US20120011866A1 - Refrigerant vapor compression system with hot gas bypass - Google Patents

Refrigerant vapor compression system with hot gas bypass Download PDF

Info

Publication number
US20120011866A1
US20120011866A1 US13/258,180 US201013258180A US2012011866A1 US 20120011866 A1 US20120011866 A1 US 20120011866A1 US 201013258180 A US201013258180 A US 201013258180A US 2012011866 A1 US2012011866 A1 US 2012011866A1
Authority
US
United States
Prior art keywords
refrigerant
refrigerant vapor
flow
heat exchanger
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/258,180
Inventor
Jason Scarcella
Alexander Lifson
Daqing Li
Biswajit Mitra
Lucy Yi Liu
Suresh Duraisamy
Yu H. Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Priority to US13/258,180 priority Critical patent/US20120011866A1/en
Assigned to CARRIER CORPORATION reassignment CARRIER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIFSON, ALEXANDER, CHEN, YU H., MITRA, BISWAJIT, DURAISAMY, SURESH, LI, DAQING, LIU, LUCY YI, SCARCELLA, JASON
Publication of US20120011866A1 publication Critical patent/US20120011866A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor

Definitions

  • This invention relates generally to refrigerant vapor compression systems and, more particularly, to bypassing hot refrigerant gas around the gas cooler in a refrigerant vapor compression system operating in a transcritical cycle.
  • Refrigerant vapor compression systems are well known in the art and commonly used for conditioning air to be supplied to a climate controlled comfort zone within a residence, office building, hospital, school, restaurant or other facility.
  • Refrigerant vapor compression system are also commonly used in refrigerating air supplied to display cases, merchandisers, freezer cabinets, cold rooms or other perishable/frozen product storage areas in commercial establishments.
  • Refrigerant vapor compression systems are also commonly used in transport refrigeration systems for refrigerating air supplied to a temperature controlled cargo space of a truck, trailer, container or the like for transporting perishable/frozen items by truck, rail, ship or intermodal.
  • Refrigerant vapor compression systems used in connection with transport refrigeration systems are generally subject to more stringent operating conditions due to the wide range of operating load conditions and the wide range of outdoor ambient conditions over which the refrigerant vapor compression system must operate to maintain product within the cargo space at a desired temperature.
  • the desired temperature at which the cargo needs to be controlled can also vary over a wide range depending on the nature of cargo to be preserved.
  • the refrigerant vapor compression system must not only have sufficient capacity to rapidly pull down the temperature of product loaded into the cargo space at ambient temperature, but also operate efficiently at low load when maintaining a stable product temperature during transport.
  • conventional refrigerant vapor compression systems commonly operate at subcritical refrigerant pressures and typically include a compressor, a condenser, and an evaporator, and expansion device, commonly an expansion valve, disposed upstream, with respect to refrigerant flow, of the evaporator and downstream of the condenser.
  • expansion device commonly an expansion valve, disposed upstream, with respect to refrigerant flow, of the evaporator and downstream of the condenser.
  • These basic refrigerant system components are interconnected by refrigerant lines in a closed refrigerant circuit, arranged in accord with known refrigerant vapor compression cycles, and operated in the subcritical pressure range for the particular refrigerant in use.
  • Refrigerant vapor compression systems operating in the subcritical range are commonly charged with fluorocarbon refrigerants such as, but not limited to, hydrochlorofluorocarbons (HCFCs), such as R22, and more commonly hydrofluorocarbons (HFCs), such as R134a, R410A, R404A and R407C.
  • fluorocarbon refrigerants such as, but not limited to, hydrochlorofluorocarbons (HCFCs), such as R22, and more commonly hydrofluorocarbons (HFCs), such as R134a, R410A, R404A and R407C.
  • refrigerant such as carbon dioxide
  • HFC refrigerants for use in air conditioning and transport refrigeration systems instead of HFC refrigerants.
  • carbon dioxide has a low critical temperature
  • most refrigerant vapor compression systems charged with carbon dioxide as the refrigerant are designed for operation in the transcritical pressure regime.
  • refrigerant vapor compression systems operating in a subcritical cycle both the condenser and the evaporator heat exchangers operate at refrigerant temperatures and pressures below the refrigerant's critical point.
  • the heat rejection heat exchanger which is a gas cooler rather than a condenser, operates at a refrigerant temperature and pressure in excess of the refrigerant's critical point, while the evaporator operates at a refrigerant temperature and pressure in the subcritical range.
  • the difference between the refrigerant pressure within the gas cooler and refrigerant pressure within the evaporator is characteristically substantially greater than the difference between the refrigerant pressure within the condenser and the refrigerant pressure within the evaporator for a refrigerant vapor compression system operating in a subcritical cycle.
  • a flash tank economizer is incorporated into the refrigerant circuit between the condenser and the evaporator.
  • the refrigerant leaving the condenser is expanded through an expansion device, such as a thermostatic expansion valve or an electronic expansion valve, prior to entering the flash tank wherein the expanded refrigerant separates into a liquid refrigerant component and a vapor refrigerant component.
  • the vapor component of the refrigerant is thence directed from the flash tank into an intermediate pressure stage of the compression process.
  • U.S. Pat. No. 6,385,980 discloses a transcritical refrigerant vapor compression system incorporating a flash tank economizer in the refrigerant circuit between the gas cooler and the evaporator.
  • the refrigerant coils of the evaporator in a transcritical cycle transport refrigeration are subject, depending upon operating conditions, to frost formation and frost build-up from moisture in the air circulating from the cargo box and passing over the refrigerant coils.
  • electric resistance heaters can also be employed to heat the circulating air when it is desired to raise the air temperature within the cargo box to prevent over cooling of the cargo.
  • electric resistance heaters increase the consumption of power, the availability of which is often limited. Electric resistance heaters and related components are also expensive and raise the initial cost and operating cost of the refrigeration unit.
  • U.S. Pat. No. 7,028,494 discloses a heat pump water heating system operating in a transcritical cycle wherein to defrost the evaporator, refrigerant from the discharge of the compressor bypasses the gas cooler, passes through the evaporator expansion device, and thence through the evaporator to melt frost off the external surface of the evaporator.
  • a refrigerant vapor compression system includes: a primary refrigerant circuit including a refrigerant compression device, a refrigerant heat rejection heat exchanger downstream of the compression device, a refrigerant heat absorption heat exchanger downstream of the refrigerant heat rejection heat exchanger, and a primary expansion device.
  • the primary expansion device is interdisposed in the refrigerant circuit downstream of said refrigerant heat rejection heat exchanger and upstream of the refrigerant heat absorption heat exchanger.
  • a hot gas bypass line establishes refrigerant vapor flow communication between the compression device and the refrigerant heat absorption heat exchanger. The hot gas bypass line bypasses the refrigerant heat rejection heat exchanger and the primary expansion device.
  • a refrigerant vapor flow control device is interdisposed in the hot gas bypass line.
  • the refrigerant flow control device has at least a first open position in which refrigerant vapor flow may pass through the hot gas bypass line and a closed position in which refrigerant vapor flow may not pass through the hot gas bypass line.
  • a suction modulation valve may be interdisposed in the primary refrigerant circuit downstream of said refrigerant heat absorption heat exchanger and upstream of the compression device.
  • the refrigerant flow control device comprises a solenoid valve.
  • the hot gas bypass line opens from the mid-stage of the compression device to receive refrigerant vapor from the compression device at an intermediate pressure between a compression device suction pressure and a compression device discharge pressure.
  • the hot gas bypass line opens from the primary refrigerant circuit at a location between an inlet to the refrigerant heat rejection heat exchanger and a refrigerant vapor discharge outlet of the compression device to receive refrigerant vapor at a compression discharge pressure.
  • a method for controlling the capacity of a refrigerant vapor compression system operating in one of a heating mode and a defrost mode, the refrigerant vapor compression system including a refrigerant circuit having a compression device, a refrigerant heat rejection heat exchanger, and a refrigerant heat absorption heat exchanger disposed in serial refrigerant flow relationship.
  • the method includes the steps of: bypassing refrigerant vapor through a bypass line from a location upstream of the refrigerant heat rejection heat exchanger directly to the refrigerant heat absorption heat exchanger; disposing a refrigerant vapor flow control device in the bypass line; disposing a suction modulation valve in a refrigerant line connecting a refrigerant outlet of the refrigerant heat absorption heat exchanger in refrigerant flow communication with a suction inlet of the compression device; selectively modulating the flow of refrigerant vapor through the refrigerant flow control device; and selectively modulating the flow of refrigerant through the suction modulation valve.
  • the method may also include the steps of: sensing a compressor discharge refrigerant pressure; selectively modulating the flow of refrigerant vapor through the refrigerant flow control device in response to the sensed compressor discharged refrigerant pressure; and selectively modulating the flow of refrigerant through the suction modulation valve to control refrigerant mass flow.
  • FIG. 1 is a schematic diagram illustrating an exemplary embodiment of a refrigerant vapor compression system in accord with the invention.
  • FIG. 2 is a graph illustrating the variation of refrigerant pressure with enthalpy over the compression cycle.
  • FIG. 1 there are depicted therein exemplary embodiments of a refrigerant vapor compression system 10 suitable for use in a transport refrigeration system for refrigerating the air or other gaseous atmosphere within the temperature controlled cargo space of a truck, trailer, container or the like for transporting perishable/frozen goods.
  • the refrigerant vapor compression system 10 is also suitable for use in conditioning air to be supplied to a climate controlled comfort zone within a residence, office building, hospital, school, restaurant or other facility.
  • the refrigerant vapor compression system could also be employed in refrigerating air supplied to display cases, merchandisers, freezer cabinets, cold rooms or other perishable/frozen product storage areas in commercial establishments.
  • the refrigerant vapor compression system 10 is particularly adapted for operation in a transcritical cycle with a low critical temperature refrigerant, such as for example, but not limited to, carbon dioxide. However, it is to be understood that the refrigerant vapor compression system 10 may also be operated in a subcritical cycle with a higher critical temperature refrigerant such as conventional hydrochlorofluorocarbon and hydrofluorocarbon refrigerants.
  • a low critical temperature refrigerant such as for example, but not limited to, carbon dioxide.
  • a higher critical temperature refrigerant such as conventional hydrochlorofluorocarbon and hydrofluorocarbon refrigerants.
  • the refrigerant vapor compression system 10 includes a multi-step compression device 20 , a refrigerant heat rejecting heat exchanger 40 , a refrigerant heat absorbing heat exchanger 50 , also referred to herein as an evaporator, and a primary expansion valve 55 , such as for example an electronic expansion valve or a thermostatic expansion valve, operatively associated with the evaporator 50 , with refrigerant lines 2 , 4 and 6 connecting the aforementioned components in a primary refrigerant circuit as illustrated in FIG. 1 .
  • a suction modulation valve (SMV) 23 may be interdisposed in refrigerant line 6 intermediate the outlet of the evaporator 50 and the suction inlet to the compression device 20 .
  • the suction modulation valve 23 is positioned in refrigerant line 6 between the outlet of the evaporator 50 and the point at which the compressor unload bypass line 16 intersects refrigerant line 6 .
  • the refrigerant heat rejecting heat exchanger 40 constitutes a gas cooler through which supercritical refrigerant passes in heat exchange relationship with a cooling medium, such as for example, but not limited to ambient air or water, and may be also be referred to herein as a gas cooler.
  • the refrigerant heat rejecting heat exchanger 40 includes a finned tube heat exchanger 42 , such as for example a fin and round tube heat exchange coil or a fin and mini-channel flat tube heat exchanger, through which the refrigerant passes in heat exchange relationship with ambient air or other cooling media being drawn through the finned tube heat exchanger 42 by the fan(s) 44 associated with the gas cooler 40 .
  • the transcritical cycle refrigerant vapor compression system may optionally include a water cooled condenser 46 disposed in refrigerant line 4 downstream with respect to refrigerant flow of the gas cooler 40 , such as depicted in FIG. 1 .
  • the high pressure refrigerant gas having traversed the gas cooler 40 passes through the water cooled condenser 46 , wherein the refrigerant gas is further cooled as it passes in heat exchange relationship with cooling water 48 to further cool the refrigerant gas and, depending upon operating conditions, a portion of the refrigerant gas to a refrigerant liquid may be condensed.
  • the refrigerant heat absorption heat exchanger 50 serves an evaporator wherein refrigerant liquid is passed in heat exchange relationship with a fluid to be cooled, most commonly air, drawn from and to be returned to a temperature controlled environment 200 , such as the cargo box of a refrigerated transport truck, trailer or container, or a display case, merchandiser, freezer cabinet, cold room or other perishable/frozen product storage area in a commercial establishment, or to a climate controlled comfort zone within a residence, office building, hospital, school, restaurant or other facility.
  • a temperature controlled environment 200 such as the cargo box of a refrigerated transport truck, trailer or container, or a display case, merchandiser, freezer cabinet, cold room or other perishable/frozen product storage area in a commercial establishment, or to a climate controlled comfort zone within a residence, office building, hospital, school, restaurant or other facility.
  • the refrigerant heat absorbing heat exchanger 50 comprises a finned tube heat exchanger 52 through which refrigerant passes in heat exchange relationship with air drawn from and returned to the refrigerated cargo box 200 by the evaporator fan(s) 54 associated with the evaporator 50 .
  • the finned tube heat exchanger 52 may comprise, for example, a fin and round tube heat exchange coil or a fin and mini-channel flat tube heat exchanger.
  • the compression device 20 functions to compress the refrigerant and to circulate refrigerant through the primary refrigerant circuit as will be discussed in further detail hereinafter.
  • the compression device 20 may comprise a single multiple stage refrigerant compressor, such as for example a screw compressor or a reciprocating compressor, disposed in the primary refrigerant circuit and having a first compression stage 20 a and a second compression stage 20 b .
  • the first and second compression stages are disposed in series refrigerant flow relationship with the refrigerant leaving the first compression stage passing directly to the second compression stage for further compression.
  • the compression device 20 may comprise a single compression device, such as a scroll compressor, having a compression chamber having one or more ports opening directly into the compression chamber at an intermediate pressure stage of the compression chamber through which refrigerant may be injected into or withdrawn from the compression chamber.
  • the compression device 20 may comprise a pair of independent compressors 20 a and 20 b , connected in series refrigerant flow relationship in the primary refrigerant circuit via a refrigerant line connecting the discharge outlet port of the first compressor 20 a in refrigerant flow communication with the suction inlet port of the second compressor 20 b .
  • the compressors 20 a and 20 b may be scroll compressors, screw compressors, reciprocating compressors, rotary compressors or any other type of compressor or a combination of any such compressors.
  • the transcritical cycle refrigerant vapor compression system 10 includes a flash tank economizer 70 interdisposed in refrigerant line 4 of the primary refrigerant circuit upstream with respect to refrigerant flow of the evaporator 50 and downstream with respect to refrigerant flow of the gas cooler 40 and, if present, downstream of the condenser 46 .
  • a secondary expansion device 65 is interdisposed in refrigerant line 4 in operative association with and upstream of the flash tank economizer 70 .
  • the secondary expansion device 65 may be an electronic expansion valve, such as depicted in FIG. 1 , or a fixed orifice expansion device.
  • Refrigerant traversing the secondary expansion device 65 is expanded to a lower pressure sufficient to establish a mixture of refrigerant in a vapor state and refrigerant in a liquid state.
  • the flash tank economizer 70 defines a separation chamber 72 wherein refrigerant in the liquid state collects in a lower portion of the separation chamber and refrigerant in the vapor state collects in the portion of the separation chamber 72 above the liquid refrigerant.
  • the flash tank economizer 70 also functions as a refrigerant charge tank with the separation chamber providing a reservoir for collecting excess refrigerant.
  • Liquid refrigerant collecting in the lower portion of the flash tank economizer 70 passes therefrom through refrigerant line 4 and traverses the primary expansion valve 55 , which is interdisposed in refrigerant line 4 upstream with respect to refrigerant flow of the evaporator 50 .
  • the evaporator 50 constitutes a refrigerant evaporating heat exchanger through which expanded refrigerant passes in heat exchange relationship with the air to be cooled, whereby the refrigerant is vaporized and typically superheated.
  • the primary expansion valve 55 meters the refrigerant flow through the refrigerant line 4 to maintain a desired level of superheat in the refrigerant vapor leaving the evaporator 50 to ensure that no liquid is present in the refrigerant leaving the evaporator.
  • the low pressure refrigerant vapor leaving the evaporator 50 returns through refrigerant line 6 to the suction port of the first compression stage or first compressor 20 a of the compression device 20 .
  • the refrigerant vapor compression system 10 may also include a refrigerant vapor injection line 14 and a refrigerant liquid injection line 18 .
  • the refrigerant vapor injection line 14 establishes refrigerant flow communication between an upper portion of the separation chamber 72 of the flash tank economizer 70 and an intermediate stage of the compression process through branch 14 a and a suction pressure portion of the refrigerant circuit through branch 14 b .
  • the refrigerant liquid injection line 18 establishes refrigerant flow communication between a lower portion of the separation chamber 72 of the flash tank 70 , typically by tapping refrigerant line 4 downstream of the flash tank 70 and upstream of the primary expansion valve 55 , and discharging into an intermediate stage of the compression process through a portion of branch 14 b of refrigerant vapor injection line 14 and thence branch 14 a of refrigerant vapor injection line 14 .
  • the refrigerant liquid injection line 18 may open directly into and discharge into refrigerant line 6 of the primary refrigerant circuit at a location downstream with respect to refrigerant flow of the suction modulation valve 23 and upstream with respect to refrigerant flow of the suction inlet to the first compressor 20 a.
  • injection of refrigerant vapor or refrigeration liquid into the intermediate pressure stage of the compression process would be accomplished by injection of the refrigerant vapor or refrigerant liquid into the refrigerant passing from the first compression stage 20 a into the second compression stage 20 b of a single compressor or passing from the discharge outlet of the first compressor 20 a to the suction inlet of the second compressor 20 b .
  • the compression device 20 of the refrigerant vapor compression system 10 were a single scroll compressor, injection of refrigerant vapor or refrigerant liquid into the intermediate pressure stage of the compression process would be accomplished by injection of the refrigerant vapor or the refrigerant liquid through a port opening into the intermediate pressure port of the compression chamber of the scroll compressor.
  • the refrigerant vapor compression system 10 may also include a compressor unload bypass line, which in the depicted embodiment is made up of refrigerant branch lines 14 a and 14 b , that establishes refrigerant flow communication via flow control device 83 , between an intermediate pressure stage of the compression device 20 and the suction pressure portion of the refrigerant circuit, which as noted previously constitutes refrigerant line 6 extending between the outlet of the evaporator 50 and the suction inlet of the compression device 20 .
  • a compressor unload bypass line which in the depicted embodiment is made up of refrigerant branch lines 14 a and 14 b , that establishes refrigerant flow communication via flow control device 83 , between an intermediate pressure stage of the compression device 20 and the suction pressure portion of the refrigerant circuit, which as noted previously constitutes refrigerant line 6 extending between the outlet of the evaporator 50 and the suction inlet of the compression device 20 .
  • the refrigerant vapor compression system 10 may also include an economizer vapor injection bypass line 14 b that establishes refrigerant flow communication between the refrigerant vapor injection line 14 , from a location downstream with respect to refrigerant flow of the flash tank 70 and upstream with respect to refrigerant flow of the injection site to intermediate pressure stage of the compression device 20 , and the suction pressure portion of refrigerant line 6 of the refrigerant circuit.
  • an economizer vapor injection bypass line 14 b that establishes refrigerant flow communication between the refrigerant vapor injection line 14 , from a location downstream with respect to refrigerant flow of the flash tank 70 and upstream with respect to refrigerant flow of the injection site to intermediate pressure stage of the compression device 20 , and the suction pressure portion of refrigerant line 6 of the refrigerant circuit.
  • the refrigerant vapor compression system 10 may, as depicted in FIG. 1 , include a control system operatively associated with the compression device and other components of the system, including but not limited to the fans 44 and 54 .
  • the control system includes a controller 100 and a plurality of flow control devices operatively associated with the various refrigerant lines.
  • the controller 100 selectively controls the positioning of each of the plurality of flow control devices between its respective open and closed positions to selectively direct refrigerant flow through the various refrigerant lines.
  • the flow control devices may include, without limitation, a first flow control device 73 interdisposed in a downstream portion of refrigerant vapor injection line 14 , a second flow control device 53 interdisposed in an upstream portion of refrigerant liquid injection line 18 , and a third flow control device 83 interdisposed in refrigerant branch line 14 b .
  • Each of the aforementioned flow control devices 53 , 73 , 83 may comprise a flow control valve selectively positionable between an open position wherein refrigerant flow may pass through the refrigerant line in which the flow control valve is interdisposed and a closed position wherein refrigerant flow is blocked through the refrigerant line in which the flow control valve is interdisposed.
  • each of the flow control valves 53 , 73 , 83 comprises a two-position solenoid valve of the type positionable selectively positionable under the control of the controller 100 between a first open position and a second closed position.
  • the suction modulation flow control valve 23 comprises a flow control valve having at least one partially open position between a fully closed position and a fully open position, such as for example an electronic stepper valve or a pulse width modulated solenoid valve.
  • the controller 100 not only controls operation of the various flow control valves 23 , 53 , 73 , 83 to selectively direct refrigerant flow through the respective refrigerant lines in which the valves are interdisposed, but also may control operation of the electronic expansion valves 55 and 65 , the compression device 20 , and the fans 44 and 54 .
  • the controller 100 may also monitor various operating parameters by means of various sensors operatively associated with the controller 100 and disposed at selected locations throughout the system. For example, in the exemplary embodiments depicted in FIG.
  • a pressure sensor 102 is disposed in operative association with the flash tank 70 to sense the pressure within the flash tank 70 , a temperature sensor 103 and a pressure sensor 104 are provided to sense the refrigerant suction temperature and pressure, respectively, and a temperature sensor 105 and a pressure sensor 106 are provided to sense refrigerant discharge temperature and pressure, respectively.
  • the pressure sensors 102 , 104 , 106 may be conventional pressure sensors, such as for example, pressure transducers, and the temperature sensors 103 and 105 may be conventional temperature sensors, such as for example, thermocouples or thermistors.
  • the refrigerant vapor compression system 10 may include either a mid-stage hot gas bypass line 24 or a discharge hot gas bypass line 26 or both.
  • the mid-stage hot gas byline 24 establishes refrigerant flow communication between an intermediate pressure compression stage of the compression device 20 and refrigerant line 4 of the primary refrigerant circuit downstream of the flash tank 70 .
  • FIG. 1 depicted in FIG. 1
  • the mid-stage hot gas bypass line 24 opens into the compression device 20 at a point between the refrigerant outlet of the first compression stage 20 a and the refrigerant inlet to the second compression stage 20 b to receive intermediate pressure, hot refrigerant vapor and opens into refrigerant line 4 of the primary refrigerant circuit at a location upstream of the evaporator 50 and downstream with respect to refrigerant flow through refrigerant line 4 of the primary expansion device 55 to discharge the intermediate pressure, hot gas into refrigerant line 4 upstream of the refrigerant coil 52 of the evaporator.
  • a flow control device 87 is interdisposed into the mid-stage hot gas bypass line 24 .
  • the flow control device 87 is operated by the controller 100 to selectively open the mid-stage hot gas bypass line 24 to refrigerant vapor flow therethrough when it is desired to operate the refrigerant vapor compression system 10 in a defrost mode and close the mid-stage hot gas bypass line 24 to refrigerant vapor flow therethrough whenever the refrigerant vapor compression system 10 is not operating in a defrost mode.
  • the flow control device 87 may comprise a solenoid valve that is selectively positionable in either a fully open position or a fully closed position or, in addition thereto, at least one partially open position between a fully closed position and a fully open position, such as for example an electronic stepper valve or a pulse width modulated solenoid valve.
  • a solenoid valve that is selectively positionable in either a fully open position or a fully closed position or, in addition thereto, at least one partially open position between a fully closed position and a fully open position, such as for example an electronic stepper valve or a pulse width modulated solenoid valve.
  • the hot gas bypass line 26 establishes refrigerant flow communication between a discharge outlet of the second compression stage 20 b of the compression device 20 and refrigerant line 4 of the primary refrigerant circuit downstream of the flash tank 70 .
  • refrigerant line 4 of the primary refrigerant circuit downstream of the flash tank 70 .
  • the hot gas bypass line 26 opens into the refrigerant line 2 of the primary refrigerant circuit at a point between the refrigerant inlet to the gas cooler 40 and the refrigerant vapor discharge outlet of the second compression stage 20 b to receive high pressure, hot refrigerant vapor and opens into refrigerant line 4 of the primary refrigerant circuit at a location upstream of the evaporator 50 and downstream with respect to refrigerant flow through refrigerant line 4 of the primary expansion device 55 to discharge the hot gas into refrigerant line 4 upstream of the refrigerant coil 52 of the evaporator.
  • a flow control device 85 is interdisposed into the hot gas bypass line 26 .
  • the flow control device 85 is a open/closed flow control device operated by the controller 100 to selectively open the hot gas bypass line 26 to refrigerant vapor flow therethrough when it is desired to operate the refrigerant vapor compression system 10 in a defrost mode and close the hot gas bypass line 26 to refrigerant vapor flow therethrough whenever the refrigerant vapor compression system 10 is not operating in a defrost mode.
  • the flow control device 85 may comprise a solenoid valve that is selectively positionable in either a fully open position or a fully closed position or, in addition thereto, at least one partially open position between a fully closed position and a fully open position, such as for example an electronic stepper valve or a pulse width modulated solenoid valve.
  • a solenoid valve that is selectively positionable in either a fully open position or a fully closed position or, in addition thereto, at least one partially open position between a fully closed position and a fully open position, such as for example an electronic stepper valve or a pulse width modulated solenoid valve.
  • the controller 100 will close each of the valves 53 , 73 , 83 as well as the electronic expansion valves 55 and 65 , and either open the flow control valve 87 to permit the flow of high pressure, hot refrigerant vapor from the discharge outlet of the compression device 20 to flow through the hot gas bypass line 24 into and through the evaporator coil 52 , or open the mid-stage flow control valve 85 to permit the flow of intermediate pressure, intermediate temperature hot refrigerant vapor from an intermediate pressure stage of the compression device 20 to flow through the mid-stage hot gas bypass line 26 into and through the evaporator coil 52 .
  • the controller 100 will also turn the power to the evaporator fan(s) 54 off to stop the circulation of air from the cargo box 200 through the evaporator 50 to eliminate an unintended rise in air temperature within the cargo box 200 .
  • the controller 100 will close each of the valves 53 , 73 , 83 as well as the electronic expansion valves 55 and 65 , and either open the flow control valve 87 to permit the flow of high pressure, hot refrigerant vapor from the discharge outlet of the compression device 20 to flow through the hot gas bypass line 24 into and through the evaporator coil 52 , or open the mid-stage flow control valve 85 to permit the flow of intermediate pressure, intermediate temperature hot refrigerant vapor from an intermediate pressure stage of the compression device 20 to flow through the mid-stage hot gas bypass line 26 into and through the evaporator coil 52 .
  • the evaporator fan(s) 54 remain in operation to circulate air from the cargo box 200 through the evaporator 50 in heat exchange relationship with the hot refrigerant vapor passing through the evaporator coil 52 .
  • the hot refrigerant vapor passes through the refrigerant passages of the evaporator 50 , the air returning from the cargo space 200 is heated and supplied by the evaporator fan 54 back to the cargo space 200 .
  • one or both of the refrigerant flow control devices 85 disposed in the hot gas bypass line 26 and the refrigerant flow control device 87 disposed in the mid-stage hot gas bypass line 24 may be an electronic expansion valve.
  • the heating capacity of a refrigeration system during operation in a heating or defrosting mode may be relatively precisely controlled by regulating the hot gas bypass valve downstream of the compressor along with modulating the suction modulation valve upstream of the compressor.
  • the controller 100 will close each of the valves 53 , 73 , 83 as well as the electronic expansion valves 55 and 65 , and then modulate the opening of the expansion valve 85 , 87 and also modulate the opening of the of the suction modulation valve 23 , to control the heating capacity of the refrigerant vapor compression system 10 .
  • the pressure and temperature of the hot refrigerant vapor decrease as it traverses the expansion valve 85 , 87 .
  • the pressure of the refrigerant vapor leaving the evaporator coil 52 is further reduced to a desired suction pressure as the refrigerant flow is throttled in traversing the suction modulation valve 23 disposed in refrigerant line 6 .
  • the magnitude of each pressure drop may be independently controlled by modulating the opening of the respective one of the expansion valve 85 or the suction modulation valve 23 .
  • the degree of opening of the expansion valve 85 , 87 is modulated in response to the sensed compressor discharged refrigerant pressure to control the compressor discharge refrigerant pressure and the degree of opening of the SMV 23 is modulated to control refrigerant mass flow.
  • the controller 100 will increase the opening of the expansion valve 85 , 87 to raise the pressure and temperature of the refrigerant vapor passing through the evaporator coil 52 and also further reduce the opening of the suction modulation valve 23 to provide greater throttling, as necessary, to keep the pressure of the refrigerant vapor entering the compression device 20 from the refrigerant line 6 at the desired suction pressure.
  • the controller 100 will decrease the opening of the expansion valve 85 , 87 to lower the pressure and temperature of the refrigerant vapor passing through the evaporator coil 52 and also further increase the opening of the suction modulation valve 23 to provide lesser throttling, as necessary, to keep the pressure of the refrigerant vapor entering the compression device 20 from the refrigerant line 6 at the desired suction pressure.
  • the compressor discharge pressure is determined by the amount of charge in the active part of the system 10 , that is the amount of refrigerant passing through the evaporator 50 during the heating mode or the defrost mode.
  • FIG. 2 a pressure-to-enthalpy diagram is depicted for a transport refrigeration system operating in a transcritical cycle with carbon dioxide as the refrigerant.
  • the refrigerant vapor enters the compression device 20 at point a, and discharges from the compression device as a hot, high pressure vapor at point b.
  • the heating or defrosting capacity can hence be modified such that the point d (d′ or d′′) is at the optimal point away from the dome (i.e., in the vapor region, with a desired superheat range).
  • the system includes both a mid-stage pressure hot gas bypass line 24 and a discharge pressure hot gas bypass line 26 . It is to be understood, that the system may be operated in the heating mode or defrost mode selectively with only the mid-stage pressure hot gas bypass line 24 open, or with only the discharge pressure hot gas bypass line 26 open, or with both hot gas bypass lines 24 and 26 open simultaneously, as desired. Further, it is to be understood that in other embodiments, the refrigerant vapor compression system 10 may include only one of the hot gas bypass lines 24 and 26 , as desired, rather than both hot gas bypass lines.
  • each of the flow control valves 53 , 73 , 83 and the expansion valves 55 and 65 is closed and system capacity is controlled by modulating whichever of valves 85 and 87 that is then active.
  • the controller 100 may open the flow control valve 53 in the refrigerant liquid injection line 18 to allow refrigerant liquid to drain from the reservoir 72 of the flash tank 70 back into the primary refrigerant circuit, thereby increasing the amount of refrigerant charge in the active portion of the primary refrigerant circuit.
  • the refrigerant pressure at the discharge outlet of the compression device 20 i.e.
  • the controller 100 may open the expansion valve 65 to allow refrigerant to pass from refrigerant line 4 of the primary refrigerant circuit into the flash tank 70 to collect in the reservoir 72 , thereby reducing the amount of refrigerant charge in the active portion of the primary refrigerant circuit.
  • the refrigerant vapor compression system may also be operated in a subcritical cycle, rather than in a transcritical cycle as described hereinbefore.
  • the present invention has been particularly shown and described with reference to the exemplary embodiments as illustrated in the drawings, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the spirit and scope of the invention as defined by the claims.

Abstract

A refrigerant vapor compression system includes a hot gas bypass line establishing refrigerant vapor flow communication between the compression device and the refrigerant heat absorption heat exchanger, and bypassing the refrigerant heat rejection heat exchanger and the primary expansion device. A refrigerant vapor flow control device is interdisposed in the hot gas bypass line. The flow control device has at least a first open position in which refrigerant vapor flow may pass through the hot gas bypass line and a closed position in which refrigerant vapor flow may not pass through the hot gas bypass line.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • Reference is made to and this application claims priority from and the benefit of U.S. Provisional Application Ser. No. 61/167,972, filed Apr. 9, 2009, entitled “REFRIGERANT VAPOR COMPRESSION SYSTEM WITH HOT GAS BYPASS”, which application is incorporated herein in its entirety by reference.
  • FIELD OF THE INVENTION
  • This invention relates generally to refrigerant vapor compression systems and, more particularly, to bypassing hot refrigerant gas around the gas cooler in a refrigerant vapor compression system operating in a transcritical cycle.
  • BACKGROUND OF THE INVENTION
  • Refrigerant vapor compression systems are well known in the art and commonly used for conditioning air to be supplied to a climate controlled comfort zone within a residence, office building, hospital, school, restaurant or other facility. Refrigerant vapor compression system are also commonly used in refrigerating air supplied to display cases, merchandisers, freezer cabinets, cold rooms or other perishable/frozen product storage areas in commercial establishments.
  • Refrigerant vapor compression systems are also commonly used in transport refrigeration systems for refrigerating air supplied to a temperature controlled cargo space of a truck, trailer, container or the like for transporting perishable/frozen items by truck, rail, ship or intermodal. Refrigerant vapor compression systems used in connection with transport refrigeration systems are generally subject to more stringent operating conditions due to the wide range of operating load conditions and the wide range of outdoor ambient conditions over which the refrigerant vapor compression system must operate to maintain product within the cargo space at a desired temperature. The desired temperature at which the cargo needs to be controlled can also vary over a wide range depending on the nature of cargo to be preserved. The refrigerant vapor compression system must not only have sufficient capacity to rapidly pull down the temperature of product loaded into the cargo space at ambient temperature, but also operate efficiently at low load when maintaining a stable product temperature during transport.
  • Traditionally, conventional refrigerant vapor compression systems commonly operate at subcritical refrigerant pressures and typically include a compressor, a condenser, and an evaporator, and expansion device, commonly an expansion valve, disposed upstream, with respect to refrigerant flow, of the evaporator and downstream of the condenser. These basic refrigerant system components are interconnected by refrigerant lines in a closed refrigerant circuit, arranged in accord with known refrigerant vapor compression cycles, and operated in the subcritical pressure range for the particular refrigerant in use. Refrigerant vapor compression systems operating in the subcritical range are commonly charged with fluorocarbon refrigerants such as, but not limited to, hydrochlorofluorocarbons (HCFCs), such as R22, and more commonly hydrofluorocarbons (HFCs), such as R134a, R410A, R404A and R407C.
  • In today's market, greater interest is being shown in “natural” refrigerants, such as carbon dioxide, for use in air conditioning and transport refrigeration systems instead of HFC refrigerants. However, because carbon dioxide has a low critical temperature, most refrigerant vapor compression systems charged with carbon dioxide as the refrigerant are designed for operation in the transcritical pressure regime. In refrigerant vapor compression systems operating in a subcritical cycle, both the condenser and the evaporator heat exchangers operate at refrigerant temperatures and pressures below the refrigerant's critical point. However, in refrigerant vapor compression systems operating in a transcritical cycle, the heat rejection heat exchanger, which is a gas cooler rather than a condenser, operates at a refrigerant temperature and pressure in excess of the refrigerant's critical point, while the evaporator operates at a refrigerant temperature and pressure in the subcritical range. Thus, for a refrigerant vapor compression system operating in a transcritical cycle, the difference between the refrigerant pressure within the gas cooler and refrigerant pressure within the evaporator is characteristically substantially greater than the difference between the refrigerant pressure within the condenser and the refrigerant pressure within the evaporator for a refrigerant vapor compression system operating in a subcritical cycle.
  • It is also common practice to incorporate an economizer into the refrigerant circuit for increasing the capacity of the refrigerant vapor compression system. In some transcritical cycle systems, a flash tank economizer is incorporated into the refrigerant circuit between the condenser and the evaporator. In such case, the refrigerant leaving the condenser is expanded through an expansion device, such as a thermostatic expansion valve or an electronic expansion valve, prior to entering the flash tank wherein the expanded refrigerant separates into a liquid refrigerant component and a vapor refrigerant component. The vapor component of the refrigerant is thence directed from the flash tank into an intermediate pressure stage of the compression process. The liquid component of the refrigerant is directed from the flash tank through the system's main expansion valve prior to entering the evaporator. U.S. Pat. No. 6,385,980 discloses a transcritical refrigerant vapor compression system incorporating a flash tank economizer in the refrigerant circuit between the gas cooler and the evaporator.
  • The refrigerant coils of the evaporator in a transcritical cycle transport refrigeration, as in any subcritical cycle transport refrigeration system are subject, depending upon operating conditions, to frost formation and frost build-up from moisture in the air circulating from the cargo box and passing over the refrigerant coils. Thus, it is common practice to provide electric resistance heaters in operative association with the refrigerant coils that are periodically operated to melt frost from the refrigerant coils. The electric resistance heaters can also be employed to heat the circulating air when it is desired to raise the air temperature within the cargo box to prevent over cooling of the cargo. However, electric resistance heaters increase the consumption of power, the availability of which is often limited. Electric resistance heaters and related components are also expensive and raise the initial cost and operating cost of the refrigeration unit.
  • U.S. Pat. No. 7,028,494 discloses a heat pump water heating system operating in a transcritical cycle wherein to defrost the evaporator, refrigerant from the discharge of the compressor bypasses the gas cooler, passes through the evaporator expansion device, and thence through the evaporator to melt frost off the external surface of the evaporator.
  • SUMMARY OF THE INVENTION
  • In an aspect of the invention, a refrigerant vapor compression system includes: a primary refrigerant circuit including a refrigerant compression device, a refrigerant heat rejection heat exchanger downstream of the compression device, a refrigerant heat absorption heat exchanger downstream of the refrigerant heat rejection heat exchanger, and a primary expansion device. The primary expansion device is interdisposed in the refrigerant circuit downstream of said refrigerant heat rejection heat exchanger and upstream of the refrigerant heat absorption heat exchanger. A hot gas bypass line establishes refrigerant vapor flow communication between the compression device and the refrigerant heat absorption heat exchanger. The hot gas bypass line bypasses the refrigerant heat rejection heat exchanger and the primary expansion device. A refrigerant vapor flow control device is interdisposed in the hot gas bypass line. The refrigerant flow control device has at least a first open position in which refrigerant vapor flow may pass through the hot gas bypass line and a closed position in which refrigerant vapor flow may not pass through the hot gas bypass line. A suction modulation valve may be interdisposed in the primary refrigerant circuit downstream of said refrigerant heat absorption heat exchanger and upstream of the compression device.
  • In an embodiment, the refrigerant flow control device comprises a solenoid valve. In an embodiment, the hot gas bypass line opens from the mid-stage of the compression device to receive refrigerant vapor from the compression device at an intermediate pressure between a compression device suction pressure and a compression device discharge pressure. In an embodiment, the hot gas bypass line opens from the primary refrigerant circuit at a location between an inlet to the refrigerant heat rejection heat exchanger and a refrigerant vapor discharge outlet of the compression device to receive refrigerant vapor at a compression discharge pressure.
  • In an aspect of the invention, a method is provided for controlling the capacity of a refrigerant vapor compression system operating in one of a heating mode and a defrost mode, the refrigerant vapor compression system including a refrigerant circuit having a compression device, a refrigerant heat rejection heat exchanger, and a refrigerant heat absorption heat exchanger disposed in serial refrigerant flow relationship. The method includes the steps of: bypassing refrigerant vapor through a bypass line from a location upstream of the refrigerant heat rejection heat exchanger directly to the refrigerant heat absorption heat exchanger; disposing a refrigerant vapor flow control device in the bypass line; disposing a suction modulation valve in a refrigerant line connecting a refrigerant outlet of the refrigerant heat absorption heat exchanger in refrigerant flow communication with a suction inlet of the compression device; selectively modulating the flow of refrigerant vapor through the refrigerant flow control device; and selectively modulating the flow of refrigerant through the suction modulation valve. The method may also include the steps of: sensing a compressor discharge refrigerant pressure; selectively modulating the flow of refrigerant vapor through the refrigerant flow control device in response to the sensed compressor discharged refrigerant pressure; and selectively modulating the flow of refrigerant through the suction modulation valve to control refrigerant mass flow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a further understanding of the disclosure, reference will be made to the following detailed description which is to be read in connection with the accompanying drawing, where:
  • FIG. 1 is a schematic diagram illustrating an exemplary embodiment of a refrigerant vapor compression system in accord with the invention; and
  • FIG. 2 is a graph illustrating the variation of refrigerant pressure with enthalpy over the compression cycle.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to FIG. 1, there are depicted therein exemplary embodiments of a refrigerant vapor compression system 10 suitable for use in a transport refrigeration system for refrigerating the air or other gaseous atmosphere within the temperature controlled cargo space of a truck, trailer, container or the like for transporting perishable/frozen goods. The refrigerant vapor compression system 10 is also suitable for use in conditioning air to be supplied to a climate controlled comfort zone within a residence, office building, hospital, school, restaurant or other facility. The refrigerant vapor compression system could also be employed in refrigerating air supplied to display cases, merchandisers, freezer cabinets, cold rooms or other perishable/frozen product storage areas in commercial establishments.
  • The refrigerant vapor compression system 10 is particularly adapted for operation in a transcritical cycle with a low critical temperature refrigerant, such as for example, but not limited to, carbon dioxide. However, it is to be understood that the refrigerant vapor compression system 10 may also be operated in a subcritical cycle with a higher critical temperature refrigerant such as conventional hydrochlorofluorocarbon and hydrofluorocarbon refrigerants. The refrigerant vapor compression system 10 includes a multi-step compression device 20, a refrigerant heat rejecting heat exchanger 40, a refrigerant heat absorbing heat exchanger 50, also referred to herein as an evaporator, and a primary expansion valve 55, such as for example an electronic expansion valve or a thermostatic expansion valve, operatively associated with the evaporator 50, with refrigerant lines 2, 4 and 6 connecting the aforementioned components in a primary refrigerant circuit as illustrated in FIG. 1. A suction modulation valve (SMV) 23 may be interdisposed in refrigerant line 6 intermediate the outlet of the evaporator 50 and the suction inlet to the compression device 20. In the exemplary embodiments depicted in drawings, the suction modulation valve 23 is positioned in refrigerant line 6 between the outlet of the evaporator 50 and the point at which the compressor unload bypass line 16 intersects refrigerant line 6.
  • In a refrigerant vapor compression system operating in a transcritical cycle, the refrigerant heat rejecting heat exchanger 40 constitutes a gas cooler through which supercritical refrigerant passes in heat exchange relationship with a cooling medium, such as for example, but not limited to ambient air or water, and may be also be referred to herein as a gas cooler. In the depicted embodiments, the refrigerant heat rejecting heat exchanger 40 includes a finned tube heat exchanger 42, such as for example a fin and round tube heat exchange coil or a fin and mini-channel flat tube heat exchanger, through which the refrigerant passes in heat exchange relationship with ambient air or other cooling media being drawn through the finned tube heat exchanger 42 by the fan(s) 44 associated with the gas cooler 40. The transcritical cycle refrigerant vapor compression system may optionally include a water cooled condenser 46 disposed in refrigerant line 4 downstream with respect to refrigerant flow of the gas cooler 40, such as depicted in FIG. 1. In such case, the high pressure refrigerant gas having traversed the gas cooler 40 passes through the water cooled condenser 46, wherein the refrigerant gas is further cooled as it passes in heat exchange relationship with cooling water 48 to further cool the refrigerant gas and, depending upon operating conditions, a portion of the refrigerant gas to a refrigerant liquid may be condensed.
  • The refrigerant heat absorption heat exchanger 50 serves an evaporator wherein refrigerant liquid is passed in heat exchange relationship with a fluid to be cooled, most commonly air, drawn from and to be returned to a temperature controlled environment 200, such as the cargo box of a refrigerated transport truck, trailer or container, or a display case, merchandiser, freezer cabinet, cold room or other perishable/frozen product storage area in a commercial establishment, or to a climate controlled comfort zone within a residence, office building, hospital, school, restaurant or other facility. In the depicted embodiments, the refrigerant heat absorbing heat exchanger 50 comprises a finned tube heat exchanger 52 through which refrigerant passes in heat exchange relationship with air drawn from and returned to the refrigerated cargo box 200 by the evaporator fan(s) 54 associated with the evaporator 50. The finned tube heat exchanger 52 may comprise, for example, a fin and round tube heat exchange coil or a fin and mini-channel flat tube heat exchanger.
  • The compression device 20 functions to compress the refrigerant and to circulate refrigerant through the primary refrigerant circuit as will be discussed in further detail hereinafter. The compression device 20 may comprise a single multiple stage refrigerant compressor, such as for example a screw compressor or a reciprocating compressor, disposed in the primary refrigerant circuit and having a first compression stage 20 a and a second compression stage 20 b. The first and second compression stages are disposed in series refrigerant flow relationship with the refrigerant leaving the first compression stage passing directly to the second compression stage for further compression. Also, the compression device 20 may comprise a single compression device, such as a scroll compressor, having a compression chamber having one or more ports opening directly into the compression chamber at an intermediate pressure stage of the compression chamber through which refrigerant may be injected into or withdrawn from the compression chamber. Alternatively, the compression device 20 may comprise a pair of independent compressors 20 a and 20 b, connected in series refrigerant flow relationship in the primary refrigerant circuit via a refrigerant line connecting the discharge outlet port of the first compressor 20 a in refrigerant flow communication with the suction inlet port of the second compressor 20 b. In the independent compressor embodiment, the compressors 20 a and 20 b may be scroll compressors, screw compressors, reciprocating compressors, rotary compressors or any other type of compressor or a combination of any such compressors.
  • Additionally, the transcritical cycle refrigerant vapor compression system 10 includes a flash tank economizer 70 interdisposed in refrigerant line 4 of the primary refrigerant circuit upstream with respect to refrigerant flow of the evaporator 50 and downstream with respect to refrigerant flow of the gas cooler 40 and, if present, downstream of the condenser 46. A secondary expansion device 65 is interdisposed in refrigerant line 4 in operative association with and upstream of the flash tank economizer 70. The secondary expansion device 65 may be an electronic expansion valve, such as depicted in FIG. 1, or a fixed orifice expansion device. Refrigerant traversing the secondary expansion device 65 is expanded to a lower pressure sufficient to establish a mixture of refrigerant in a vapor state and refrigerant in a liquid state. The flash tank economizer 70 defines a separation chamber 72 wherein refrigerant in the liquid state collects in a lower portion of the separation chamber and refrigerant in the vapor state collects in the portion of the separation chamber 72 above the liquid refrigerant. The flash tank economizer 70 also functions as a refrigerant charge tank with the separation chamber providing a reservoir for collecting excess refrigerant.
  • Liquid refrigerant collecting in the lower portion of the flash tank economizer 70 passes therefrom through refrigerant line 4 and traverses the primary expansion valve 55, which is interdisposed in refrigerant line 4 upstream with respect to refrigerant flow of the evaporator 50. As this liquid refrigerant traverses the primary expansion device 55, it expands to a lower pressure and temperature before entering enters the evaporator 50. The evaporator 50 constitutes a refrigerant evaporating heat exchanger through which expanded refrigerant passes in heat exchange relationship with the air to be cooled, whereby the refrigerant is vaporized and typically superheated. As in conventional practice, the primary expansion valve 55 meters the refrigerant flow through the refrigerant line 4 to maintain a desired level of superheat in the refrigerant vapor leaving the evaporator 50 to ensure that no liquid is present in the refrigerant leaving the evaporator. The low pressure refrigerant vapor leaving the evaporator 50 returns through refrigerant line 6 to the suction port of the first compression stage or first compressor 20 a of the compression device 20.
  • The refrigerant vapor compression system 10 may also include a refrigerant vapor injection line 14 and a refrigerant liquid injection line 18. The refrigerant vapor injection line 14 establishes refrigerant flow communication between an upper portion of the separation chamber 72 of the flash tank economizer 70 and an intermediate stage of the compression process through branch 14 a and a suction pressure portion of the refrigerant circuit through branch 14 b. The refrigerant liquid injection line 18 establishes refrigerant flow communication between a lower portion of the separation chamber 72 of the flash tank 70, typically by tapping refrigerant line 4 downstream of the flash tank 70 and upstream of the primary expansion valve 55, and discharging into an intermediate stage of the compression process through a portion of branch 14 b of refrigerant vapor injection line 14 and thence branch 14 a of refrigerant vapor injection line 14. In an alternate embodiment, the refrigerant liquid injection line 18 may open directly into and discharge into refrigerant line 6 of the primary refrigerant circuit at a location downstream with respect to refrigerant flow of the suction modulation valve 23 and upstream with respect to refrigerant flow of the suction inlet to the first compressor 20 a.
  • In the depicted exemplary embodiments of the transcritical cycle refrigerant vapor compression system 10, injection of refrigerant vapor or refrigeration liquid into the intermediate pressure stage of the compression process would be accomplished by injection of the refrigerant vapor or refrigerant liquid into the refrigerant passing from the first compression stage 20 a into the second compression stage 20 b of a single compressor or passing from the discharge outlet of the first compressor 20 a to the suction inlet of the second compressor 20 b. If the compression device 20 of the refrigerant vapor compression system 10 were a single scroll compressor, injection of refrigerant vapor or refrigerant liquid into the intermediate pressure stage of the compression process would be accomplished by injection of the refrigerant vapor or the refrigerant liquid through a port opening into the intermediate pressure port of the compression chamber of the scroll compressor.
  • The refrigerant vapor compression system 10 may also include a compressor unload bypass line, which in the depicted embodiment is made up of refrigerant branch lines 14 a and 14 b, that establishes refrigerant flow communication via flow control device 83, between an intermediate pressure stage of the compression device 20 and the suction pressure portion of the refrigerant circuit, which as noted previously constitutes refrigerant line 6 extending between the outlet of the evaporator 50 and the suction inlet of the compression device 20. The refrigerant vapor compression system 10 may also include an economizer vapor injection bypass line 14 b that establishes refrigerant flow communication between the refrigerant vapor injection line 14, from a location downstream with respect to refrigerant flow of the flash tank 70 and upstream with respect to refrigerant flow of the injection site to intermediate pressure stage of the compression device 20, and the suction pressure portion of refrigerant line 6 of the refrigerant circuit.
  • The refrigerant vapor compression system 10 may, as depicted in FIG. 1, include a control system operatively associated with the compression device and other components of the system, including but not limited to the fans 44 and 54. In an embodiment of the refrigerant vapor compression system 10, the control system includes a controller 100 and a plurality of flow control devices operatively associated with the various refrigerant lines. In operation, the controller 100 selectively controls the positioning of each of the plurality of flow control devices between its respective open and closed positions to selectively direct refrigerant flow through the various refrigerant lines.
  • The flow control devices, in addition to the suction modulation valve 23, may include, without limitation, a first flow control device 73 interdisposed in a downstream portion of refrigerant vapor injection line 14, a second flow control device 53 interdisposed in an upstream portion of refrigerant liquid injection line 18, and a third flow control device 83 interdisposed in refrigerant branch line 14 b. Each of the aforementioned flow control devices 53, 73, 83 may comprise a flow control valve selectively positionable between an open position wherein refrigerant flow may pass through the refrigerant line in which the flow control valve is interdisposed and a closed position wherein refrigerant flow is blocked through the refrigerant line in which the flow control valve is interdisposed. In an embodiment, each of the flow control valves 53, 73, 83 comprises a two-position solenoid valve of the type positionable selectively positionable under the control of the controller 100 between a first open position and a second closed position. In an embodiment, the suction modulation flow control valve 23 comprises a flow control valve having at least one partially open position between a fully closed position and a fully open position, such as for example an electronic stepper valve or a pulse width modulated solenoid valve.
  • The controller 100 not only controls operation of the various flow control valves 23, 53, 73, 83 to selectively direct refrigerant flow through the respective refrigerant lines in which the valves are interdisposed, but also may control operation of the electronic expansion valves 55 and 65, the compression device 20, and the fans 44 and 54. As in conventional practice, in addition to monitoring ambient conditions, the controller 100 may also monitor various operating parameters by means of various sensors operatively associated with the controller 100 and disposed at selected locations throughout the system. For example, in the exemplary embodiments depicted in FIG. 1, a pressure sensor 102 is disposed in operative association with the flash tank 70 to sense the pressure within the flash tank 70, a temperature sensor 103 and a pressure sensor 104 are provided to sense the refrigerant suction temperature and pressure, respectively, and a temperature sensor 105 and a pressure sensor 106 are provided to sense refrigerant discharge temperature and pressure, respectively. The pressure sensors 102, 104, 106 may be conventional pressure sensors, such as for example, pressure transducers, and the temperature sensors 103 and 105 may be conventional temperature sensors, such as for example, thermocouples or thermistors.
  • The refrigerant vapor compression system 10 may include either a mid-stage hot gas bypass line 24 or a discharge hot gas bypass line 26 or both. The mid-stage hot gas byline 24 establishes refrigerant flow communication between an intermediate pressure compression stage of the compression device 20 and refrigerant line 4 of the primary refrigerant circuit downstream of the flash tank 70. In the exemplary embodiment depicted in FIG. 1, the mid-stage hot gas bypass line 24 opens into the compression device 20 at a point between the refrigerant outlet of the first compression stage 20 a and the refrigerant inlet to the second compression stage 20 b to receive intermediate pressure, hot refrigerant vapor and opens into refrigerant line 4 of the primary refrigerant circuit at a location upstream of the evaporator 50 and downstream with respect to refrigerant flow through refrigerant line 4 of the primary expansion device 55 to discharge the intermediate pressure, hot gas into refrigerant line 4 upstream of the refrigerant coil 52 of the evaporator.
  • Additionally, a flow control device 87 is interdisposed into the mid-stage hot gas bypass line 24. The flow control device 87 is operated by the controller 100 to selectively open the mid-stage hot gas bypass line 24 to refrigerant vapor flow therethrough when it is desired to operate the refrigerant vapor compression system 10 in a defrost mode and close the mid-stage hot gas bypass line 24 to refrigerant vapor flow therethrough whenever the refrigerant vapor compression system 10 is not operating in a defrost mode. In an embodiment, the flow control device 87 may comprise a solenoid valve that is selectively positionable in either a fully open position or a fully closed position or, in addition thereto, at least one partially open position between a fully closed position and a fully open position, such as for example an electronic stepper valve or a pulse width modulated solenoid valve. When the flow control device 87 is positioned in the open position, refrigerant vapor will flow from the compression device 20 through the mid-stage hot gas bypass line 24 directly to and through the evaporator coil 52 to melt any frost deposited on the external surface of the refrigeration coil 52. In the defrost mode, the controller 100 will turn the power to the evaporator fan(s) 54 off to stop the circulation of air from the cargo box 200 through the evaporator 50 to eliminate an unintended rise in air temperature within the cargo box 200.
  • The hot gas bypass line 26 establishes refrigerant flow communication between a discharge outlet of the second compression stage 20 b of the compression device 20 and refrigerant line 4 of the primary refrigerant circuit downstream of the flash tank 70. In the exemplary embodiment depicted in FIG. 1, the hot gas bypass line 26 opens into the refrigerant line 2 of the primary refrigerant circuit at a point between the refrigerant inlet to the gas cooler 40 and the refrigerant vapor discharge outlet of the second compression stage 20 b to receive high pressure, hot refrigerant vapor and opens into refrigerant line 4 of the primary refrigerant circuit at a location upstream of the evaporator 50 and downstream with respect to refrigerant flow through refrigerant line 4 of the primary expansion device 55 to discharge the hot gas into refrigerant line 4 upstream of the refrigerant coil 52 of the evaporator.
  • Additionally, a flow control device 85 is interdisposed into the hot gas bypass line 26. In the embodiment depicted in FIG. 1, the flow control device 85 is a open/closed flow control device operated by the controller 100 to selectively open the hot gas bypass line 26 to refrigerant vapor flow therethrough when it is desired to operate the refrigerant vapor compression system 10 in a defrost mode and close the hot gas bypass line 26 to refrigerant vapor flow therethrough whenever the refrigerant vapor compression system 10 is not operating in a defrost mode. In this embodiment, the flow control device 85 may comprise a solenoid valve that is selectively positionable in either a fully open position or a fully closed position or, in addition thereto, at least one partially open position between a fully closed position and a fully open position, such as for example an electronic stepper valve or a pulse width modulated solenoid valve. When the flow control device 85 is positioned in the open position, refrigerant vapor will flow from the compression device 20 through the hot gas bypass line 26 directly to and through the evaporator coil 52 to melt any frost deposited on the external surface of the refrigeration coil 52. In the defrost mode, the controller 100 will turn the power to the evaporator fan(s) 54 off to stop the circulation of air from the cargo box 200 through the evaporator 50 to eliminate an unintended rise in air temperature within the cargo box 200.
  • Whenever it is necessary to defrost the evaporator heat exchange surface, the controller 100 will close each of the valves 53, 73, 83 as well as the electronic expansion valves 55 and 65, and either open the flow control valve 87 to permit the flow of high pressure, hot refrigerant vapor from the discharge outlet of the compression device 20 to flow through the hot gas bypass line 24 into and through the evaporator coil 52, or open the mid-stage flow control valve 85 to permit the flow of intermediate pressure, intermediate temperature hot refrigerant vapor from an intermediate pressure stage of the compression device 20 to flow through the mid-stage hot gas bypass line 26 into and through the evaporator coil 52. As the refrigerant vapor passes through the refrigerant passages of the evaporator 50, the frost formed on the evaporator heat exchange surface is melted. In the defrost mode, the controller 100 will also turn the power to the evaporator fan(s) 54 off to stop the circulation of air from the cargo box 200 through the evaporator 50 to eliminate an unintended rise in air temperature within the cargo box 200.
  • Additionally, whenever it is desired to heat the air returning from the cargo box 200, for example in the event of an ambient outdoor temperature that is lower than the desired cargo box air temperature to be maintained, the controller 100 will close each of the valves 53, 73, 83 as well as the electronic expansion valves 55 and 65, and either open the flow control valve 87 to permit the flow of high pressure, hot refrigerant vapor from the discharge outlet of the compression device 20 to flow through the hot gas bypass line 24 into and through the evaporator coil 52, or open the mid-stage flow control valve 85 to permit the flow of intermediate pressure, intermediate temperature hot refrigerant vapor from an intermediate pressure stage of the compression device 20 to flow through the mid-stage hot gas bypass line 26 into and through the evaporator coil 52. In the heating mode, however, the evaporator fan(s) 54 remain in operation to circulate air from the cargo box 200 through the evaporator 50 in heat exchange relationship with the hot refrigerant vapor passing through the evaporator coil 52. Thus, as the hot refrigerant vapor passes through the refrigerant passages of the evaporator 50, the air returning from the cargo space 200 is heated and supplied by the evaporator fan 54 back to the cargo space 200.
  • In an embodiment, one or both of the refrigerant flow control devices 85 disposed in the hot gas bypass line 26 and the refrigerant flow control device 87 disposed in the mid-stage hot gas bypass line 24 may be an electronic expansion valve. In this embodiment, the heating capacity of a refrigeration system during operation in a heating or defrosting mode may be relatively precisely controlled by regulating the hot gas bypass valve downstream of the compressor along with modulating the suction modulation valve upstream of the compressor. In this embodiment, during the heating mode and also during the defrost mode, the controller 100 will close each of the valves 53, 73, 83 as well as the electronic expansion valves 55 and 65, and then modulate the opening of the expansion valve 85, 87 and also modulate the opening of the of the suction modulation valve 23, to control the heating capacity of the refrigerant vapor compression system 10. As noted previously, the pressure and temperature of the hot refrigerant vapor decrease as it traverses the expansion valve 85, 87. The pressure of the refrigerant vapor leaving the evaporator coil 52 is further reduced to a desired suction pressure as the refrigerant flow is throttled in traversing the suction modulation valve 23 disposed in refrigerant line 6. The magnitude of each pressure drop may be independently controlled by modulating the opening of the respective one of the expansion valve 85 or the suction modulation valve 23. In a method of practice, the degree of opening of the expansion valve 85, 87 is modulated in response to the sensed compressor discharged refrigerant pressure to control the compressor discharge refrigerant pressure and the degree of opening of the SMV 23 is modulated to control refrigerant mass flow.
  • If heating or defrosting capacity needs to be increased, the controller 100 will increase the opening of the expansion valve 85, 87 to raise the pressure and temperature of the refrigerant vapor passing through the evaporator coil 52 and also further reduce the opening of the suction modulation valve 23 to provide greater throttling, as necessary, to keep the pressure of the refrigerant vapor entering the compression device 20 from the refrigerant line 6 at the desired suction pressure. Conversely, if heating or defrosting capacity needs to be decreased, the controller 100 will decrease the opening of the expansion valve 85, 87 to lower the pressure and temperature of the refrigerant vapor passing through the evaporator coil 52 and also further increase the opening of the suction modulation valve 23 to provide lesser throttling, as necessary, to keep the pressure of the refrigerant vapor entering the compression device 20 from the refrigerant line 6 at the desired suction pressure.
  • With the valves 53, 73, 83, as well as the electronic expansion valves 55 and 65, being closed, the compressor discharge pressure is determined by the amount of charge in the active part of the system 10, that is the amount of refrigerant passing through the evaporator 50 during the heating mode or the defrost mode. Referring now to FIG. 2, a pressure-to-enthalpy diagram is depicted for a transport refrigeration system operating in a transcritical cycle with carbon dioxide as the refrigerant. The refrigerant vapor enters the compression device 20 at point a, and discharges from the compression device as a hot, high pressure vapor at point b. After traversing the hot gas expansion valve 85, refrigeration vapor pressure lowers to point c and the refrigerant vapor enters evaporator 50. At the exit of evaporator 50, refrigerant state is at point d before throttling down to point a by SMV. If heating or defrosting capacity need to be increased, the controller 100 will open up the expansion valve 85 to raise evaporating pressure from cd to c′d′. Thus, since refrigerant temperature increases with higher pressure, this results in a higher temperature difference between refrigerant and air. Therefore, higher heating capacity can be expected. If heating or defrosting capacity need to be decreased, the controller 100 will reduce the opening through the expansion valve to decrease evaporating pressure from cd to c″d″. Thus, since refrigerant temperature is decreased with lower pressure, this results in a lower temperature difference between refrigerant and air. Therefore, lower heating or defrosting capacity can be expected. The heating or defrosting capacity can hence be modified such that the point d (d′ or d″) is at the optimal point away from the dome (i.e., in the vapor region, with a desired superheat range).
  • In the exemplary embodiment of the refrigerant vapor compression system 10 described and depicted herein, the system includes both a mid-stage pressure hot gas bypass line 24 and a discharge pressure hot gas bypass line 26. It is to be understood, that the system may be operated in the heating mode or defrost mode selectively with only the mid-stage pressure hot gas bypass line 24 open, or with only the discharge pressure hot gas bypass line 26 open, or with both hot gas bypass lines 24 and 26 open simultaneously, as desired. Further, it is to be understood that in other embodiments, the refrigerant vapor compression system 10 may include only one of the hot gas bypass lines 24 and 26, as desired, rather than both hot gas bypass lines.
  • As noted previously, when operating in the heating mode or the defrost mode, typically, each of the flow control valves 53, 73, 83 and the expansion valves 55 and 65 is closed and system capacity is controlled by modulating whichever of valves 85 and 87 that is then active. However, it is to be understood that in some instances it may be desirable to adjust the refrigerant charge circulating through the active part of the system by selectively opening one of the flow control valve 53 or the expansion valve 65. For example, during operation in the heating or defrost mode, if the refrigerant temperature at the discharge outlet of the compression device 20, i.e. the compressor discharge temperature, exceeds a preselected upper limit temperature, then the controller 100 may open the flow control valve 53 in the refrigerant liquid injection line 18 to allow refrigerant liquid to drain from the reservoir 72 of the flash tank 70 back into the primary refrigerant circuit, thereby increasing the amount of refrigerant charge in the active portion of the primary refrigerant circuit. As another example, during operation in the heating or defrost mode, if the refrigerant pressure at the discharge outlet of the compression device 20, i.e. the compressor discharge pressure, is still too high in spite of the opening of the controller 100 whichever of valves 85 and 87 that is then active, then the controller 100 may open the expansion valve 65 to allow refrigerant to pass from refrigerant line 4 of the primary refrigerant circuit into the flash tank 70 to collect in the reservoir 72, thereby reducing the amount of refrigerant charge in the active portion of the primary refrigerant circuit.
  • Those skilled in the art will recognize that many variations may be made to the particular exemplary embodiments described herein. For example, the refrigerant vapor compression system may also be operated in a subcritical cycle, rather than in a transcritical cycle as described hereinbefore. While the present invention has been particularly shown and described with reference to the exemplary embodiments as illustrated in the drawings, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the spirit and scope of the invention as defined by the claims.

Claims (13)

1. A refrigerant vapor compression system comprising:
a primary refrigerant circuit including a refrigerant compression device, a refrigerant heat rejection heat exchanger downstream of said compression device, a refrigerant heat absorption heat exchanger downstream of said refrigerant heat rejection heat exchanger, and a primary expansion device disposed in the refrigerant circuit downstream of said refrigerant heat rejection heat exchanger and upstream of said refrigerant heat absorption heat exchanger;
a hot gas bypass line establishing refrigerant vapor flow communication between a location upstream with respect to refrigerant vapor flow of said refrigerant heat rejection heat exchanger and a location upstream with respect to refrigerant flow of said refrigeration heat absorption heat exchanger and downstream of said primary expansion device, said hot gas bypass line bypassing said refrigerant heat rejection heat exchanger and said primary expansion device; and
a refrigerant vapor flow control device interdisposed in said hot gas bypass line, said refrigerant flow control device having at least a first open position in which refrigerant vapor flow may pass through said hot gas bypass line and a closed position in which refrigerant vapor flow may not pass through said hot gas bypass line.
2. The refrigerant vapor compression system as recited in claim 1 wherein the hot gas bypass line opens into a mid-stage of the compression device to receive refrigerant vapor from the compression device at an intermediate pressure between a compression device suction pressure and a compression device discharge pressure.
3. The refrigerant vapor compression system as recited in claim 1 wherein the hot gas bypass line opens into the primary refrigerant circuit at a location between an inlet to the refrigerant heat rejection heat exchanger and a refrigerant vapor discharge outlet of the compression device to receive refrigerant vapor at a compression discharge pressure.
4. The refrigerant vapor compression system as recited in claim 1 wherein said refrigerant flow control device comprises a solenoid valve.
5. The refrigerant vapor compression system as recited in claim 1 wherein said refrigerant flow control device comprises an expansion valve.
6. The refrigerant vapor compression system as recited in claim 1 further comprising a suction modulation valve interdisposed in said refrigerant circuit downstream of said refrigerant heat absorption heat exchanger and upstream of the compression device.
7. The refrigerant vapor compression system as recited in claim 1 wherein said system operates in a transcritical cycle.
8. The refrigerant vapor compression system as recited in claim 1 wherein the refrigerant comprises carbon dioxide.
9. The refrigerant vapor compression system as recited in claim 1 wherein the hot gas bypass line opens into a mid-stage located between a first independent compression stage and a second independent compression stage.
10. The refrigerant vapor compression system as recited in claim 1 further comprising a controller for modulating said refrigerant vapor flow control device to selectively vary the opening of a flow passage through said refrigeration vapor flow control device when operating said refrigerant vapor compression system in one of a heating mode or a defrost mode.
11. The refrigerant vapor compression system as recited in claim 10 wherein said controller modulates said refrigerant vapor flow control device to selectively vary the opening of a flow passage through said refrigeration vapor flow control device in response to a sensed compressor discharge refrigerant temperature.
12. A method for controlling the capacity of a refrigerant vapor compression system operating in one of a heating mode and a defrost mode, the refrigerant vapor compression system including a refrigerant circuit having a compression device, a refrigerant heat rejection heat exchanger, and a refrigerant heat absorption heat exchanger disposed in serial refrigerant flow relationship, said method comprising the steps of:
bypassing refrigerant vapor through a bypass line from a location upstream of the refrigerant heat rejection heat exchanger directly to the refrigerant heat absorption heat exchanger;
disposing a refrigerant vapor flow control device in the bypass line;
disposing a suction modulation valve in a refrigerant line connecting a refrigerant outlet of the refrigerant heat absorption heat exchanger in refrigerant flow communication with a suction inlet of the compression device;
selectively modulating the flow of refrigerant vapor through the refrigerant flow control device; and
selectively modulating the flow of refrigerant through the suction modulation valve.
13. The method as recited in claim 12 further comprising the steps of:
sensing a compressor discharge refrigerant pressure;
selectively modulating the flow of refrigerant vapor through the refrigerant flow control device in response to the sensed compressor discharged refrigerant pressure; and
selectively modulating the flow of refrigerant through the suction modulation valve to control refrigerant mass flow.
US13/258,180 2009-04-09 2010-04-06 Refrigerant vapor compression system with hot gas bypass Abandoned US20120011866A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/258,180 US20120011866A1 (en) 2009-04-09 2010-04-06 Refrigerant vapor compression system with hot gas bypass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16797209P 2009-04-09 2009-04-09
US13/258,180 US20120011866A1 (en) 2009-04-09 2010-04-06 Refrigerant vapor compression system with hot gas bypass
PCT/US2010/030025 WO2010117973A2 (en) 2009-04-09 2010-04-06 Refrigerant vapor compression system with hot gas bypass

Publications (1)

Publication Number Publication Date
US20120011866A1 true US20120011866A1 (en) 2012-01-19

Family

ID=42936838

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/258,180 Abandoned US20120011866A1 (en) 2009-04-09 2010-04-06 Refrigerant vapor compression system with hot gas bypass

Country Status (5)

Country Link
US (1) US20120011866A1 (en)
EP (1) EP2417406B1 (en)
CN (1) CN102388279B (en)
DK (1) DK2417406T3 (en)
WO (1) WO2010117973A2 (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110209485A1 (en) * 2007-10-10 2011-09-01 Alexander Lifson Suction superheat conrol based on refrigerant condition at discharge
US20120318008A1 (en) * 2010-03-08 2012-12-20 Carrier Corporation Refrigerant distribution apparatus and methods for transport refrigeration system
US20120318014A1 (en) * 2010-03-08 2012-12-20 Carrier Corporation Capacity and pressure control in a transport refrigeration system
US20120318006A1 (en) * 2010-03-08 2012-12-20 Carrier Corporation Defrost operations and apparatus for a transport refrigeration system
US20140260341A1 (en) * 2013-03-14 2014-09-18 Rolls-Royce North American Technologies, Inc. Adaptive trans-critical carbon dioxide cooling systems
FR3004797A1 (en) * 2013-04-23 2014-10-24 Axima Refrigeration France PROCESS FOR DETACHING WATER CRYSTALS ON THE INTERNAL SURFACE OF A HEAT EXCHANGER WITHOUT REMOVING THE TEMPERATURE OF THE FRIGOPORATOR AT THE ENTRY OF THE EXCHANGER
WO2014179442A1 (en) * 2013-05-03 2014-11-06 Hill Phoenix, Inc. Systems and methods for pressure control in a co2 refrigeration system
US8966934B2 (en) 2011-06-16 2015-03-03 Hill Phoenix, Inc. Refrigeration system
US20150107284A1 (en) * 2013-10-18 2015-04-23 Carel Industries S.p.A. Actuation method of a refrigerating machine provided with an economizer apparatus
US20150121908A1 (en) * 2012-10-19 2015-05-07 Lennox Industries Inc. Pressure regulation of an air conditioning system
US20150360543A1 (en) * 2012-11-27 2015-12-17 Valeo Klimasysteme Gmbh Refrigerant circuit for a vehicle air-conditioning system and method of air-conditioning a vehicle interior
US20160047595A1 (en) * 2014-08-18 2016-02-18 Paul Mueller Company Systems and Methods for Operating a Refrigeration System
US20160116202A1 (en) * 2013-05-31 2016-04-28 Mitsubishi Electric Corporation Air-conditioning apparatus
US20160201935A1 (en) * 2015-01-09 2016-07-14 Broan-Nutone Llc Humidity wall control
US9482451B2 (en) 2013-03-14 2016-11-01 Rolls-Royce Corporation Adaptive trans-critical CO2 cooling systems for aerospace applications
US20160320093A1 (en) * 2013-03-13 2016-11-03 Rheem Manufacturing Company Apparatus and Methods for Pre-Heating Water with Air Conditioning Unit or Heat Pump
JP2016223741A (en) * 2015-06-03 2016-12-28 東芝キヤリア株式会社 Refrigeration cycle device
US20170102169A1 (en) * 2015-10-12 2017-04-13 Heatcraft Refrigeration Products Llc Air Conditioning and Refrigeration System
US20170115043A1 (en) * 2015-10-21 2017-04-27 Mitsubishi Electric Research Laboratories, Inc. System and Method for Controlling Refrigerant in Vapor Compression System
US20170122624A1 (en) * 2012-10-30 2017-05-04 Lennox Industries Inc. Multi-stage system for cooling a refrigerant
US20170176053A1 (en) * 2014-02-17 2017-06-22 Carrier Corporation Hot Gas Bypass for Two-Stage Compressor
US20170211871A1 (en) * 2016-01-21 2017-07-27 General Electric Company Sealed System and a Method For Defrosting an Evaporator
US9718553B2 (en) 2013-03-14 2017-08-01 Rolls-Royce North America Technologies, Inc. Adaptive trans-critical CO2 cooling systems for aerospace applications
US20170274732A1 (en) * 2014-08-22 2017-09-28 Thermo King Corporation Method and system for defrosting a heat exchanger
USD809407S1 (en) 2015-01-09 2018-02-06 Broan-Nutone Llc Humidity wall control
US20180187928A1 (en) * 2017-01-03 2018-07-05 Heatcraft Refrigeration Products Llc System and method for reusing waste heat of a transcritical refrigeration system
US20180187927A1 (en) * 2017-01-03 2018-07-05 Heatcraft Refrigeration Products Llc System and method for reusing waste heat of a transcritical refrigeration system
US20180216851A1 (en) * 2015-08-03 2018-08-02 Hill Phoenix, Inc. Co2 refrigeration system with direct co2 heat exchange for building temperature control
US20180274823A1 (en) * 2017-03-21 2018-09-27 Heatcraft Refrigeration Products Llc Transcritical system with enhanced subcooling for high ambient temperature
WO2018178169A1 (en) * 2017-03-31 2018-10-04 Siemens Aktiengesellschaft Heat pump and method for operating a heat pump
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
US10132529B2 (en) 2013-03-14 2018-11-20 Rolls-Royce Corporation Thermal management system controlling dynamic and steady state thermal loads
US20180356136A1 (en) * 2015-12-11 2018-12-13 Gree Electric Appliances, Inc. Of Zhuhai Gas-replenishing and enthalpy-increasing control method, device and apparatus for two-stage compressor
US10215465B2 (en) 2015-10-30 2019-02-26 Heatcraft Refrigeration Products Llc Systems and methods for low load compressor operations
US20190128590A1 (en) * 2016-06-20 2019-05-02 Mitsubishi Electric Corporation Cooling device
US10302342B2 (en) 2013-03-14 2019-05-28 Rolls-Royce Corporation Charge control system for trans-critical vapor cycle systems
US10378802B2 (en) 2013-08-30 2019-08-13 Thermo King Corporation System and method of transferring refrigerant with a discharge pressure
WO2019186647A1 (en) * 2018-03-26 2019-10-03 三菱電機株式会社 Refrigerating apparatus
US20190376732A1 (en) * 2018-06-06 2019-12-12 Heatcraft Refrigeration Products Llc Cooling system
US10543737B2 (en) 2015-12-28 2020-01-28 Thermo King Corporation Cascade heat transfer system
EP3604890A1 (en) * 2018-08-01 2020-02-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refuelling containers with pressurized gas
EP3604891A1 (en) * 2018-08-01 2020-02-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refuelling containers with pressurized gas
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control
USD887788S1 (en) 2017-05-17 2020-06-23 Dometic Sweden Ab Cooler
USD888503S1 (en) 2017-05-17 2020-06-30 Dometic Sweden Ab Cooler
US10767912B2 (en) * 2015-10-08 2020-09-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10767906B2 (en) * 2017-03-02 2020-09-08 Heatcraft Refrigeration Products Llc Hot gas defrost in a cooling system
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US10871314B2 (en) 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
US10920933B2 (en) 2018-08-01 2021-02-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
US10935260B2 (en) 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
US10969165B2 (en) 2017-01-12 2021-04-06 Emerson Climate Technologies, Inc. Micro booster supermarket refrigeration architecture
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
USD933449S1 (en) 2016-11-22 2021-10-19 Dometic Sweden Ab Latch
US11149971B2 (en) * 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
US11149997B2 (en) * 2020-02-05 2021-10-19 Heatcraft Refrigeration Products Llc Cooling system with vertical alignment
WO2022036436A1 (en) * 2020-08-18 2022-02-24 Controlled Environments Limited Refrigeration system with hot gas by-pass
US11268746B2 (en) * 2019-12-17 2022-03-08 Heatcraft Refrigeration Products Llc Cooling system with partly flooded low side heat exchanger
US11287087B2 (en) 2018-08-01 2022-03-29 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
US11346583B2 (en) 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US11414238B2 (en) 2016-11-22 2022-08-16 Dometic Sweden Ab Cooler
US11499765B2 (en) 2018-08-01 2022-11-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
US11506339B2 (en) 2018-08-01 2022-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
US11506430B2 (en) 2019-07-15 2022-11-22 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
US20230071132A1 (en) * 2021-09-03 2023-03-09 Heatcraft Refrigeration Products Llc Hot gas defrost using medium temperature compressor discharge
US20230070186A1 (en) * 2021-09-03 2023-03-09 Heatcraft Refrigeration Products Llc Hot gas defrost using dedicated low temperature compressor discharge
US20230272804A1 (en) * 2020-07-30 2023-08-31 Johnson Controls Tyco IP Holdings LLP System and method for directing fluid flow in a compressor
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808621B1 (en) * 2012-01-23 2020-02-26 Mitsubishi Electric Corporation Air-conditioning device
JP5490338B2 (en) 2012-03-22 2014-05-14 パナソニック株式会社 Centrifugal compressor
ITPD20130004A1 (en) * 2013-01-15 2014-07-16 Epta Spa REFRIGERATOR SYSTEM WITH EJECTOR
US9982919B2 (en) 2015-09-16 2018-05-29 Heatcraft Refrigeration Products Llc Cooling system with low temperature load
WO2017189420A1 (en) * 2016-04-27 2017-11-02 Carrier Corporation Water-cooled refrigerated transport system
JP6388010B2 (en) * 2016-09-30 2018-09-12 ダイキン工業株式会社 Air conditioner
JP6948796B2 (en) * 2017-01-24 2021-10-13 三菱重工サーマルシステムズ株式会社 Refrigerant circuit system and control method
CN107192158B (en) * 2017-06-12 2023-07-14 珠海格力电器股份有限公司 Enthalpy increasing system of air conditioner and fixed-frequency air conditioner with enthalpy increasing system
KR102192386B1 (en) * 2018-11-08 2020-12-17 엘지전자 주식회사 Air conditioner
CN111306832B (en) * 2018-12-11 2021-09-17 广东美芝精密制造有限公司 Air conditioner
US11098929B2 (en) * 2019-01-10 2021-08-24 Haier Us Appliance Solutions, Inc. Fast switching multiple evaporator system for an appliance
US11085684B2 (en) 2019-06-27 2021-08-10 Trane International Inc. System and method for unloading a multi-stage compressor
NO345812B1 (en) * 2019-10-28 2021-08-16 Waister As Improved heat pump
CN114061162A (en) * 2020-07-31 2022-02-18 开利公司 Refrigeration system and control method thereof
CN112810398B (en) * 2021-01-06 2023-03-14 深圳博用科技有限公司 Heat pump air conditioning system capable of quickly defrosting and applied to electric automobile and quick defrosting method thereof

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3238738A (en) * 1964-02-12 1966-03-08 Robert C Webber Two-stage refrigeration system with by-pass means
US3332251A (en) * 1965-10-24 1967-07-25 John E Watkins Refrigeration defrosting system
US4193781A (en) * 1978-04-28 1980-03-18 Mcquay-Perfex Inc. Head pressure control for heat reclaim refrigeration systems
US4770000A (en) * 1986-06-25 1988-09-13 Hitachi, Ltd. Defrosting of refrigerator system out-door heat exchanger
US5046325A (en) * 1988-06-30 1991-09-10 Kabushiki Kaisha Toshiba Refrigerating circuit apparatus with two stage compressor and heat storage tank
US5056327A (en) * 1990-02-26 1991-10-15 Heatcraft, Inc. Hot gas defrost refrigeration system
US5094085A (en) * 1990-05-15 1992-03-10 Kabushiki Kaisha Toshiba Refrigerating cycle apparatus with a compressor having simultaneously driven two compressor means
US5575158A (en) * 1994-10-05 1996-11-19 Russell A Division Of Ardco, Inc. Refrigeration defrost cycles
US5598721A (en) * 1989-03-08 1997-02-04 Rocky Research Heating and air conditioning systems incorporating solid-vapor sorption reactors capable of high reaction rates
US5809789A (en) * 1997-05-07 1998-09-22 Baker; Philip L. Refrigeration module
US6385980B1 (en) * 2000-11-15 2002-05-14 Carrier Corporation High pressure regulation in economized vapor compression cycles
US6883334B1 (en) * 2003-11-05 2005-04-26 Preyas Sarabhai Shah Cold plate temperature control method and apparatus
US7028494B2 (en) * 2003-08-22 2006-04-18 Carrier Corporation Defrosting methodology for heat pump water heating system
US7043927B2 (en) * 2003-04-03 2006-05-16 Carrier Corporation Transport Refrigeration system
US7086244B2 (en) * 2003-06-10 2006-08-08 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
US7290600B2 (en) * 2002-06-26 2007-11-06 York International Corporation Air-to-air heat pump defrost bypass loop
US7435062B2 (en) * 2001-09-27 2008-10-14 Sanyo Electric Co., Ltd. Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US20080250812A1 (en) * 2005-11-30 2008-10-16 Alexander Lifson Multi-Circuit Refrigerant System Utilizing Pulse Width Modulation Techniques
US7836718B2 (en) * 2007-06-29 2010-11-23 Electrolux Home Products, Inc. Hot gas defrost method and apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162272U (en) 1987-04-13 1988-10-24
JP3888403B2 (en) * 1997-12-18 2007-03-07 株式会社富士通ゼネラル Method and apparatus for controlling air conditioner
JP3576866B2 (en) * 1999-05-10 2004-10-13 株式会社テージーケー Refrigeration cycle with bypass line for vehicles
GB2397369B (en) * 2001-10-19 2005-11-16 Manitowoc Foodservice Co Inc Beverage dispenser with integral ice maker
TW568996B (en) * 2001-11-19 2004-01-01 Sanyo Electric Co Defroster of refrigerant circuit and rotary compressor for refrigerant circuit
JP4363997B2 (en) * 2004-01-27 2009-11-11 三洋電機株式会社 Refrigeration equipment
JP2006071174A (en) * 2004-09-01 2006-03-16 Daikin Ind Ltd Refrigerating device
EP1859211A4 (en) * 2005-03-18 2010-08-04 Carrier Comm Refrigeration Inc Bottle cooler defroster and methods
CN100464136C (en) * 2006-07-10 2009-02-25 陈志强 Heat pump heating system capable of improving heating effect in winter and special heating apparatus therefor
CN200989704Y (en) * 2006-12-13 2007-12-12 浙江盾安人工环境设备股份有限公司 Low-temperature constant-temperature constant-humidity air conditioner unit
CN201034400Y (en) * 2007-05-31 2008-03-12 广州立昆空调科技有限公司 Defrosting device of air source heat pump water heater
CN201126288Y (en) * 2007-09-13 2008-10-01 海尔集团公司 Air conditioning system capable of producing heat without intermittence when defrosting

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3238738A (en) * 1964-02-12 1966-03-08 Robert C Webber Two-stage refrigeration system with by-pass means
US3332251A (en) * 1965-10-24 1967-07-25 John E Watkins Refrigeration defrosting system
US4193781A (en) * 1978-04-28 1980-03-18 Mcquay-Perfex Inc. Head pressure control for heat reclaim refrigeration systems
US4770000A (en) * 1986-06-25 1988-09-13 Hitachi, Ltd. Defrosting of refrigerator system out-door heat exchanger
US5046325A (en) * 1988-06-30 1991-09-10 Kabushiki Kaisha Toshiba Refrigerating circuit apparatus with two stage compressor and heat storage tank
US5598721A (en) * 1989-03-08 1997-02-04 Rocky Research Heating and air conditioning systems incorporating solid-vapor sorption reactors capable of high reaction rates
US5056327A (en) * 1990-02-26 1991-10-15 Heatcraft, Inc. Hot gas defrost refrigeration system
US5094085A (en) * 1990-05-15 1992-03-10 Kabushiki Kaisha Toshiba Refrigerating cycle apparatus with a compressor having simultaneously driven two compressor means
US5575158A (en) * 1994-10-05 1996-11-19 Russell A Division Of Ardco, Inc. Refrigeration defrost cycles
US5809789A (en) * 1997-05-07 1998-09-22 Baker; Philip L. Refrigeration module
US6385980B1 (en) * 2000-11-15 2002-05-14 Carrier Corporation High pressure regulation in economized vapor compression cycles
US7435062B2 (en) * 2001-09-27 2008-10-14 Sanyo Electric Co., Ltd. Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US7290600B2 (en) * 2002-06-26 2007-11-06 York International Corporation Air-to-air heat pump defrost bypass loop
US7043927B2 (en) * 2003-04-03 2006-05-16 Carrier Corporation Transport Refrigeration system
US7086244B2 (en) * 2003-06-10 2006-08-08 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
US7028494B2 (en) * 2003-08-22 2006-04-18 Carrier Corporation Defrosting methodology for heat pump water heating system
US6883334B1 (en) * 2003-11-05 2005-04-26 Preyas Sarabhai Shah Cold plate temperature control method and apparatus
US20080250812A1 (en) * 2005-11-30 2008-10-16 Alexander Lifson Multi-Circuit Refrigerant System Utilizing Pulse Width Modulation Techniques
US7836718B2 (en) * 2007-06-29 2010-11-23 Electrolux Home Products, Inc. Hot gas defrost method and apparatus

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110209485A1 (en) * 2007-10-10 2011-09-01 Alexander Lifson Suction superheat conrol based on refrigerant condition at discharge
US10072884B2 (en) * 2010-03-08 2018-09-11 Carrier Corporation Defrost operations and apparatus for a transport refrigeration system
US20120318014A1 (en) * 2010-03-08 2012-12-20 Carrier Corporation Capacity and pressure control in a transport refrigeration system
US20120318006A1 (en) * 2010-03-08 2012-12-20 Carrier Corporation Defrost operations and apparatus for a transport refrigeration system
US9909786B2 (en) * 2010-03-08 2018-03-06 Carrier Corporation Refrigerant distribution apparatus and methods for transport refrigeration system
US10047989B2 (en) * 2010-03-08 2018-08-14 Carrier Corporation Capacity and pressure control in a transport refrigeration system
US20120318008A1 (en) * 2010-03-08 2012-12-20 Carrier Corporation Refrigerant distribution apparatus and methods for transport refrigeration system
US8966934B2 (en) 2011-06-16 2015-03-03 Hill Phoenix, Inc. Refrigeration system
US20150121908A1 (en) * 2012-10-19 2015-05-07 Lennox Industries Inc. Pressure regulation of an air conditioning system
US10036580B2 (en) * 2012-10-30 2018-07-31 Lennox Industries Inc. Multi-stage system for cooling a refrigerant
US20170122624A1 (en) * 2012-10-30 2017-05-04 Lennox Industries Inc. Multi-stage system for cooling a refrigerant
US9827830B2 (en) * 2012-11-27 2017-11-28 Valeo Klimasysteme Gmbh Refrigerant circuit for a vehicle air-conditioning system and method of air-conditioning a vehicle interior
US20150360543A1 (en) * 2012-11-27 2015-12-17 Valeo Klimasysteme Gmbh Refrigerant circuit for a vehicle air-conditioning system and method of air-conditioning a vehicle interior
US20160320093A1 (en) * 2013-03-13 2016-11-03 Rheem Manufacturing Company Apparatus and Methods for Pre-Heating Water with Air Conditioning Unit or Heat Pump
US9945582B2 (en) * 2013-03-13 2018-04-17 Rheem Manufacturing Company Apparatus and methods for pre-heating water with air conditioning unit or heat pump
US9676484B2 (en) * 2013-03-14 2017-06-13 Rolls-Royce North American Technologies, Inc. Adaptive trans-critical carbon dioxide cooling systems
US10302342B2 (en) 2013-03-14 2019-05-28 Rolls-Royce Corporation Charge control system for trans-critical vapor cycle systems
US11448432B2 (en) 2013-03-14 2022-09-20 Rolls-Royce Corporation Adaptive trans-critical CO2 cooling system
US9482451B2 (en) 2013-03-14 2016-11-01 Rolls-Royce Corporation Adaptive trans-critical CO2 cooling systems for aerospace applications
US20140260341A1 (en) * 2013-03-14 2014-09-18 Rolls-Royce North American Technologies, Inc. Adaptive trans-critical carbon dioxide cooling systems
US9718553B2 (en) 2013-03-14 2017-08-01 Rolls-Royce North America Technologies, Inc. Adaptive trans-critical CO2 cooling systems for aerospace applications
US10132529B2 (en) 2013-03-14 2018-11-20 Rolls-Royce Corporation Thermal management system controlling dynamic and steady state thermal loads
FR3004797A1 (en) * 2013-04-23 2014-10-24 Axima Refrigeration France PROCESS FOR DETACHING WATER CRYSTALS ON THE INTERNAL SURFACE OF A HEAT EXCHANGER WITHOUT REMOVING THE TEMPERATURE OF THE FRIGOPORATOR AT THE ENTRY OF THE EXCHANGER
EP2799795A1 (en) * 2013-04-23 2014-11-05 Michel Leprieur Method for detaching hydrous crystals from the inner surface of a heat exchanger without raising the temperature of the cooling medium at the intake of the heat exchanger
WO2014179442A1 (en) * 2013-05-03 2014-11-06 Hill Phoenix, Inc. Systems and methods for pressure control in a co2 refrigeration system
US11029068B2 (en) 2013-05-03 2021-06-08 Hill Phoenix, Inc. Systems and methods for pressure control in a CO2 refrigeration system
US11852391B2 (en) 2013-05-03 2023-12-26 Hill Phoenix, Inc. Systems and methods for pressure control in a CO2 refrigeration system
US10465968B2 (en) * 2013-05-31 2019-11-05 Mitsubishi Electric Corporation Air-conditioning apparatus having first and second defrosting pipes
US20160116202A1 (en) * 2013-05-31 2016-04-28 Mitsubishi Electric Corporation Air-conditioning apparatus
US10378802B2 (en) 2013-08-30 2019-08-13 Thermo King Corporation System and method of transferring refrigerant with a discharge pressure
US20150107284A1 (en) * 2013-10-18 2015-04-23 Carel Industries S.p.A. Actuation method of a refrigerating machine provided with an economizer apparatus
US10184705B2 (en) * 2013-10-18 2019-01-22 Carel Industries S.p.A. Actuation method of a refrigerating machine provided with an economizer apparatus
US10267539B2 (en) * 2014-02-17 2019-04-23 Carrier Corporation Hot gas bypass for two-stage compressor
US20170176053A1 (en) * 2014-02-17 2017-06-22 Carrier Corporation Hot Gas Bypass for Two-Stage Compressor
US20170059240A1 (en) * 2014-08-18 2017-03-02 Paul Mueller Company Systems and Methods for Operating a Refrigeration System
US20160047595A1 (en) * 2014-08-18 2016-02-18 Paul Mueller Company Systems and Methods for Operating a Refrigeration System
US10442272B2 (en) * 2014-08-22 2019-10-15 Thermo King Corporation Method and system for defrosting a heat exchanger
US20170274732A1 (en) * 2014-08-22 2017-09-28 Thermo King Corporation Method and system for defrosting a heat exchanger
US10753661B2 (en) 2014-09-26 2020-08-25 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
US11480372B2 (en) 2014-09-26 2022-10-25 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
US11927377B2 (en) 2014-09-26 2024-03-12 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
US10741345B2 (en) * 2015-01-09 2020-08-11 Broan-Nutone Llc Humidity wall control
US20160201935A1 (en) * 2015-01-09 2016-07-14 Broan-Nutone Llc Humidity wall control
USD809407S1 (en) 2015-01-09 2018-02-06 Broan-Nutone Llc Humidity wall control
JP2016223741A (en) * 2015-06-03 2016-12-28 東芝キヤリア株式会社 Refrigeration cycle device
US10502461B2 (en) * 2015-08-03 2019-12-10 Hill Phoeniz, Inc. CO2 refrigeration system with direct CO2 heat exchange for building temperature control
US20180216851A1 (en) * 2015-08-03 2018-08-02 Hill Phoenix, Inc. Co2 refrigeration system with direct co2 heat exchange for building temperature control
US10767912B2 (en) * 2015-10-08 2020-09-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US20170102169A1 (en) * 2015-10-12 2017-04-13 Heatcraft Refrigeration Products Llc Air Conditioning and Refrigeration System
US9869492B2 (en) * 2015-10-12 2018-01-16 Heatcraft Refrigeration Products Llc Air conditioning and refrigeration system
US20170115043A1 (en) * 2015-10-21 2017-04-27 Mitsubishi Electric Research Laboratories, Inc. System and Method for Controlling Refrigerant in Vapor Compression System
US10830515B2 (en) * 2015-10-21 2020-11-10 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling refrigerant in vapor compression system
US10215465B2 (en) 2015-10-30 2019-02-26 Heatcraft Refrigeration Products Llc Systems and methods for low load compressor operations
US20180356136A1 (en) * 2015-12-11 2018-12-13 Gree Electric Appliances, Inc. Of Zhuhai Gas-replenishing and enthalpy-increasing control method, device and apparatus for two-stage compressor
US10480835B2 (en) * 2015-12-11 2019-11-19 Gree Electric Appliances, Inc. Of Zhuhai Gas-replenishing and enthalpy-increasing control method, device and apparatus for two-stage compressor
US10543737B2 (en) 2015-12-28 2020-01-28 Thermo King Corporation Cascade heat transfer system
US11351842B2 (en) 2015-12-28 2022-06-07 Thermo King Corporation Cascade heat transfer system
US20170211871A1 (en) * 2016-01-21 2017-07-27 General Electric Company Sealed System and a Method For Defrosting an Evaporator
US20190128590A1 (en) * 2016-06-20 2019-05-02 Mitsubishi Electric Corporation Cooling device
US10788256B2 (en) * 2016-06-20 2020-09-29 Mitsubishi Electric Corporation Cooling device
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
US11892217B2 (en) 2016-06-21 2024-02-06 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
US11448430B2 (en) 2016-07-08 2022-09-20 Climate Master, Inc. Heat pump and water heater
US10871314B2 (en) 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
US11435095B2 (en) 2016-11-09 2022-09-06 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US11535425B2 (en) 2016-11-22 2022-12-27 Dometic Sweden Ab Cooler
USD985359S1 (en) 2016-11-22 2023-05-09 Dometic Sweden Ab Latch
USD995264S1 (en) 2016-11-22 2023-08-15 Dometic Sweden Ab Latch
US11414238B2 (en) 2016-11-22 2022-08-16 Dometic Sweden Ab Cooler
USD933449S1 (en) 2016-11-22 2021-10-19 Dometic Sweden Ab Latch
US20180187927A1 (en) * 2017-01-03 2018-07-05 Heatcraft Refrigeration Products Llc System and method for reusing waste heat of a transcritical refrigeration system
US20180187928A1 (en) * 2017-01-03 2018-07-05 Heatcraft Refrigeration Products Llc System and method for reusing waste heat of a transcritical refrigeration system
US10605494B2 (en) * 2017-01-03 2020-03-31 Heatcraft Refrigeration Product LLC System and method for reusing waste heat of a transcritical refrigeration system
US10969165B2 (en) 2017-01-12 2021-04-06 Emerson Climate Technologies, Inc. Micro booster supermarket refrigeration architecture
US10767906B2 (en) * 2017-03-02 2020-09-08 Heatcraft Refrigeration Products Llc Hot gas defrost in a cooling system
US20180274823A1 (en) * 2017-03-21 2018-09-27 Heatcraft Refrigeration Products Llc Transcritical system with enhanced subcooling for high ambient temperature
US10830499B2 (en) * 2017-03-21 2020-11-10 Heatcraft Refrigeration Products Llc Transcritical system with enhanced subcooling for high ambient temperature
WO2018178169A1 (en) * 2017-03-31 2018-10-04 Siemens Aktiengesellschaft Heat pump and method for operating a heat pump
USD887788S1 (en) 2017-05-17 2020-06-23 Dometic Sweden Ab Cooler
USD888503S1 (en) 2017-05-17 2020-06-30 Dometic Sweden Ab Cooler
US10935260B2 (en) 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
US11149971B2 (en) * 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
GB2585594A (en) * 2018-03-26 2021-01-13 Mitsubishi Electric Corp Refrigerating apparatus
GB2585594B (en) * 2018-03-26 2021-11-24 Mitsubishi Electric Corp Refrigeration device
WO2019186647A1 (en) * 2018-03-26 2019-10-03 三菱電機株式会社 Refrigerating apparatus
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US11940186B2 (en) 2018-06-05 2024-03-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US10808975B2 (en) * 2018-06-06 2020-10-20 Heatcraft Refrigeration Products Llc Cooling system
US20190376732A1 (en) * 2018-06-06 2019-12-12 Heatcraft Refrigeration Products Llc Cooling system
US11346583B2 (en) 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
EP3604890A1 (en) * 2018-08-01 2020-02-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refuelling containers with pressurized gas
US11506339B2 (en) 2018-08-01 2022-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
US11499765B2 (en) 2018-08-01 2022-11-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
EP3604891A1 (en) * 2018-08-01 2020-02-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refuelling containers with pressurized gas
US11953158B2 (en) 2018-08-01 2024-04-09 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Device and process for refueling containers with pressurized gas
US11287087B2 (en) 2018-08-01 2022-03-29 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
US10920933B2 (en) 2018-08-01 2021-02-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
US11953239B2 (en) 2018-08-29 2024-04-09 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control
US11506430B2 (en) 2019-07-15 2022-11-22 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation
US11268746B2 (en) * 2019-12-17 2022-03-08 Heatcraft Refrigeration Products Llc Cooling system with partly flooded low side heat exchanger
US11149997B2 (en) * 2020-02-05 2021-10-19 Heatcraft Refrigeration Products Llc Cooling system with vertical alignment
US11656012B2 (en) 2020-02-05 2023-05-23 Heatcraft Refrigeration Products Llc Cooling system with vertical alignment
US20230272804A1 (en) * 2020-07-30 2023-08-31 Johnson Controls Tyco IP Holdings LLP System and method for directing fluid flow in a compressor
WO2022036436A1 (en) * 2020-08-18 2022-02-24 Controlled Environments Limited Refrigeration system with hot gas by-pass
GB2612762A (en) * 2020-08-18 2023-05-10 Controlled Environments Ltd Refrigeration system with hot gas by-pass
US20230071132A1 (en) * 2021-09-03 2023-03-09 Heatcraft Refrigeration Products Llc Hot gas defrost using medium temperature compressor discharge
US11828506B2 (en) * 2021-09-03 2023-11-28 Heatcraft Refrigeration Products Llc Hot gas defrost using dedicated low temperature compressor discharge
US20230070186A1 (en) * 2021-09-03 2023-03-09 Heatcraft Refrigeration Products Llc Hot gas defrost using dedicated low temperature compressor discharge

Also Published As

Publication number Publication date
WO2010117973A2 (en) 2010-10-14
EP2417406A2 (en) 2012-02-15
CN102388279B (en) 2014-09-24
EP2417406A4 (en) 2015-04-15
WO2010117973A3 (en) 2011-01-13
CN102388279A (en) 2012-03-21
DK2417406T3 (en) 2019-04-23
EP2417406B1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
EP2417406B1 (en) Refrigerant vapor compression system with hot gas bypass
EP2147264B1 (en) Refrigerant vapor compression system
US8671703B2 (en) Refrigerant vapor compression system with flash tank economizer
US9951975B2 (en) Carbon dioxide refrigerant vapor compression system
US8528359B2 (en) Economized refrigeration cycle with expander
EP2737264B1 (en) Startup logic for refrigeration system
EP2491317B1 (en) Refrigerant vapor compression system operation
JP5196452B2 (en) Transcritical refrigerant vapor compression system with charge control
US7997092B2 (en) Refrigerant vapor compression system operating at or near zero load
EP2545331B1 (en) Defrost operations and apparatus for a transport refrigeration system
US9335079B2 (en) Low suction pressure protection for refrigerant vapor compression system

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARRIER CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCARCELLA, JASON;LIFSON, ALEXANDER;LI, DAQING;AND OTHERS;SIGNING DATES FROM 20090707 TO 20090715;REEL/FRAME:026942/0191

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION