filed Critical Visteon Global Technologies Inc
Priority to US13/005,762 priority Critical patent/US20120183422A1/en
Assigned to VISTEON GLOBAL TECHNOLOGIES, INC. reassignment VISTEON GLOBAL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAHMATA, AURELIAN
Priority to DE102012100196A priority patent/DE102012100196A1/en
Priority to JP2012003758A priority patent/JP5542161B2/en
Publication of US20120183422A1 publication Critical patent/US20120183422A1/en
Assigned to HALLA VISTEON CLIMATE CONTROL CORPORATION reassignment HALLA VISTEON CLIMATE CONTROL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VISTEON GLOBAL TECHNOLOGIES, INC.
Assigned to HANON SYSTEMS reassignment HANON SYSTEMS CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HALLA VISTEON CLIMATE CONTROL CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators

Definitions

  • the present invention relates to a compressor. More particularly, the invention is directed to a compressor including an electric motor and a retainer for maintaining a position of a stator of the electric motor.
  • hybrid vehicles utilize a combination of an electric drive motor and an internal combustion engine to power and propel the vehicle.
  • the hybrid vehicles use an electric air conditioning compressor including a compression mechanism such as a scroll compression mechanism, for example, driven by an electric motor.
  • the electric motor and the compression mechanism are mounted within a housing of the compressor. Packaging of the electric motor and the compression mechanism within the housing requires satisfying numerous design constraints such as weight, size, noise and vibration control, manufacturability, serviceability, and electric isolation.
  • Current electric compressor designs satisfy only a few of the constraints.
  • the electric motor typically includes two primary components: a stator and a rotor.
  • the stator is typically retained in the housing of the compressor by press-fitting the stator in the housing, attaching the stator to the housing fasteners, or capturing the stator by compressing the housing after installing the stator within the housing.
  • the interface between the housing and the stator requires an accurate angular and axial positioning of the stator, a retention of the stator at low and high temperatures, a minimum stress on laminations of the stator, and an ease of assembly and serviceability.
  • an electric compressor including a retainer for maintaining a position of a stator of the electric motor which facilitates a satisfaction of the design constraints of the packaging of the compressor and the requirements of the interface between the housing and the stator.
  • an electric compressor including a retainer for maintaining a position of a stator of the electric motor which facilitates a satisfaction of the design constraints of the packaging of the compressor and the requirements of the interface between the housing and the stator, has surprisingly been discovered.
  • the compressor comprises: a hollow housing; a compression mechanism disposed in the housing, the compression mechanism receiving a fluid therein to be compressed; an electric motor removably disposed in the housing, the electric motor including a stator and a rotor coupled to the compression mechanism for facilitating a movement of the compression mechanism, wherein the movement of the compression mechanism causes a compression of the fluid therein; and a retainer removably disposed between the stator and the housing, the retainer configured to maintain a position of the stator within the housing and to dampen a noise and a vibration produced by the electric motor.
  • the compressor comprises: a hollow housing; a compression mechanism disposed in the housing, the compression mechanism receiving a fluid therein to be compressed; an electric motor removably disposed in the housing, the electric motor including a stator surrounding a rotor, the rotor coupled to the compression mechanism for facilitating a movement of the compression mechanism, wherein the movement of the compression mechanism causes a compression of the fluid therein; and an elastic retainer removably disposed between the stator and the housing, the retainer configured to maintain a position of the stator within the housing and to dampen a noise and a vibration produced by the electric motor.
  • the compressor comprises: a hollow housing; a compression mechanism disposed in the housing, the compression mechanism receiving a fluid therein to be compressed; an electric motor removably disposed in the housing, the electric motor including a rotor surrounding a stator, the rotor coupled to the compression mechanism for facilitating a movement of the compression mechanism, wherein the movement of the compression mechanism causes a compression of the fluid therein; and a retainer disposed between the stator and the housing, the retainer configured to maintain a position of the stator within the housing and to dampen a noise and a vibration produced by the electric motor.
  • FIG. 1 is a cross-sectional view of an electric compressor according to an embodiment of the present invention
  • FIG. 2 is an enlarged fragmentary side perspective view, partially in section, of the compressor illustrated in FIG. 1 having a driveshaft of the compressor and a rotor of an electric motor removed;
  • FIG. 3 is an enlarged fragmentary perspective view, partially in section, of a portion of the compressor within the circled area of FIG. 2 ;
  • FIG. 4 is a partially exploded fragmentary side perspective view of the compressor illustrated in FIG. 1 having the driveshaft of the compressor and the rotor of the electric motor removed;
  • FIG. 5 is a cross-sectional view of an electric compressor according to another embodiment of the present invention.
  • FIG. 6 is an enlarged fragmentary side perspective view, partially in section, of the compressor illustrated in FIG. 5 having a driveshaft of the compressor and a rotor of an electric motor removed;
  • FIG. 7 is an enlarged fragmentary perspective view, partially in section, of a portion of the compressor within the circled area of FIG. 6 ;
  • FIG. 8 is a partially exploded fragmentary side perspective view of the compressor illustrated in FIG. 5 having the driveshaft of the compressor and the rotor of the electric motor removed.
  • FIG. 1 shows a motor driven fluid compressor 10 according to an embodiment of the invention.
  • the motor driven compressor 10 can be any type of motor driven compressor as desired such as a motor driven scroll type fluid compressor, for example.
  • the compressor 10 includes a compressor housing 12 having a compression mechanism 14 , an electric motor 16 , and an electric circuit 18 for controlling the electric motor 16 disposed therein.
  • the compression mechanism 14 can be any compression mechanism as desired such as a scroll type fluid compression mechanism, for example.
  • the compressor housing 12 comprises cylindrical portions 20 a , 20 b , 20 c , a first end portion 22 , and second end portion 24 .
  • An open side 26 of the first end portion 22 is releaseably and hermetically connected to an open side 28 of the cylindrical portion 20 c .
  • An open side 32 of the second end portion 24 is releaseably and hermetically connected to an open side 34 of cylindrical portion 20 a .
  • the cylindrical portions 20 a , 20 b , 20 c and the end portions 22 , 24 can be connected by any means as desired such as adhesives, pins, clips, and the like, for example.
  • a cavity 36 formed by the connected portions 24 , 20 a of the compressor housing 12 houses the electric circuit 18 therein.
  • the electric circuit 18 is electrically connected with an external electric power source (not shown) via a terminal 38 disposed on the compressor housing 12 .
  • the compression mechanism 14 includes a fixed scroll 40 and a moveable scroll 42 .
  • the fixed scroll 40 includes an end plate 44 and a spiral element 46 extending laterally outwardly from the end plate 44 .
  • the moveable scroll 42 includes an end plate 48 and a spiral element 50 extending laterally outwardly from the end plate 48 .
  • the spiral element 46 of the fixed scroll 40 cooperates with the spiral element 50 of moveable scroll 42 , which is angularly and radially offset therefrom, to form a plurality of sealed fluid pockets 43 .
  • the end plate 44 of the fixed scroll 40 and the first end portion 22 of the compressor housing 12 define a discharge chamber 52 therebetween.
  • a valved outlet port 54 axially formed through the end plate 44 of the fixed scroll 40 fluidly connects the discharge chamber 52 to a central fluid pocket 56 defined by the scrolls 40 , 42 .
  • a discharge port (not shown) is formed in the first end portion 22 of the compressor housing 12 .
  • the discharge port fluidly connects the discharge chamber 52 to an inlet of another component (not shown) such as a condenser of a heating, ventilating, and air conditioning system, for example.
  • the moveable scroll 42 is mechanically coupled to the electric motor 16 by a rotatable driveshaft 60 .
  • a rotation preventing mechanism 61 is disposed between the cylindrical portion 20 b of the compressor housing 12 and a face of the end plate 48 of the moveable scroll 42 opposite the spiral element 50 .
  • the rotation preventing mechanism 62 includes a ring-shaped member 104 having a central opening 105 formed therein and a plurality of bearing members 106 .
  • the moveable scroll 42 is caused to revolve.
  • the bearing members 106 cooperate with the ring-shaped member 104 to militate against a rotational movement of the moveable scroll 42 and facilitate an orbital movement thereof.
  • a first end 62 of the driveshaft 60 is supported by a bearing 63 seated adjacent an annular shoulder 64 formed in an inner surface of the cylindrical portion 20 b of the compressor housing 12 .
  • a second end 65 of the driveshaft 60 is disposed in a first cavity 66 formed by an annular hub 67 .
  • the annular hub 67 extends laterally outwardly from an interior wall 68 of the cylindrical portion 20 a of the compressor housing 12 .
  • An end portion 96 of the annular hub 67 includes an inner annular shoulder 69 and an outer annular shoulder 97 formed therein.
  • a bearing 70 for supporting the driveshaft 60 in the first cavity 66 is seated adjacent the inner annular shoulder 69 of the end portion 96 of the annular hub 67 .
  • the driveshaft 60 includes an axial bore 71 extending therethrough.
  • the axial bore 71 fluidly connects a second cavity 73 formed in the compressor housing 12 to the first cavity 66 .
  • An aperture 72 formed in the annular hub 67 fluidly connects the first cavity 66 to a suction chamber 74 .
  • the suction chamber 74 shown is formed by the interior wall 68 and an outer peripheral wall 76 of the cylindrical portion 20 a of the compressor housing 12 .
  • a suction port 78 is formed in the outer peripheral wall 76 of the cylindrical portion 20 a of the compressor housing 12 .
  • the suction port 76 fluidly connects the suction chamber 74 to an outlet of another component (not shown) such as an evaporator of a heating, ventilating, and air conditioning system, for example.
  • the electric motor 16 includes a rotor 80 and a stator 82 .
  • the rotor 80 is generally campanular shaped having a substantially closed end 83 and a substantially open end 85 .
  • the closed end 83 includes an aperture 84 formed therein and a neck portion 87 circumscribing and drivingly connected to the driveshaft 60 .
  • the open end 85 of the rotor 80 receives the stator 82 therein, wherein an outer peripheral surface 86 of the stator 82 is surrounded by the rotor 80 .
  • An air gap 88 is formed between the rotor 80 and the outer peripheral surface 86 of the stator 82 to permit rotational movement of the rotor 80 around the stator 82 .
  • Windings 89 of the stator 82 are in electrical communication with the electric circuit 18 via a wiring harness (not shown) extending outwardly from a coil end of the stator 82 adjacent the open end 85 of the rotor 80 .
  • the stator 82 is removeably positioned on the annular hub 67 of the cylindrical portion 20 a of the compressor housing 12 . As illustrated in FIGS. 2-3 , an inner surface 90 of the stator 82 abuts an outer surface of an intermediate portion 94 of the annular hub 67 . The inner surface 90 of the stator 82 and the outer annular shoulder 97 of the end portion 96 of the annular hub 67 are spaced apart forming an annular interstice 98 therebetween. A retainer 100 is removeably disposed in the interstice 98 to maintain an axial position and a radial position of the stator 82 . As shown in FIG.
  • the retainer 100 is a thin elastic strip or annular band 101 having an array of spaced apart retaining features 102 extending radially outwardly therefrom. It is understood that the retaining features 102 can be detents, waves, corrugations, or protuberances formed therein. It is further understood that the retaining features 102 can be formed to face inwardly or outwardly to accommodate different physical properties of the stator 82 , the compressor housing 12 , and the retainer 100 . The retaining features 102 exert a holding force on the stator 82 and the compressor housing 12 , while facilitating an ease of assembly therebetween.
  • the holding force of the retainer 100 results from a force produced by the retaining features 102 being elastically deflected during the assembly of the retainer 100 between the stator 82 and the compressor housing 12 .
  • a holding capability of the retainer 100 is determined by the retaining features 102 and a coefficient of friction between the retainer 100 and the stator 82 , and the compressor housing 12 .
  • the holding capability of the retainer 100 can be varied by adjusting a thickness of the strip 101 , a pitch of the retaining features 102 , a height of the retaining features 102 , and a number of the retaining features 102 , for example.
  • the retainer 100 can be produced from any suitable material such as a metallic material, a non-metallic material, an elastomeric material, or any combination thereof, for example.
  • the retainer 100 is configured to maintain the axial and radial position of the stator 82 within the compressor housing 12 without requiring additional assembly means or processes such as fasteners, a press-fitting process, a compression of the compressor housing 12 process, and the like, for example.
  • the retainer 100 is also configured to permit the electric motor 16 to be easily installed in the compressor housing 12 , removed from the compressor housing 12 , or replaced by another electric motor.
  • the retainer 100 can be any retainer as desired such as a tolerance ring, a bushing, a sleeve, and the like, for example. It is understood that the retainer 100 can be integrally formed with the annular hub 67 of the compressor housing 12 if desired.
  • the retainer 100 can be tuned to dampen noise and vibration frequencies produced by the electric motor 16 .
  • the retainer 100 shown is tuned by modifying physical properties of the retainer 100 such as a material composition, a thickness, a width, and a shape and configuration thereof, for example.
  • the annular hub 67 can also be tuned to dampen noise and vibration frequencies of the electric motor 16 such as by modifying physical properties of the annular hub 67 such as a diameter thereof, for example.
  • a fluid such as a refrigerant gas, for example, flows from an external fluid source through the suction port 78 into the suction chamber 74 of the compressor 10 .
  • a first portion of the fluid in the suction chamber 74 flows through the aperture 72 formed in the annular hub 67 into the first cavity 66 .
  • the first portion of the fluid then flows from the first cavity 66 into and through the bore 71 of the driveshaft 60 into the second cavity 73 .
  • a second portion of the fluid in the suction chamber 74 flows through the aperture 72 formed in the annular hub 67 into the first cavity 66 .
  • the second portion of the fluid flows through the bearing 70 and the stator 82 , and through the aperture 84 of the closed end 83 of the rotor 80 . After flowing through the aperture 84 , the second portion of the fluid then flows through the bearing 63 and into the second cavity 73 .
  • a third portion of the fluid in the suction chamber 74 flows around an outside of the electric motor 16 through the bearing 63 and into the second cavity 73 . All portions of the fluid in the second cavity 73 then flow through the rotation preventing mechanism 161 via the central opening 105 of the ring-shaped member 104 , and into the outer sealed fluid pockets 43 of the compression mechanism 14 .
  • the fluid undergoes a resultant volume reduction and compression, and is caused to flow towards the central fluid pocket 56 .
  • the compressed fluid is discharged through the outlet port 54 into the discharge chamber 52 .
  • the fluid then flows from the discharge chamber 52 through the discharge port to an external component.
  • FIG. 5 shows a motor driven fluid compressor 110 according to an embodiment of the invention.
  • the motor driven compressor 110 can be any type of motor driven compressor as desired such as a motor driven scroll type fluid compressor, for example.
  • the compressor 110 includes a compressor housing 112 having a compression mechanism 114 and an electric motor 116 disposed therein.
  • the compression mechanism 114 can be any compression mechanism as desired such as a scroll type fluid compression mechanism, for example.
  • the compressor housing 112 comprises a cylindrical portion 120 , a first end portion 122 , and second end portion 124 .
  • An open side 126 of the first end portion 122 is releaseably and hermetically connected to a first open side 128 of the cylindrical portion 120 .
  • An open side 132 of the second end portion 124 is releaseably and hermetically connected to a second open side 134 of the cylindrical portion 120 .
  • the cylindrical portion 120 and the end portions 122 , 124 can be connected by any means as desired such as adhesives, pins, clips, and the like, for example.
  • a terminal 138 for controlling and providing electrical communication to the electric motor 116 is disposed in the second end portion 124 of the compressor housing 112 .
  • the terminal 138 is in electrical communication with an external electric power source (not shown).
  • the compression mechanism 114 includes a fixed scroll 140 and a moveable scroll 142 .
  • the fixed scroll 140 includes a spiral element 146 extending laterally outwardly therefrom.
  • the moveable scroll 142 includes an end plate 148 and a spiral element 150 extending laterally outwardly from the end plate 148 .
  • the spiral element 146 of the fixed scroll 140 cooperates with the spiral element 150 of moveable scroll 142 , which is angularly and radially offset therefrom, to form a plurality of sealed fluid pockets 143 .
  • the fixed scroll 140 and the first end portion 122 of the compressor housing 112 define a discharge chamber 152 therebetween.
  • a valved outlet port (not shown) axially formed through the fixed scroll 140 fluidly connects the discharge chamber 152 to a central fluid pocket (not shown) defined by the scrolls 140 , 142 .
  • a discharge port (not shown) is formed in the first end portion 122 of the compressor housing 112 .
  • the discharge port fluidly connects the discharge chamber 152 to an inlet of another component (not shown) such as a condenser of a heating, ventilating, and air conditioning system, for example.
  • the moveable scroll 142 is mechanically coupled to the electric motor 116 by a rotatable driveshaft 160 .
  • a rotation preventing mechanism 161 is disposed between the cylindrical portion 120 of the compressor housing 112 and a face of the end plate 148 of the moveable scroll 142 opposite the spiral element 150 .
  • the rotation preventing mechanism 161 includes a ring-shaped member 204 having a central opening 205 formed therein and a plurality of bearing members 206 .
  • the moveable scroll 142 is caused to revolve.
  • the bearing members 206 cooperate with the ring-shaped member 204 to militate against a rotational movement of the moveable scroll 142 and facilitate an orbital movement thereof.
  • a first end 162 of the driveshaft 160 is supported by a bearing 163 seated adjacent an annular shoulder 164 formed in an inner surface of the cylindrical portion 120 of the compressor housing 112 .
  • a second end 165 of the driveshaft 160 is disposed in a first cavity 166 formed by an annular hub 167 .
  • the annular hub 167 extends laterally outwardly from an end wall 168 of the second end portion 124 of the compressor housing 112 .
  • the annular hub 167 includes an inner annular shoulder 169 formed therein.
  • a bearing 170 seated adjacent the inner annular shoulder 169 of the annular hub 167 supports the driveshaft 160 in the first cavity 166 .
  • the driveshaft 160 includes an axial bore 171 extending therethrough.
  • the axial bore 171 fluidly connects a second cavity 173 formed in the cylindrical portion 120 to the first cavity 166 .
  • An aperture 172 formed in the annular hub 167 fluidly connects the first cavity 166 to a suction chamber 174 .
  • the suction chamber 174 shown is formed by the end wall 168 and an outer peripheral wall 176 of the second end portion 124 of the compressor housing 112 .
  • a suction port 178 is formed in the outer peripheral wall 176 of the second end portion 124 of the compressor housing 112 .
  • the suction port 178 fluidly connects the suction chamber 174 to an outlet of another component (not shown) such as an evaporator of a heating, ventilating, and air conditioning system, for example.
  • the electric motor 116 includes a rotor 180 and a stator 182 .
  • the rotor 180 is generally annular shaped circumscribing and drivingly connected to the driveshaft 160 .
  • the rotor 180 is received in a central passage of the annular-shaped stator 182 , wherein the stator 182 surrounds an outer peripheral surface of the rotor 180 .
  • An air gap 188 is formed between the rotor 180 and the stator 182 to permit rotational movement of the rotor 180 within the central passage of the stator 182 .
  • Windings 189 of the stator 182 are in electrical communication with the terminal 138 via a wiring harness (not shown) extending outwardly from a coil end of the stator 182 .
  • the stator 182 is removeably positioned between a shoulder 190 formed in an inner peripheral surface 192 of the second end portion 124 of the compressor housing 112 and an annular shoulder 194 formed in the open side 134 of the cylindrical portion 120 of the compressor housing 112 .
  • an outer surface 196 of the stator 182 and the inner peripheral surface 192 of the second end portion 124 are spaced apart forming an annular interstice 198 therebetween.
  • a retainer 200 is removeably disposed in the interstice 198 to maintain an axial position and a radial position of the stator 182 .
  • the retainer 200 may be disposed adjacent the shoulder 190 formed in the inner peripheral surface 192 of the second end portion 124 of the compressor housing 112 and the annular shoulder 194 formed in the open side 134 of the cylindrical portion 120 of the compressor housing 112 to maintain an axial position thereof.
  • the retainer 200 is a thin elastic strip or annular band 201 having an array of spaced apart retaining features 202 extending radially outwardly therefrom.
  • the retaining features 202 can be detents, waves, corrugations, or protuberances formed therein. It is further understood that the retaining features 202 can be formed to face inwardly or outwardly to accommodate different physical properties of the stator 182 , the compressor housing 112 , and the retainer 200 .
  • the retaining features 202 exert a holding force on the stator 182 and the compressor housing 112 , while facilitating an ease of assembly therebetween.
  • the holding force of the retainer 200 results from a force produced by the retaining features 202 being elastically deflected during the assembly of the retainer 200 between the stator 182 and the compressor housing 112 .
  • a holding capability of the retainer 200 is determined by the retaining features 202 and a coefficient of friction between the retainer 200 and the stator 182 , and the compressor housing 112 .
  • the holding capability of the retainer 200 can be varied by adjusting a thickness of the strip 201 , a pitch of the retaining features 202 , a height of the retaining features 202 , and a number of the retaining features 202 , for example.
  • the retainer 200 can be produced from any suitable material such as a metallic material, a non-metallic material, an elastomeric material, or any combination thereof, for example. It is understood that the retainer 200 can be produced from any suitable material such as a metallic material, a non-metallic material, an elastomeric material, or any combination, for example.
  • the retainer 200 is configured to maintain the axial and radial position of the stator 182 within the compressor housing 112 without requiring additional assembly means or processes such as fasteners, a press-fitting process, a compression of the compressor housing 112 process, and the like, for example.
  • the retainer 200 is also configured to permit the electric motor 116 to be easily installed in the compressor housing 112 , removed from the compressor housing 112 , or replaced by another electric motor.
  • the retainer 200 can be any retainer as desired such as a bushing, a sleeve, and the like, for example. It is understood that the retainer 200 can be integrally formed with the second end portion 124 of the compressor housing 112 if desired.
  • the retainer 200 can be tuned to dampen noise and vibration frequencies produced by the electric motor 116 .
  • the retainer 200 shown is tuned by modifying physical properties of the retainer 200 such as a material composition, a thickness, a width, and a shape and configuration thereof, for example.
  • a fluid such as a refrigerant gas, for example, flows from an external fluid source through the suction port 178 into the suction chamber 174 of the compressor 110 .
  • a first portion of the fluid flows through the aperture 172 formed in the annular hub 167 into the first cavity 166 .
  • the first portion of the fluid then flows from the first cavity 166 into and through the bore 171 of the driveshaft 160 into the second cavity 173 .
  • a second portion of the fluid in the suction chamber 174 flows through the central passage of the stator 182 and around the rotor 180 of the electric motor 116 .
  • the second portion of the fluid in the central passage of the stator 182 then flows through the bearing 163 and into the second cavity 173 .
  • Both of the portions of the fluid in the second cavity 173 then flow through the rotation preventing mechanism 161 via the central opening 205 of the ring-shaped member 204 , and into the outer sealed fluid pockets 143 of the compression mechanism 114 . Once in the sealed fluid pockets 143 , the fluid undergoes a resultant volume reduction and compression, and is caused to flow towards the central fluid pocket. Finally, the compressed fluid is discharged through the outlet port into the discharge chamber 152 . The fluid then flows from the discharge chamber 152 through the discharge port to an external component.

Abstract

A compressor including a hollow housing having a compression mechanism and an electric motor disposed therein. The electric motor is coupled to the compression mechanism for facilitating a compression of a fluid received in the compressor. The electric motor including a rotor and a stator, wherein a position of the stator within the housing is maintained by a retainer removeably disposed between the stator and the housing.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a compressor. More particularly, the invention is directed to a compressor including an electric motor and a retainer for maintaining a position of a stator of the electric motor.
  • BACKGROUND OF THE INVENTION
  • Presently known hybrid vehicles utilize a combination of an electric drive motor and an internal combustion engine to power and propel the vehicle. Typically, the hybrid vehicles use an electric air conditioning compressor including a compression mechanism such as a scroll compression mechanism, for example, driven by an electric motor. The electric motor and the compression mechanism are mounted within a housing of the compressor. Packaging of the electric motor and the compression mechanism within the housing requires satisfying numerous design constraints such as weight, size, noise and vibration control, manufacturability, serviceability, and electric isolation. Current electric compressor designs satisfy only a few of the constraints.
  • The electric motor typically includes two primary components: a stator and a rotor. The stator is typically retained in the housing of the compressor by press-fitting the stator in the housing, attaching the stator to the housing fasteners, or capturing the stator by compressing the housing after installing the stator within the housing. The interface between the housing and the stator requires an accurate angular and axial positioning of the stator, a retention of the stator at low and high temperatures, a minimum stress on laminations of the stator, and an ease of assembly and serviceability.
  • It would be desirable to develop an electric compressor including a retainer for maintaining a position of a stator of the electric motor which facilitates a satisfaction of the design constraints of the packaging of the compressor and the requirements of the interface between the housing and the stator.
  • SUMMARY OF THE INVENTION
  • In concordance and agreement with the present invention, an electric compressor including a retainer for maintaining a position of a stator of the electric motor which facilitates a satisfaction of the design constraints of the packaging of the compressor and the requirements of the interface between the housing and the stator, has surprisingly been discovered.
  • In one embodiment, the compressor comprises: a hollow housing; a compression mechanism disposed in the housing, the compression mechanism receiving a fluid therein to be compressed; an electric motor removably disposed in the housing, the electric motor including a stator and a rotor coupled to the compression mechanism for facilitating a movement of the compression mechanism, wherein the movement of the compression mechanism causes a compression of the fluid therein; and a retainer removably disposed between the stator and the housing, the retainer configured to maintain a position of the stator within the housing and to dampen a noise and a vibration produced by the electric motor.
  • In another embodiment, the compressor comprises: a hollow housing; a compression mechanism disposed in the housing, the compression mechanism receiving a fluid therein to be compressed; an electric motor removably disposed in the housing, the electric motor including a stator surrounding a rotor, the rotor coupled to the compression mechanism for facilitating a movement of the compression mechanism, wherein the movement of the compression mechanism causes a compression of the fluid therein; and an elastic retainer removably disposed between the stator and the housing, the retainer configured to maintain a position of the stator within the housing and to dampen a noise and a vibration produced by the electric motor.
  • In another embodiment, the compressor comprises: a hollow housing; a compression mechanism disposed in the housing, the compression mechanism receiving a fluid therein to be compressed; an electric motor removably disposed in the housing, the electric motor including a rotor surrounding a stator, the rotor coupled to the compression mechanism for facilitating a movement of the compression mechanism, wherein the movement of the compression mechanism causes a compression of the fluid therein; and a retainer disposed between the stator and the housing, the retainer configured to maintain a position of the stator within the housing and to dampen a noise and a vibration produced by the electric motor.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above, as well as other advantages of the present invention, will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiment when considered in the light of the accompanying drawings in which:
  • FIG. 1 is a cross-sectional view of an electric compressor according to an embodiment of the present invention;
  • FIG. 2 is an enlarged fragmentary side perspective view, partially in section, of the compressor illustrated in FIG. 1 having a driveshaft of the compressor and a rotor of an electric motor removed;
  • FIG. 3 is an enlarged fragmentary perspective view, partially in section, of a portion of the compressor within the circled area of FIG. 2;
  • FIG. 4 is a partially exploded fragmentary side perspective view of the compressor illustrated in FIG. 1 having the driveshaft of the compressor and the rotor of the electric motor removed;
  • FIG. 5 is a cross-sectional view of an electric compressor according to another embodiment of the present invention;
  • FIG. 6 is an enlarged fragmentary side perspective view, partially in section, of the compressor illustrated in FIG. 5 having a driveshaft of the compressor and a rotor of an electric motor removed;
  • FIG. 7 is an enlarged fragmentary perspective view, partially in section, of a portion of the compressor within the circled area of FIG. 6; and
  • FIG. 8 is a partially exploded fragmentary side perspective view of the compressor illustrated in FIG. 5 having the driveshaft of the compressor and the rotor of the electric motor removed.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following detailed description and appended drawings describe and illustrate an exemplary embodiment of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner.
  • FIG. 1 shows a motor driven fluid compressor 10 according to an embodiment of the invention. It is understood that the motor driven compressor 10 can be any type of motor driven compressor as desired such as a motor driven scroll type fluid compressor, for example. The compressor 10 includes a compressor housing 12 having a compression mechanism 14, an electric motor 16, and an electric circuit 18 for controlling the electric motor 16 disposed therein. It is understood that the compression mechanism 14 can be any compression mechanism as desired such as a scroll type fluid compression mechanism, for example.
  • The compressor housing 12 comprises cylindrical portions 20 a, 20 b, 20 c, a first end portion 22, and second end portion 24. An open side 26 of the first end portion 22 is releaseably and hermetically connected to an open side 28 of the cylindrical portion 20 c. An open side 32 of the second end portion 24 is releaseably and hermetically connected to an open side 34 of cylindrical portion 20 a. It is understood that the cylindrical portions 20 a, 20 b, 20 c and the end portions 22, 24 can be connected by any means as desired such as adhesives, pins, clips, and the like, for example. A cavity 36 formed by the connected portions 24, 20 a of the compressor housing 12 houses the electric circuit 18 therein. The electric circuit 18 is electrically connected with an external electric power source (not shown) via a terminal 38 disposed on the compressor housing 12.
  • In the embodiment shown, the compression mechanism 14 includes a fixed scroll 40 and a moveable scroll 42. The fixed scroll 40 includes an end plate 44 and a spiral element 46 extending laterally outwardly from the end plate 44. The moveable scroll 42 includes an end plate 48 and a spiral element 50 extending laterally outwardly from the end plate 48. The spiral element 46 of the fixed scroll 40 cooperates with the spiral element 50 of moveable scroll 42, which is angularly and radially offset therefrom, to form a plurality of sealed fluid pockets 43.
  • The end plate 44 of the fixed scroll 40 and the first end portion 22 of the compressor housing 12 define a discharge chamber 52 therebetween. A valved outlet port 54 axially formed through the end plate 44 of the fixed scroll 40 fluidly connects the discharge chamber 52 to a central fluid pocket 56 defined by the scrolls 40, 42. A discharge port (not shown) is formed in the first end portion 22 of the compressor housing 12. The discharge port fluidly connects the discharge chamber 52 to an inlet of another component (not shown) such as a condenser of a heating, ventilating, and air conditioning system, for example.
  • As illustrated, the moveable scroll 42 is mechanically coupled to the electric motor 16 by a rotatable driveshaft 60. A rotation preventing mechanism 61 is disposed between the cylindrical portion 20 b of the compressor housing 12 and a face of the end plate 48 of the moveable scroll 42 opposite the spiral element 50. The rotation preventing mechanism 62 includes a ring-shaped member 104 having a central opening 105 formed therein and a plurality of bearing members 106. During a rotational movement of the driveshaft 60, the moveable scroll 42 is caused to revolve. As the moveable scroll 42 revolves, the bearing members 106 cooperate with the ring-shaped member 104 to militate against a rotational movement of the moveable scroll 42 and facilitate an orbital movement thereof.
  • A first end 62 of the driveshaft 60 is supported by a bearing 63 seated adjacent an annular shoulder 64 formed in an inner surface of the cylindrical portion 20 b of the compressor housing 12. A second end 65 of the driveshaft 60 is disposed in a first cavity 66 formed by an annular hub 67. The annular hub 67 extends laterally outwardly from an interior wall 68 of the cylindrical portion 20 a of the compressor housing 12. An end portion 96 of the annular hub 67 includes an inner annular shoulder 69 and an outer annular shoulder 97 formed therein. A bearing 70 for supporting the driveshaft 60 in the first cavity 66 is seated adjacent the inner annular shoulder 69 of the end portion 96 of the annular hub 67.
  • The driveshaft 60 includes an axial bore 71 extending therethrough. The axial bore 71 fluidly connects a second cavity 73 formed in the compressor housing 12 to the first cavity 66. An aperture 72 formed in the annular hub 67 fluidly connects the first cavity 66 to a suction chamber 74. The suction chamber 74 shown is formed by the interior wall 68 and an outer peripheral wall 76 of the cylindrical portion 20 a of the compressor housing 12. A suction port 78 is formed in the outer peripheral wall 76 of the cylindrical portion 20 a of the compressor housing 12. The suction port 76 fluidly connects the suction chamber 74 to an outlet of another component (not shown) such as an evaporator of a heating, ventilating, and air conditioning system, for example.
  • The electric motor 16 includes a rotor 80 and a stator 82. In the embodiment shown, the rotor 80 is generally campanular shaped having a substantially closed end 83 and a substantially open end 85. The closed end 83 includes an aperture 84 formed therein and a neck portion 87 circumscribing and drivingly connected to the driveshaft 60. The open end 85 of the rotor 80 receives the stator 82 therein, wherein an outer peripheral surface 86 of the stator 82 is surrounded by the rotor 80. An air gap 88 is formed between the rotor 80 and the outer peripheral surface 86 of the stator 82 to permit rotational movement of the rotor 80 around the stator 82. Windings 89 of the stator 82 are in electrical communication with the electric circuit 18 via a wiring harness (not shown) extending outwardly from a coil end of the stator 82 adjacent the open end 85 of the rotor 80.
  • The stator 82 is removeably positioned on the annular hub 67 of the cylindrical portion 20 a of the compressor housing 12. As illustrated in FIGS. 2-3, an inner surface 90 of the stator 82 abuts an outer surface of an intermediate portion 94 of the annular hub 67. The inner surface 90 of the stator 82 and the outer annular shoulder 97 of the end portion 96 of the annular hub 67 are spaced apart forming an annular interstice 98 therebetween. A retainer 100 is removeably disposed in the interstice 98 to maintain an axial position and a radial position of the stator 82. As shown in FIG. 4, the retainer 100 is a thin elastic strip or annular band 101 having an array of spaced apart retaining features 102 extending radially outwardly therefrom. It is understood that the retaining features 102 can be detents, waves, corrugations, or protuberances formed therein. It is further understood that the retaining features 102 can be formed to face inwardly or outwardly to accommodate different physical properties of the stator 82, the compressor housing 12, and the retainer 100. The retaining features 102 exert a holding force on the stator 82 and the compressor housing 12, while facilitating an ease of assembly therebetween. The holding force of the retainer 100 results from a force produced by the retaining features 102 being elastically deflected during the assembly of the retainer 100 between the stator 82 and the compressor housing 12. A holding capability of the retainer 100 is determined by the retaining features 102 and a coefficient of friction between the retainer 100 and the stator 82, and the compressor housing 12. The holding capability of the retainer 100 can be varied by adjusting a thickness of the strip 101, a pitch of the retaining features 102, a height of the retaining features 102, and a number of the retaining features 102, for example. It is understood that the retainer 100 can be produced from any suitable material such as a metallic material, a non-metallic material, an elastomeric material, or any combination thereof, for example.
  • The retainer 100 is configured to maintain the axial and radial position of the stator 82 within the compressor housing 12 without requiring additional assembly means or processes such as fasteners, a press-fitting process, a compression of the compressor housing 12 process, and the like, for example. The retainer 100 is also configured to permit the electric motor 16 to be easily installed in the compressor housing 12, removed from the compressor housing 12, or replaced by another electric motor. The retainer 100 can be any retainer as desired such as a tolerance ring, a bushing, a sleeve, and the like, for example. It is understood that the retainer 100 can be integrally formed with the annular hub 67 of the compressor housing 12 if desired. The retainer 100 can be tuned to dampen noise and vibration frequencies produced by the electric motor 16. The retainer 100 shown is tuned by modifying physical properties of the retainer 100 such as a material composition, a thickness, a width, and a shape and configuration thereof, for example. It is understood that the annular hub 67 can also be tuned to dampen noise and vibration frequencies of the electric motor 16 such as by modifying physical properties of the annular hub 67 such as a diameter thereof, for example.
  • During operation of the compressor 10, a fluid such as a refrigerant gas, for example, flows from an external fluid source through the suction port 78 into the suction chamber 74 of the compressor 10. A first portion of the fluid in the suction chamber 74 flows through the aperture 72 formed in the annular hub 67 into the first cavity 66. The first portion of the fluid then flows from the first cavity 66 into and through the bore 71 of the driveshaft 60 into the second cavity 73. A second portion of the fluid in the suction chamber 74 flows through the aperture 72 formed in the annular hub 67 into the first cavity 66. From the first cavity 66, the second portion of the fluid flows through the bearing 70 and the stator 82, and through the aperture 84 of the closed end 83 of the rotor 80. After flowing through the aperture 84, the second portion of the fluid then flows through the bearing 63 and into the second cavity 73. A third portion of the fluid in the suction chamber 74 flows around an outside of the electric motor 16 through the bearing 63 and into the second cavity 73. All portions of the fluid in the second cavity 73 then flow through the rotation preventing mechanism 161 via the central opening 105 of the ring-shaped member 104, and into the outer sealed fluid pockets 43 of the compression mechanism 14. Once in the sealed fluid pockets 43, the fluid undergoes a resultant volume reduction and compression, and is caused to flow towards the central fluid pocket 56. Finally, the compressed fluid is discharged through the outlet port 54 into the discharge chamber 52. The fluid then flows from the discharge chamber 52 through the discharge port to an external component.
  • FIG. 5 shows a motor driven fluid compressor 110 according to an embodiment of the invention. It is understood that the motor driven compressor 110 can be any type of motor driven compressor as desired such as a motor driven scroll type fluid compressor, for example. The compressor 110 includes a compressor housing 112 having a compression mechanism 114 and an electric motor 116 disposed therein. It is understood that the compression mechanism 114 can be any compression mechanism as desired such as a scroll type fluid compression mechanism, for example.
  • The compressor housing 112 comprises a cylindrical portion 120, a first end portion 122, and second end portion 124. An open side 126 of the first end portion 122 is releaseably and hermetically connected to a first open side 128 of the cylindrical portion 120. An open side 132 of the second end portion 124 is releaseably and hermetically connected to a second open side 134 of the cylindrical portion 120. It is understood that the cylindrical portion 120 and the end portions 122, 124 can be connected by any means as desired such as adhesives, pins, clips, and the like, for example. A terminal 138 for controlling and providing electrical communication to the electric motor 116 is disposed in the second end portion 124 of the compressor housing 112. The terminal 138 is in electrical communication with an external electric power source (not shown).
  • In the embodiment shown, the compression mechanism 114 includes a fixed scroll 140 and a moveable scroll 142. The fixed scroll 140 includes a spiral element 146 extending laterally outwardly therefrom. The moveable scroll 142 includes an end plate 148 and a spiral element 150 extending laterally outwardly from the end plate 148. The spiral element 146 of the fixed scroll 140 cooperates with the spiral element 150 of moveable scroll 142, which is angularly and radially offset therefrom, to form a plurality of sealed fluid pockets 143.
  • The fixed scroll 140 and the first end portion 122 of the compressor housing 112 define a discharge chamber 152 therebetween. A valved outlet port (not shown) axially formed through the fixed scroll 140 fluidly connects the discharge chamber 152 to a central fluid pocket (not shown) defined by the scrolls 140, 142. A discharge port (not shown) is formed in the first end portion 122 of the compressor housing 112. The discharge port fluidly connects the discharge chamber 152 to an inlet of another component (not shown) such as a condenser of a heating, ventilating, and air conditioning system, for example.
  • As illustrated, the moveable scroll 142 is mechanically coupled to the electric motor 116 by a rotatable driveshaft 160. A rotation preventing mechanism 161 is disposed between the cylindrical portion 120 of the compressor housing 112 and a face of the end plate 148 of the moveable scroll 142 opposite the spiral element 150. The rotation preventing mechanism 161 includes a ring-shaped member 204 having a central opening 205 formed therein and a plurality of bearing members 206. During a rotational movement of the driveshaft 160, the moveable scroll 142 is caused to revolve. As the moveable scroll 142 revolves, the bearing members 206 cooperate with the ring-shaped member 204 to militate against a rotational movement of the moveable scroll 142 and facilitate an orbital movement thereof.
  • A first end 162 of the driveshaft 160 is supported by a bearing 163 seated adjacent an annular shoulder 164 formed in an inner surface of the cylindrical portion 120 of the compressor housing 112. A second end 165 of the driveshaft 160 is disposed in a first cavity 166 formed by an annular hub 167. The annular hub 167 extends laterally outwardly from an end wall 168 of the second end portion 124 of the compressor housing 112. The annular hub 167 includes an inner annular shoulder 169 formed therein. A bearing 170 seated adjacent the inner annular shoulder 169 of the annular hub 167 supports the driveshaft 160 in the first cavity 166.
  • The driveshaft 160 includes an axial bore 171 extending therethrough. The axial bore 171 fluidly connects a second cavity 173 formed in the cylindrical portion 120 to the first cavity 166. An aperture 172 formed in the annular hub 167 fluidly connects the first cavity 166 to a suction chamber 174. The suction chamber 174 shown is formed by the end wall 168 and an outer peripheral wall 176 of the second end portion 124 of the compressor housing 112. A suction port 178 is formed in the outer peripheral wall 176 of the second end portion 124 of the compressor housing 112. The suction port 178 fluidly connects the suction chamber 174 to an outlet of another component (not shown) such as an evaporator of a heating, ventilating, and air conditioning system, for example.
  • The electric motor 116 includes a rotor 180 and a stator 182. In the embodiment shown, the rotor 180 is generally annular shaped circumscribing and drivingly connected to the driveshaft 160. The rotor 180 is received in a central passage of the annular-shaped stator 182, wherein the stator 182 surrounds an outer peripheral surface of the rotor 180. An air gap 188 is formed between the rotor 180 and the stator 182 to permit rotational movement of the rotor 180 within the central passage of the stator 182. Windings 189 of the stator 182 are in electrical communication with the terminal 138 via a wiring harness (not shown) extending outwardly from a coil end of the stator 182.
  • The stator 182 is removeably positioned between a shoulder 190 formed in an inner peripheral surface 192 of the second end portion 124 of the compressor housing 112 and an annular shoulder 194 formed in the open side 134 of the cylindrical portion 120 of the compressor housing 112. As illustrated in FIGS. 6-7, an outer surface 196 of the stator 182 and the inner peripheral surface 192 of the second end portion 124 are spaced apart forming an annular interstice 198 therebetween. A retainer 200 is removeably disposed in the interstice 198 to maintain an axial position and a radial position of the stator 182. The retainer 200 may be disposed adjacent the shoulder 190 formed in the inner peripheral surface 192 of the second end portion 124 of the compressor housing 112 and the annular shoulder 194 formed in the open side 134 of the cylindrical portion 120 of the compressor housing 112 to maintain an axial position thereof.
  • As shown in FIG. 8, the retainer 200 is a thin elastic strip or annular band 201 having an array of spaced apart retaining features 202 extending radially outwardly therefrom. It is understood that the retaining features 202 can be detents, waves, corrugations, or protuberances formed therein. It is further understood that the retaining features 202 can be formed to face inwardly or outwardly to accommodate different physical properties of the stator 182, the compressor housing 112, and the retainer 200. The retaining features 202 exert a holding force on the stator 182 and the compressor housing 112, while facilitating an ease of assembly therebetween. The holding force of the retainer 200 results from a force produced by the retaining features 202 being elastically deflected during the assembly of the retainer 200 between the stator 182 and the compressor housing 112. A holding capability of the retainer 200 is determined by the retaining features 202 and a coefficient of friction between the retainer 200 and the stator 182, and the compressor housing 112. The holding capability of the retainer 200 can be varied by adjusting a thickness of the strip 201, a pitch of the retaining features 202, a height of the retaining features 202, and a number of the retaining features 202, for example. It is understood that the retainer 200 can be produced from any suitable material such as a metallic material, a non-metallic material, an elastomeric material, or any combination thereof, for example. It is understood that the retainer 200 can be produced from any suitable material such as a metallic material, a non-metallic material, an elastomeric material, or any combination, for example.
  • The retainer 200 is configured to maintain the axial and radial position of the stator 182 within the compressor housing 112 without requiring additional assembly means or processes such as fasteners, a press-fitting process, a compression of the compressor housing 112 process, and the like, for example. The retainer 200 is also configured to permit the electric motor 116 to be easily installed in the compressor housing 112, removed from the compressor housing 112, or replaced by another electric motor. The retainer 200 can be any retainer as desired such as a bushing, a sleeve, and the like, for example. It is understood that the retainer 200 can be integrally formed with the second end portion 124 of the compressor housing 112 if desired. The retainer 200 can be tuned to dampen noise and vibration frequencies produced by the electric motor 116. The retainer 200 shown is tuned by modifying physical properties of the retainer 200 such as a material composition, a thickness, a width, and a shape and configuration thereof, for example.
  • During operation of the compressor 100, a fluid such as a refrigerant gas, for example, flows from an external fluid source through the suction port 178 into the suction chamber 174 of the compressor 110. A first portion of the fluid flows through the aperture 172 formed in the annular hub 167 into the first cavity 166. The first portion of the fluid then flows from the first cavity 166 into and through the bore 171 of the driveshaft 160 into the second cavity 173. A second portion of the fluid in the suction chamber 174 flows through the central passage of the stator 182 and around the rotor 180 of the electric motor 116. The second portion of the fluid in the central passage of the stator 182 then flows through the bearing 163 and into the second cavity 173. Both of the portions of the fluid in the second cavity 173 then flow through the rotation preventing mechanism 161 via the central opening 205 of the ring-shaped member 204, and into the outer sealed fluid pockets 143 of the compression mechanism 114. Once in the sealed fluid pockets 143, the fluid undergoes a resultant volume reduction and compression, and is caused to flow towards the central fluid pocket. Finally, the compressed fluid is discharged through the outlet port into the discharge chamber 152. The fluid then flows from the discharge chamber 152 through the discharge port to an external component.
  • From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, make various changes and modifications to the invention to adapt it to various usages and conditions.

Claims (20)

1. A compressor comprising:
a hollow housing;
a compression mechanism disposed in the housing, the compression mechanism receiving a fluid therein to be compressed;
an electric motor removeably disposed in the housing, the electric motor including a stator and a rotor coupled to the compression mechanism for facilitating a movement of the compression mechanism, wherein the movement of the compression mechanism causes a compression of the fluid therein; and
a retainer removably disposed between the stator and the housing, the retainer configured to maintain a position of the stator within the housing and to dampen a noise and a vibration produced by the electric motor.
2. The compressor according to claim 1, wherein the rotor surrounds the stator.
3. The compressor according to claim 1, wherein the stator surrounds the rotor.
4. The compressor according to claim 1, wherein the housing includes a wall having an annular hub extending outwardly therefrom, the annular hub configured to receive the retainer thereon.
5. The compressor according to claim 4, wherein the retainer is disposed in an interstice formed between the stator and the annular hub of the housing.
6. The compressor according to claim 1, wherein the retainer is disposed adjacent at least one annular shoulder formed in the housing to maintain an axial position thereof.
7. The compressor according to claim 1, wherein the retainer is a strip of material having retaining features formed therein.
8. The compressor according to claim 1, wherein the retainer is tuned to dampen the noise and the vibration produced by the electric motor by adjusting a physical property of the retainer.
9. The compressor according to claim 4, wherein the annular hub is tuned to dampen the noise and the vibration produced by the electric motor by adjusting a physical property of the annular hub of the housing.
10. A compressor comprising:
a hollow housing;
a compression mechanism disposed in the housing, the compression mechanism receiving a fluid therein to be compressed;
an electric motor removably disposed in the housing, the electric motor including a stator surrounding a rotor, the rotor coupled to the compression mechanism for facilitating a movement of the compression mechanism, wherein the movement of the compression mechanism causes a compression of the fluid therein; and
an elastic retainer removably disposed between the stator and the housing, the retainer configured to maintain a position of the stator within the housing and to dampen a noise and a vibration produced by the electric motor.
11. The compressor according to claim 10, wherein the retainer is disposed adjacent at least one annular shoulder formed in a wall of the housing to maintain an axial position thereof.
12. The compressor according to claim 10, wherein the retainer is an annular strip of material having retaining features formed therein.
13. The compressor according to claim 10, wherein the retainer is tuned to dampen the noise and the vibration produced by the electric motor by adjusting a physical property of the retainer.
14. A compressor comprising:
a hollow housing;
a compression mechanism disposed in the housing, the compression mechanism receiving a fluid therein to be compressed;
an electric motor removably disposed in the housing, the electric motor including a rotor surrounding a stator, the rotor coupled to the compression mechanism for facilitating a movement of the compression mechanism, wherein the movement of the compression mechanism causes a compression of the fluid therein; and
a retainer disposed between the stator and the housing, the retainer configured to maintain a position of the stator within the housing and to dampen a noise and a vibration produced by the electric motor.
15. The compressor according to claim 14, wherein the retainer is disposed in an interstice formed between the stator and an annular hub formed in a wall of the housing.
16. The compressor according to claim 14, wherein the retainer is removably disposed between the stator and the housing.
17. The compressor according to claim 14, wherein the retainer is integrally formed with the housing.
18. The compressor according to claim 14, wherein the retainer is a strip of material having retaining features formed therein.
19. The compressor according to claim 14, wherein the retainer is tuned to dampen the noise and the vibration produced by the electric motor by adjusting a physical property of the retainer.
20. The compressor according to claim 15, wherein the annular hub is tuned to dampen the noise and the vibration produced by the electric motor by adjusting a physical property of the annular hub of the housing.
US13/005,762 2011-01-13 2011-01-13 Retainer for a stator of an electric compressor Abandoned US20120183422A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/005,762 US20120183422A1 (en) 2011-01-13 2011-01-13 Retainer for a stator of an electric compressor
DE102012100196A DE102012100196A1 (en) 2011-01-13 2012-01-11 RETAINER FOR A STATOR OF AN ELECTRIC COMPRESSOR
JP2012003758A JP5542161B2 (en) 2011-01-13 2012-01-12 Retainer for stator of electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/005,762 US20120183422A1 (en) 2011-01-13 2011-01-13 Retainer for a stator of an electric compressor

Publications (1)

Publication Number Publication Date
US20120183422A1 true US20120183422A1 (en) 2012-07-19

Family

ID=46490902

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/005,762 Abandoned US20120183422A1 (en) 2011-01-13 2011-01-13 Retainer for a stator of an electric compressor

Country Status (3)

Country Link
US (1) US20120183422A1 (en)
JP (1) JP5542161B2 (en)
DE (1) DE102012100196A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150147205A1 (en) * 2013-11-28 2015-05-28 Kabushiki Kaisha Toyota Jidoshokki Electric compressor for vehicle air conditioner
US20160305431A1 (en) * 2013-12-01 2016-10-20 Aspen Compressor, Llc Compact low noise rotary compressor
GB2554665A (en) * 2016-09-30 2018-04-11 Valeo Air Man Uk Limited Damping vibrations of an electric supercharger
WO2019020730A1 (en) * 2017-07-27 2019-01-31 Valeo Equipements Electriques Moteur Rotary electric machine comprising an elastic member
US10323638B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10495086B2 (en) 2012-11-15 2019-12-03 Emerson Climate Technologies, Inc. Compressor valve system and assembly
WO2020025490A1 (en) 2018-08-03 2020-02-06 Ipetronik Gmbh & Co. Kg Coolant compressor
US10598180B2 (en) 2015-07-01 2020-03-24 Emerson Climate Technologies, Inc. Compressor with thermally-responsive injector
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
US10907633B2 (en) 2012-11-15 2021-02-02 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
US10954940B2 (en) 2009-04-07 2021-03-23 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US20210351659A1 (en) * 2017-02-03 2021-11-11 Shinano Kenshi Kabushiki Kaisha Motor and blower
CN113833633A (en) * 2020-06-24 2021-12-24 比泽尔制冷设备有限公司 Refrigerant compressor
CN113833626A (en) * 2020-06-24 2021-12-24 比泽尔制冷设备有限公司 Refrigerant compressor
US11614086B2 (en) 2016-12-30 2023-03-28 Aspen Compressor, Llc Flywheel assisted rotary compressors
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub
US11873865B2 (en) * 2018-07-17 2024-01-16 Saint-Gobain Performance Plastics Rencol Limited Tolerance ring and assembly
US11965507B1 (en) 2022-12-15 2024-04-23 Copeland Lp Compressor and valve assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017202262A1 (en) 2017-02-13 2018-08-16 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg electric motor
DE102020118191A1 (en) 2020-06-24 2021-12-30 Bitzer Kühlmaschinenbau Gmbh Refrigerant compressor

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071870A (en) * 1935-09-03 1937-02-23 Solar Ind Inc Motor compressor unit
US2291059A (en) * 1940-01-16 1942-07-28 Nineteen Hundred Corp Ironer construction
US2632861A (en) * 1951-03-16 1953-03-24 Gen Electric Frame structure for dynamo-electric machines
US2888193A (en) * 1957-02-14 1959-05-26 Garrett Corp Motor driven compressor
US3601507A (en) * 1969-08-27 1971-08-24 Rotron Inc Compact fluid compressor
US5798887A (en) * 1994-09-30 1998-08-25 Fujitsu Limited Apparatus for absorbing stator vibrations in computer storage apparatus
US5965966A (en) * 1998-02-12 1999-10-12 Seagate Technology, Inc. Stator grounding means based on radial interference
US6281607B1 (en) * 1999-04-06 2001-08-28 Trw Inc. Electric motor with vibration attenuation
US20010032764A1 (en) * 2000-02-28 2001-10-25 Tokai Rubber Industries, Ltd. Vibration-damping device for vehicles
US6517328B2 (en) * 2000-04-06 2003-02-11 Matsushita Electric Industrial Co., Ltd. Compressor and an electric motor with an insulative, non-conductive member inserted between the stator and the motor housing
US7485995B2 (en) * 2004-12-04 2009-02-03 Foxconn Technology Co., Ltd. Bearing support for use in a motor
US20090062020A1 (en) * 2007-08-30 2009-03-05 Edwards Stanley W Multi-ribbed keyless coupling
US20090295243A1 (en) * 2008-06-03 2009-12-03 Lawrence Leroy Kneisel Method for mounting an inner stator for a motor
US7658677B2 (en) * 2005-06-06 2010-02-09 Saint-Gobain Performance Plastics Rencol Limited Force limiting assembly
US20100084933A1 (en) * 2007-02-23 2010-04-08 Mitsubishi Heavy Industries, Ltd. Electric compressor
US8651053B2 (en) * 2012-01-31 2014-02-18 Wayland Reid Gravity fed automatic rotary vein dispenser

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198757A (en) * 1997-09-26 1999-04-09 Minebea Co Ltd Magnetic-disk drive motor
JP2009033860A (en) * 2007-07-26 2009-02-12 Asmo Co Ltd Rotary electric machine
JP2009153329A (en) * 2007-12-21 2009-07-09 Sony Corp Bearing holder of motor

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071870A (en) * 1935-09-03 1937-02-23 Solar Ind Inc Motor compressor unit
US2291059A (en) * 1940-01-16 1942-07-28 Nineteen Hundred Corp Ironer construction
US2632861A (en) * 1951-03-16 1953-03-24 Gen Electric Frame structure for dynamo-electric machines
US2888193A (en) * 1957-02-14 1959-05-26 Garrett Corp Motor driven compressor
US3601507A (en) * 1969-08-27 1971-08-24 Rotron Inc Compact fluid compressor
US5798887A (en) * 1994-09-30 1998-08-25 Fujitsu Limited Apparatus for absorbing stator vibrations in computer storage apparatus
US5965966A (en) * 1998-02-12 1999-10-12 Seagate Technology, Inc. Stator grounding means based on radial interference
US6281607B1 (en) * 1999-04-06 2001-08-28 Trw Inc. Electric motor with vibration attenuation
US20010032764A1 (en) * 2000-02-28 2001-10-25 Tokai Rubber Industries, Ltd. Vibration-damping device for vehicles
US6536566B2 (en) * 2000-02-28 2003-03-25 Tokai Rubber Industries, Ltd. Vibration-damping device for vehicles
US6517328B2 (en) * 2000-04-06 2003-02-11 Matsushita Electric Industrial Co., Ltd. Compressor and an electric motor with an insulative, non-conductive member inserted between the stator and the motor housing
US7485995B2 (en) * 2004-12-04 2009-02-03 Foxconn Technology Co., Ltd. Bearing support for use in a motor
US7658677B2 (en) * 2005-06-06 2010-02-09 Saint-Gobain Performance Plastics Rencol Limited Force limiting assembly
US20100084933A1 (en) * 2007-02-23 2010-04-08 Mitsubishi Heavy Industries, Ltd. Electric compressor
US20090062020A1 (en) * 2007-08-30 2009-03-05 Edwards Stanley W Multi-ribbed keyless coupling
US20090295243A1 (en) * 2008-06-03 2009-12-03 Lawrence Leroy Kneisel Method for mounting an inner stator for a motor
US8651053B2 (en) * 2012-01-31 2014-02-18 Wayland Reid Gravity fed automatic rotary vein dispenser

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11635078B2 (en) 2009-04-07 2023-04-25 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US10954940B2 (en) 2009-04-07 2021-03-23 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US10495086B2 (en) 2012-11-15 2019-12-03 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US11434910B2 (en) 2012-11-15 2022-09-06 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
US10907633B2 (en) 2012-11-15 2021-02-02 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
US20150147205A1 (en) * 2013-11-28 2015-05-28 Kabushiki Kaisha Toyota Jidoshokki Electric compressor for vehicle air conditioner
US10100640B2 (en) * 2013-11-28 2018-10-16 Kabushiki Kaisha Toyota Jidoshokki Electric compressor for vehicle air conditioner
US10670017B2 (en) * 2013-12-01 2020-06-02 Aspen Compressor, Llc Compact low noise rotary compressor
US20160305431A1 (en) * 2013-12-01 2016-10-20 Aspen Compressor, Llc Compact low noise rotary compressor
US20200300247A1 (en) * 2013-12-01 2020-09-24 Aspen Compressor, Llc Compact low noise rotary compressor
US10323639B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10323638B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10598180B2 (en) 2015-07-01 2020-03-24 Emerson Climate Technologies, Inc. Compressor with thermally-responsive injector
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
GB2554665A (en) * 2016-09-30 2018-04-11 Valeo Air Man Uk Limited Damping vibrations of an electric supercharger
US11614086B2 (en) 2016-12-30 2023-03-28 Aspen Compressor, Llc Flywheel assisted rotary compressors
US11699937B2 (en) * 2017-02-03 2023-07-11 Shinano Kenshi Kabushiki Kaisha Blower
US20210351659A1 (en) * 2017-02-03 2021-11-11 Shinano Kenshi Kabushiki Kaisha Motor and blower
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
CN110945750A (en) * 2017-07-27 2020-03-31 法雷奥电机设备公司 Rotating electrical machine comprising an elastic component
FR3069724A1 (en) * 2017-07-27 2019-02-01 Valeo Equipements Electriques Moteur ROTATING ELECTRIC MACHINE COMPRISING AN ELASTIC BODY
WO2019020730A1 (en) * 2017-07-27 2019-01-31 Valeo Equipements Electriques Moteur Rotary electric machine comprising an elastic member
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11754072B2 (en) 2018-05-17 2023-09-12 Copeland Lp Compressor having capacity modulation assembly
US11873865B2 (en) * 2018-07-17 2024-01-16 Saint-Gobain Performance Plastics Rencol Limited Tolerance ring and assembly
WO2020025490A1 (en) 2018-08-03 2020-02-06 Ipetronik Gmbh & Co. Kg Coolant compressor
US20210404457A1 (en) * 2020-06-24 2021-12-30 Bitzer Kuehlmaschinenbau Gmbh Refrigerant compresssor
CN113833626A (en) * 2020-06-24 2021-12-24 比泽尔制冷设备有限公司 Refrigerant compressor
CN113833633A (en) * 2020-06-24 2021-12-24 比泽尔制冷设备有限公司 Refrigerant compressor
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11879460B2 (en) 2021-07-29 2024-01-23 Copeland Lp Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub
US11965507B1 (en) 2022-12-15 2024-04-23 Copeland Lp Compressor and valve assembly

Also Published As

Publication number Publication date
JP5542161B2 (en) 2014-07-09
DE102012100196A1 (en) 2012-07-19
JP2012145113A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
US20120183422A1 (en) Retainer for a stator of an electric compressor
EP2864637B1 (en) Compressor baseplate with stiffening ribs for increased oil volume and rail mounting without spacers
EP1188928A1 (en) Scroll compressors
CN105317654A (en) Compressor and method for assembling a compressor
US10233927B2 (en) Scroll compressor counterweight with axially distributed mass
EP2864635B1 (en) Scroll compressor with slider block
US8920139B2 (en) Suction duct with stabilizing ribs
JP2017078356A (en) Centrifugal compressor
US9057270B2 (en) Compressor including suction baffle
US10396621B2 (en) Electric compressor
CN112443484B (en) Electric compressor
US20190301459A1 (en) Electric compressor
CN107690526B (en) Annular solder resist in discharge check valve
US8328534B2 (en) Deformed shell for holding motor stator in a compressor shell
CN108350879B (en) Oil return pipe with non-circular pipe
US11168688B2 (en) Scroll compressor
EP3015710A1 (en) Compressor
US11466695B2 (en) Motor assembly and method for manufacturing the same
EP3128150B1 (en) Electrically driven supercharger, and supercharging system
WO2016189973A1 (en) Electromagnetic clutch for gas compressor, and gas compressor
EP2221477A1 (en) Electric compressor terminal device
US10897172B2 (en) Stator for compressor motor
US10253773B2 (en) Attachment structure for compressor
US20240125324A1 (en) Scroll compressor
TWI769457B (en) Motor assembly and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: VISTEON GLOBAL TECHNOLOGIES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAHMATA, AURELIAN;REEL/FRAME:025885/0383

Effective date: 20110113

AS Assignment

Owner name: HALLA VISTEON CLIMATE CONTROL CORPORATION, KOREA,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VISTEON GLOBAL TECHNOLOGIES, INC.;REEL/FRAME:030935/0958

Effective date: 20130726

AS Assignment

Owner name: HANON SYSTEMS, KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:HALLA VISTEON CLIMATE CONTROL CORPORATION;REEL/FRAME:037007/0103

Effective date: 20150728

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION