US20110298071A9 - High power density betavoltaic battery - Google Patents

High power density betavoltaic battery Download PDF

Info

Publication number
US20110298071A9
US20110298071A9 US12/851,555 US85155510A US2011298071A9 US 20110298071 A9 US20110298071 A9 US 20110298071A9 US 85155510 A US85155510 A US 85155510A US 2011298071 A9 US2011298071 A9 US 2011298071A9
Authority
US
United States
Prior art keywords
recited
betavoltaic
battery
betavoltaic battery
radioisotope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/851,555
Other versions
US20110031572A1 (en
US8487392B2 (en
Inventor
Michael Spencer
MVS Chandrashekhar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Widetronix Inc
Original Assignee
Widetronix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Widetronix Inc filed Critical Widetronix Inc
Priority to US12/851,555 priority Critical patent/US8487392B2/en
Publication of US20110031572A1 publication Critical patent/US20110031572A1/en
Priority to US13/042,444 priority patent/US8134216B2/en
Assigned to WIDETRONIX INC reassignment WIDETRONIX INC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPENCER, MICHAEL, CHANDRASHEKHAR, MVS
Publication of US20110298071A9 publication Critical patent/US20110298071A9/en
Priority to US13/351,223 priority patent/US8866245B2/en
Application granted granted Critical
Publication of US8487392B2 publication Critical patent/US8487392B2/en
Assigned to YOUNG, JOHN F., BARNETT, SUSAN M., F.J. YOUNG COMPANY reassignment YOUNG, JOHN F. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Widetronix Inc.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/06Cells wherein radiation is applied to the junction of different semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Definitions

  • the field of the invention relates to semiconductor materials, devices and semiconductor device packaging, plus batteries.
  • Beta-voltaic devices have very high energy density and utilize radioisotopes as a fuel source. Radioisotope emissions originate from within a few microns of a radioactive material's surface at very low levels (nW/cm2- ⁇ W/cm2), despite the high power density in the bulk of the radioactive source (mW/cc-W/cc).
  • Several semiconductor materials, such as Si, GaAs, GaP, GaN and diamond, may be used in betavoltaic devices.
  • SiC silicon carbide
  • SiC silicon carbide
  • SiC silicon carbide
  • SiC provides low leakage currents to effectively harvest low level emission rates from the isotope.
  • the wide availability of high quality SiC substrates and epitaxy makes SiC the most practical of all semiconductors for betavoltaics, when performance and efficiency are considered. For example, Si provides 100 times less power conversion efficiencies than SiC. Thus, betavoltaic devices made from Si are suboptimal, due to this poor efficiency.
  • beta-voltaic batteries find applications in several areas such as security systems and medical implants (e.g. pacemakers). In order to increase power in these and other applications in the presence of low emission levels from radioisotopes, it is necessary to take advantage of the energy density of the device and develop device geometries and packaging which maximize the size and utilization of radioisotope surface area.
  • This invention uses novel device configurations and packaging to maximize power in betavoltaic batteries and power output per unit volume.
  • a SiC based beta voltaic radioisotope battery can produce several nanowatts (nWs) to milliwatts (mWs) of power, at 1 to 2 volts, with theoretical efficiencies in excess of 30% and measured efficiencies of 20%.
  • Radioisotopes provide fuel for these devices and emit high energy electrons, or beta particles.
  • the radioisotope tritium may be used.
  • Other radioactive materials such as Nickel-63, Phosphorus-33 and Promethium, may also be used.
  • Utilization of beta emitters is attractive because of the short penetration distance of emitted electrons. For example, a high energy electron emitted from nickel-63 is effectively stopped by 25 microns of plastic or a layer of dead skin.
  • beta particles do not damage semiconductor materials and are easily shielded from sensitive electronics.
  • SiC is a wide bandgap semiconductor, which is ideally suited for use in radioisotope batteries.
  • the material's wide bandgap provides not only for radiation resistance in long term exposure to high energy electrons, but perhaps, more importantly, the shunt resistance of SiC diodes is high enough to allow efficient extraction of energy from a radioisotope source.
  • Silicon (Si) the semiconductor industry workhorse, cannot realize sufficiently high open circuit voltages or power conversion efficiencies to be an optimal alternative for beta-voltaic batteries. Recent improvements in SiC substrate and epitaxial technology will enable the low dislocation and defect densities required for realization of beta-voltaic devices (including batteries) which utilize this material.
  • V oc nV T ln( J gen /J ss ), (1)
  • Voc is the open circuit voltage
  • n the ideality factor
  • J gen the current generated by the radioactive source
  • J ss is the reverse saturation current of the diode used in the cell.
  • the current generated in the cell can be predicted as follows.
  • the current generated in SiC by high energy electrons emitted from tritium is given as:
  • J gen ( J ⁇ *E mean ⁇ *(1 ⁇ ))/ E e-h (2)
  • J Gen is the net generated electron current
  • J ⁇ the net flux of beta electrons from the radiation source ( ⁇ 3 nA/cm 2 for tritiated water)
  • E mean ⁇ the mean beta electron energy generated by tritium, which is 5.5 keV
  • E e-h the mean electron-hole pair creation energy, which is 5 eV for SiC
  • which is the backscattering yield, which is (10%) for SiC.
  • each high energy beta particle from tritium generates ⁇ 1100 ⁇ (5.5 keV/5 eV) current in the cell due to this e-h pair creation energy.
  • the expected maximum current density in SiC is ⁇ 2 ⁇ A/cm 2 . This assumes 100% carrier collection efficiency in the absorption region. For SiC, this absorption region is ⁇ 0.5 ⁇ m.
  • any radiation source such as Ni-63, Tritium, Phosphorus-33, Pm-147 or others (e.g. see the ref. MVS Chandrashekhar et al., Appl. Phys. Lett., 88, 033506 (2006)).
  • radioisotopes which can be inserted as a power source for beta-voltaic batteries. These radioisotopes include, but are not limited to Phosphorus-33, Ni-63, Promethium and Tritium. All of the sources share the following drawback. Although the Curie load is calculated from the total volume of the radioactive material, the amount of useable energy is limited to the number of high energy electrons which escape from the surface of the source before they can be reabsorbed. The self-absorption length of these radioisotopes is of the order of microns (ref. Everhart and Hoff, J. Appl. Phys, 42, 5837 (1971)).
  • the optimum thickness for the radioisotope source material is microns. Only electrons from a very thin layer of radioisotope source material are extracted. Therefore, to increase total power in a betavoltaic device, it is desirable to have greater radioisotope material and/or semiconductor surface area rather than greater radioisotope material volume.
  • An embodiment of this invention is a high power density betavoltaic battery.
  • tritium is used as a fuel source.
  • radioisotopes such as Nickel-63, Phosphorus-33 or promethium, may be used.
  • the semiconductor used in this invention may include, but is not limited to, Si, GaAs, GaP, GaN, diamond and SiC.
  • tritium will be referenced as an exemplary fuel source, and SiC will be referenced as an exemplary semiconductor material.
  • One embodiment of the invention is a circularly symmetric implementation, as shown in FIGS. 1 and 3 .
  • Square geometry as shown in FIG. 2 , may be employed, as well.
  • Other geometries may be used to fit the application of interest.
  • the device is assembled one layer at a time, using various elements described below. This assembly may be performed manually or with robotic aid.
  • the device is assembled in a case whose core is comprised of insulating material, such as aluminum oxide, and is plated with magnetic shielding material.
  • Shielding materials such as Fe, Ni, u (Mu)-Metal or any other material with a high magnetic susceptibility, may be used to screen stray and intentionally applied magnetic fields.
  • the inside of the case is insulated to prevent device shorting.
  • the device is assembled in a case whose core is also comprised of insulating material such as aluminum oxide and is plated with electrical shielding material. Shielding materials such as Au, Ti, Fe, Ni, u (Mu)-Metal or any other material with a high electrical conductivity, may be used to screen stray and intentionally applied electrical fields. In a further embodiment, both electrical and magnetic shielding may be employed together. In a still further embodiment, a case can be made with two metal pieces fused together with an insulating material such as glass or aluminum oxide positioned between the metal pieces.
  • cases for magnetic and/or electrical shielding comprise an isolation area in the center that is not plated with shielding material.
  • the isolation area results in symmetric isolation between positively and negatively charged portions of the device.
  • references to a “top side” indicates surfaces of a device which face toward the device cap, and references to a “bottom side” indicate surfaces of a device which face away from the device cap. Moreover, when comparing the position of elements with respect to other elements, “upper” indicates a position closer to the device cap, and “lower” indicates a position farther away from the device cap.
  • Element 1 Split Ring Element.
  • the element provides conduction feed-through for the package.
  • region 1 or color red represents conduction regions
  • region 2 or color white indicates insulating regions.
  • This element is preferably fabricated from an insulating ceramic material, such as AlN, although other materials, such as SiO2 and sapphire, may be used.
  • conduction material such as thick gold plate, is deposited and electroplated, so as to form a low resistance path between the top and bottom of the element.
  • a space is machined in the ceramic so as to accommodate the betavoltaic device (element 2 described below), which is inserted in the space.
  • Element 2 SiC Betavoltaic Device. This element generates power.
  • Yellow color or region 3 represents the device and green color or region 4 represents ohmic contacts used in the device. Ohmic contacts are deposited on both the top and bottom sides of the device, and the device is placed in a machined space inside of split ring element 1 .
  • an ohmic contact is made between the bottom side of the device and one side of isolation element 4 (described below), creating a positive polarity on that side of the overall device structure.
  • Ohmic contact is also made between the top side of the betavoltaic device and one side of radioisotope element 3 (described below), creating a negative polarity on that side of the overall device structure.
  • the betavoltaic device has a P and N region.
  • the N-region is formed by chemical vapor deposition (CVD), while the p-region is formed by ion implantation and subsequent annealing, as discussed in relevant published literature.
  • Element 3 Radioisotope Element.
  • the element is a radioisotope foil (represented in grey or region 5 ) integrated with a conducting element, represented in red, or region 6 . Insulating regions are represented in white, or region 7 .
  • the radioisotope is metal foil of titanium or scandium, which is irradiated by annealing in gaseous tritium. In other implementations/examples, tritium liquid may be used. Other radioisotopes mentioned herein may also be used in solid or fluid form. Insulating portions of the radioisotope element are fabricated from insulating material, such as AlN, although other materials, such as SiO 2 and sapphire, may be used. Conducting material shown in red, such as thick gold plate, is deposited and electroplated, so as to form a low resistance path between the top and bottom of the element.
  • Element 4 Isolation Element.
  • Conducting material is shown in red, and white regions indicate insulating areas.
  • the isolation element is fabricated from insulating material, such as AlN, although other materials (such as SiO 2 and sapphire) may be used.
  • Conducting material shown in red such as thick gold plate, is deposited and electroplated, thus, forming a low resistance path between the top and bottom of the element.
  • elements 1 , 2 , 3 and 4 are used to create a betavoltaic device which has a parallel circuit configuration as shown in FIGS. 1 and 2 . Each element is placed into a case as shown in the figures.
  • the split ring element 1 is placed on top of the isolating element 4 .
  • SiC device element 2 is placed inside of split ring element 1 as described above.
  • Radioisotope element 3 is placed on top of elements 1 and 2 .
  • a lid containing positive and negative terminals is placed on the entire element stack to complete the device.
  • the above set of elements may be configured in a single set or repeating sets, or stacks, which are configured in parallel, until the desired power output is achieved.
  • the total output power will be approximately 0.1 ⁇ W per cm 2 of SiC betavoltaic device area in a set/stack, multiplied by the number of sets/stacks. In other embodiments, higher and lower output power levels in each stack may be used.
  • FIGS. 1 and 2 show a sample device with two sets of elements. The assembly is closed with a press fit cap. This cap compresses the conductive areas and ensures a good quality contact between the layers. Although contact between elements is shown as direct contact, contact between elements may also be achieved with continuous solder or solder bumps, formed on conducting regions of each element.
  • references to a “top side” indicate surfaces of a device which face toward the device cap, and references to a “bottom side” indicate surfaces of a device which face away from the device cap. Moreover, when comparing the position of elements with respect to other elements, “upper” indicates a position closer to the device cap, and “lower” indicates a position farther away from the device cap.
  • Element 1 Split Ring Elements.
  • the elements provide conduction feed-through for the package.
  • red represents conduction regions, while white indicates insulating regions, with regions marked and labeled above.
  • These elements are preferably fabricated from an insulating ceramic material, such as AlN, although other materials, such as SiO2 and sapphire, may be used.
  • conduction material such as thick gold plate, is deposited and electroplated, to form a low resistance path between the top and bottom of the element.
  • a space is machined in the ceramic so as to accommodate the betavoltaic device (element 2 described below), which is inserted in the space.
  • Element 2 SiC Betavoltaic Device: This element generates power. Yellow represents the device and green represents ohmic contacts used in the device. Ohmic contacts are deposited on both the top and bottom sides of the device and the device is placed in a machined space inside of split ring element 1 . In placing the betavoltaic device in the split ring element, ohmic contact can be made with certain elements, based on the desired series configuration and the quantity of betavoltaic device elements utilized. Examples include:
  • the device element (a PN junction semiconductor diode) has a P and N region.
  • the N-region is formed by chemical vapor deposition (CVD), while the p-region is formed by ion implantation and subsequent annealing, as discussed in relevant published literature.
  • the element is a radioisotope foil (represented in grey) integrated with a conducting element, represented in red, as shown above for different regions. Insulating regions are represented in white.
  • the radioisotope is metal foil of titanium or scandium, which is irradiated by annealing in gaseous tritium. In other implementations, tritium liquid may be used. Other radioisotopes mentioned herein may also be used in solid or fluid form. Insulating portions of the radioisotope element are fabricated from insulating material, such as AlN, although other materials, such as SiO 2 and sapphire, may be used.
  • Conducting material shown in red such as thick gold plate, is deposited and electroplated, so as to form a low resistance path between the top and bottom of the element.
  • Element 4 Isolation Element: Conducting material is shown in red, and white regions indicate insulating areas.
  • the isolation element is fabricated from insulating material such as AlN, although other materials such as SiO 2 and sapphire may be used.
  • Conducting material shown in red, such as thick gold plate, is deposited and electroplated thus forming a low resistance path between the top and bottom of the element.
  • Element 5 Series Element: This element contains a radioisotope foil (represented in grey). The element also contains isolation material (white regions) and conductive regions, indicated in red. In one implementation, the isolation element is fabricated from insulating material such as AlN, although other materials such as SiO 2 and sapphire may be used. Conducting material shown in red, such as thick gold plate, is deposited and electroplated on the outermost edge of the element, thus, forming a low resistance path between the top and bottom of the element at that outer edge. Conducting material which is proximal to the radioisotope foil is not plated, but instead is formed through the entire thickness of the element as a solid conductive ring, which also provides a low resistance path between the top and bottom of the element.
  • Conducting material which is proximal to the radioisotope foil is not plated, but instead is formed through the entire thickness of the element as a solid conductive ring, which also provides a low resistance path between the top and bottom of the element.
  • elements 1 , 2 , 3 , 4 and 5 are used to create a betavoltaic device which has series and parallel circuit configurations as shown in FIG. 3 . Each element is placed into a case as shown in FIG. 3 .
  • Split ring elements 1 containing device elements 2 are placed in series, in accordance with the above, and with series element 5 placed between each element 1 and 2 combination, also in accordance with the above.
  • the desired quantity of device elements 2 (along with split ring and series element(s) 1 and 5 , respectively) are placed on top of isolating element 4 .
  • Radioisotope element 3 is placed on top of uppermost device element 2 .
  • This configuration comprises one complete set of elements.
  • a lid containing positive and negative terminals is placed on the entire configuration to complete the device.
  • the above set of elements may be configured in a single set or repeating sets, or stacks, which are configured in parallel, until the desired power output is achieved.
  • the total output power will be approximately 0.1 ⁇ W per cm 2 of SiC betavoltaic device area in a set/stack multiplied by the number of sets/stacks.
  • FIG. 3 shows a sample device with two sets/stacks of elements. The assembly is closed with a press fit cap. This cap compresses the conductive areas and ensures a good quality contact between the layers. Although contact between elements is shown as direct contact, contact between elements may also be achieved with continuous solder or solder bumps formed on conducting regions of each element.
  • FIGS. 1-3 mirror FIGS. 4-6 , respectively, showing the same features in black/white drawings, versus color image, to teach the features more easily and clearly. (Different regions of the color figures are designated using colors, for the ease of teaching of the invention to the reader.)
  • FIG. 1 or 4 we have the following features or parts: item 101 (Lid to Battery Case), 102 (negative post), 103 (positive post), 104 (case isolation material, or isolation material), 105 (radioisotope element, 106 (radioisotope), 107 (isolation material), 108 (metal contact), 109 (split ring element), 110 (SiC Betavoltaic device), 111 (ohmic contact), 112 (isolation material), 113 (metal contact), 118 (isolation element), 119 (isolation material), 120 (metal contact), 121 (battery case), and 122 (assembled device).
  • FIG. 2 or 5 we have the following features or parts: item 201 (Lid to Battery Case), 202 (negative post), 203 (positive post), 204 (case isolation material, or isolation material), 205 (radioisotope element, 206 (radioisotope), 207 (isolation material), 208 (metal contact), 209 (split ring element), 210 (SiC Betavoltaic device), 211 (ohmic contact), 212 (isolation material), 213 (metal contact), 214 (isolation element), 215 (isolation material), 216 (metal contact), 217 (battery case), and 218 (assembled device).
  • item 201 Lid to Battery Case
  • 202 negative post
  • 203 positive post
  • 204 case isolation material, or isolation material
  • 205 radioisotope element
  • 206 radioisotope
  • 207 isolation material
  • 208 metal contact
  • 209 splitt ring element
  • 210 SiC Betavoltaic device
  • FIG. 3 or 6 we have the following features or parts: item 101 (Lid to Battery Case), 102 (negative post), 103 (positive post), 104 (case isolation material, or isolation material), 105 (radioisotope element, 106 (radioisotope), 107 (isolation material), 108 (metal contact), 109 (split ring element), 110 (SiC Betavoltaic device), 111 (ohmic contact), 112 (isolation material), 113 (metal contact), 114 (series element, or element), 115 (radioisotope), 116 (isolation material), 117 (metal contact), 118 (isolation element), 119 (isolation material), 120 (metal contact), 121 (battery case), and 301 (assembled device).
  • item 101 Lid to Battery Case
  • 102 negative post
  • 103 positive post
  • 104 case isolation material, or isolation material
  • 105 radioisotope element
  • 106 radioisotope
  • 107
  • the devices can be grown on different materials or substrates, or implanted/annealed, or by any other deposition methods. They can be stacked on top of each other in series or side-by-side in parallel.
  • the contacts may be by pressure, or no-pressure, surface adhesion, or by removal of the layer and its placement on a second substrate, or by flip-chip-type technology, reversing the orientation or direction.
  • the supplied material may be in shape of liquid, fluid, gas, powder, conventional semiconductor, polycrystalline, crystalline, amorphous, or combination of different crystalline regions.
  • the thickness of the active region can be non-uniform, or ramped thickness, variable thickness, so that different absorption or current is obtained.
  • the regions on the surface can be patterned so that for heat dissipation and transfer is done more efficiently, to reduce overheating, or increasing efficiency, if that effect is desired, to some optimum temperature.
  • the battery can be integrated on the same substrate, on same circuit, to save energy, cost, space, efficiency, or time, and increase speed.

Abstract

To increase total power in a betavoltaic device, it is desirable to have greater radioisotope material and/or semiconductor surface area, rather than greater radioisotope material volume. An example of this invention is a high power density betavoltaic battery. In one example of this invention, tritium is used as a fuel source. In other examples, radioisotopes, such as Nickel-63, Phosphorus-33 or promethium, may be used. The semiconductor used in this invention may include, but is not limited to, Si, GaAs, GaP, GaN, diamond, and SiC. For example (for purposes of illustration/example, only), tritium will be referenced as an exemplary fuel source, and SiC will be referenced as an exemplary semiconductor material. Other variations and examples are also discussed and given.

Description

  • This is a Continuation of (based on) a U.S. Provisional Application Ser. No. 61/231,863, filed on 6 Aug. 2009, with the same title, assignee, and inventors.
  • FIELD OF THE INVENTION
  • The field of the invention relates to semiconductor materials, devices and semiconductor device packaging, plus batteries.
  • BACKGROUND OF THE INVENTION
  • Beta-voltaic devices have very high energy density and utilize radioisotopes as a fuel source. Radioisotope emissions originate from within a few microns of a radioactive material's surface at very low levels (nW/cm2-μW/cm2), despite the high power density in the bulk of the radioactive source (mW/cc-W/cc). Several semiconductor materials, such as Si, GaAs, GaP, GaN and diamond, may be used in betavoltaic devices.
  • However, silicon carbide (SiC) is the material used here for the production of beta voltaic devices, due to its wide bandgap. Moreover, in addition to its radiation hardness and ability not to degrade over time at higher temperatures and in harsh environments, SiC provides low leakage currents to effectively harvest low level emission rates from the isotope. The wide availability of high quality SiC substrates and epitaxy makes SiC the most practical of all semiconductors for betavoltaics, when performance and efficiency are considered. For example, Si provides 100 times less power conversion efficiencies than SiC. Thus, betavoltaic devices made from Si are suboptimal, due to this poor efficiency.
  • Semiconductor-based beta-voltaic batteries find applications in several areas such as security systems and medical implants (e.g. pacemakers). In order to increase power in these and other applications in the presence of low emission levels from radioisotopes, it is necessary to take advantage of the energy density of the device and develop device geometries and packaging which maximize the size and utilization of radioisotope surface area. This invention uses novel device configurations and packaging to maximize power in betavoltaic batteries and power output per unit volume.
  • Beta-Voltaic Devices
  • A SiC based beta voltaic radioisotope battery can produce several nanowatts (nWs) to milliwatts (mWs) of power, at 1 to 2 volts, with theoretical efficiencies in excess of 30% and measured efficiencies of 20%. Radioisotopes provide fuel for these devices and emit high energy electrons, or beta particles. The radioisotope tritium may be used. Other radioactive materials, such as Nickel-63, Phosphorus-33 and Promethium, may also be used. Utilization of beta emitters is attractive because of the short penetration distance of emitted electrons. For example, a high energy electron emitted from nickel-63 is effectively stopped by 25 microns of plastic or a layer of dead skin. Moreover, beta particles do not damage semiconductor materials and are easily shielded from sensitive electronics.
  • For several decades, electronics have become smaller and ubiquitous. In addition, power requirements for silicon-based electronics have been made low enough to enable the realization of nanowatt electronics, and asynchronous logic platform technologies are either projecting or exhibiting a performance of 24 pJ/instruction and 28 MIPS at 0.6V. Many medical applications can be powered with 1 to 10 microwatts (μWs) of average power. With such low power consumption requirements, a beta-voltaic battery source is able to continuously power the aforementioned electronics. Using these low power electronic elements, it is also possible to implement massive intelligent sensor networks which can monitor a large range of environments and infrastructures, or power a pacemaker or other implantable devices for over 25 years.
  • Silicon Carbide
  • SiC is a wide bandgap semiconductor, which is ideally suited for use in radioisotope batteries. The material's wide bandgap provides not only for radiation resistance in long term exposure to high energy electrons, but perhaps, more importantly, the shunt resistance of SiC diodes is high enough to allow efficient extraction of energy from a radioisotope source. Silicon (Si), the semiconductor industry workhorse, cannot realize sufficiently high open circuit voltages or power conversion efficiencies to be an optimal alternative for beta-voltaic batteries. Recent improvements in SiC substrate and epitaxial technology will enable the low dislocation and defect densities required for realization of beta-voltaic devices (including batteries) which utilize this material.
  • Theory of a Radiation Battery
  • The operation of a radiation cell is well-described by the solar cell equations. The main relationship is given by

  • V oc =nV T ln(J gen /J ss),  (1)
  • where Voc is the open circuit voltage, n the ideality factor, VT the thermal voltage=25.9 mV at T=300K, Jgen the current generated by the radioactive source, and Jss is the reverse saturation current of the diode used in the cell.
  • Using a tritium radiation source and SiC material, as illustrative examples, the current generated in the cell can be predicted as follows. The current generated in SiC by high energy electrons emitted from tritium is given as:

  • J gen=(J β*Emean β*(1−η))/E e-h  (2)
  • where JGen is the net generated electron current, Jβ the net flux of beta electrons from the radiation source (˜3 nA/cm2 for tritiated water), Emean β the mean beta electron energy generated by tritium, which is 5.5 keV, Ee-h the mean electron-hole pair creation energy, which is 5 eV for SiC, and η which is the backscattering yield, which is (10%) for SiC.
  • It is worthwhile to mention that each high energy beta particle from tritium generates ˜1100× (5.5 keV/5 eV) current in the cell due to this e-h pair creation energy. The expected maximum current density in SiC is ˜2 μA/cm2. This assumes 100% carrier collection efficiency in the absorption region. For SiC, this absorption region is ˜0.5 μm. Such a predictive analysis can be carried out for any radiation source, such as Ni-63, Tritium, Phosphorus-33, Pm-147 or others (e.g. see the ref. MVS Chandrashekhar et al., Appl. Phys. Lett., 88, 033506 (2006)).
  • Radioisotopes
  • There are several candidate radioisotopes which can be inserted as a power source for beta-voltaic batteries. These radioisotopes include, but are not limited to Phosphorus-33, Ni-63, Promethium and Tritium. All of the sources share the following drawback. Although the Curie load is calculated from the total volume of the radioactive material, the amount of useable energy is limited to the number of high energy electrons which escape from the surface of the source before they can be reabsorbed. The self-absorption length of these radioisotopes is of the order of microns (ref. Everhart and Hoff, J. Appl. Phys, 42, 5837 (1971)). This means that the optimum thickness for the radioisotope source material (such as foil) is microns. Only electrons from a very thin layer of radioisotope source material are extracted. Therefore, to increase total power in a betavoltaic device, it is desirable to have greater radioisotope material and/or semiconductor surface area rather than greater radioisotope material volume.
  • SUMMARY OF INVENTION
  • An embodiment of this invention is a high power density betavoltaic battery. In one embodiment of this invention, tritium is used as a fuel source. In other embodiments, radioisotopes, such as Nickel-63, Phosphorus-33 or promethium, may be used. The semiconductor used in this invention may include, but is not limited to, Si, GaAs, GaP, GaN, diamond and SiC. For this disclosure, and for purposes of illustration/example only, tritium will be referenced as an exemplary fuel source, and SiC will be referenced as an exemplary semiconductor material.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 (a)-(c)—Cross-Section and Perspective Views of Betavoltaic Device w/Elements and Case (Circular Geometry, Parallel Circuit Design)
  • FIGS. 2 (a)-(c)—Cross-Section and Perspective Views of Betavoltaic Device w/Elements and Case (Square Geometry, Parallel Circuit Design)
  • FIGS. 3 (a)-(c)—Cross-Section and Perspective Views of Betavoltaic Device w/Elements and Case (Circular Geometry, Series and Parallel Circuit Design)
  • FIGS. 4 (a)-(c)—Cross-Section and Perspective Views of Betavoltaic Device w/Elements and Case (Circular Geometry, Parallel Circuit Design)
  • FIGS. 5 (a)-(c)—Cross-Section and Perspective Views of Betavoltaic Device w/Elements and Case (Square Geometry, Parallel Circuit Design)
  • FIGS. 6 (a)-(c)—Cross-Section and Perspective Views of Betavoltaic Device w/Elements and Case (Circular Geometry, Series and Parallel Circuit Design)
  • DETAILED DESCRIPTION OF INVENTION
  • One embodiment of the invention is a circularly symmetric implementation, as shown in FIGS. 1 and 3. Square geometry, as shown in FIG. 2, may be employed, as well. Other geometries may be used to fit the application of interest.
  • The device is assembled one layer at a time, using various elements described below. This assembly may be performed manually or with robotic aid.
  • In one embodiment, the device is assembled in a case whose core is comprised of insulating material, such as aluminum oxide, and is plated with magnetic shielding material. Shielding materials, such as Fe, Ni, u (Mu)-Metal or any other material with a high magnetic susceptibility, may be used to screen stray and intentionally applied magnetic fields. The inside of the case is insulated to prevent device shorting.
  • In a further embodiment, the device is assembled in a case whose core is also comprised of insulating material such as aluminum oxide and is plated with electrical shielding material. Shielding materials such as Au, Ti, Fe, Ni, u (Mu)-Metal or any other material with a high electrical conductivity, may be used to screen stray and intentionally applied electrical fields. In a further embodiment, both electrical and magnetic shielding may be employed together. In a still further embodiment, a case can be made with two metal pieces fused together with an insulating material such as glass or aluminum oxide positioned between the metal pieces.
  • As shown in FIGS. 1, 2 and 3, cases for magnetic and/or electrical shielding comprise an isolation area in the center that is not plated with shielding material. The isolation area results in symmetric isolation between positively and negatively charged portions of the device.
  • Device with Parallel Circuit Design
  • Description of Device Elements for Parallel Circuit Design—Reference FIGS. 1 and 2: Note: references to a “top side” indicates surfaces of a device which face toward the device cap, and references to a “bottom side” indicate surfaces of a device which face away from the device cap. Moreover, when comparing the position of elements with respect to other elements, “upper” indicates a position closer to the device cap, and “lower” indicates a position farther away from the device cap.
  • Element 1—Split Ring Element. The element provides conduction feed-through for the package. In the drawings, region 1 or color red represents conduction regions, while region 2 or color white indicates insulating regions. This element is preferably fabricated from an insulating ceramic material, such as AlN, although other materials, such as SiO2 and sapphire, may be used. On top of this ceramic material, conduction material, such as thick gold plate, is deposited and electroplated, so as to form a low resistance path between the top and bottom of the element. A space is machined in the ceramic so as to accommodate the betavoltaic device (element 2 described below), which is inserted in the space.
  • Element 2—SiC Betavoltaic Device. This element generates power. Yellow color or region 3 represents the device and green color or region 4 represents ohmic contacts used in the device. Ohmic contacts are deposited on both the top and bottom sides of the device, and the device is placed in a machined space inside of split ring element 1. In placing the betavoltaic device in the split ring element, an ohmic contact is made between the bottom side of the device and one side of isolation element 4 (described below), creating a positive polarity on that side of the overall device structure. Ohmic contact is also made between the top side of the betavoltaic device and one side of radioisotope element 3 (described below), creating a negative polarity on that side of the overall device structure. Contacts made by the betavoltaic device are electrically continuous on each side of the split ring assembly. The device (a PN junction semiconductor diode) has a P and N region. In the preferred implementation, the N-region is formed by chemical vapor deposition (CVD), while the p-region is formed by ion implantation and subsequent annealing, as discussed in relevant published literature.
  • Element 3—Radioisotope Element. The element is a radioisotope foil (represented in grey or region 5) integrated with a conducting element, represented in red, or region 6. Insulating regions are represented in white, or region 7. In one implementation, the radioisotope is metal foil of titanium or scandium, which is irradiated by annealing in gaseous tritium. In other implementations/examples, tritium liquid may be used. Other radioisotopes mentioned herein may also be used in solid or fluid form. Insulating portions of the radioisotope element are fabricated from insulating material, such as AlN, although other materials, such as SiO2 and sapphire, may be used. Conducting material shown in red, such as thick gold plate, is deposited and electroplated, so as to form a low resistance path between the top and bottom of the element.
  • Element 4—Isolation Element. Conducting material is shown in red, and white regions indicate insulating areas. In one implementation, the isolation element is fabricated from insulating material, such as AlN, although other materials (such as SiO2 and sapphire) may be used. Conducting material shown in red, such as thick gold plate, is deposited and electroplated, thus, forming a low resistance path between the top and bottom of the element.
  • In one embodiment of this invention, elements 1, 2, 3 and 4 (described above) are used to create a betavoltaic device which has a parallel circuit configuration as shown in FIGS. 1 and 2. Each element is placed into a case as shown in the figures.
  • The split ring element 1 is placed on top of the isolating element 4. SiC device element 2 is placed inside of split ring element 1 as described above. Radioisotope element 3 is placed on top of elements 1 and 2. A lid containing positive and negative terminals is placed on the entire element stack to complete the device.
  • The above set of elements may be configured in a single set or repeating sets, or stacks, which are configured in parallel, until the desired power output is achieved. For the invention described above, as an example, the total output power will be approximately 0.1 μW per cm2 of SiC betavoltaic device area in a set/stack, multiplied by the number of sets/stacks. In other embodiments, higher and lower output power levels in each stack may be used. FIGS. 1 and 2 show a sample device with two sets of elements. The assembly is closed with a press fit cap. This cap compresses the conductive areas and ensures a good quality contact between the layers. Although contact between elements is shown as direct contact, contact between elements may also be achieved with continuous solder or solder bumps, formed on conducting regions of each element.
  • Device with Series and Parallel Circuit Design
  • Description of Device Elements for Series and Parallel Circuit Design—Reference FIG. 3: Note: references to a “top side” indicate surfaces of a device which face toward the device cap, and references to a “bottom side” indicate surfaces of a device which face away from the device cap. Moreover, when comparing the position of elements with respect to other elements, “upper” indicates a position closer to the device cap, and “lower” indicates a position farther away from the device cap.
  • Element 1—Split Ring Elements. The elements provide conduction feed-through for the package. In the drawings, red represents conduction regions, while white indicates insulating regions, with regions marked and labeled above. These elements are preferably fabricated from an insulating ceramic material, such as AlN, although other materials, such as SiO2 and sapphire, may be used. On top of this ceramic material, conduction material, such as thick gold plate, is deposited and electroplated, to form a low resistance path between the top and bottom of the element. A space is machined in the ceramic so as to accommodate the betavoltaic device (element 2 described below), which is inserted in the space.
  • Element 2—SiC Betavoltaic Device: This element generates power. Yellow represents the device and green represents ohmic contacts used in the device. Ohmic contacts are deposited on both the top and bottom sides of the device and the device is placed in a machined space inside of split ring element 1. In placing the betavoltaic device in the split ring element, ohmic contact can be made with certain elements, based on the desired series configuration and the quantity of betavoltaic device elements utilized. Examples include:
  • a). qty. (quantity) two device elements 2 in series—the upper device element 2 makes ohmic contact between the top side of the device and one side of radioisotope element 3 (described below), creating a negative polarity on that side of the overall device structure. This same device also makes ohmic contact between the bottom side of the device and the top side of series element 5 (described below). The lower device element 2 makes ohmic contact between the top side of the device and bottom side of element 5. This same device element 2 makes ohmic contact between the bottom side of the device and one side of isolation element 4 (described below), creating a positive polarity on that side of the overall device structure.
  • b). qty. of more than two device elements in series—the configuration in a). above is used to start the series configuration, and the combination of element 5 and lower device element 2 mentioned in a) above is repeated and added to the lowermost portion of the series configuration, until the desired quantity of device elements configured in series is reached. The final lowermost device element 2 makes ohmic contact between the bottom side of the device and one side of isolation element 4 (described below), creating a positive charge on that side of the overall device structure.
  • The device element (a PN junction semiconductor diode) has a P and N region. In one implementation, the N-region is formed by chemical vapor deposition (CVD), while the p-region is formed by ion implantation and subsequent annealing, as discussed in relevant published literature.
  • Element 3—Radioisotope Element: The element is a radioisotope foil (represented in grey) integrated with a conducting element, represented in red, as shown above for different regions. Insulating regions are represented in white. In one implementation, the radioisotope is metal foil of titanium or scandium, which is irradiated by annealing in gaseous tritium. In other implementations, tritium liquid may be used. Other radioisotopes mentioned herein may also be used in solid or fluid form. Insulating portions of the radioisotope element are fabricated from insulating material, such as AlN, although other materials, such as SiO2 and sapphire, may be used. Conducting material shown in red, such as thick gold plate, is deposited and electroplated, so as to form a low resistance path between the top and bottom of the element.
  • Element 4—Isolation Element: Conducting material is shown in red, and white regions indicate insulating areas. In one implementation, the isolation element is fabricated from insulating material such as AlN, although other materials such as SiO2 and sapphire may be used. Conducting material shown in red, such as thick gold plate, is deposited and electroplated thus forming a low resistance path between the top and bottom of the element.
  • Element 5—Series Element: This element contains a radioisotope foil (represented in grey). The element also contains isolation material (white regions) and conductive regions, indicated in red. In one implementation, the isolation element is fabricated from insulating material such as AlN, although other materials such as SiO2 and sapphire may be used. Conducting material shown in red, such as thick gold plate, is deposited and electroplated on the outermost edge of the element, thus, forming a low resistance path between the top and bottom of the element at that outer edge. Conducting material which is proximal to the radioisotope foil is not plated, but instead is formed through the entire thickness of the element as a solid conductive ring, which also provides a low resistance path between the top and bottom of the element.
  • In one embodiment of this invention, elements 1, 2, 3, 4 and 5 (described above) are used to create a betavoltaic device which has series and parallel circuit configurations as shown in FIG. 3. Each element is placed into a case as shown in FIG. 3.
  • Split ring elements 1 containing device elements 2 are placed in series, in accordance with the above, and with series element 5 placed between each element 1 and 2 combination, also in accordance with the above. The desired quantity of device elements 2 (along with split ring and series element(s) 1 and 5, respectively) are placed on top of isolating element 4. Radioisotope element 3 is placed on top of uppermost device element 2. This configuration comprises one complete set of elements. A lid containing positive and negative terminals is placed on the entire configuration to complete the device.
  • The above set of elements may be configured in a single set or repeating sets, or stacks, which are configured in parallel, until the desired power output is achieved. For the invention described above, the total output power will be approximately 0.1 μW per cm2 of SiC betavoltaic device area in a set/stack multiplied by the number of sets/stacks.
  • In other embodiments, higher and lower output power levels in each set/stack may be used. FIG. 3 shows a sample device with two sets/stacks of elements. The assembly is closed with a press fit cap. This cap compresses the conductive areas and ensures a good quality contact between the layers. Although contact between elements is shown as direct contact, contact between elements may also be achieved with continuous solder or solder bumps formed on conducting regions of each element.
  • Note that FIGS. 1-3 mirror FIGS. 4-6, respectively, showing the same features in black/white drawings, versus color image, to teach the features more easily and clearly. (Different regions of the color figures are designated using colors, for the ease of teaching of the invention to the reader.)
  • For FIG. 1 or 4, we have the following features or parts: item 101 (Lid to Battery Case), 102 (negative post), 103 (positive post), 104 (case isolation material, or isolation material), 105 (radioisotope element, 106 (radioisotope), 107 (isolation material), 108 (metal contact), 109 (split ring element), 110 (SiC Betavoltaic device), 111 (ohmic contact), 112 (isolation material), 113 (metal contact), 118 (isolation element), 119 (isolation material), 120 (metal contact), 121 (battery case), and 122 (assembled device).
  • For FIG. 2 or 5, we have the following features or parts: item 201 (Lid to Battery Case), 202 (negative post), 203 (positive post), 204 (case isolation material, or isolation material), 205 (radioisotope element, 206 (radioisotope), 207 (isolation material), 208 (metal contact), 209 (split ring element), 210 (SiC Betavoltaic device), 211 (ohmic contact), 212 (isolation material), 213 (metal contact), 214 (isolation element), 215 (isolation material), 216 (metal contact), 217 (battery case), and 218 (assembled device).
  • For FIG. 3 or 6, we have the following features or parts: item 101 (Lid to Battery Case), 102 (negative post), 103 (positive post), 104 (case isolation material, or isolation material), 105 (radioisotope element, 106 (radioisotope), 107 (isolation material), 108 (metal contact), 109 (split ring element), 110 (SiC Betavoltaic device), 111 (ohmic contact), 112 (isolation material), 113 (metal contact), 114 (series element, or element), 115 (radioisotope), 116 (isolation material), 117 (metal contact), 118 (isolation element), 119 (isolation material), 120 (metal contact), 121 (battery case), and 301 (assembled device).
  • The devices can be grown on different materials or substrates, or implanted/annealed, or by any other deposition methods. They can be stacked on top of each other in series or side-by-side in parallel. The contacts may be by pressure, or no-pressure, surface adhesion, or by removal of the layer and its placement on a second substrate, or by flip-chip-type technology, reversing the orientation or direction.
  • The supplied material may be in shape of liquid, fluid, gas, powder, conventional semiconductor, polycrystalline, crystalline, amorphous, or combination of different crystalline regions.
  • The thickness of the active region can be non-uniform, or ramped thickness, variable thickness, so that different absorption or current is obtained.
  • The regions on the surface can be patterned so that for heat dissipation and transfer is done more efficiently, to reduce overheating, or increasing efficiency, if that effect is desired, to some optimum temperature.
  • The battery can be integrated on the same substrate, on same circuit, to save energy, cost, space, efficiency, or time, and increase speed.
  • Any other variations of the above are also meant to be included in the coverage or scope of this invention.

Claims (20)

1. A betavoltaic battery, comprising:
a positive post;
a negative post;
a radioisotope layer;
one or more metal contacts; and
isolation material.
2. The betavoltaic battery as recited in claim 1, further comprising:
a lid to a battery case.
3. The betavoltaic battery as recited in claim 1, further comprising:
case isolation material.
4. The betavoltaic battery as recited in claim 1, further comprising:
a battery case.
5. The betavoltaic battery as recited in claim 1, further comprising:
a semiconductor material.
6. The betavoltaic battery as recited in claim 5, wherein said semiconductor material is SiC.
7. The betavoltaic battery as recited in claim 1, further comprising:
an ohmic contact.
8. The betavoltaic battery as recited in claim 1, further comprising:
a split ring element.
9. The betavoltaic battery as recited in claim 1, further comprising:
an isolation element or material.
10. The betavoltaic battery as recited in claim 1, further comprising one or more of the following: radioisotope tritium, Nickel-63, Phosphorus-33, or Promethium.
11. The betavoltaic battery as recited in claim 5, wherein said semiconductor material is Si, GaAs, GaP, GaN, or diamond.
12. The betavoltaic battery as recited in claim 1, wherein said betavoltaic battery's cross section is in a shape of square or circle.
13. The betavoltaic battery as recited in claim 1, further comprising an electrical shielding material.
14. The betavoltaic battery as recited in claim 1, further comprising a magnetic shielding material.
15. The betavoltaic battery as recited in claim 1, further comprising Fe or Ni.
16. The betavoltaic battery as recited in claim 1, further comprising a PN junction.
17. The betavoltaic battery as recited in claim 1, further comprising a diode.
18. The betavoltaic battery as recited in claim 1, further comprising titanium or scandium.
19. The betavoltaic battery as recited in claim 1, further comprising AlN, SiO2, or sapphire.
20. The betavoltaic battery as recited in claim 1, wherein said betavoltaic battery is based on a series circuit design and/or parallel circuit design.
US12/851,555 2009-08-06 2010-08-06 High power density betavoltaic battery Active 2031-06-25 US8487392B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/851,555 US8487392B2 (en) 2009-08-06 2010-08-06 High power density betavoltaic battery
US13/042,444 US8134216B2 (en) 2009-08-06 2011-03-07 Nuclear batteries
US13/351,223 US8866245B2 (en) 2009-08-06 2012-01-16 Nuclear batteries

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23186309P 2009-08-06 2009-08-06
US30654110P 2010-02-21 2010-02-21
US12/851,555 US8487392B2 (en) 2009-08-06 2010-08-06 High power density betavoltaic battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/888,521 Continuation-In-Part US8017412B2 (en) 2009-08-06 2010-09-23 Betavoltaic battery with a shallow junction and a method for making same

Publications (3)

Publication Number Publication Date
US20110031572A1 US20110031572A1 (en) 2011-02-10
US20110298071A9 true US20110298071A9 (en) 2011-12-08
US8487392B2 US8487392B2 (en) 2013-07-16

Family

ID=43534172

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/851,555 Active 2031-06-25 US8487392B2 (en) 2009-08-06 2010-08-06 High power density betavoltaic battery

Country Status (1)

Country Link
US (1) US8487392B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130278109A1 (en) * 2012-04-24 2013-10-24 Ultratech, Inc. Betavoltaic power sources for mobile device applications
US9090472B2 (en) 2012-04-16 2015-07-28 Seerstone Llc Methods for producing solid carbon by reducing carbon dioxide
US9221685B2 (en) 2012-04-16 2015-12-29 Seerstone Llc Methods of capturing and sequestering carbon
US9466401B1 (en) 2009-12-14 2016-10-11 City Labs, Inc. Tritium direct conversion semiconductor device
US9475699B2 (en) 2012-04-16 2016-10-25 Seerstone Llc. Methods for treating an offgas containing carbon oxides
US9556031B2 (en) 2009-04-17 2017-01-31 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
US9598286B2 (en) 2012-07-13 2017-03-21 Seerstone Llc Methods and systems for forming ammonia and solid carbon products
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
US9799419B2 (en) 2014-02-17 2017-10-24 City Labs, Inc. Tritium direct conversion semiconductor device for use with gallium arsenide or germanium substrates
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US10186339B2 (en) 2014-02-17 2019-01-22 City Labs, Inc. Semiconductor device for directly converting radioisotope emissions into electrical power
US10322832B2 (en) 2013-03-15 2019-06-18 Seerstone, Llc Systems for producing solid carbon by reducing carbon oxides
US10784010B2 (en) * 2014-11-14 2020-09-22 Kinetic Energy Australia Pty. Ltd. Electrical generator system
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US11200997B2 (en) 2014-02-17 2021-12-14 City Labs, Inc. Semiconductor device with epitaxial liftoff layers for directly converting radioisotope emissions into electrical power
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130154438A1 (en) * 2011-12-20 2013-06-20 Marvin Tan Xing Haw Power-Scalable Betavoltaic Battery
US9266437B2 (en) 2012-07-23 2016-02-23 Ultratech, Inc. Betavoltaic power sources for transportation applications
US10699820B2 (en) * 2013-03-15 2020-06-30 Lawrence Livermore National Security, Llc Three dimensional radioisotope battery and methods of making the same
US10685758B2 (en) * 2013-03-15 2020-06-16 Lawrence Livermore National Security, Llc Radiation tolerant microstructured three dimensional semiconductor structure
US9391218B2 (en) 2014-06-27 2016-07-12 IntriEnergy Inc. Voltaic cell powered by radioactive material
US10978215B2 (en) 2016-05-22 2021-04-13 City Labs, Inc. Series and/or parallel connected alpha, beta, and gamma voltaic cell devices
RU2632588C1 (en) * 2016-08-04 2017-10-06 Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") Beta-voltaic battery
RU2631861C1 (en) * 2016-12-06 2017-09-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Flexible beta-voltaic element
RU170474U1 (en) * 2016-12-27 2017-04-26 Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГБНУ ТИСНУМ) RADIO ISOTOPIC DC
GB201707486D0 (en) 2017-05-10 2017-06-21 Univ Bristol Radiation powered devices comprising diamond material
RU2659182C1 (en) * 2017-08-01 2018-06-28 Федеральное Государственное Унитарное Предприятие "Горно - Химический Комбинат" (Фгуп "Гхк") Regulator of output electrical parameters of beta-voltaic battery
US20190045959A1 (en) * 2017-08-10 2019-02-14 Stephen L. Merker Garment Removal Apparatus and Method
RU2670710C9 (en) * 2017-12-25 2018-11-29 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Radioisotope element of electric power supply with semiconductor converter, combined with radiation source
KR102513298B1 (en) 2019-04-10 2023-03-27 한국전자통신연구원 Radioisotope battery
RU2714690C2 (en) * 2019-09-02 2020-02-19 Общество с ограниченной ответственностью "БетаВольтаика" Device for generating electric current by converting the energy of radio-chemical beta-decay of c-14
RU2731547C1 (en) * 2019-12-26 2020-09-04 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Self-contained beta-voltaic power supply
US20220139588A1 (en) * 2020-11-04 2022-05-05 Westinghouse Electric Company Llc Nuclear battery
US20220199272A1 (en) * 2020-12-17 2022-06-23 Westinghouse Electric Company Llc Methods of manufacture for nuclear batteries
WO2024049985A1 (en) * 2022-08-31 2024-03-07 Westinghouse Electric Company Llc Nuclear power source, nuclear battery assembly, and a method of manufacture thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2837668A (en) * 1955-07-20 1958-06-03 Plessey Co Ltd Mechanical systems
US2864012A (en) * 1953-10-12 1958-12-09 Tracerlab Inc Means for generating electrical energy from a radioactive source
US2900535A (en) * 1956-06-28 1959-08-18 Tracerlab Inc Radioactive battery
US3094634A (en) * 1953-06-30 1963-06-18 Rca Corp Radioactive batteries
US3706893A (en) * 1969-09-19 1972-12-19 Mc Donnell Douglas Corp Nuclear battery
US5082505A (en) * 1988-12-29 1992-01-21 Cota Albert O Self-sustaining power module
US5087533A (en) * 1989-10-12 1992-02-11 Brown Paul M Contact potential difference cell
US5260621A (en) * 1991-03-18 1993-11-09 Spire Corporation High energy density nuclide-emitter, voltaic-junction battery
US6238812B1 (en) * 1998-04-06 2001-05-29 Paul M. Brown Isotopic semiconductor batteries
US6479919B1 (en) * 2001-04-09 2002-11-12 Terrence L. Aselage Beta cell device using icosahedral boride compounds
US20090026879A1 (en) * 2005-10-25 2009-01-29 Prelas Mark A Micro-Scale Power Source

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094634A (en) * 1953-06-30 1963-06-18 Rca Corp Radioactive batteries
US2864012A (en) * 1953-10-12 1958-12-09 Tracerlab Inc Means for generating electrical energy from a radioactive source
US2837668A (en) * 1955-07-20 1958-06-03 Plessey Co Ltd Mechanical systems
US2900535A (en) * 1956-06-28 1959-08-18 Tracerlab Inc Radioactive battery
US3706893A (en) * 1969-09-19 1972-12-19 Mc Donnell Douglas Corp Nuclear battery
US5082505A (en) * 1988-12-29 1992-01-21 Cota Albert O Self-sustaining power module
US5087533A (en) * 1989-10-12 1992-02-11 Brown Paul M Contact potential difference cell
US5260621A (en) * 1991-03-18 1993-11-09 Spire Corporation High energy density nuclide-emitter, voltaic-junction battery
US6238812B1 (en) * 1998-04-06 2001-05-29 Paul M. Brown Isotopic semiconductor batteries
US6479919B1 (en) * 2001-04-09 2002-11-12 Terrence L. Aselage Beta cell device using icosahedral boride compounds
US20090026879A1 (en) * 2005-10-25 2009-01-29 Prelas Mark A Micro-Scale Power Source

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887018B2 (en) * 2008-12-14 2018-02-06 City Labs, Inc. Tritium direct conversion semiconductor device
US20170092385A1 (en) * 2008-12-14 2017-03-30 City Labs, Inc. Tritium Direct Conversion Semiconductor Device
US9556031B2 (en) 2009-04-17 2017-01-31 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
US10500582B2 (en) 2009-04-17 2019-12-10 Seerstone Llc Compositions of matter including solid carbon formed by reducing carbon oxides
US9466401B1 (en) 2009-12-14 2016-10-11 City Labs, Inc. Tritium direct conversion semiconductor device
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US9090472B2 (en) 2012-04-16 2015-07-28 Seerstone Llc Methods for producing solid carbon by reducing carbon dioxide
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
US9221685B2 (en) 2012-04-16 2015-12-29 Seerstone Llc Methods of capturing and sequestering carbon
US9475699B2 (en) 2012-04-16 2016-10-25 Seerstone Llc. Methods for treating an offgas containing carbon oxides
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US20130278109A1 (en) * 2012-04-24 2013-10-24 Ultratech, Inc. Betavoltaic power sources for mobile device applications
US8872408B2 (en) * 2012-04-24 2014-10-28 Ultratech, Inc. Betavoltaic power sources for mobile device applications
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9598286B2 (en) 2012-07-13 2017-03-21 Seerstone Llc Methods and systems for forming ammonia and solid carbon products
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
US9993791B2 (en) 2012-11-29 2018-06-12 Seerstone Llc Reactors and methods for producing solid carbon materials
US10322832B2 (en) 2013-03-15 2019-06-18 Seerstone, Llc Systems for producing solid carbon by reducing carbon oxides
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
US10186339B2 (en) 2014-02-17 2019-01-22 City Labs, Inc. Semiconductor device for directly converting radioisotope emissions into electrical power
US9799419B2 (en) 2014-02-17 2017-10-24 City Labs, Inc. Tritium direct conversion semiconductor device for use with gallium arsenide or germanium substrates
US10607744B2 (en) 2014-02-17 2020-03-31 City Labs, Inc. Semiconductor device for directly converting radioisotope emissions into electrical power
US11200997B2 (en) 2014-02-17 2021-12-14 City Labs, Inc. Semiconductor device with epitaxial liftoff layers for directly converting radioisotope emissions into electrical power
US11783956B2 (en) 2014-02-17 2023-10-10 City Labs, Inc. Semiconductor device with epitaxial liftoff layers for directly converting radioisotope emissions into electrical power
US10784010B2 (en) * 2014-11-14 2020-09-22 Kinetic Energy Australia Pty. Ltd. Electrical generator system
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Also Published As

Publication number Publication date
US20110031572A1 (en) 2011-02-10
US8487392B2 (en) 2013-07-16

Similar Documents

Publication Publication Date Title
US8487392B2 (en) High power density betavoltaic battery
US9099212B2 (en) Low volumetric density betavoltaic power device
US10083770B2 (en) High energy-density radioisotope micro power sources
US8866152B2 (en) Betavoltaic apparatus and method
Bormashov et al. Development of nuclear microbattery prototype based on Schottky barrier diamond diodes
US6479919B1 (en) Beta cell device using icosahedral boride compounds
Khan et al. Design and characterization of GaN pin diodes for betavoltaic devices
Bao et al. Betavoltaic performance of radiation-hardened high-efficiency Si space solar cells
Sachenko et al. Efficiency analysis of betavoltaic elements
RU2704321C2 (en) Electric generator system
US9391218B2 (en) Voltaic cell powered by radioactive material
CN111386578A (en) Nuclear micro battery
US6730538B1 (en) Fabricating electronic devices using actinide oxide semiconductor materials
US11769603B2 (en) H-3 silicon carbide PN-type radioisotopic battery and manufacturing method of the same
JP2019529944A (en) Beta Volta battery
US9018721B1 (en) Beta voltaic semiconductor photodiode fabricated from a radioisotope
RU2641100C1 (en) COMPACT BETAVOLTAIC POWER SUPPLY OF LONG USE WITH BETA EMITTER ON BASIS OF RADIOISOTOPE 63 Ni AND METHOD OF OBTAINING IT
RU2605758C1 (en) Electric power supply source
PI et al. Demonstration and Comparison of GaN/Sapphire and InGaP pin devices for Tritium Betavoltaic Power Source
Khan et al. Demonstration and Comparison of GaN/Sapphire and InGaP pin Devices for Tritium Betavoltaic Power Source
Zheng et al. Enhanced performance of GaAs-based betavoltaic batteries by using AlGaAs hole/electron transport layers
US20240055149A1 (en) Self-biased 4h-sic mos devices for radiation detection
RU2670710C1 (en) Radioisotope element of electric power supply with semiconductor converter, combined with radiation source
CN109616471B (en) Micro nuclear energy self-powered integrated circuit chip and preparation method thereof
Li et al. A betavoltaic microcell based on semiconducting single-walled carbon nanotube arrays/Si heterojunctions

Legal Events

Date Code Title Description
AS Assignment

Owner name: WIDETRONIX INC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANDRASHEKHAR, MVS;SPENCER, MICHAEL;SIGNING DATES FROM 20110428 TO 20110526;REEL/FRAME:026676/0673

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: F.J. YOUNG COMPANY, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:WIDETRONIX INC.;REEL/FRAME:035428/0906

Effective date: 20150413

Owner name: BARNETT, SUSAN M., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:WIDETRONIX INC.;REEL/FRAME:035428/0906

Effective date: 20150413

Owner name: YOUNG, JOHN F., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:WIDETRONIX INC.;REEL/FRAME:035428/0906

Effective date: 20150413

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8